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Drug transporters are membrane proteins known for their role in handling pharmaceutical 

products. However, recent work suggests they contribute to physiology by transporting 

endogenous metabolites. This understudied function may explain some aspects of organ 

crosstalk, inter-organismal communication, and adverse drug side effects. This dissertation 

focuses on determining the endogenous compounds that renal organic anion transporter 1 

(OAT1/SLC22A6) interacts with using in vivo, in vitro, and in silico methodologies. Chapter 1 

presents the current state of drug transporter research. Chapter 2 of this dissertation is a reprint of 
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published work that describes the role OAT1 plays in mediating the relationship between the 

host and the gut microbiome via regulation of circulating small molecule metabolites in a pre-

clinical model. These in vivo results were supported with in vitro binding and transport assays. 

Chapter 3 of this dissertation is a reprint of published work that explores the role that a common 

OAT1-inhibiting drug, probenecid, has on the plasma and urine metabolomes of healthy humans. 

This revealed dozens of plasma and urine drug-metabolite interactions caused by short-term 

exposure, including multiple likely occurring at OAT1. Chapter 4 of this dissertation is a reprint 

of published work that combines genomic and metabolomic data to determine associations 

between single nucleotide polymorphisms and circulating small, polar, bioactive molecules. This 

work reveals that numerous drug transporter and drug metabolizing enzyme genes play important 

individual and combined roles in physiology. Chapter 5 describes in silico models used to better 

characterize the nature of protein-ligand interactions involving OAT1. By analyzing molecular 

descriptors of compounds known to interact with OAT1, we generated predictive ligand-based 

models. We then explored potential binding mechanisms for different classes of compounds 

using a predicted OAT1 structure. Chapter 6 is a summary of the contributions to the field and 

future directions in drug transporter research. 



1 

 

CHAPTER 1: INTRODUCTION 
 

1.1 DRUG TRANSPORTERS 

1.1.1. ABC and SLC Membrane Transporters 

 Membrane transporters are proteins localized to the plasma membrane that are involved 

in the uptake and efflux of various small molecules. These proteins are either ATP-binding 

cassette (ABC) transporters, which are usually efflux transporters, or solute carrier (SLC) 

transporters, which are usually uptake transporters. Together, these families consist of over 400 

unique proteins with a wide variety of functions in transport of both endogenous and xenobiotic 

compounds [1, 2]. 

1.1.2. Drug Transporters 

Drug transporters are a subset of SLC or ABC proteins that are best known for their role 

in the absorption distribution, metabolism, and excretion (ADME) of small molecule drugs. 

These transporters are characterized by a broad range of substrates and inhibitors, which 

encompass several distinct drug classes, such as antibiotics, antivirals, chemotherapeutics, and 

many others [3]. Each drug transporter has its own unique array of compounds it interacts with, 

thought there is some overlap between them with specific small molecules. This ability to handle 

dozens of unique compounds can be described as multi-specificity and distinguishes drug 

transporters from other transporters, which typically have a smaller range of compounds they 

interact with. These functionally limited transporters can be described as either oligo-specific or 

mono-specific, depending on the number of distinct compounds they interact with. 

The main drug transporters are ABCB1 (P-gp), ABCG2 (BCRP), SLCO1B1 

(OATP1B1), SLCO1B3 (OATP1B3), SLC22A6 (OAT1), SLC22A8, (OAT3), and SLC22A2 

(OCT2). While these have received the majority of research attention, other drug transporters, 

such as ABCC2 (MRP2), ABCC4 (MRP4), ABCB11 (BSEP), SLC47A1 (MATE1), have begun 
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to receive research attention, as well. Because of the multi-specific nature of these transporters, 

they are potential sites for drug-drug interactions [4]. Drug-drug interactions occur when two or 

more drugs compete for access to a protein, typically transporters or enzymes. In the case of 

transporters, the drugs compete at the site of the transporter for either entry into the cell or efflux 

out of the cell, leading to altered extracellular and intracellular concentrations of one or more of 

the drugs. These changes can lead to negative consequences, such as decreased efficacy, 

increased toxicity, or adverse side effects. Global regulatory agencies (e.g., Food and Drug 

Administration, European Medicines Agency) have recommended that all novel drug entities be 

screened for interaction with the main drug transporters (P-gp, BCRP, OATP1B1, OATP1B3, 

OAT1, OAT3, OCT2) to avoid potential drug-drug interactions. 

In large part due to regulatory interest, there is a plethora of data on the pharmaceutical 

function of drug transporters. These studies have revealed overlap in the function of these drug 

transporters. While some drugs may be associated with a single transporter, many have been 

shown to interact with more than one transporter. For example, OAT1 and OAT3 have 

considerable overlap with respect to drugs [5] and also share a number of substrates with the 

renal efflux transporters MATE-1 and MATE-2K. The shared function suggests that drug 

transporters are part of a larger system that may help protect the body from xenobiotics, 

especially given their enriched expression in excretory organs. 

1.1.3. Drug Transporter Expression Patterns 

Drug transporters are primarily expressed in barrier epithelial tissues, such as the kidney, 

liver, and intestine [6]. These barrier tissue separate body fluids, which is particularly important 

in drug clearance, as many compounds are excreted via the urine, feces, or bile (Figure 1.1). For 

example, the kidney and more specifically, the proximal tubule, separates the blood from the 

urine, the hepatocyte in the liver separates the blood from the bile, and the enterocyte in the 
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intestine separates the blood from the gut lumen. In addition to these organs, the brain (blood-

brain barrier, choroid plexus) and the placenta (mother-fetus) also express multiple drug 

transporters.  

Beyond the tissue and cell expression patterns, the subcellular localization for drug 

transporters is important when considering the individual and combined role of these proteins. 

The plasma membrane of polarized cells leads to two distinct sides of the membrane: the 

basolateral and apical membranes. Each of these membranes has their own distinct profile of 

transporters expressed, with most drug transporters exclusively expressed on a single side. For 

example, OAT1 and OAT3 are only expressed on the basolateral (blood-facing) side of the 

proximal tubule, meaning that they have a pronounced role in the uptake of compounds from the 

blood into the cell. On the apical side of the proximal tubule, MRP2 and MRP4 are efflux 

transporters that are responsible for excreting compounds from the cell into the urine and are 

exclusively expressed on the apical membrane. When taken with the different mechanisms of 

action (uptake, efflux), the combinatorial possibilities across multiple organs represents a robust 

network of transporters that can protect the body from numerous drugs and toxins and potentially 

mediate the intracellular and extracellular levels of other types of compounds.  

1.1.4. Drug Transporter Function 

With respect to clinically relevant drugs, there is structural and functional diversity 

among these compounds, as the hundreds of drugs that are substrates or inhibitors of drug 

transporters have unique chemical structures, mechanisms of actions, and ADME properties. The 

ability to handle so many distinct compounds implies that drug transporters may also handle 

other classes of compounds [6]. For example, OAT1 has been shown to be inhibited by or 

transport different antibiotics, antivirals, NSAIDs, natural products, uremic toxins, endogenous 

metabolites, as well as other classes of small molecules (Figure 1.2).  
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While most drug transporter research emphasizes their role in the handling of 

pharmaceutical products, roles in the handling of other non-pharmaceutical products, such as 

endogenous metabolites, natural products, and toxins, are have received comparatively little 

research attention. This role could lead to other types of competitive interactions, such as drug-

metabolite and drug-natural product interactions, which can have negative health consequences. 

These understudied functions are pivotal, as the endogenous function may be the ‘primary’ role 

of drug transporters. Drug transporters are not suddenly expressed in response to the introduction 

of drugs and are always expressed, suggesting they may have an alternative role. One of the 

primary goals of this dissertation is to help uncover the physiological role of OAT1 by 

determining the endogenous compounds it interacts with and develop strategies for determining 

transporter function that can be applied to other drug transporters.  

1.2 REMOTE SENSING AND SIGNALING THEORY 

 

1.2.1 ADME Proteins in Endogenous Metabolism 

The Remote Sensing and Signaling Theory posits that the primary function of proteins 

involved in the ADME of drugs is to simultaneously optimize the levels of hundreds of 

endogenous metabolites and signaling molecules [7, 8]. The Remote Sensing and Signaling 

System consists of drug transporters, drug metabolizing enzymes, ligand-activated 

transcriptional regulators, and related proteins that all play important roles in maintaining and 

returning the body to homeostasis following perturbation (Figure 1.3) [9, 10]. This system can 

be understood as a three-tier system where small molecules with important signaling roles are on 

the first layer, transporters and enzymes that transport or modify the compounds are on the 

second layer, and ligand-activated transcriptional regulators, which respond to the small 

molecules by changing the expression profiles of the relevant transporters/enzymes, are on the 

third level.  
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The Remote Sensing and Signaling Theory was initially formulated with the SLC22 

family in mind, but has recently been expanded to include roughly 500 relevant genes/proteins 

[11]. Given the expression and subcellular localization of the proteins in the Remote Sensing and 

Signaling System in important epithelial tissues, it is well-equipped to serve as a robust network 

with numerous potential compensatory mechanisms. The shared function across multiple organs 

and cell types suggests that these transporters and enzymes may serve as key conduits to organ 

crosstalk (Figure 1.3) [11]. Indeed, it has been shown that when renal urate excretion is 

diminished due to kidney disease, ABCG2 expression/function in the intestine is upregulated to 

excrete urate into the gut lumen [12]. We expect other similar compensatory mechanisms to exist 

across multiple organ axes, further emphasizing the importance of determining the endogenous 

role of these drug transporters.  

In addition to organ crosstalk, the system may also serve as a mediator of inter-

organismal communication (Figure 1.3). One clear example is between the mother and the fetus. 

The communication between these organisms is largely mediated by the placenta, which is 

responsible for both the nutrition and the protection of the fetus from potential toxins [13]. The 

placenta expresses several drug transporters, suggesting that it is an organ with a strong, adaptive 

system for handling a myriad of small molecule compounds [14]. The function and regulation of 

numerous drug transporters, including BCRP, MRP2, and others, during different phases of 

pregnancy has been covered in other work [15].  

Beyond the role of drug transporters in the mother-fetus relationship, there is evidence of 

drug transporters playing an important role in the inter-organismal communication between the 

host and the gut microbiota, which consists of hundreds of distinct bacterial species. The 

communication between the host and the gut microbiome is largely mediated by the small 
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molecules produced jointly by these two organisms. In this symbiotic relationship, the host 

consumes dietary products that are acted upon by the transporters/enzymes expressed by diverse 

microbial populations to produce metabolites that cannot be produced by the host alone [16]. 

These compounds often have important signaling roles in distal organs, such as the brain and 

heart [17, 18]. While the signaling roles of these metabolites have been studied, the ADME 

properties of these metabolites, such as the proteins involved in their clearance, has been largely 

ignored. The work presented in this dissertation addresses this shortcoming and indicates that the 

Remote Sensing and Signaling System plays a crucial role in regulating the circulating levels of 

these compounds, and as such, is important in mediating inter-organismal communication. 

Chapter 2 of this dissertation explores the relationship between OAT1 and the gut microbiome 

via the regulation of small molecule endogenous metabolites. 

1.2.2 Evolutionary Conservation of ADME Genes 

 Understanding why drug transporters, drug-metabolizing enzymes, and related proteins 

are expressed in multiple species may seem obvious, but this is only in the context of today’s 

society, where pharmaceutical products and environmental toxins are highly prevalent. A key 

question arises: Why are these genes evolutionarily conserved? Evolutionary analyses have 

shown that some of these genes, particularly ABC transporters and CYP450 enzymes, are highly 

conserved in model organisms, such as mice, flies, zebrafish, and bacterial species [19, 20]. This 

suggests that there is some essential, physiological role they play. While this essential role could 

be related to detoxification, another perspective is that these genes play crucial roles in 

endogenous metabolism. Increasing evidence of their individual and combined function in the 

movement of endogenous metabolites suggests further study, which is in part, addressed in this 

dissertation.  
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1.2.3 Potential Consequences of Perturbing Endogenous System 

 Drug-drug interactions are the primary competitive interactions that occur at drug 

transporters, but there are likely many other competitive interactions between different kinds of 

compounds [21]. Drug-metabolite interactions are often leveraged in drug development as the 

primary mechanism of action. Probenecid, a drug used to treat gout and hyperuricemia, 

participates in a drug-metabolite interaction with urate at the site of URAT1 on the apical 

membrane [22]. While the ADME system normally operates efficiently, there are some situations 

in which the perturbation of the endogenous function of drug-handling proteins can lead to 

negative consequences. For example, adverse drug reactions and drug side effects are often 

unexplained and can manifest in a number of distinct ways [23]. These can range from nausea 

and headaches to more serious cases, such as renal failure and internal bleeding. These cases 

often occur in older patients, who may be taking multiple drugs simultaneously for a variety of 

conditions for extended periods of time, leading to multiple possible competitive interactions at 

numerous transporters and enzymes [24].  

In addition to short-term drug reactions, there is evidence of drug-induced metabolic 

diseases caused by long-term treatment of drugs [25]. HIV patients take antiviral cocktails and 

organ transplant patients take immunosuppressants for the rest of their lives. While these drugs 

are effective in suppressing the virus and the immune system, respectively, they will also impact 

the function of drug metabolizing enzymes and drug transporters consistently, which could be 

the root cause of the metabolic dysfunction [26, 27]. However, it is difficult to separate the 

disease state from the unintended perturbations to the Remote Sensing and Signaling System. 

The work we describe in Chapter 3 of this dissertation demonstrates a potential mechanism for 

these effects, as even the short-term impact of non-toxic drug administration can have a major 
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impact on the plasma and urine metabolome. The constant stressing of the system with drugs 

may impact its ability to return the body to homeostasis in an efficient manner.  

1.3 CURRENT STRATEGIES FOR PREDICTING TRANSPORTER FUNCTION 

Having established the broad and important role that drug transporters can play in several 

aspects of xenobiotic and endogenous small molecule handling, it is imperative to develop and 

utilize strategies to determine the small molecule function of these proteins. Several 

methodologies have been applied to determine transporter function, as described below. The 

work presented in Chapters 2-5 of this dissertation represent novel systems and approaches to 

understanding transporter function. Prior to presenting the advances in drug transporter research, 

the current state of the field is summarized.  

1.3.1. In Vitro Assays 

Historically, determining mechanistic interactions between transporters and small 

molecule compounds have been done using two dimensional in vitro assays with cells 

overexpressing the transporter of interest [28]. These assays have used transfected cell lines 

expressing transporters from different species, but recent work has established human cells with 

human transporters as the preferred choice [29]. These assays are designed to measure either 

inhibition or transport. In the inhibition assays, cells that overexpress the transporter are plated 

and exposed to the compound of interest along with either a radiolabeled or fluorescent probe for 

transporter function. These assays, when coupled with known transport properties of the probe, 

produce Ki values for the compound of interest and are run in replicates to ensure reproducibility. 

Transport assays, which are more time-consuming and expensive, measure the uptake or efflux 

of a radiolabeled compound and produce Km values. Alternatively, with advances in 

metabolomics, specific compounds can be measured either within the cell lysate or the cell 

media to determine the rate of uptake/efflux [30, 31].  
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There are varying levels of complexity with respect to 2-D in vitro assays, with some 

assays attempting to recapture some aspects of polarization by using Transwell filters [32]. 

Furthermore, the cell types used can have a profound impact on the results, with HepG2 cells 

being used for liver-related studies [33], and HEK293 being used for renal studies [34]. Current 

studies are aiming to develop more sophisticated and reproducible systems that consider 

physiological factors. 3-D organoids, organs on a chip, and other strategies across multiple 

organs are rapidly advancing [35-40], but 2-D assays remain the gold standard. Despite their 

position as the gold standard, these assays are an imperfect system, as many phenomena 

observed in vitro are not reflected in vivo in humans, rodents, or other model organisms [41].  

1.3.2. In Vivo Models 

Two-dimensional in vitro assays are currently the gold standard for determining 

mechanistic transporter-compound interactions because they are relatively inexpensive, 

replicable, and use human proteins, however, these models lack physiological relevance. Despite 

efforts in organoid and organ-on-a-chip research to improve model systems, rodents remain the 

best in vivo models for understanding transporter function.  

Several in vivo transporter knockout rodent models have been generated to study both the 

pharmaceutical and endogenous role of these proteins, with OATs, OATPs, MRPs, and other 

clinically relevant drug transporters being studied [42-49]. The most useful models are those 

with clear orthologs in humans. If there are not clear human orthologs, humanized mouse models 

have been used to explore some drug transporters, such as OATP1B1 and OATP1B3 [50, 51].  

The mouse and human proteins for OAT1 are similar with respect to function, leading to 

useful clinical predictions. These mice have been used to understand drug clearance, but  recent 

work by our group has emphasized the profound endogenous role that OAT1 has on physiology 

using serum metabolomics, as OAT1’s expression on the basolateral side of the proximal tubule 
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makes the serum a valuable biofluid in understanding OAT1 function [42, 52-55]. Despite the 

wealth of knowledge gained from these Oat1 knockout mice, these in vivo models have never 

been metabolically stressed in any capacity. The work presented in Chapter 2 of this dissertation 

addresses this shortcoming in the literature by introducing a cocktail of antibiotics to deplete the 

gut microbiome.  

In addition to mouse models, rats have also been used to study drug transporter function, 

such as OAT1, OAT3, BCRP, and P-gp [56, 57]. Flies have also proved useful in understanding 

the function of understudied transporters, though there is no clear ortholog for OAT1 or some 

other drug transporters [58, 59]. 

Ultimately, each in vivo model organism needs to be analyzed in the context of the 

transporter. For example, renal drug transporters, such as OAT1, have been studied by using 

serum/plasma and urine as functional readouts of the transporter. Similarly, liver transporters 

separate the blood and the bile, and transporters in enterocytes separate the blood and the gut 

lumen, so these biological samples, respectively, would serve as useful information. These 

samples can be studied with developing tools like metabolomics or more targeted screens for 

specific compounds. Metabolomics, coupled with chromatography, allows for the quantitative or 

semi-quantitative measurement of any small molecule compound whose chemical standard exists 

within a pre-defined library. Metabolomics can be applied to bodily fluids, tissues, or cells and is 

a powerful tool. Organs in which the transporters of interest are expressed may also be probed, as 

other relevant genes/proteins in the tissue may alter their expression to compensate for the 

putative function of the transporter. These organs can be analyzed using transcriptomic and 

proteomic studies.  
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1.3.3. Genome Wide Association Studies (GWAS) 

 As genomic data becomes more readily available and easily interpretable, more studies 

have linked single nucleotide polymorphisms (SNPs) in or near transporter genes with 

phenotypes [60]. These genome wide association studies (GWAS) have been used to link genes 

to complex phenotypes, such as diseases [61]. For example, SNPs in the SLC22A5 transporter 

gene have been associated with systemic carnitine deficiency [62]. While these studies have been 

useful, they are often difficult to unpack, as complex diseases are the result of many 

simultaneous processes and may involve multiple genes. To identify more specific interactions 

between transporters and small molecules, GWAS can focus on intermediate phenotypes with 

metabolomic and proteomic technology as the primary result. Considering that we are primarily 

interested in the small molecule related function of transporters, using metabolomics on bodily 

fluids, like the plasma and urine, can reveal important potential roles of transporters and related 

genes [63-65]. While these studies alone are insufficient in determining protein-metabolite 

interactions, they can provide high confidence predictions that have clear clinical implications. 

Chapter 4 of this dissertation focuses on the associations between SNPs in drug-handling genes 

and small, polar bioactive molecules with important signaling roles. The presented study 

emphasizes the understudied, endogenous role of what are best known as ADME genes.  

1.3.4. Ligand-based Models 

 Wet lab experiments have largely driven transporter research, but the increased 

accessibility and knowledge of in silico approaches have helped advance computational 

approaches for analyzing transporter function. Within each chemical structure of a small 

molecule, there is a tremendous amount of information. The properties extracted from a single 

compound can be a simple as counts, such as number of hydrogens, but can also cover more 

complex features, such as total polar surface area or many others. Overall, there are 1-D, 2-D, 
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and 3-D chemical properties that can be calculated for any small molecule compound, with 1-D 

properties consisting of different fingerprints [66], 2-D properties consisting of properties 

calculated from a flat chemical structure [67], and 3-D properties, which are molecular 

descriptors calculated from the more complex 3-D structure. This is an active area of research, 

and more properties and combinations of properties are being discovered to better characterize 

molecules. This long list of features can then be used in the generation of mathematical ligand-

based models. In Chapter 5 of this dissertation, chemical features of small molecules that are 

transporter-mediated are used to better understand transporter function. These ligand-based 

approaches can also be used to determine the small molecule specificity of enzymes or receptors 

or to determine what compounds with similar phenotypes have in common [68].  

One of the main goals in transporter research is to develop high accuracy predictive 

models that can determine whether specific compounds will interact with the transporter of 

interest. This requires sufficient data, which only exists for drug transporters that have received 

major research attention. Even then, the majority of these data come from in vitro assays from 

multiple groups, which can be both time consuming, suffer from variability between assays, and 

misrepresent in vivo interactions. In spite of these limitations, multiple groups have developed 

useful models based on high throughput in vitro data to build quantitative structure activity 

relationship (QSAR) machine learning models for drug transporters, like OATP1B1, P-gp, and 

BCRP [69-71]. In these models, the target variable is either a quantitative value, such as Km or Ki 

or a binary classification, such as substrate, non-substrate, inhibitor, or non-inhibitor. These 

models continue to improve with higher quality data, and advances in machine learning 

algorithms, but again, they primarily rely upon in vitro data. Chapter 5 of this dissertation 
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addresses this concern by developing a framework for predicting transporter-interacting 

molecules with in vivo metabolomics data from plasma and urine. 

In vivo data has been scarce for most transporters, but studies by our group have 

generated metabolomics data for OAT1 and OAT3 that can be used in machine learning models 

[54, 72, 73]. Machine learning models were generated with the goal of differentiating OAT1-

interacting compounds from OAT3-interactiong compounds [74]. A later study focused on 

separating OAT-interacting, OATP-interacting and OCT-interacting compounds [75, 76]. While 

distinguishing transporter specificity is important in drug design and drug dosing, in this 

dissertation, rather than classifying between transporters, we build models that determine 

whether a compound is or is not a substrate/inhibitor of relevant transporters with a flexible 

framework that can be applied to multiple metabolomics datasets.  

 In addition to machine learning models, pharmacophore models have also been used to 

understand transporter function [77, 78]. These pharmacophore models utilize the 3-D structures 

for compounds that have been established as either substrates or inhibitors of specific 

transporters. By clustering and transposing the compounds in the same clusters, representative 

pharmacophore models can be applied to novel compounds. This dissertation also applies 

unsupervised learning approaches to better understand the multiple distinct functions of a single 

transporter. 

1.3.5. Protein-based Models 

 Ligand-based models depend on prior knowledge of function, so it can be difficult to 

identify novel substrates or inhibitors of transporters with these methods. An alternative and 

complementary approach is to use protein-based approaches. Protein-based approaches 

encompass methodologies where the protein structure is used with molecular modeling software 

to make predictions on protein-ligand interactions [79]. Because transporters are membrane-
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bound, it has been historically difficult to isolate a protein structure [80, 81], though recent cryo-

EM work has determined the structure for some human SLC and ABC transporters. Very few 

drug transporters, which includes P-gp and BCRP, have experimentally derived protein 

structures, with or without ligands bound [82-85].  

To circumvent this problem, multiple strategies have been applied to better understand 

transporter function at the molecular level. For one, bacterial homologs have been used, which 

share some similarities with the human structure and can then be used to generate predictions on 

active sites and mechanisms [86]. However, these models can be difficult to translate to humans 

because of the different biological factors in bacteria. More recently, protein structure prediction 

has improved at a rapid rate and can be partly validated by existing cryo-EM results for related 

proteins. This has led to an influx of software, AlphaFold among others, that can take protein 

sequences and produce high confidence protein structures that can be probed for more specific 

virtual experiments [87]. Multiple SLC transporters (OATPs, OATs), including OAT1, have 

been studied using some of these novel tools in a variety of ways, which describe mechanism of 

action, conformations, and ligand interactions [88-91]. This dissertation focuses on 

OAT1/SLC22A6 and combines known ligand information with the predicted human protein 

structure to identify key residues in binding.  

1.3.6. Systems Biology Models 

 Genome-scale metabolic reconstructions are well-established models to portray complex 

metabolic interactions in bacterial and mammalian species using transcriptomic data [92, 93]. To 

understand transporter function in the context of a complete metabolic reaction map, 

transcriptomic data from Oat1 and Oat3 knockout mouse kidneys has previously been used to 

predict endogenous metabolites that the transporters interact with [77, 94, 95]. Recon3D 

represents the latest version of the genome scale metabolic reconstruction, with several 
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metabolites and reactions added to the previous iteration [96]. Recon3D was applied to kidney 

transcriptomic data and constrained with serum metabolomics from Oat1 knockout mice to better 

understand the functional role of OAT1 in vivo, revealing an important role in lipid metabolism 

that was supported with in vitro assays [54]. In addition to traditional metabolic reconstructions, 

there are also novel methods being developed to better gauge the consequences of transporter 

knockout. Metabolic task analysis was applied to Oat1 knockout transcriptomic data and 

revealed major changes in intracellular tryptophan metabolism, which was supported by both in 

vivo and in vitro data demonstrating a key role for OAT1 in tryptophan metabolism [73]. 

Overall, systems biology models are helpful in analyzing transporters from a broad perspective, 

rather than from a mechanistic perspective, though they have only been applied to renal drug 

transporters. Additional studies have not specifically identified transporter knockout 

transcriptomic data, but they have emphasized the metabolic pathways that are perturbed by 

common drugs, suggesting that adverse drug reactions may indeed be caused in part by 

inhibition of drug transporter function [97]. 

1.4 SCOPE OF DISSERTATION 

 

Since the majority of research on drug transporters has emphasized their role in the 

handling of small molecule pharmaceutical products, comparatively little attention has been paid 

their other potential functions. Prior to this dissertation, there was little evidence to support the 

idea that drug transporters interact with specific classes of endogenous metabolites. The goal of 

this work was to provide evidence and methodologies to show that drug transporters, and 

specifically OAT1, are involved in the handling of diverse small molecules. We explore this 

function using preclinical and human in vivo studies, in vitro cell assays, and predictive in silico 

models. Establishing frameworks with which to study specific transporters can lead to future 
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studies analyzing the non-pharmaceutical roles of other ADME-related proteins, such as drug 

transporters, drug metabolizing enzymes, and receptors. While the introduction has discussed 

drug transporters broadly, it is not realistic to explore the function of all drug transporters in a 

single study. Hence, the primary focus in this work is on the renal drug transporter OAT1 

(SLC22A6), which was discovered by our group and handles over 150 unique drugs [98].  

 Chapter 2 describes how the renal drug transporter OAT1 plays a key role in regulating 

the inter-organismal communication between the host and the gut microbiome via the regulation 

of gut microbe-derived metabolites in the blood. We used a genetically engineered knockout 

mouse model coupled with microbe depletion via a broad-spectrum antibiotic cocktail to explore 

the overlap between OAT1 handling and microbial production of metabolites. We collected 

serum from the animals and performed global metabolomic profiling for endogenous metabolites 

on the samples. We found that 40 metabolites were significantly altered by both loss of Oat1 and 

depletion of the gut microbiome. Among these, we were particularly interested in those whose 

circulating levels were increased by loss of OAT1, as this suggests they are normally cleared by 

an OAT1-mediated mechanism, and whose circulating levels were decreased by microbial 

depletion, as this indicates that the bacterial species involved in the generation of the compounds 

have been diminished. The compounds satisfying these criteria were generally characterized by 

number of sulfate groups and aromatic bonds. In addition to identifying gut-derived metabolites 

handled by OAT1 in vivo, we also supported our results with novel in vitro magnetic bead 

binding assays and traditional in vitro transport assays, which revealed that some gut-derived 

compounds that did not reach statistical significance or were not measured on the metabolomics 

platform interact with OAT1 in vitro. 
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 Chapter 3 builds upon the preclinical results from Chapter 2 and explores the short-term 

clinical impact that an OAT-inhibiting drug has on both the plasma and urine metabolomes. We 

collected plasma and urine from healthy human participants and then administered an oral dose 

of probenecid, an OAT1-inhibiting drug used to treat gout. Following 5 hours, which falls within 

the expected half-life or probenecid, we collected plasma and urine again from the participants. 

By comparing the post-treatment samples to pre-treatment samples, we were able to identify 

simultaneous drug-metabolite interactions caused by probenecid. We were particularly interested 

in compounds that were both elevated in the plasma and decreased in the urine, as these 

compounds are reflective of potential OAT1 and OAT3 function. We found 97 compounds that 

were likely OAT-mediated drug-metabolite interactions, including ~25 that had either in vivo 

support from knockout mice or in vitro support. In addition to analyzing OAT1 and OAT3-

mediated functions, we also explored the consequences of URAT1 inhibition. Since URAT1 is 

an uptake transporter expressed on the apical side of the membrane, we aimed to analyze the 

overlap of compounds that were increased in the plasma and decreased in the urine. Interestingly, 

we found that among ~600 measured compounds, only urate, the principal metabolite in gout, 

was altered in both. Probenecid’s primary mechanism of action is by inhibition of urate reuptake 

from the urine, revealing that probenecid and urate both participate in a hyper-specific drug-

metabolite interaction. Overall, we demonstrated that a clinically relevant drug has a profound 

short-term impact on the circulating and urine levels of endogenous metabolites via inhibition of 

OAT1 and OAT3.  

 Upon establishing the specific in vivo role of OAT1 with genetic engineering and 

inhibition by a drug using metabolomics in Chapters 2 and 3, we then aimed to understand how 

genetic factors in humans, such as SNPs present in SLC22 and other drug-handling genes, may 
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individually and jointly regulate the circulating levels of small, polar bioactive molecules. In 

Chapter 4, we combined genomic data with untargeted plasma metabolomic data to identify 

single nucleotide polymorphisms in transporter, enzyme, and related genes that are associated 

with the circulating level of hundreds of endogenous metabolites, such as eicosanoids, fatty 

acids, bile acids, and other compounds with established signaling roles. The majority of the 

metabolites were unidentified, so we focused on the specific compounds that were associated 

with multiple distinct genomic loci, suggesting coordinated regulation across multiple 

transporters (SLC22s, SLCOs, ABCCs) and enzymes (CYPs, SULTs) expressed in different 

organs. We found five metabolites that were associated with four distinct genomic loci and 

dozens that were associated with three distinct genomic loci, indicating that multiple proteins 

combine to mediate the levels of a particular metabolite. We then aimed to focus on the ~100 

compounds with known identities. We identified 18 genomic loci associated with at least one of 

these compounds, with multiple relationships that have been previously established with in vivo 

and in vitro results, as well as multiple novel associations that require further study. These results 

showed that SNPs in or near the SLCO1B1/3/7 genomic region were associated with dozens of 

unique metabolites. Many of these SNPs have also previously been linked to altered drug 

handling, showing that certain SNPs can exacerbate drug-metabolite interactions in particular 

populations. Overall, Chapter 4 demonstrates the profound individual and combined role that 

drug-handling genes play in regulating key signaling molecules. 

 Finally, in Chapter 5, we leverage the in vivo small molecule metabolomics data we have 

acquired and the existing in vitro data for OAT1 to develop in silico models for predicting and 

better understanding transporter function. We generated binary classification machine learning 

models that used calculated chemical properties as features to predict whether a compound 
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would be altered in vivo in the plasma and urine following administration of probenecid . The 

resulting models were then compared, and the best performing model was then tested on a novel 

dataset consisting of drugs. The results from these predictions demonstrated that endogenous 

metabolites did not provide enough information to predict transporter-mediated drugs. This led 

us to explore whether there are distinct mechanisms of action for different classes of compounds. 

We first collected and characterized all the small molecules known to interact with OAT1 in any 

capacity and identified distinct clusters based on their molecular properties. Given the structural 

diversity, we then aimed to understand how these molecules interact with the OAT1 protein. To 

this end, we developed protein-based models using the predicted human protein structure from 

AlphaFold2, as no experimental structure exists. We found that OAT1-interacting molecules 

have distinct residues within a proposed intracellular ligand binding site, suggesting multiple 

mechanisms of transport. Overall, this dissertation represents a step forward in developing 

methodology to determine the individual and combined role of transporters in endogenous 

metabolism. 
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Figure 1.1 OATs, OATPs, and MRPs are expressed in polarized barrier epithelial tissues.  

Organic anion handling proteins are differentially expressed at the basolateral and apical 
membranes of cells in the kidney, liver, intestine, and brain. When considered in light of their 

uptake or efflux mechanisms, the combinatorial possibilities for interaction between these multi-, 
oligo-, or monospecific transporters on both surfaces and their substrates create a robust, 
multiorgan network for handling small molecules and affecting net flux between tissues and 

body fluids. We emphasize that these are not the only multi-, oligo-, and monospecific 
transporters expressed on these surfaces involved in handling small molecules. The multispecific 

drug transporters OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP3, and MRP4 are probably 
the best studied of these transporters from a functional perspective; much less is known about 
some of the other transporters that are shown. Abbreviations: MRP, multidrug resistance protein; 

OAT, organic anion transporter; OATP, organic anion transporter polypeptide. Adapted from 
Nigam and Granados, Annual Reviews of Toxicology and Pharmacology, 2023 [10]. 
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.  
Figure 1.2 OAT1 is a multispecific transporter that interacts with several classes of small-

molecule compounds. 

OAT1 interacts in vitro or in vivo with numerous drugs, endogenous metabolites, natural 
products, antioxidants, nutrients, gut microbiome–derived compounds, and toxins. Other 

transporters in the OAT (OAT3), OATP (OATP1B1/OATP1B3), and MRP (MRP2/MRP4) 
families handle similar classes of small molecules. Abbreviations: MRP, multidrug resistance 

protein; NSAID, nonsteroidal anti-inflammatory drug; OAT, organic anion transporters; OATP, 
organic anion transporter polypeptide. Adapted from Nigam and Granados, Annual Reviews of 
Toxicology and Pharmacology, 2023 [10]. 
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Figure 1.3 The Remote Sensing and Signaling Network can be represented by overlaying 

interactions at multiple scales. 

(1) Protein interaction network (blue and teal icons). (2) Multi-specific drug and other 

transporters interacting with endogenous small molecules (magenta and pink icons), (3) Organs 
interacting via endogenous small molecules (blue arrows), and organisms interacting with the 
same (4) or different (5) species (blue arrows), OATs, OATPs, MRPs, and other multi-, oligo-, 

or monospecific transporters, such as P-gp (MDR) and BCRP (ABCG2), transport a wide array 
of endogenous small molecule substrates. Some of the main drug transporters have overlapping 

substrate specificity, potentially adding robustness to the regulation of systemic and local levels 
of organic anions. Remote organs communicate via transporters and enzymes (including DMEs) 
that regulate the movement and optimization of these high informational content metabolites. 

Each organ expresses a distinct set of transporters and enzymes that preferentially facilitate the 
movement of specific endogenous of specific endogenous small molecules (signals) that interact 

with regulatory proteins (sensors) and enable numerous feedback loops. Together, this helps 
optimize levels of endogenous small molecules across multiple scales (e.g., organelles, cells, 
organs, multi-organ systems, multiple organisms). The Remote Sensing and Signaling Network 

enables two types of interorganismal communication via these transporters and drug 
metabolizing enzymes. Within the same species, as in the mother-fetus connection, the placenta 

expresses many multi-, oligo-, and monospecific transporters that aid in the nutrition of the fetus 
by transporting metabolites and signaling molecules. Host-gut microbiome interactions are also 
mediated by transporters and enzymes in different organs (e.g., gut-liver-kidney-brain) as 

indicated, for example, by the effects of numerous small molecules arising in the gut microbiome 
(tryptophan-derived metabolites, secondary bile acids, fatty acids, and other signaling molecules) 
upon nuclear receptors, GPCRs, and kinases in remote organs. Not shown is how the Remote 

Sensing and Signaling Network works alongside other homeostatic systems, such as the 
autonomic nervous, neuroendocrine, immune, and growth factor and cytokine systems. 

Abbreviations: ABC, ATP-binding cassette; BCRP, breast cancer resistance protein; CNS, 
central nervous system; DME, drug metabolizing enzyme; GPCR, G protein-coupled receptor; 
MRP, multidrug resistance protein; OAT, organic anion transporter; OATP, organic anion 

transporter polypeptide; P-gp, P-glycoprotein; SLC, solute carrier. Adapted from Nigam and 
Granados, Annual Reviews of Toxicology and Pharmacology, 2023 [10]. 
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CHAPTER 2: THE KIDNEY DRUG TRANSPORTER OAT1 

REGULATES GUT MICROBIOME-DEPENDENT HOST 

METABOLISM 
 

2.1 ABSTRACT 

Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multi-specific drug transporter 

in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, 

natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut 

microbiome-derived metabolites. We depleted the gut microbiome of Oat1 knockout and 

wildtype mice and performed metabolomics to analyze the effects of genotype (knockout vs 

wildtype) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the 

microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss 

of Oat1. Chemoinformatic analysis revealed the altered metabolites (e.g., indoxyl sulfate, p-

cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a 

pathway from gut microbes to liver Phase II metabolism, to renal OAT1-mediated transport. The 

idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro 

transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites 

dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-

metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results 

support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, 

MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as 

inter-organismal communication between the host and microbiome.  
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2.2 INTRODUCTION 

Organic anion transporter 1 (OAT1/SLC22A6, originally described as NKT) is a 

multispecific drug transporter localized to the basolateral membrane of the kidney proximal 

tubule. OAT1 is involved in the uptake of multiple classes of drugs (e.g., antibiotics, antivirals, 

NSAIDs, diuretics), endogenous metabolites, toxins, antioxidants, and natural products from the 

blood into the proximal tubule cell, where they can then be excreted into the urine by apical 

efflux transporters, re-introduced to the bloodstream, or metabolized by the cell [9, 52, 77, 98-

103]. While OAT1 favors the transport of organic anions, it can also handle several structurally 

different small molecules, including some cations and zwitterions [77]. To date, the 

overwhelming majority of research interest in OAT1 has been related to its role in the clearance 

of drugs, as the Food and Drug Administration (FDA) and other global regulatory agencies have 

recommended that novel drug entities be tested for OAT1 interaction due to potential drug-drug 

interactions (DDIs) occurring at the site of the transporter [3, 104]. Despite the pharmaceutical 

relevance of this transporter, recent studies have highlighted a further role of OAT1 and other 

drug transporters in endogenous metabolism in the context of several observations [6, 54, 73, 

105]. Many of the metabolites that have received clinical attention-- such as 4-ethylphenyl 

sulfate, p-cresol sulfate, and indoxyl sulfate—are organic anions and well known OAT1 

substrates and have been associated with the gut microbiome. 

The gut microbiome plays an important role in the endogenous host metabolism by 

producing several important metabolites. While they are generated within the host, they are often 

the products of complex interactions between the host and the commensal microbes residing in 

the gut. Gut microbiome-derived metabolites include short chain fatty acids, secondary bile 

acids, aromatic amino acid derivatives, polyamines, and several others [16, 106, 107]. The full 

repertoire of gut microbiome-derived metabolites and how they are generated remains 



26 

 

incomplete, but it is clear that these metabolites play important signaling roles in both healthy 

and disease states [108]. For example, gut bacterial metabolites have been shown to influence the 

immune system [109]. Furthermore, inflammatory bowel disease (IBD), cardiovascular disease, 

and chronic kidney disease (CKD) are associated with microbial dysbiosis, which can lead to 

abnormal levels of serum metabolites [17, 110-113]. CKD, in particular, is associated with 

increases in circulating gut-derived uremic toxins due to diminished glomerular and tubular renal 

function [114-116]. OAT1 is known to be critical for the transport of many of these metabolites 

into the proximal tubule. These gut microbiome-derived metabolites include indoxyl sulfate, p-

cresol sulfate, hippurate, and other metabolites and signaling molecules that are organic anions, 

suggesting there may be an important role for OAT1 in the mediation of host-microbiome 

interaction [52, 53, 114]. Considering the wide array of substrates transported by OAT1, the 

competition between drugs, toxins, and gut-derived metabolites at the site of the transporter 

could also lead to drug-metabolite interactions (DMI)--especially in patients with CKD, who are 

likely to be taking multiple drugs to treat symptoms associated with comorbidities.  

The Remote Sensing and Signaling Theory (RSST) addresses how OAT1, along with 

other solute carrier (SLC) and ATP-binding cassette (ABC) "drug" transporters, plays a major 

role in homeostasis of many small molecules, including rate-limiting metabolites, signaling 

molecules, antioxidants, gut microbe-derived products, vitamins and cofactors [11]. These other 

SLC and ABC transporters include organic anion transporter 3 (OAT3, SLC22A8), organic 

anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1), organic anion transporting 

polypeptide 1B3 (OATP1B3, SLCO1B3), multidrug resistance protein 2 (MRP2, ABCC2), 

multidrug resistance protein (MRP4, ABCC4), ATP-binding cassette G subfamily 2 (ABCG2, 

BCRP). The RSST proposes a complex adaptive system of drug transporters, drug metabolizing 
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enzymes, nuclear receptors and kinases that regulates endogenous metabolism through transport, 

metabolism and conjugation of small molecules with signaling roles between remote organs 

(e.g., gut, liver, kidney, brain) and multi-organismal systems (e.g., gut microbe-host, mother-

fetus) [7, 8]. Drug transporters in the SLC22, solute carrier organic (SLCO), and ATP-binding 

cassette C family (ABCC) families and their multi-specificity (ability to handle structurally 

different organic anions) are central to the RSST and have been identified as important hubs in a 

cross-tissue co-expression network, suggesting a principal role in endogenous metabolism at 

multiple scales (organism to organ to organelle) [6, 10, 11]. The RSST has mainly been explored 

through the lens of interorgan communication (e.g., organ crosstalk), but an important, 

understudied aspect is interorganismal communication between the host and the bacterial species 

in the gut, which is possibly mediated by the role of kidney OAT1 and potentially other drugs 

transporters in modulating gut microbiome host interactions [117].  

While OAT1 and OAT3 in the kidney are hypothesized to be central to interorganismal 

communication via gut-derived metabolites, the hepatic transporters, OATP1B1 and OATP1B3 

along with various ABC transporters, such as ABCC2, ABCC4, and ABCG2 are also thought to 

contribute to the transport of gut microbiome derived compounds [118, 119]. Furthermore, drug-

metabolizing enzymes are central to the metabolism and conjugation of these compounds along 

the gut-liver-kidney axis [120-122]. Nevertheless, much of the data supporting these notions is 

from in vitro rather than in vivo studies. 

In this work, we focused on the in vivo role of a single multispecific kidney “drug” 

transporter, OAT1, in the regulation of gut-derived metabolites and the metabolic pathways 

involving these molecules. We first established the efficacy of the Oat1 knockout mouse model 

by demonstrating in vivo alterations in the handling of a well-studied OAT1 substrate, as 
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evidenced by changes in levels in the blood and urine. We then focused on depleting the gut 

microbiome of these mice and their wildtype counterparts. Gnotobiotic mice have frequently 

been used as a model to understand the impact of gut microbes, but while they are generally 

healthy, they are difficult to compare to wildtype mice due to differences in their genetic 

backgrounds, as well as issues related to development, immune defects, and energy metabolism 

[123, 124]. This is a key concern in the context of OAT1, since OAT1 is an alpha-ketoglutarate 

antiporter and thus directly linked to aerobic metabolism, upon which the kidney proximal tubule 

almost exclusively depends [53, 125]. Thus, like many in the field, we chose to employ antibiotic 

treatment to deplete the gut microbes [126]. We then assessed the impact of loss of the Oat1 

gene (Oat1 knockout versus wildtype) and microbiome depletion on biochemical pathways and 

applied chemoinformatics approaches to characterize the altered metabolites. To support our in 

vivo findings, we performed in vitro transport assays and employed a magnetic bead binding 

assay to evaluate mechanistic relationships between gut-derived metabolites and OAT1. 

Furthermore, we established clinical and disease relevance of our results by showing that the gut 

microbiome-derived metabolites that are OAT1-dependent are significantly affected in a clear 

example of human DMI and in a rodent CKD model. Our results indicate that OAT1 plays a 

surprisingly important in the handling of a number of gut-derived metabolites and, consistent 

with the RSST, mediates inter-organismal communication between the host and gut microbes, in 

large part by regulating the circulating levels of these compounds (Figure 2.1). 

2.3 RESULTS 

2.3.1. Clearance of OAT1-interacting compounds altered in vivo in knockout mice 

We first characterized our Oat1 knockout mice and their wildtype counterparts by 

measuring the levels of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the urine (bladder) and the 

blood. Tc-99m MAG3 is a probe compound used in the assessment of renal function that is 
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nearly entirely eliminated by tubular secretion. Previous studies have demonstrated that Tc-99m 

MAG3 is a rOAT1 substrate in vitro and that its uptake is inhibited by classic OAT1 inhibitors, 

such as PAH and probenecid [127]. Clinically, results in humans have shown that MAG3 levels 

in the blood were elevated following treatment with PAH and probenecid [128]. These 

observations were supported by assays using HEK293 cells expressing human OAT1, which 

showed that the protein is involved in the uptake of Tc-99m MAG3 [128].  

We evaluated whether the Oat1 knockout and wildtype mice had different clearance 

patterns with this well-established OAT1 substrate (Figure 2.2A). Tc-99m MAG3 was 

administered to the mice via tail-vein injection and its levels were monitored over the course of 

30 minutes using a gamma camera. We mainly focused on the bladder, as Tc-99m MAG3 

quickly passes through the kidneys into the urine. We found that the wildtype bladders reached 

their maximal levels of Tc-99m MAG3 more quickly than the Oat1 knockout mice following 

direct injection of the probe compound (Figure 2.2B). These results were further supported by 

post-mortem gamma counts scaled to weight, which showed that for 4/5 pairs, the bladder levels 

of Tc-99m MAG3 were higher in the wildtype mice (Figure 2.2C), and the blood levels were 

higher in the knockout mice (Figure 2.2D). Given that OAT1 is considered the rate-limiting step 

for excretion of many organic anions into the urine, our results support the usefulness of the 

knockout mice as in vivo models for analyzing OAT1-related function. 

2.3.2. Gut microbiome was depleted in Oat1 knockout and wildtype mice 

Previous in vivo and in vitro experiments have shown that OAT1 has several putative 

gut-derived substrates, such as indoxyl sulfate, p-cresol sulfate, and hippurate [53, 73, 129]. 

While these metabolites are useful in understanding a potential role for OAT1 in regulating 

circulating levels of gut microbe-derived metabolites, the results were collated from multiple 

past experiments performed under a variety of conditions and not designed to evaluate the in 



30 

 

vivo contribution of gut microbiome and renal OAT1 to host systemic metabolism. In this work, 

we depleted the gut microbiome in both wildtype and knockout mice through the administration 

of an antibiotic cocktail (ampicillin, vancomycin, neomycin, and metronidazole [AVNM]). The 

AVNM antibiotic cocktail has been established as an effective method of depleting the gut 

microbiome and, in contrast to germ-free mice which can develop metabolic problems that can 

lead to obesity [124], seemed less likely to confound the essential role of OAT1 in kidney 

aerobic metabolism [53, 125] and the tendency to hepatic steatosis seen in approximately 24 

month-old Oat1 knockout mice [54]. The AVNM cocktail was administered through a vehicle 

control in the drinking water for 4 weeks [126]. Following the administration of the cocktail, 

depletion of the gut microbiome was confirmed via metagenomic analysis of the feces, which 

showed a significant decrease in the number of operational taxonomic units (OTUs) for AVNM-

treated mice groups (Figure 2.3A). The global metabolic profiles of all animals were separable 

by linear discriminant analysis (Figure 2.3B), and several well-established gut-derived 

metabolites were significantly decreased in the serum of AVNM-treated animals, regardless of 

genetic background (Figure 2.3, C-F).  Furthermore, quantitative PCR (qPCR) using 16S 

primers for Eubacteria also showed a significant decrease in gut microbes (Supplementary 

Figure 2.S1). 

2.3.3. Loss of Oat1 and microbiome depletion significantly affect the levels of over 200 
metabolites 

Since OAT1 is localized to the basolateral (blood-facing) side of the proximal tubule, its 

absence directly affects the circulating levels of metabolites in the serum. To identify these 

compounds, we performed a two-way ANOVA to determine the individual impact of genotype 

(Oat1 KO vs WT), where a metabolite was considered altered if it had an FDR-corrected p-value 

below 0.05. Although metabolomics of the Oat1 KO has been previously performed, this is the 
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first time nearly a thousand compounds were measured, and here, apart from including the 

effects of microbiome depletion, we also focus on all altered metabolites, not just elevated 

metabolites [42, 52-54, 73]. Global metabolic profiling detected a total of 964 metabolites in the 

volume-adjusted serum samples collected from these mice. Based on the Metabolon grouping of 

these metabolites, this analysis covered 10 biochemical superpathways (e.g., Lipid, Amino Acid, 

Xenobiotic, etc.) and 109 biochemical subpathways (e.g., Primary Bile Acid Metabolism, 

Tryptophan Metabolism, Benzoate Metabolism), with each metabolite belonging to one 

superpathway and one subpathway. We identified 103 significantly altered metabolites due to the 

absence of OAT1 (Supplementary Table S1), including several metabolites that are known to 

directly interact with OAT1, such as pyridoxate, indoxyl sulfate, and p-cresol sulfate [130]. We 

then performed an enrichment analysis of these metabolites and found that over twenty 

subpathways were altered, with enrichment values of 1 or greater, indicating an outsized effect. 

Benzoate Metabolism and Fatty Acid Metabolism (Acyl Glycine) were among the most 

significantly affected pathways (Figure 2.4A).  

Having established depletion of the gut microbiome with AVNM treatment (by decreased 

OTUs and qPCR), we then analyzed how this impacted the serum metabolome of the 

microbiome-depleted mice. We found that 162 metabolites were significantly altered in the 

serum of the microbiome-depleted mice (Supplementary Table 2.S2). Thus, microbe depletion 

has a direct impact on over a hundred metabolites, including several metabolites that have 

previously been established as gut-derived, like cinnamoylglycine, indolepropionate and others 

[16]. Subpathway analysis revealed that Benzoate Metabolism, Phospholipid Metabolism, and 

Tyrosine Metabolism were among the most altered subpathways, and over twenty subpathways 

had enrichment values of 1 or greater (Figure 2.4B). Given that there is no current consensus on 
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the full range of  commensal gut bacteria-derived metabolites that enter the host circulation, we 

interpreted these metabolites to be products of gut microbiome-associated metabolism with the 

understanding that for some metabolites, the levels in the serum may be due to complex 

interactions between bacterial species themselves and, upon entry into the host circulation, 

indirect effects on host metabolic pathways that likely include complex feedback and/or 

feedforward loops, with secondary bile acid metabolism being a good example [131]. 

2.3.4. Deoxycholate levels depend on an interaction between OAT1 and the gut microbiome 

We then explored the statistical interaction between the two independent variables: loss 

of Oat1 and microbiome depletion. Only 3 metabolites (2-amino-p-cresol sulfate, deoxycholate, 

docosahexaenoylcarnitine [C22:6]) were impacted by the interaction between the variables, 

which implies that genotype and treatment together influence only few metabolites compared to 

the individual effects of genotype versus treatment (Figure 2.4C). Docosahexaenoylcarnitine 

(C22:6) and 2-amino-p-cresol sulfate are poorly characterized, but deoxycholate has a well-

established signaling role, suggesting an important role for OAT1, together with gut microbes, in 

regulation of this important bile acid signaling molecule [132-134].  

2.3.5. Pathway and chemoinformatic analyses of the 40 metabolites affected by both loss of Oat1 
and microbiome depletion 

We then aimed to identify the overlap between the 103 metabolites altered by loss of 

Oat1 and the 162 metabolites affected by microbiome depletion. We found 40 metabolites 

(Figure 2.5A) that satisfied both criteria and found that some subpathways, particularly 

Benzoate Metabolism with 11 compounds and Food Component/Plant with 5 compounds, were 

markedly affected in the overlap (Figure 2.5B). These 40 compounds could be separated into 4 

distinct groups: Group 1 (elevated by loss of Oat1 AND elevated by microbiome depletion); 

Group 2 (elevated by loss of Oat1 AND decreased by microbiome depletion); Group 3 
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(decreased by loss of Oat1 AND elevated by microbiome depletion); Group 4 (decreased by loss 

of Oat1 AND decreased by microbiome depletion) (Figure 2.5C).  

The metabolites we were most interested in were those that were in Group 2 (elevated in 

the Oat1 knockout mice and decreased due to microbiome depletion), as these are likely OAT1 

substrates that are generated by the gut microbiome. Of the 40 metabolites, 22 fell into this 

group, including indoxyl sulfate and p-cresol sulfate. We were also interested in the 9 

metabolites in Group 1 (increased in the Oat1 knockout mice and increased due to microbiome 

depletion), as microbiome depletion can also lead to increases in specific metabolites by 

reducing the species that metabolize these compounds. Finally, the last two groups were more 

difficult to interpret from the OAT1 perspective, as there is no clear renal physiological 

mechanism for their decreases in circulation; nonetheless, there were 7 metabolites in Group 3 

(decreased in the Oat1 knockout and decreased by microbiome depletion) and 5 metabolites in 

Group 4 (decreased in the Oat1 knockout and increased by microbiome depletion). We then 

aimed to structurally characterize the 31 metabolites with known chemical structures.   

 Chemoinformatics analyses can shed light on sets of molecular properties that help 

define particular groups of metabolites altered by a biological experiment. In this case, for 

example, we were most interested in Group 2 (the metabolites that were both elevated due to loss 

of OAT1 and decreased after microbiome depletion) –as these were not only the largest group 

but also most likely to be gut microbe-derived organic anion metabolites transported by OAT1 in 

vivo. This could yield a kind of “signature” of metabolites that originate in the gut microbiome 

and then follow the gut-kidney or gut-liver-kidney axis to OAT1 in the renal proximal tubule 

cells.  
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To this end, we first calculated molecular properties for the 783 compounds with valid 

chemical structures. We performed linear discriminant analysis of the 31 compounds (Group 1: 5 

metabolites with structures; Group 2: 17 metabolites with structures; Group 3: 3 metabolites with 

structures, Group 4: 6 metabolites with structures) that had available chemical structures and 

observed clear separation between the groups (Figure 2.5D). We then analyzed the weights of 

the top two linear discriminant analysis axes, which together, explained over 95% of the 

variance. Among the most influential variables were number of aromatic bonds and number of 

sulfate groups (Figure 2.5, E and F). Again, we were most interested in the 17 compounds with 

chemical structures that were elevated by loss of Oat1 and decreased by microbiome depletion 

(Group 2), and these compounds tended to have a higher number of aromatic bonds. The gut 

microbiome is known to handle a number of aromatic compounds, such as tryptophan and 

tyrosine derivatives. With respect to sulfation, 8 of the 17 metabolites in Group 2 featured a 

sulfate group. This was especially interesting because only one sulfated metabolite was present 

in the other three groups combined (Figure 5F). Nevertheless, this is consistent with the notion 

that certain diet-derived compounds are metabolized by the gut microbiome before being 

“tagged” via sulfation by the host for excretion, primarily through the urine [135, 136].  

2.3.6. Gut-derived metabolites interact with human OAT1 in cell-based transport assays 

While the knockout mouse model is critical for establishing potential in vivo OAT1 

substrates, the complex physiology in vivo could lead to alterations caused by a factor other than 

loss of OAT1 function. To evaluate a mechanistic interaction between metabolites and OAT1, 

we performed in vitro cell-based transport assays. Competitive inhibition assays were carried out 

for deoxycholate, indolepropionate, 4-hydroxycinnamate, 2-hydroxyphenylacetic acid, and 5-

hydroxyindoleacetate, which are all thought to be gut-derived metabolites.  In the statistical 

analysis of the serum metabolome, deoxycholate was affected by genotype-treatment interaction, 
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2-hydroxyphenylacetic acid was affected by genotype, indolepropionate was affected by 

treatment. Although 4-hydroxycinnamate and 5-hydroxyindoleacetate were not impacted by 

either variable, for experimental evaluation, they were included because they are derived from 

cinnamate and indole, respectively. Each metabolite showed comparable inhibition when OAT1 

was treated with probenecid, the prototypical inhibitor of OAT1 activity. The relatively low 

IC50s (<115 uM) suggest that these metabolites interact with OAT1 with high affinity (Figure 

2.6). 

2.3.7. A magnetic bead binding assay shows direct physical OAT1 interaction with gut-derived 
metabolites 

To further evaluate our results, we also employed a potentially novel magnetic bead 

binding assay to analyze 20 gut-derived metabolites, a number of which were measured in the 

serum metabolomics (Figure 2.7A). The strength of this is that the assay requires relatively low 

amounts of OAT1 protein compared to that used for other methods (e.g., fluorescence 

polarization technique). Using this method, we surveyed metabolites mainly known to derive 

from tryptophan and tyrosine, some of which were measured in our in vivo experiments and have 

been evaluated in transport assays (Table 2.1). Overall, we found that 15 of the metabolites 

resulted in a significant shift, further supporting a direct interaction between the gut microbe-

derived metabolites and OAT1 (Figure 2.7B). Taken together with the cell-based in vitro 

transport assays that also support a direct interaction of the gut-derived metabolites with OAT1, 

as well as the fact that many of the interacting metabolites were from Group 2 (elevated in Oat1 

knockout and decreased by microbiome depletion), the data support the in vivo involvement of 

OAT1 in the regulation of this group of gut microbe-derived metabolites.  
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2.3.8. The in vivo OAT1-dependent, gut microbe-derived metabolites overlap with those 
impacted by a chronic kidney disease model (5/6th nephrectomy) 

We then aimed to contextualize our findings by comparing our results to metabolomics 

data previously generated by our group in a rodent 5/6 nephrectomy model of CKD [114]. This 

model is thought to capture aspects of progressive CKD, and renal capacity is dramatically 

reduced over time [114]. In these experiments, plasma was collected from animals who had 

undergone a 5/6 nephrectomy and their healthy controls, and the relative levels of hundreds of 

metabolites were measured. In the comparison between the nephrectomized and healthy animals, 

many of the elevated metabolites have been shown to include numerous uremic solutes or uremic 

toxins [114]. However, the nature of their diminished clearance remains unclear since this model 

of renal insufficiency impacts both tubular and glomerular function. By comparing the 

metabolites elevated in the 5/6 nephrectomy to the 40 metabolites that are gut-derived and 

altered in the Oat1 KO, we were able to identify metabolites that are likely impacted by 

diminished proximal tubule function, as that is where OAT1 is primarily expressed. Thus, seven 

metabolites (indoxyl sulfate, p-cresol sulfate, phenylacetylglycine, 4-ethylphenyl sulfate, 3-

methylhistidine, N-acetylserine, 2-isopropylmalate) are likely uremic solutes or uremic toxins 

transported by OAT1 and produced by the gut microbiome (Table 2.2).  

2.3.9. Gut-derived metabolites transported by OAT1 are involved in human drug-metabolite 
interactions  

Having established that 40 metabolites are likely OAT1-mediated and produced by the 

gut microbiome in a mouse model, we then aimed to understand the clinical relevance of these 

results. A recent metabolomics study by our group analyzed the plasma and urine of healthy 

volunteers before and after probenecid treatment and identified dozens of unique short-term 

drug-metabolite interactions [137]. While that study did not concern itself with gut microbe-

derived metabolites, we were able to reanalyze that data in the context of the new data in this 
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study.  Thus, we performed an overlap of the metabolites implicated in the present Oat1 KO 

microbe-depleted mouse study with those significantly elevated in the plasma and significantly 

decreased in the urine of humans treated with probenecid (Figure 2.8, Supplementary Table 

2.S3). Over a quarter of the OAT1-transported gut-derived metabolites from the current mouse 

study (11/40) were significantly elevated in the plasma of the probenecid treated humans, 

including indoxyl sulfate, p-cresol sulfate, and other compounds. When we compared the 40 

metabolites to those significantly decreased in the urine of probenecid treated humans, we found 

that half the metabolites (20/40) were present in both lists. Interestingly, 4-ethyphenyl sulfate, a 

compound associated with autism, was present in this overlap, along with others [138]. When all 

three lists were overlapped, eight metabolites were present, with most being sulfated organic 

anions (Figure 2.8). These gut microbiome-derived metabolites are dependent on OAT1 and are 

also involved in DMI. 

2.4 DISCUSSION 

The loss of Oat1 and the depletion of the gut microbiome (Figure 2.3), separately and 

together, have major effects on systemic metabolism (Figure 2.4, Supplementary Table 2.S1, 

Supplementary Table 2.S2). The genetic knockout of Oat1 primarily leads to elevated 

metabolites, presumably because they are no longer able to enter the proximal tubule and must 

remain in the blood, whereas the depletion of the gut microbiome mainly leads to lower 

circulating levels of gut-derived metabolites by eliminating the species that synthesize or modify 

the compounds. Both conditions together--knockout of Oat1 and gut microbe depletion--provide 

perhaps the deepest glimpse to date of how the renal organic anion transport system works 

together with the gut microbiome to regulate systemic levels of many well-known metabolites 

and signaling molecules (Figure 2.1).   
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Most impressive were the effects of gut microbiome depletion on metabolites elevated 

due to loss of Oat1 (compared to the wild type with a normal microbiome). Many of these 

metabolites elevated in the Oat1 knockout were significantly, and sometimes markedly, 

decreased after gut microbiome depletion (Figure 2.5). Based on this in vivo data, and the 

evidence presented here for a direct in vitro interaction between a number of these metabolites 

and OAT1 in transport and binding assays (Figures 2.6 and 2.7), it is highly likely that the 

largest fraction of these metabolites derived from the gut microbes and are regulated by OAT1, 

which is important given the important roles these metabolites play in the immune response and 

other key physiological systems [109]. 

That said, it should be noted that there were also instances of metabolites significantly 

decreased by loss of Oat1 as well as metabolites significantly increased by microbiome 

depletion. The interpretation of these changes is less clear but may be due to indirect effects such 

as elevation in the knockout of another metabolite transported by OAT1 that inhibits the 

synthesis of the decreased metabolite.  

Overall, we identified 40 metabolites (31 with chemical structures) (Supplementary 

Table 2.S3) that were significantly impacted by both loss of Oat1 and gut microbiome depletion, 

with 22 of those compounds being elevated due to knockout and decreased due to antibiotic 

treatment. These included derivatives of tryptophan and tyrosine. Chemoinformatics analyses of 

this group of metabolites (e.g., elevated in the Oat1 knockout and decreased after gut 

microbiome depletion) revealed that these metabolites tended to have aromatic rings and more 

sulfate groups, which is generally consistent with known molecular properties of OAT1 

substrates (Figure 2.5) [74, 76]. The high fraction of sulfated metabolites is particularly 

interesting and likely indicative of interaction of gut-derived metabolites with sulfotransferases 
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in the liver before transport into the kidney proximal tubule by OAT1--examples, similar to that 

of indoxyl sulfate, of the conjunction of remote inter-organismal communication and organ 

crosstalk [139]. Indeed, 13 of the 22 putative gut-derived OAT1 substrates in Group 2 are 

sulfated compounds. However, since other OATs, such as OAT3 [72], have a strong preference 

for steroid sulfates, thus, it may be the context in which the sulfated context are presented that 

determines OAT1 interaction. Our data suggests that a one- or two-ringed structure with a sulfate 

may be preferred by OAT1. 

The strongest candidates for in vivo OAT1-transported gut microbiome-derived 

metabolites would seem to be those that are: 1) elevated in the plasma of Oat1 knockout mouse; 

2) decreased by gut microbiome depletion; and 3) shown to directly interact with the transporter. 

Thus, to further analyze the in vivo metabolomics results, a number of the identified metabolites 

(and others that have been suggested to be gut-derived) were tested in vitro for interaction with 

human OAT1 over-expressed in cells. These compounds displayed IC50 values in transport 

assays that indicate a strong interaction with the transporter. Additional support was gained from 

a magnetic bead binding assay demonstrating that a fluorescent prototypical OAT1 substrate was 

displaced by a number of gut-derived metabolites (Table 2.1). While the transport assays are 

traditionally used to determine interaction, the magnetic bead binding assay provides further 

context for the nature of the interaction and allows for more rapid screening of small molecules.  

Our results are also highly relevant to disease and clinical settings. We found that many 

of the metabolites implicated in our study were elevated in 5/6 nephrectomy rodent models of 

CKD, indicating that these gut-derived and OAT1-mediated metabolites can be altered in the 

setting of diminished renal function [114]. Among the metabolites present in both studies were 
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indoxyl sulfate, p-cresol sulfate, and 4-ethylphenyl sulfate, further supporting the view that 

OAT1 and the gut microbiome are jointly involved in the generation/handling of uremic toxins.  

We also addressed the important clinical issue of drug-metabolite interactions. A 

previous study by our group analyzed the drug-metabolite interactions caused by the drug, 

probenecid [137]. While that clinical study did not focus on the gut microbiome, given the 

results from the present mouse study, we investigated whether drug-metabolite interactions with 

an OAT-inhibiting drug (probenecid) had a major impact on the disposition of gut-derived 

metabolites. Indeed, eight metabolites were elevated in the plasma of probenecid-treated humans, 

decreased in the urine of probenecid-treated humans, and altered by both loss of Oat1 and 

microbiome depletion (Figure 2.8). Furthermore, 20 of the 40 metabolites were decreased in the 

urine, while 11 of the 40 were elevated in the plasma. OAT1 is a major transporter of antibiotics, 

antivirals, NSAIDs, diuretics, and other common drugs [5]. Our analysis suggests that gut 

microbiome dependent drug-metabolite interactions (DMI) at the level of OAT1 could be quite 

widespread [140]. This requires further study.  

Taken together, our results indicate that OAT1 is a crucial intermediary between the host 

and the microbes, with 40 metabolites of the 162 metabolites decreased by gut microbiome 

depletion being presumably influenced by OAT1. This suggests that as much as ~25% of 

microbiome-influenced metabolism may be modulated by OAT1. However, we must also note 

that the metabolomics platform we used is biased towards compounds that have already been 

identified and are likely relevant in clinical or research settings. Consistent with previous work, 

we too observed dozens of metabolites decreased by microbe depletion that were the products of 

hepatic metabolism [53, 107]. 
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The communication between the host and the gut microbes is complex, but it is clear that 

these two entities have co-evolved over time to develop a symbiotic relationship from the 

perspective of metabolism. This is evidenced by the gut-derived metabolites, which cannot be 

produced by the host alone, that have important signaling roles, such as nuclear receptor and G-

protein coupled receptor activation [141, 142]. Among the implicated metabolites, deoxycholate, 

indoxyl sulfate, indolepropionate, and others have been shown to have important signaling roles 

[143-146]. While the signaling roles of gut-derived metabolites with respect to target proteins is 

an important field of research, our results indicate that much more attention needs to be paid to 

the proteins that regulate their levels in biofluids, as well as in tissues and along organ axes (e.g., 

gut-liver-kidney, gut-brain). These proteins, which include OAT1, are important avenues by 

which the host and its gut microbes interact, as they control the bioavailability of signaling 

molecules.  

SLC22 family members (e.g., OATs, organic cation transporters (OCTs), organic cation 

and zwitterion transporters (OCTNs)) and other multi-specific drug transport proteins (e.g., 

ABCG2, ABCC2), are hubs in a recently proposed Remote Sensing and Signaling Network [11]. 

The Remote Sensing and Signaling Theory emphasizes the importance of the adaptive network 

of multi-specific transporters, enzymes, and nuclear receptors--working together with oligo-

specific and monospecific proteins--in the optimization of the levels of numerous metabolites in 

cells, tissues, organs and bodily fluids, such as blood, cerebrospinal fluid and urine [6-9, 11, 

122]. These proteins have been extensively studied from the pharmaceutical perspective, but 

their ability to handle structurally diverse molecules is perhaps most important from the 

perspective of endogenous and gut-derived metabolites. The theory mainly serves as a 

framework to describe inter-organ communication, such as between the gut-liver-kidney (where 
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most drug transporters and DMEs are highly expressed) to maintain and re-establish homeostasis 

of key metabolites, signaling molecules, antioxidants and other small molecules with "high 

informational content"[9]. While we focused on the individual role of OAT1 in this work, it is 

likely that the combined network of transporters and enzymes, including CYPs, SULTs, UGTs, 

ABCCs, and SLCOs, also contribute to the handling of gut-derived products. Indeed, it has been 

shown that the SLCOs transport the gut-derived secondary bile acids [48]. 

One aspect of the Remote Sensing and Signaling Theory that has received less attention 

is inter-organismal communication between the host and the gut microbes [147]. In depth study 

is likely to have important clinical ramifications--for instance, in understanding the role of gut 

microbe-derived uremic toxins in the aberrant metabolism of chronic kidney disease [114, 116, 

139]. If we treat the gut microbiome as an independent organ, it can be considered to express 

thousands of transporters and enzymes, many of which exhibit broad substrate specificity and are 

commonly involved in movement of metabolites, and the synthesis of small molecules as well as 

their hydrolysis, reduction, or removal of conjugated groups [148]. It is established that the 

substrates and products of the enzymatic reactions occurring in bacterial species overlap with 

that of the transporters and enzymes in the host, enabling inter-organismal communication via 

multi-, oligo-, and mono-specific enzymes that are part of the Remote Sensing and Signaling 

network. Furthermore, there is evidence that the gut microbiome and its metabolites can impact 

transporter and enzyme expression. In renal disease, it has been shown that gut-derived 

metabolites have an impact on the expression of several drug-metabolizing enzymes in the 

kidney [149]. The presence of gut microbes has been shown to alter the expression of hepatic 

DME genes in mice [150]. Indoxyl sulfate, an important gut-derived uremic toxin, has also been 

shown to regulate the level of OAT1 expression through AHR activation, and along with other 
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aspects of this pathway, has been interpreted as an experimentally verified example of the 

Remote Sensing and Signaling Theory [144, 151].  

Establishing that the communication between the host and the gut microbes is so strongly 

mediated by renal OAT1 opens up many questions. For example, it has been shown that several 

drugs--including statins and ACE inhibitors--have an impact on the composition of the gut 

microbiome and, by implication, the levels and composition of gut microbe-derived metabolites 

in the host. However, the mechanism(s) are unclear. Since these and other drugs impacting the 

gut microbiota are OAT1 substrates, it is possible that these changes could alter competition of 

the drug with metabolites at the level of the transporter. There is now good evidence in humans 

to support this kind of drug-metabolite interaction at the level of OAT1 [137]. 

In summary, our studies indicate that multispecific transporters and enzymes combine 

with the gut microbiome to regulate circulating levels of key metabolites, including those with 

signaling capabilities. As these effects need not be limited to OAT1 in the kidney, it is 

worthwhile to perform similar analyses with multi-specific transporters (e.g., SLCO and ABCC 

families) expressed in the kidney, liver, intestine, and other organs. A much more complex and 

clinically actionable picture of the regulation of microbiome-dependent host metabolism is likely 

to emerge. This can be particularly useful for studying drug-metabolite interactions. 

2.5 METHODS AND MATERIALS 

2.5.1. Animals 

Adult male knockout and wild type mice were housed in a 12-hour light-dark cycle and 

allowed ad libitum access to food and water. Oat1 knockout mice were generated and maintained 

as previously described [42]. Feces were collected from mice weekly in sterile 2 mL centrifuge 

tubes, flash frozen, and stored at -80º C. Animals were sacrificed by CO2 inhalation and blood 
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samples were extracted from mice by cardiac puncture. Serum was extracted and samples were 

flash frozen and stored at -80º C until further analysis. 

2.5.2. Tc-99m-MAG3 imaging 

Live imaging experiments were performed with the In Vivo Imaging Shared Resource at 

the Moore’s Cancer Center at the University of California San Diego. Mice were transported 

from the vivarium to the In Vivo Imaging Shared Resource. 100 uCi of Tc-99m-mercaptoacetyl-

triglycine (MAG3) was injected by tail vein into mice prior to imaging. Adult, male knockout 

(n=5) and wildtype mice (n=5) were imaged in five, separate pairs containing one knockout 

mouse and one WT mouse each. Mice were initially weighed and anesthetized (2% isoflurane, 

200 mL/min flow of O2). Mice were placed on their backs on the high-resolution gamma imager 

(gamma imager; Biospace) fitted with a high-resolution low-energy collimator. For thirty 

minutes, time-activity curves were collected from the kidneys, liver, and bladder. Following 

imaging, blood, urine, kidneys, liver, and spleen were isolated and weighed from each mouse for 

radioactive assessment using a gamma counter. 

2.5.3. Microbiome depletion protocol 

Over a four-week period, mice were given a 125 mL antibiotic cocktail or vehicle control 

in place of drinking water. The cocktail consisted of 1 mg/mL of neomycin sulfate (Fisher 

Scientific, BP-2669-25), ampicillin (Sigma-Aldrich, A9518-100G), metronidazole (Alfa Aesar, 

H60258), 0.5 mg/mL of vancomycin (Alfa Aesar, J62790) and 3.75 mg/mL of Kool Aid grape 

drink powder (Kraft-Heinz Foods Company). The Kool Aid encouraged consumption of the 

cocktail. Antibiotic cocktails were replenished every other day on Monday, Wednesday, and 

Friday. New solutions were passed through a 0.22µm cellulose acetate sterilizing filter (Corning, 

430517). Bottles of antibiotic cocktail were also wrapped in foil to prevent light damage. The 

weights of mice and the amount of antibiotic cocktail consumed were monitored over the 
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treatment period as markers of consumption. Following a one week decrease in both weight and 

consumption, mice returned to near their original weights (Supplementary Figure 2.S1).  

2.5.4. Assessment of gut microbiome depletion 

For 16S variable region sequencing, murine fecal samples from Week 0 and Week 4 (end 

of treatment timepoint) were extracted using the the MagMax™ Microbiome Ultra Nucleic Acid 

Isolation Kit (Thermo, A42357) according to the manufacturer’s instructions. Variable (V4) 

regions of 16S SSU rRNA were amplified using 515F-806R primers according to the protocol 

described in (http://earthmicrobiome.ucsd.edu/protocols-and-standards/16s/). 16S sequencing 

was performed by the Institute for Genomic Medicine (IGM) UC San Diego. Resulting files 

were analyzed using the web-based QIITA tool [152]. 

For the qPCR, feces total RNA was extracted using the RNEasy PowerMicrobiome Kit 

(Qiagen, 26000-50) according to the manufacturer’s instructions. A cDNA library of the RNA 

extracted was created using the SUPERSCRIPT III kit (Invitrogen, 18080-044) with random 

hexamers (Invitrogen, 48190011) as primers according to the guidelines of the manufacturer. 

RNA and cDNA were quantified using a Nanodrop 1000 (Thermo Scientific 2353-30-0010) and 

were subsequently used to load equal amounts of cDNA for the qPCR performed. Each well in 

the qPCR plate contained 20 ng of cDNA from fecal RNA. Duplicates of each sample containing 

Eubacteria primers were utilized, targeting the universal 16S rRNA gene that captures a majority 

of bacteria [153]. 1.KAPA SYBR FAST® Universal kit was utilized with an accompanying 

protocol (Roche, KK4608).  

A default 16S metagenomics workflow was run in Qiita under Qiime version 1.9. Raw 

reads were demultiplexed and trimmed, and Operational Taxonomic Units (OTUs) were closed -

reference picked using SortMeRNA v2.1 with a 97% sequence similarity minimum. OTUs were 

assigned taxonomies from the GreenGenes 16S rRNA database, version 13_8, and tabulated into 

http://earthmicrobiome.ucsd.edu/protocols-and-standards/16s/
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feature and reference tables. All analyses of the feature and reference tables were performed in 

the Qiita platform and graphed using the Python package, Seaborn. 

2.5.5. Metabolomics analysis of wild type and knockout mice (untreated and treated)  

Serum samples were shipped on dry ice to Metabolon (Durham, NC) for preparation and 

metabolomics. Per Metabolon, proteins were removed from the serum and five fractions were 

generated for different mass spectrometry methods. Each sample passed quality control 

compared to well-characterized controls and was analyzed by Ultrahigh Performance Liquid 

Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Peaks were identified and 

associated with defined compounds based on retention time, mass-to-charge ratio, and MS/MS 

spectral data. Quantification of peaks was performed using area-under-curve. 

2.5.6. Physicochemical analysis of metabolites 

Two-dimensional chemical structures were obtained from 783 of the measured 

metabolites by their Pubchem IDs. Seventy-seven one-dimensional descriptors were calculated 

for each metabolite using ICM Molsoft-Pro (San Diego, CA). These molecular properties were 

then trimmed to eliminate heavily correlated features using a Spearman’s correlation cutoff of 

0.90. Linear discriminant analysis was then applied and visualized using the Python packages 

Seaborn and sci-kit learn. Visualizations of the chemical structures were performed using RDKit.  

2.5.7. In vitro OAT1 transport assays 

Human embryonic kidney (HEK) cells stably overexpressing human OAT1 (SOLVO 

Biotechnology) were used for in vitro inhibition assays. Cells were maintained in DMEM 

supplemented with 10% FBS, 1% penicillin/streptomycin, and blasticidin, a selective marker for 

OAT1 expression. Cells were tested for mycoplasma contamination, and no contamination was 

observed. Prior to functional assays, cells were plated in 96 well plates and grown for 24 hours, 

or until confluent in media without blasticidin. Metabolites were added at either 1 or 2 mM and 

serial dilution was performed down all columns. A fixed concentration of 10 uM 6-
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carboxyfluorescein was introduced to each well for 10 minutes. Cells were rinsed three times in 

ice-cold PBS, and the fluorescence was measured using a fluorescent plate reader. IC50 values 

were calculated using GraphPad Prism 9 (La Jolla, CA). Controls were carried out using 

probenecid, an established inhibitor of OAT1 function. 

2.5.8. Magnetic bead binding assay 

The OAT1 gene was cloned into a third-generation lentiviral vector system. The full-

length protein was expressed as GFP fusion in HEK293 cells to check for protein expression. 

OAT1 protein was solubilized using n-Dodecyl-β-D-Maltoside (bDDM) detergent and then 

purified by immobilization on magnetic beads coupled to anti-flag antibody (MedChemExpress, 

HY-K0207). We used magnetic beads (5 microns) as the basis for a binding assay to screen 

small molecule compounds competing with a well-established OAT1 substrate, 6-

carboxyfluorescein (6-CF), which was used as a fluorescent tracer. Loss of fluorescence when 

challenged with another substrate at a given concentration indicated potential competition for the 

same binding site. Multiple compounds and concentrations were assayed in a 96-well format 

using flow cytometry, gating directly on the scattering of the beads. Candidate compounds were 

initially screened at 3-10 times the concentration of 6-CF (kept constant at 6 uM, for example).  

Fluorescent measurements were conducted using a Novacyte flow cytometer (Agilent) 

with sampler that reads one sample well at a time at regular time intervals. As these magnetic 

beads are denser than water, we used 50% glycerol to reduce bead sedimentation. Loss of 

fluorescence when challenged with candidate compounds at different concentrations was 

normalized against the maximum fluorescence due to 6-CF binding to OAT1, which was also 

measured periodically between every set of 10 samples. These check-point measurements 

(evaluating 6-CF binding to OAT1 in this case) spaced in time allowed us to monitor and to 

correct fluorescence due to bead sedimentation over time. Using this approach, we screened 20 
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compounds and categorized them (as OAT1 binder versus non-binder) based on their 

competitive efficiency against 6 uM 6-CF, selecting for loss of fluorescence signal compared to 

the relative error in repeated measurements of 6 uM 6-CF binding to OAT1 alone. 

2.5.9. 5/6 nephrectomy model 

In the metabolomics data from 5/6 nephrectomy model previously described by us [114], 

one kidney and 2/3 of the other were removed to model diminished renal function. A sham 

operation was performed on the healthy controls. After two weeks, plasma samples were 

collected from the animals following sacrifice. The samples were metabolically profiled, and 5/6 

nephrectomy vs healthy were analyzed. We then compared these metabolites to those in 

Supplementary Table 2.S3. 

2.5.10. Human drug-metabolite interactions 

As previously described by us, plasma and urine samples were collected from 20 healthy 

participants before and 5 hours after an oral dose of probenecid [137]. These samples were 

metabolically profiled and pre-post comparisons were analyzed to determine compounds that 

were significantly altered. We analyzed compounds that were elevated in the plasma, decreased 

in the urine, and those that satisfied both criteria. We then compared these metabolites to those in 

Supplementary Table 2.S3. 

2.5.11. Statistics 

Scaled intensity for each metabolite was normalized to volume, and missing values were 

imputed with the lowest value for the compound. For all fold-change calculations, scaled 

intensities were averaged and compared to each other. Statistical comparisons were performed 

using the Python module, statsmodels (https://www.statsmodels.org/stable/index.html) and were 

made between groups by Two-way ANOVA following log transformation and false discovery 

rate (FDR) correction, with p < 0.05 being considered significant. Enrichment for each 

superpathway and subpathway was calculated using the number of total metabolites measured 

https://www.statsmodels.org/stable/index.html
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and the number of metabolites in each respective superpathway and subpathway, as previously 

described [54]. 

2.5.12. Study approval 

All experimental protocols were approved by the University of California San Diego 

Institutional Animal Care and Use Committee (IACUC), and the animals were handled in 

accordance with the Institutional Guidelines on the Use of Live Animals for Research. All the 

experiments described here follow the ARRIVE guidelines. 
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Supplemental Table S2.3: 40 metabolites significantly altered by both loss of Oat1 and 

microbiome depletion.  
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Table 2.1 Summary of gut-derived compounds measured for physical binding with OAT1. 

Magnetic bead binding assays show results in this work. In vitro cell-based transport assays are 
collated from this work and other publications. In vivo mouse model Oat1 KO refers to ANOVA 

results in this work from loss of Oat1. In vivo mouse model microbiome depletion refers to 
whether the ANOVA results in this work due to microbiome depletion. In vivo humans treated 
with probenecid refers to results from an in vivo analysis of these metabolites in human plasma 

and urine treated with probenecid [137]. ✓: evidence of interaction. N/A: compound not 

measured. 
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Compound 

Magnetic 

bead 

binding 

assay 

In vitro cell-

based transport 

assay 

In vivo mouse 

model Oat1 

KO only 

In vivo 

mouse model  

microbiome 

depletion 

only 

2-hydroxphenylacetate 
  ✓ (this work) ✓ 

✓ 

Indolin-2-one ✓   ✓ 
✓ 

Indoleacetate ✓ ✓ [73]   
 

Indolepropionate ✓ ✓ (this work) ✓ 
 

3-phenylpropionate     ✓ ✓ 

4-hydroxyphenylacetate ✓   ✓ 
 

4-hydroxyphenylpyruvate ✓ ✓ [154]  
 

Cinnamate ✓   ✓ 
✓ 

Deoxycholate ✓ ✓ (this work) ✓ 
✓ 

Imidazole propionate ✓     
 

Indole-3 acetamide      N/A  N/A 

Indole-3-carboxaldehyde  ✓    N/A  N/A 

Indoleacrylate ✓    N/A  N/A 

3-indoxyl sulfate ✓ ✓ [53] ✓ 
✓ 

4-hydroxycinnamate ✓ ✓ (this work)  
 

Phenylpyruvate ✓     
 

Serotonin   ✓ [73]   
 

Skatole       N/A  N/A 

Trimethylamine N-oxide       ✓ 

Tyramine  ✓    N/A  N/A 
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Table 2.2 Overlap of metabolites impacted by loss of Oat1 and microbiome depletion in this 

study and metabolites affected by 5/6 nephrectomy in a chronic kidney disease model. 
 

Metabolite Impacted by loss of 

Oat1 

Impacted by 

microbiome 

depletion 

Elevated by 5/6 

nephrectomy 

model [114] 

3-indoxyl sulfate ✓ ✓ ✓ 

phenylacetylglycine ✓ ✓ ✓ 

p-cresol sulfate ✓ ✓ ✓ 

3-methylhistidine ✓ ✓ ✓ 

N-acetylserine ✓ ✓ ✓ 

2-isopropylmalate ✓ ✓ ✓ 

4-ethylphenyl sulfate ✓ ✓ ✓ 
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Figure 2.1 Workflow of experiment and schematic of gut-derived metabolite transport by 

OAT1. 

Oat1 knockout and wildtype mice were treated with an antibiotic cocktail to deplete the gut 
microbes. We then assessed the resulting changes on the serum metabolome and determined that 

many metabolites produced by commensal bacteria in the gut enter the blood stream, where their 
systemic levels are regulated in vivo by OAT1 in the kidney.  
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Figure 2.2: Tc-99m MAG3, an OAT1 substrate, has different clearance patterns in 

wildtype and knockout mice. 

A) Schematic for measurement of Tc-99m MAG3 in the urine in the bladder and the blood. B) 

Over the course of 30 minutes, the bladders of wildtype mice (n=5) reached their maximal levels 
of Tc-99m MAG3 more quickly than knockout mice (n=5). The central line represents the mean, 
while the error bands represent a standard deviation at each timepoint.  C) In weight-scaled post-

mortem gamma counts, 4 out of 5 pairs of mice showed higher levels of Tc-99m MAG3. Given 
that OAT1-mediated transport is often the rate limiting step for clearance into the urine, this 

pattern demonstrates the functional usefulness of genetic knockout for the studies that follow. D) 

In weight scaled post-mortem gamma counts, Tc-99m MAG3 levels in the blood were higher in 
the Oat1 knockout mice in 4 out of 5 pairs. Since OAT1 is expressed at the basolateral 

membrane of the proximal tubule, it follows that blood levels of a substrate would be elevated in 
the Oat1 knockout mice. %ID/g: percent injected dose over gram. 
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Figure 2.3 An antibiotic cocktail depleted the gut microbes in Oat1 knockout and wildtype 

mice and decreased the circulating levels of gut-derived metabolites. 

A) Metagenomic analysis of mice showed that observed OTUs are decreased in mice (n=12 for 

WT untreated, n = 11 for Oat1 KO untreated, n = 5 for Oat1 KO treated, n=4 for WT treated) 
treated with antibiotic cocktail. B) Linear discriminant analysis reveals separation between the 
metabolomic profile of the four groups (n=4 for all groups). C–F) The serum abundance of well-

established gut-derived metabolites (cinnamoylglycine [2.31×10-10], indolepropionate [5.66×10-

08], hippurate [7.99×10-08], and trimethylamine N-oxide [3.85×10-04] with different origins is 

significantly decreased in treated groups, as determined by corrected 2-way ANOVA. (n = 4 for 
all groups). Box plots include the median as the central line, the lower quartile as the lower limit 
of the box, the upper quartile as the upper limit of the box, the max value as the upper limit of 

the whisker, and the minimum value as the lower limit of the whisker. Diamonds indicate a value 
that falls outside of the interquartile range. 
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Figure 2.4 Genetic knockout of Oat1 and antibiotic treatment lead to multiple altered 

biochemical pathways. 

A) Enrichment results from the 103 metabolites significantly altered by loss of  Oat1 show that 

Benzoate Metabolism, Fatty Acid Metabolism, and others are among the most affected 
subpathways. B) Enrichment results from the 162 metabolites significantly altered by 

microbiome depletion reveal that Benzoate Metabolism, Phospholipid Metabolism, Tyrosine 
Metabolism, and others are among the most affected subpathways. C) 2-Amino–p-cresol sulfate, 
deoxycholate, and docosahexaenoylcarnitine (C22:6)* were significantly affected by the 

interaction between genotype and treatment, as determined by 2-way ANOVA. Asterisk denotes 
the identity has not yet been confirmed based on a chemical standard, but there is high 

confidence in its identity. Box plots include the median as the central line, the lower quartile as 
the lower limit of the box, the upper quartile as the upper limit of the box, the max value as the 
upper limit of the whisker, and the minimum value as the lower limit of the whisker. 
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Figure 2.5 Treatment and genotype overlap in their impact on 40 circulating metabolites. 

A) Of the 103 metabolites affected by loss of Oat1 and the 162 metabolites affected by 
microbiome depletion, 40 metabolites overlapped. B) The 40 metabolites belonged to 19 unique 

subpathways, with 11 belonging to the Benzoate Metabolism subpathway. C) The levels of the 
40 metabolites are shown, with the scaled intensity of each metabolite being scaled to range from 
0 to 3 for improved visualization, though there are some metabolites that have higher scaled 

intensities. The individual groups of mice are shown on the y axis, and the individual metabolites 
are shown on the x axis. KOU, Oat1-KO untreated; KOT, Oat1-KO treated; WTU, WT 

untreated; WTT, WT treated. D) Linear discriminant analysis (LDA) shows clear separation 
between the 4 groups of metabolites altered by both loss of Oat1 and microbiome depletion. 
Thirty-one of the 40 overlapping metabolites have available chemical structures (Group 1, 5 

metabolites with structures; Group 2, 17 metabolites with structures; Group 3, 3 metabolites with 
structures; Group 4, 6 metabolites with structures). We were unable to find clearcut information 

for 2-amino–p-cresol sulfate, N2-acetyl, N6,N6-dimethyllysine, 4-allylcatechol sulfate, 4-
ethylcatechol sulfate, 4-methoxyphenol sulfate, N-acetylhomocitrulline, succinoyltaurine, 3-
methoxycatechol sulfate (2), or 1-methyl-5-imidazolelactate. E) Thirteen of the 22 compounds in 

Group 2 (elevated by KO and decreased by microbiome depletion) were sulfated. Only 1 other 
compound in the other groups was sulfated. F) Number of aromatic bonds was one of the 

features that most separates the 4 groups of compounds affected by Oat1 KO and microbiome 
depletion. Group 2 had higher numbers of aromatic bonds than the other 3 groups. 
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Figure 2.6 OAT1 transport is inhibited by gut-derived compounds in vitro. 

A-E) Indolepropionate (n=4), deoxycholic acid (n=4), 4-hydroxycinnamate (n=2), 5-

hydroxyindoleacetate (n=5), 2-hydroxyphenylacetic acid (n=2) inhibited the transport of 6-
carboxyfluorescein in OAT1-expressing HEK293 cells. Controls were performed with the 

prototypical OAT1 inhibitor, probenecid, and IC50 values from at least n=2 assays are shown. 

 

  



63 

 

 

Figure 2.7 OAT1 binds gut-derived compounds in vitro. 

A) 20 gut-derived metabolites and a control compound (6-carboxyfluorescein) were measured 
using the magnetic bead binding assay. B) All but 5 of the compounds (15 of 20) showed a 
significant normalized corrected shift in 6-carboxyflourescein signal, indicating that these 

compounds bind to OAT1. 
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Figure 2.8 Gut-derived metabolites mediated by OAT1 kidney function are involved in 

clinical drug-metabolite interactions. 

Of the 40 metabolites significantly affected by both loss of Oat1 and microbiome depletion, 8 
were also implicated in clinical drug-metabolite interactions with the drug, probenecid. These 
compounds were both elevated in the plasma and decreased in the urine, indicating that OAT1-

mediated movement is the rate limiting step. Of the 8 metabolites, 5 had chemical structures and 
are shown in the figure. The remaining 3 are 4-ethylcatechol sulfate, 4-methoxyphenol sulfate, 

and 4-allylcatechol sulfate. There were also 20 of 40 metabolites decreased in the urine, and 11 
of 40 increased in the plasma.  
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Chapter 2, in full, is a reprint of the material as it appears in “The kidney drug transporter 

OAT1 regulates gut microbiome-dependent host metabolism” by Jeffry C. Granados, Vladimir 

Ermakov, Koustav Maity, David R. Vera, Geoffrey Chang, and Sanjay K. Nigam in JCI Insight, 

2023, 8.2. The dissertation author was the primary investigator and author of this paper. 
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CHAPTER 3: BLOCKADE OF ORGANIC ANION TRANSPORT 

IN HUMANS AFTER TREATMENT WITH THE DRUG 

PROBENECID LEADS TO MAJOR METABOLIC 

ALTERATIONS IN PLASMA AND URINE  

 

3.1 ABSTRACT 

Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of 

antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion 

transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand 

the endogenous role of these transporters in humans, we administered probenecid to 20 healthy 

participants and metabolically profiled the plasma and urine before and after dosage.  Hundreds 

of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We 

focused on potential OAT1 substrates by identifying 97 metabolites that were significantly 

elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These 

included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was 

the only metabolite significantly decreased in the plasma and elevated in the urine, consistent 

with an effect on renal reuptake by URAT1. Additional support comes from metabolomics 

analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were 

likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these 

compounds were elevated in both knockout mice, while 6 were exclusive to the Oat1 knockout 

and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also 

propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport 

function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the 

profound changes in metabolites following probenecid treatment support the view that SLC22 

transporters are hubs in regulation of systemic human metabolism.  
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3.2 INTRODUCTION 

Probenecid is a US Food and Drug Administration (FDA)-approved drug that has 

historically been used to slow the clearance of drugs in short supply [22]. In World War II, 

probenecid was co-administered with penicillin to increase the half-life of the antibiotic to treat 

infections in wounded soldiers [22]. Probenecid has also been used with several other drugs in 

this manner, exploiting what are now referred to as drug-drug interactions (DDI) [155]. Although 

probenecid is used to increase the half-life or drugs excreted by the kidney, it is also used in the 

treatment of gout and hyperuricemia, conditions associated with disordered urate homeostasis 

[156-158]. Probenecid increases renal excretion of urate by inhibiting its reabsorption from the 

proximal tubule lumen back into the blood, exploiting a drug-metabolite interaction [157, 159-

161]. In addition to clinical usage, probenecid is also used as an inhibitor of several transporters 

of organic anions for in vitro studies in research settings [22, 162]. 

The early uses of probenecid were discovered without specific knowledge of its 

molecular targets [163]. Since then, many of the proteins that participate in the renal organic 

anion secretory system have been identified in mice and humans, and several have been shown to 

have direct interactions with probenecid [98]. Probenecid has three widely accepted in vivo renal 

targets primarily expressed in the proximal tubule: organic anion transporters 1 and 3 

(SLC22A6/OAT1, SLC22A8/OAT3) and uric acid transporter 1 (SLC22A12/URAT1). 

Following oral administration, probenecid rapidly enters the bloodstream, where it is highly 

bound to albumin [163]. Protein-bound probenecid is carried through the blood and ultimately 

the peritubular capillaries, where it inhibits the function of OAT1 and OAT3 (Figure 3.1). These 

SLC22 uptake drug transporters are localized to the basolateral membrane of the proximal tubule 

and transport a wide array of substrates including drugs, endogenous metabolites, natural 

products, and toxins, as evidenced by the characterization of the Oat1 and Oat3 knockout mice, 
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as well as numerous in vitro studies [52, 54, 72-74, 77, 99, 164]. Free, unbound probenecid is 

filtered by the glomerulus and enters the urinary filtrate, where it acts by inhibiting URAT1, an 

apical transporter that is involved in the reabsorption of urate from the urine into the cell [165, 

166] (Figure 3.1).  

These transporters, as well as several other multi-specific, oligo-specific, and mono-

specific transporters and enzymes are important regulators of endogenous metabolism, as 

proposed in the Remote Sensing and Signaling Theory (RSST) [6, 8]. The RSST describes the 

combined role of drug transporters and drug metabolizing enzymes in inter-organ and intra-organ 

communication through the movement of small molecules [6-8, 122]. Many of these proteins are 

best known for their role in the absorption, distribution, metabolism, and excretion (ADME) of 

drugs, but their tissue expression patterns and shared substrate specificity allow them to 

collaboratively handle many other classes of small molecules, such as endogenous metabolites, 

natural products, toxins, gut microbiome products and nutrients. One of the key tenets of the 

RSST is that the primary function of these “drug” ADME proteins is to regulate endogenous 

metabolism, and that drugs are effectively probes for the endogenous Remote Sensing and 

Signaling system [6]. This is supported by the evolutionary conservation of these gene families 

across several species, including worms, flies, and sea urchins [58, 167]. The OATs and SLC22s 

in general, are important hubs in a proposed network of multi-specific proteins that aid in 

returning the body to homeostasis following perturbations, and there is now considerable 

experimental and human genetic support for this view [11, 164]. Given that the primary 

expression of known in vivo probenecid targets are OAT1, OAT3, and URAT1 in the proximal 

tubule of the kidney, we hypothesized that the inhibition of these proteins by probenecid would 

markedly alter the levels of key metabolites and signaling molecules in the blood and urine. 
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Here, we show that the administration of a clinically prescribed drug, probenecid, has a 

major impact on the human plasma and urine metabolomes, likely through the direct inhibition 

of physiologically important transporters, OAT1, OAT3, and URAT1 expressed in the kidney. 

This broad effect on metabolism is consistent with predictions of the RSST. Although DDIs 

receive the majority of drug transporter-related research attention, the wide substrate specificity 

of these OATs and other multi-specific transporters raises the possibility of several other 

competitive interactions, including drug-metabolite, drug-nutrient, and drug-toxin interactions 

[21, 168, 169]. In brief, we performed global metabolomics on the plasma and urine of 20 

healthy participants collected before and 5 hours after an oral dose of probenecid and analyzed 

numerous small molecules reflective of potential drug-metabolite interactions (DMI), drug-

nutrient interactions (DNI), and other competitive interactions. Hundreds of metabolites were 

significantly altered in each medium, including 124 that were significantly elevated in the plasma 

and decreased in the urine, indicating likely OAT-mediated transport. We then compared the 

altered metabolites to those impacted in the serum of Oat1 and Oat3 knockout mice to identify 

potential biomarkers for drugs that are handled by the organic anion transport system, which is 

the main elimination pathway for protein-bound drugs in the kidney. The data support the value 

of the Oat knockouts for understanding human physiology. They also suggest that the body 

experiences a metabolic shift following administration of a drug that inhibits organic anion 

transporters, hubs in human systemic metabolism. We also propose the “probenecid stress test”, 

which can provide a functional readout on tubular function in healthy and diseased states. 

3.3 METHODS 

3.3.1. Participants 

All experimental protocols were reviewed and approved by the Institutional Review 

Board and abide by the Declaration of Helsinki Ethical Principles. Blood and urine were 
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collected from 20 healthy participants (14 women and six men) before and 5 hours after an oral 

dose of 1 gram of probenecid. Based on clinical settings (e.g., treatment of gonorrhea with 

antibiotics), one gram of probenecid was the dose used [170]. Participants had an average age of 

30.85±10.93 and an average body mass index of 24.18±3.52. The protocol was developed in 

consultation with clinical researchers at University of California San Diego Altman Clinical and 

Translational Research Institute (ACTRI). According to the protocol, all participants were asked 

to be on a diet of no meat, fish, or eggs for 3 days prior to their visit and the day of their visit. 

Participants were also asked to not take any medications, vitamin C tablets, nutritional 

supplements, caffeine, chocolates, or cruciferous vegetables the day before and the day of the 

visit. Participants were also asked to consume an extra liter of water the morning of the visit. 

There were no additional restrictions on diet between blood/urine collection. All participant data 

was deidentified. Samples were stored at -80 C until metabolomic analysis. 

3.3.2. Metabolomic analysis 

Samples were shipped on dry ice to Metabolon Inc. (Durham, NC). Plasma and urine 

samples were processed separately. Protein was removed from samples, and samples were 

separated into fractions. These fractions were analyzed by either reverse phase UPLC-MS/MS 

with positive ion mode electrospray ionization, RP/UPLC-MS/MS with negative ion mode ESI, 

or HILIC/UPLC-MS/MS with negative ion mode ESI. Following quality control and accounting 

for instrument and process variability, data was extracted, peak-identified, and assessed for 

quality by Metabolon. Plasma data was normalized to volume, and urine data was normalized to 

volume and osmolality. Oat1 and Oat3 knockout plasma metabolomics data, which has been 

previously extensively analyzed by us, were collated from prior publications and other available 

data from our lab and followed previous protocols with respect to acquisition and analysis [54, 
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72, 73]. Recent serum metabolomics data on newer platforms is generally consistent with 

previously published data, and relevant information is included in Supplementary Information. 

3.3.3. Metabolic pathway analysis 

Plasma and urine metabolomics data were analyzed separately. Missing values were 

replaced with the minimum observed value for each compound. Plasma fold changes were 

calculated using volume normalized data, and urine fold changes were calculated using volume 

and osmolality normalized data by Metabolon. For statistical comparisons, data were log 

transformed, and a pairwise t-test was used to calculate p-values in plasma and urine. Enrichment 

was calculated as previously described [73]. Principal component analysis was performed using 

the sci-kit learn package in Python 3.8. Visualizations were performed using the Seaborn 

package in Python 3.8.  

3.4 RESULTS 

3.4.1. Short-term probenecid treatment alters the levels of hundreds of circulating metabolites 

We first focused our attention on the plasma of the participants, as OAT1 and OAT3 have 

been shown to impact circulating levels of small molecules in human and rodent models due to 

their basolateral localization (blood-facing) and have been associated with far more small 

molecule compounds than URAT1 [5]. Thus, the combined metabolic roles of OAT1 and OAT3 

could best be determined by analyzing the changes in plasma levels of endogenous metabolites 

and other compounds. We measured the levels of 1,234 unique metabolites, including 

probenecid and multiple unidentified compounds, spanning numerous biochemical pathways in 

20 healthy participants (Figure 3.2A, Supplementary Table 3.S1). The global metabolic 

profiles before and after treatment were largely separable by principal component analysis 

(PCA), showing that oral dosage of probenecid impacts the plasma metabolome in a consistent 

fashion (Figure 3.2B). We analyzed the levels of metabolites that were elevated, as they are 

likely due to the inhibition of OAT1 and OAT3 in the kidney, and this can potentially be 
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validated by considering metabolites elevated in the Oat1 and Oat3 KO mice previously 

described by our group [52-54, 72, 73]. We found 354 metabolites that were significantly 

elevated (p < 0.05, fold change > 1) (Figure 3.2C) and that many of them were present in 

biochemical pathways implicated in rodent models, such as tryptophan, tyrosine, phenylalanine, 

and bile acid metabolism (Figure 3.2D) [52, 53, 72-74, 140, 171]. In addition to determining the 

metabolic roles of OAT1 and OAT3, we were also interested in how URAT1 inhibition might 

impact endogenous metabolism. Since probenecid inhibits URAT1 and potentially other organic 

anion reuptake transporters in the kidney, it is possible that certain metabolites decreased in the 

plasma are a result of small molecules not being reabsorbed back into the blood from the urine. 

We identified 230 metabolites that were significantly decreased in the plasma, suggesting that 

URAT1 may play an important role in the circulating levels of compounds in the blood 

(Supplementary Figure 3.S1). However, considering the relatively limited substrate specificity 

of URAT1, it is unlikely that many of these compounds are elevated due to URAT1 inhibition, 

and some of these changes may be due to temporal variations. 

3.4.2. Metabolites in the urine are mainly decreased following probenecid treatment 

Our initial focus was on the plasma of the participants because of the clear implication of 

OAT1/OAT3 function, but we were also interested in the urine, as OAT1/OAT3 uptake is often 

the rate limiting step for excretion into the urine. Hence, we assumed that OAT1/OAT3 

substrates would have lower levels in the urine. In contrast, URAT1 acts by reabsorbing urate 

and other compounds from the urine into the proximal tubule, so we also analyzed the 

metabolites that were elevated in the urine. We measured 1,315 unique metabolites in the urine 

of the same 20 healthy participants before and after probenecid administration (Supplementary 

Table 3.S2). High levels of probenecid were detected in the urine 5 hours after the oral dosage in 

all the participants (Figure 3.3A). PCA revealed a separation between pre and post treatment, 
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demonstrating the effect on excretion (Figure 3.3B). Due to the number of metabolites that were 

elevated in the plasma, we focused on the metabolites that were decreased in the urine under the 

assumption that probenecid also prevents these metabolites from passing through the tubular 

secretion system and entering the urine. Six hundred twenty-two metabolites were significantly 

decreased in the urine (p < 0.05, FC < 1), including multiple metabolites that overlapped with 

those altered in the plasma. Indeed, some of the subpathways containing elevated metabolites in 

the plasma also had decreased metabolites in the urine, suggesting that their levels of these 

metabolites were mediated by probenecid targets (Figure 3.3, C and D). Although the exact 

metabolites and subpathways altered in the plasma and urine slightly differed, tryptophan, 

tyrosine, and bile acid pathways were all enriched for decreased metabolites, which reflected the 

changes observed in the plasma. In addition, 113 metabolites were elevated in the urine, some 

presumably due to the inhibition of URAT1 and other less well characterized organic anion 

reuptake transporters, which covered a different set of metabolic subpathways (Supplementary 

Figure 3.S2).  

3.4.3. Ninety-seven compounds are likely human OAT substrates based on plasma and urine 
metabolomics 

Of the nearly 2,000 metabolites measured across both experiments, 124 were elevated in 

the plasma and decreased in the urine, indicating physiologically relevant inhibition of 

OAT1/OAT3, as both uptake and excretion were altered in the expected manner. To better 

determine which metabolites may be relevant as endogenous biomarkers, we applied fold change 

criteria used by regulatory agencies, which generally indicate that for DDI studies the safety 

margins are between 80 and 125% [4]. Hence, we limited our overlap to metabolites with fold 

changes over 1.25 in the plasma and under 0.8 in the urine, resulting in 97 metabolites, 40 of 

which have known chemical structures, including 14 with in vitro support (Figure 3.4, 
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Supplementary Table 3.S3). Many of these metabolites come from a subset of biochemical 

pathways, with 7 from tryptophan metabolism, 6 from tyrosine metabolism, 9 from either 

primary or secondary bile acid metabolism, and 4 from androgenic steroids, which have all 

previously been associated with OAT function. Several of the altered compounds were 

characterized by ring structures and negative charges, and many are linked to Phase II drug 

metabolism. Sulfation and glucuronidation are among the most common conjugations that 

improve renal excretion, and they are well represented in our subset, with 27 sulfated compounds 

and 7 glucuronidated compounds, indicating the close association between the OATs and drug 

metabolizing enzymes. Thirty unidentified metabolites were also present, but these have not been 

linked to any chemical structure or known biochemical role.  

3.4.4. Probenecid has a specific drug-metabolite interaction with urate 

Whereas the nature of the compounds that were elevated in the plasma and decreased in 

the urine suggested inhibition of OAT1/OAT3, we also aimed to understand the potential effect 

of URAT1 inhibition. Along with OAT1 and OAT3, URAT1 is considered a primary in vivo 

target of probenecid, and its mechanism of action is blocking reabsorption of urate from the urine 

into the proximal tubule and back into the blood. We compared the metabolites decreased in the 

plasma and elevated in the urine and found that three compounds (urate, quinate, N-

acetylglycine) satisfied both criteria. However, when the more stringent fold changes (FC < 0.8, 

FC >1.25) were applied only one compound, urate, satisfied both conditions (Figure 3.5). 

Because probenecid was highly elevated in the urine, it was able to exert its inhibitory effect, 

which led to a specific drug-metabolite interaction between probenecid and urate at URAT1. 

Again, we find it remarkable that of the hundreds of metabolites analyzed in both plasma and 

urine, only one was elevated in the urine and decreased in the plasma, as might be inferred from 

clinical, knockout, and in vitro data.  
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3.4.5. Probenecid treated humans and Oat1/3 knockout mice metabolomics reveal candidate 
endogenous biomarkers 

While OAT1, OAT3, and URAT1 are widely accepted as the main in vivo targets of 

probenecid, there is the possibility of effects on other transporters (SLC and ABC) which are 

inhibited in vitro by probenecid. That said, in vivo evidence is lacking for a major role for these 

other transporters in probenecid-sensitive organic anion transport. Thus, we focused on OAT1, 

OAT3, and URAT1, for which considerable in vitro, in vivo, and ex vivo support exists [42, 52-

54, 72-74, 98]. Previous work by our group has focused on the roles of these transporters in in 

vivo endogenous metabolism using genetically engineered mice. We analyzed global metabolic 

profiling data from the serum of Oat1 and Oat3 knockout mice from multiple studies by our 

group and found changes that support the important physiological role of the OATs [52-54, 73, 

74, 114, 172]. Though there are differences in general physiology, gene expression patterns, and 

microbiome composition between mice and humans, it was expected that there would be overlap 

between the knockout mice and humans treated with probenecid. Indeed, there were multiple 

metabolites that were elevated in the human plasma, the knockout mouse serum, and decreased 

in the urine (indicative of OAT-mediated transport).  

When using the 124 metabolites elevated in the plasma and decreased in the urine, we 

found that 52 and 48 of these metabolites were measured in the Oat1 and Oat3 knockout mice, 

respectively. We focused on the metabolites that were elevated in each knockout mouse and 52% 

(27/52) for the Oat1 and 48% (23/48) for the Oat3 mice were altered . However, we mainly 

focused on the 97 metabolites that fit the fold change criteria previously described. For this 

subset, 55% (21/38) of the metabolites measured in humans and Oat1 mice had in vivo knockout 

mouse support. With respect to OAT3, 56% (19/34) had in vivo knockout mouse support. Fifteen 

metabolites were elevated in both knockout mice, while 6 were unique to OAT1, and 4 were 
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unique to OAT3 (Figure 3.6). This work demonstrates that Oat knockout mice can be used to 

predict potential DMIs at the site of transporters and produce candidates for endogenous 

biomarkers. Although these compounds would need to be further characterized (rate of synthesis, 

metabolic breakdown, other routes of clearance, etc.) to prioritize for usefulness as endogenous 

biomarkers, many of them have been shown to be impacted by OAT perturbation in vivo 

(humans and mice) and in vitro.   

3.5 DISCUSSION 

We found that probenecid, a drug used to treat gout and hyperuricemia and increase 

levels of OAT-transported drugs (e.g., antibiotics, antivirals), had a major impact on the levels of 

endogenous metabolites and diet-derived compounds in the plasma and urine. The altered 

pathways spanned several biochemical pathways and functional clusters based on chemical 

structures, such as bile acids and aromatic amino acids. These biochemical pathways were 

generally similar to those altered in Oat1 and Oat3 knockout mice [52, 72, 73, 94, 95]. Among 

the surveyed metabolites in the plasma and urine, we noted that many metabolites were elevated 

in the plasma and decreased in the urine, indicating that inhibition of OAT1 and OAT3 by 

probenecid leads to a much more pronounced systemic impact than URAT1 inhibition. However, 

use of probenecid’s known mechanism of action (inhibition of urate reabsorption at URAT1) 

was also apparent, as urate alone was both elevated in the urine and decreased in the plasma.  

Overall, the profound metabolite alterations support the view that OAT1 and OAT3 are 

“hubs” in a Remote Sensing and Signaling Network of transporters and enzymes regulating 

metabolism; in particular, the RSST emphasizes the roles of these multi-specific “drug” 

transporters in inter-organ communication mediated by endogenous small organic compounds 

such as key metabolites, antioxidants, gut microbiome products and signaling molecules that 

activate GPCRs and nuclear receptors [6, 122, 164]. 
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Many of the impacted metabolites were also altered in the serum of Oat1 and Oat3 

knockout mice, supporting the view that the resulting changes are due to the inhibition of OATs. 

Thus, in the process of analyzing human data, we further validated the usefulness of previous 

mouse knockout models. In particular, the Oat knockout mice may be useful in predicting drug-

metabolite interactions at the site of these transporters and identifying potential endogenous 

biomarkers of transporter function. Since probenecid is known to target both OAT1 and OAT3, 

the endogenous biomarkers implicated here would be for general OAT function rather than for 

one specific transporter. Nonetheless, by comparison with the knockouts, we identified 

metabolites that may be OAT1 or OAT3 selective, as previously described [74]. 

Although probenecid is not known to have notable short or long term side effects, it is 

striking that within hours of taking probenecid so many metabolites are elevated in the plasma, 

such as bile acids and indole derivatives, which have important signaling roles in the body [173, 

174]. Their increases in circulation can lead to the activation of signaling cascades in organs that 

interface with the blood, as their bioavailability is elevated. For example, bile acids activate bile 

acid-specific receptors (i.e., TGR5) and the nuclear receptor FXR (expressed in liver and 

kidney), which govern many key processes in the gut-liver-kidney axis [175, 176]. Consistent 

with the Remote Sensing and Signaling Theory, the elevated levels of tryptophan and tyrosine 

metabolites could also play be physiologically important, as they each have distinct signaling 

roles in different organs [177, 178].  

It is important to point out that this increase in OAT-regulated metabolites may also 

occur with other drugs that inhibit the OATs at varying levels, which could lead to a wide range 

of metabolic side effects via drug-metabolite interactions at the level of the transporter. While 

the main targets of probenecid are the renal transporters (OAT1, OAT3, URAT1), several other 
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proteins are known to interact with the drug in vitro, including multi-specific SLC (often SLC22) 

and ABC transporters (MRPs) and enzymes that also play important roles in key aspects of 

endogenous metabolism [179]. Whether these other proteins are in vivo targets of probenecid in 

humans is far from clear, but it is conceivable that the inhibition of these proteins may lead to 

drug-metabolite interactions that are reported in this work. 

In the kidney, many metabolites must be salvaged from the urinary filtrate and 

reabsorbed into the blood. Hundreds of measured compounds in the urine were decreased by 

probenecid, likely due to the lack of tubular secretion by the OATs, the rate-limiting step in 

urinary clearance for many organic anions. These metabolites, which include purine derivatives, 

aromatic amino acid derivatives, and others are primarily excreted through the urine. Steroids 

were also decreased in the urine, which is consistent with the use of probenecid to mask levels of 

androgenic steroids in urine samples [180]. Like the plasma, it appears that the urine metabolome 

is more influenced by the inhibition of the OATs than URAT1. In the context of OAT1/3 

(basolateral uptake transporters) vs URAT1 (apical uptake transporter), metabolites elevated in 

the plasma and decreased in the urine are linked to OAT1/3, while metabolites decreased in the 

plasma and elevated in the urine are linked to URAT1. However, we must also consider the 

possibility that probenecid may inhibit efflux and retro-transporters expressed on the apical 

membrane of the proximal tubule, although this remains to be established in vivo. 

Recent work by our group and others has highlighted the endogenous role of OAT1 and 

OAT3 in regulating uremic toxins, amino acid derivatives, lipids, and several other classes of 

metabolites using genetically engineered knockout mice [52, 54, 72-74]. We hypothesized that 

the inhibition of these physiologically important proteins with probenecid in humans would lead 

to similar changes and found that while not all metabolite alterations were reproduced, several 
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classes of metabolites were consistently altered in both the plasma and the urine, namely the 

metabolites known to interact with OAT1 and OAT3. URAT1, on the other hand, is more 

specific, with only a few known unique interacting small molecules. While knockout mice 

appear to be useful models in determining potential drug-metabolite interactions, the inter-

species differences in gene expression, diet, and gut microbiome should also be considered, 

particularly considering that many of the metabolites altered in the mice and humans originate 

from the gut microbiome. Nonetheless, some of these compounds are strong candidates for 

endogenous biomarkers used in predicting drug-drug interactions at the site of the OATs.  

Of the 25 compounds altered across human and knockout mouse experiments, 6 of these 

(2-hydroxyphenylacetate, 3-acetylphenol sulfate, 4-acetamidobutanoate, 4-methylcatechol 

sulfate, N-formylmethionine, 4-methoxyphenol sulfate) are unique to OAT1 and they differ from 

the compounds currently being tested as endogenous biomarkers for OAT1 [181]. As for OAT3, 

3 of 4 unique compounds (gentisate, N-acetylphenylalanine, N-acetyltryptophan) altered in 

humans and Oat3 knockout mice are novel--except for indoleacetate, which has been shown to 

be a potential endogenous biomarker for OAT function [182]. We also compared our results to 

other potential OAT biomarkers identified by other groups, and we found that our results 

supported the use of p-cresol sulfate and pyridoxate, in that both of these compounds were 

elevated in the plasma and decreased in the urine [130, 182].  Further criteria, including 

consistent levels throughout the day, stable production independent of diet, minimal interactions 

with other proteins, and in vitro support for specificity to OAT1/3 would further support these 

compounds as strong endogenous biomarkers. The altered compounds could potentially be used 

as biomarkers for organic anion-related tubular transport, which is largely mediated by OATs 

and is gaining more attention in the context of renal diseases [183].  
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Our results suggest that drugs handled by the OATs produce several simultaneous drug-

metabolite interactions. The main mechanism of action of probenecid is as an inhibitor of key 

renal transporters; thus, its impact on the plasma and urine metabolomes is likely stronger than 

drugs with other targets [22, 157].  However, the absorption, distribution, metabolism, and 

excretion (ADME) of nearly every drug and xenobiotic is handled by a subset of drug 

transporters and drug metabolizing enzymes [184]. It is possible that other drugs cleared by 

OAT1 or OAT3 could lead to similar consequences in humans if they inhibit the transporter 

strongly enough. OAT1 and OAT3, in particular, are among the most multi-specific drug 

transporters, with each interacting with over 100 unique drugs, including NSAIDs, antivirals, 

antibiotics, and others [99]. Chronic treatment with drugs that interfere with the function of 

transporters could lead to long term metabolic side effects. In HIV patients taking anti-retroviral 

therapy drugs (many of which are OAT1/3 substrates), it is common to see metabolic side effects 

relating to lipids after several months [185]. Similar situations have been reported with NSAIDs 

and antibiotics, many of which are OAT substrates [186, 187].  

Finally, we note again that tubular secretion and glomerular filtration both contribute to 

overall kidney function but in many contexts, only glomerular filtration rate is considered. In 

recent years, there has been a new emphasis on assessing tubular secretion, which is, however, 

complicated by the fact that renal disease state (CKD, AKI, etc.), genetics and other factors all 

influence tubular secretion.  In light of this, and the data presented in this article, we propose a 

"probenecid stress test" to evaluate the transport capacity of the proximal tubule, as there is a 

need to assess organic anion-related tubular function, preferably without the administration of 

furosemide, a strong diuretic [188].  
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The probenecid stress test, as we currently envision it, is similar in design to the studies 

performed here.  It would measure the plasma and urine levels of the ~100 metabolites identified 

here as potential human OAT substrates before and after a single dose of probenecid. With this, a 

quantitative measure of how compromised organic anion-related tubular function is can be 

calculated to influence drug dosing and help assess disease state. It can also be used to follow 

progression of disease. From the pharmaceutical perspective, the test can be used determine how 

similar a novel drug entity is to probenecid (a complete inhibitor of OATs). Patients may also 

need to avoid (or be differently dosed) drugs that are primarily secreted through OAT1 and 

OAT3. Indeed, many drugs that are prescribed in the setting of renal disease (e.g., antibiotics, 

antivirals, antihypertensives, diuretics) are substrates of OAT1 and OAT3. The use 

of probenecid in late stage renal disease to isolate tubular function has previously been 

demonstrated in animal models [114]. From the disease perspective, the proposed OAT 

substrates can be used as biomarkers to assess renal OAT1 and OAT3 tubular function, which 

comprise the bulk of organic anion transport in the proximal tubule of the kidney and serve as 

indicators of interacting drugs, toxins, endogenous metabolites, natural products, and several 

other classes of small molecule compounds. By focusing on endogenous metabolites, it is 

possible to assess the physiological function of the organic anion handling proteins in the 

proximal tubule without (or before) subjecting the tubular system to one or more drugs that may 

pose risks, especially in the context of declining renal function. The probenecid stress test can 

also be used as a novel clinical test to measure tubular secretion relative to glomerular filtration 

rate. Finally, administration of probenecid can also be useful for determining and following 

organic anion tubular function responsiveness as CKD progresses.  

3.6 STUDY HIGHLIGHTS 

3.6.1. What is the current knowledge on the topic? 
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Probenecid is believed to inhibit three kidney proximal tubule transporters in vivo. 

URAT1 mainly transports urate from the urine into the cell, while the basolateral uptake 

transporters, OAT1 and OAT3, regulate endogenous metabolism as evidenced by alterations 

in Oat1 and Oat3 knockout mice. 

3.6.2. What question did this study address? 

What alterations in metabolism does probenecid cause, presumably by drug-metabolite 

interactions (DMI), and are they occurring at the level of OAT1, OAT3, or URAT1? 

3.6.3. What does this study add to our knowledge? 

We have identified in vivo DMI potential endogenous biomarkers for OAT1 and OAT3, 

as well as potential biomarkers for more general tubular function. We also propose a “probenecid 

stress test” to assess tubular function. 

3.6.4. How might this change clinical pharmacology or translational science? 

These findings could prove helpful in drug development, and in assessing a patient's 

tubular function in acute kidney injury and chronic kidney disease. We have also shown that a 

drug that is considered quite safe nonetheless leads to hundreds of simultaneous drug-metabolite 

interactions and suspect this to be the case for other drugs, which could explain some drug side 

effects or adverse drug reactions. 
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3.9 SUPPLEMENTARY INFORMATION 

 

Supplementary Figure S1: Subpathways enriched for decreased metabolites in the plasma.  

Supplementary Figure S2: Subpathway enrichment for metabolites increased in the urine.  

Supplementary Table S1: Metabolites significantly altered in the plasma of probenecid-

treated humans. 

Supplementary Table S2: Metabolites significantly altered in the plasma of probenecid-

treated humans. 

Supplementary Table S3: Metabolites elevated in the plasma and decreased in the urine 

that are putative OAT1/3 substrates with relevant in vitro support. 

Supplementary Table S4: Metabolites from Oat1 and Oat3 serum metabolomics 

experiments that were elevated in the knockout mice, elevated in the probenecid-treated 

human plasma, and decreased in the probenecid-treated human urine.  
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Figure 3.1 Probenecid effect on the kidney. 

Probenecid inhibits the function of URAT1 on the apical membrane of the proximal tubule. 

Unfiltered probenecid goes through the peritubular capillaries and inhibits the function of 
OAT1/OAT3.   
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Figure 3.2 Probenecid treatment alters the plasma metabolome. 

A) Probenecid levels in the plasma were significantly elevated 5 hours after oral dosage in all 
participants. B) Principal component analysis (PCA) reveals separation between pre and post 

treatment with probenecid plasma metabolomes. C) Hundreds of metabolites were significantly 
altered (elevated and decreased) following treatment with probenecid. D) Among the 

significantly elevated metabolites, 21 subpathways with at least 5 metabolites were enriched, 
including subpathways traditionally associated with OAT-mediated transport (Primary Bile Acid 
Metabolism, Phenylalanine Metabolism, Tyrosine Metabolism, Tryptophan Metabolism, etc.).  
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Figure 3.3 Probenecid treatment alters the urine metabolome. 

A) Probenecid levels in the urine were significantly elevated 5 hours after oral dosage in all 
participants. B) Principal component analysis reveals separation between pre and post treatment 
with probenecid urine metabolomes. C) Hundreds of metabolites were significantly altered 

following treatment with probenecid, with most being decreased. D) Among the significantly 
decreased metabolites, 23 subpathways with at least 5 metabolites were enriched, including 

subpathways traditionally associated with OAT-mediated transport (Secondary Bile Acid 
Metabolism, Tryptophan Metabolism, Phenylalanine Metabolism, etc.).  
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Figure 3.4 Metabolites elevated in the plasma and decreased in the urine are likely OAT1/3 

substrates. 

Metabolites were further filtered by fold change criteria, with only plasma metabolites with fold 
changes over 1.25 and urine metabolites with fold changes under 0.80 were included. Overall, 97 

metabolites fit these criteria, with 40 having known chemical structures. Thirty-four of these 40 
compounds had a total negative charge, and many were also supported by existing in vitro data 

(Supplementary Table 3.S3).     
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Figure 3.5 Presumed inhibition of urate reuptake transporters such as URAT1 led to a 

specific drug-metabolite interaction between probenecid and urate. 

A) Urate was the only metabolite to be significantly decreased in the plasma (fold change < 0.8) 

and increased in the urine (fold change > 1.25) with more selective fold change criteria. B) The 
chemical structure for urate. C) Urate levels were significantly decreased in the plasma following 
treatment with probenecid (p-value: 1.20E-10, fold change: 0.606). D) Urate levels were 

significantly increased in the urine following treatment with probenecid  (p-value: 0.008, fold 
change: 1.705). 
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Figure 3.6 Multiple metabolites suggested to be OAT substrates are supported by in vivo 

Oat1 and Oat3 knockout mice. 

Twenty-five metabolites elevated in the probenecid-treated human plasma, decreased in the 

probenecid-treated urine, and elevated in one or both knockout mice. Twenty of these 
metabolites had associated chemical structures. Fifteen (13 with chemical structures) were 
common to both knockout mice, while 6 (3 with chemical structures) were unique to the Oat1 

knockout mice, and 4 were unique to the Oat3 knockout mice. 
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Chapter 3, in full, is a reprint of the material as it appears in “Blockade of organic anion 

transport in humans after treatment with the drug probenecid leads to major metabolic alterations 

in plasma and urine” by Jeffry C. Granados, Vibha Bhatnagar, and Sanjay K. Nigam in Clinical 

Pharmacology and Therapeutics, 2022, 112.3, 653-664. The dissertation author was the primary 

investigator and author of this paper. 
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CHAPTER 4: REGULATION OF HUMAN ENDOGENOUS METABOLITES 

BY DRUG TRANSPORTERS AND DRUG METABOLIZING ENZYMES: AN 

ANALYSIS OF TARGETED SNP-METABOLITE ASSOCIATIONS 
 

4.1 ABSTRACT 

Drug transporters and drug metabolizing enzymes are primarily known for their role in 

the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but 

they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression 

network analyses have revealed a “Remote Sensing and Signaling Network” of  multi-specific, 

oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. 

This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, 

CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites 

potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with 

the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty 

acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein 

coupled receptors (GPCRs), nuclear receptors and kinases. We identified 77 genomic loci 

associated with 7,236 unique metabolites. This included metabolites that were associated with 

multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug 

transporters and drug metabolizing enzymes) of specific metabolites. We analyzed existing 

pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., 

rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of 

close relationships, via interactions with signaling metabolites, between drug transporters and 

drug metabolizing enzymes that are part of the Remote Sensing and Signaling Network, along 

with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite 
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interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME 

protein network.  

Keywords: transporters, enzymes, ADME, metabolomics, SNPs, pharmacogenomics, fatty acids, 

eicosanoids, homeostasis 

4.2 INTRODUCTION 

Genome-wide association studies (GWAS) have been used to identify single nucleotide 

polymorphisms (SNPs) that are linked to phenotypes [189]. The phenotypic traits examined 

include disease states, drug efficacy and many others, indicating that GWAS can be used to gain 

further insight on the genetic causes of many conditions [190-193].With the increased generation 

of large omics datasets, GWAS have also been used to link SNPs to multiple intermediate 

phenotypes with metabolomics and proteomics [194, 195].  

While much of the research in this area has focused on identifying differences caused by 

disease states or other lifestyle factors, GWAS on healthy patients can elucidate the endogenous 

role of genes by associating specific SNPs to levels of endogenous metabolites. Recent studies 

have combined GWAS and metabolomics on plasma and urine of participants to identify 

potential interactions between proteins and metabolites [63, 64, 196]. Here, we focused on SNPs 

in genes of multi-, oligo- and mono-specific transporters and “drug” metabolizing enzymes 

(DMEs), many of which are best known for their handling of pharmaceutical products, and their 

associations with thousands of circulating endogenous metabolites. The choice of genes was 

partly influenced by recent data indicating that these multi-, oligo- and mono-specific 

transporters and enzymes are found in or near hubs in co-expression networks, especially along 

the gut-liver-kidney axis, suggesting an important endogenous role [11]. 

 Drug transporters and DMEs are among the most studied proteins in pharmacology 

because of their roles in the ADME (absorption, distribution, metabolism, excretion) of 
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pharmaceutical products [184]. Many of the multi-specific transporters and DMEs have the 

capacity to handle structurally diverse drugs, while their more oligo- and (relatively) mono-

specific counterparts may transport or modify as few as one or two endogenous substrates [5, 10, 

197]. GWAS have linked SNPs in these genes to changes in drug toxicity, efficacy, and 

distribution [198, 199].  

However, the multi-specific nature of these proteins is not limited to pharmaceutical 

products [9]. Mainly in model organisms, but also in humans, endogenous metabolites, including 

those with well-defined signaling roles, have also been identified as likely in vivo substrates of 

these proteins, often supported by in vitro studies [6]. In GWAS, other results have demonstrated 

that SNPs in transporter and enzyme genes are associated with endogenous metabolites 

participating in biochemical pathways, like amino acid catabolism, glycolysis, ketone body 

metabolism, and others [63-65, 200, 201] 

Understanding the full range of endogenous substrates of drug transporters and DMEs 

can help uncover the physiological metabolic processes that are perturbed when a patient takes 

drugs. In drug-metabolite interactions (DMI), a drug competes with a metabolite for access to a 

transporter or enzyme, and thus shifts metabolism by impacting the intracellular and extracellular 

concentration of the endogenous substrate [137]. Pharmacogenomic studies have focused on the 

implications of polymorphisms in these genes with respect to the drug-handling, but the 

“natural” function of these genes and its potential impact in drug-induced diseases or drug side-

effects has received comparatively little attention.  

 The Remote Sensing and Signaling Theory proposes that the primary function of drug 

transporters and DMEs, together with closely related genes, is to help optimize levels of 

endogenous metabolites in bodily fluids and tissues by mediating inter-organ and inter-
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organismal (e.g., gut microbe-host) communication through small molecule metabolites and 

signaling molecules [11]. This mechanism, while now experimentally supported in model 

organisms [73, 77, 95, 144], is also supported in humans [12]. Many endogenous metabolites 

have signaling capabilities that contribute to the regulation of the expression and/or function of 

other membrane transporters and enzymes by activating nuclear receptors, creating feedback 

loops [202].  

Furthermore, many of these proteins share substrates with one another and are expressed 

in multiple epithelial tissues, suggesting the possibility of communication between them via 

these proteins, thereby mediating organ crosstalk [139]. Transporters are regulators of entry 

(uptake) and exit (efflux) of compounds into the epithelial tissues and body fluids they separate. 

For example, solute carrier organic (SLCO), solute carrier 22 (SLC22), and ATP-binding 

cassette subfamily C (ABCC) transporters are expressed in many of the same barrier epithelia 

tissues, like the proximal tubule (blood-urine), hepatocyte (blood-bile), and choroid plexus 

(blood-cerebrospinal fluid), and share many common pharmaceutical and endogenous substrates, 

suggesting that they may be jointly involved in the regulation of these substrates across multiple 

organs [122]. Indeed, SLC22 and ABCC proteins are among the many "drug transporter" 

families that were identified as hubs in the aforementioned co-expression gut-liver-kidney 

network of ~600 proteins--largely consisting of multi-, oligo- and mono-specific transporters, 

enzymes and nuclear receptors (including many ADME proteins)--and presented as a 

preliminary "Remote Sensing and Signaling Network" [11].  

The focus of this study is to identify the metabolites and metabolic pathways regulated by 

these and related proteins in this Remote Sensing and Signaling Network. An additional focus is 

to determine if evidence for drug-metabolite interactions (DMI) can be found--given the overlap 
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in proteins of the Remote Sensing and Signaling Network (mediating endogenous small 

molecule homeostasis) and the ADME protein network (mediating the metabolism and 

elimination of drugs). The scale of potential DMI at the level of the major human drug 

transporters, like organic anion transporter 1(OAT1) and organic anion transporter 3 (OAT3), 

has recently become evident as well [137]. 

While a limited number of in vitro cell-based assays and in vivo rodent experiments have 

been performed to uncover the role of drug handling proteins in metabolic processes, these 

experiments can be technically challenging, time consuming, and labor intensive—and each has 

limitations in their application to humans. Virtual screening can aid in this process, but for many 

proteins, particularly membrane bound human transporters, determining substrate-transporter 

interactions has proven to be challenging due to the lack of crystal structures [80]. Though 

lacking in specific mechanism of action, by using SNP associations with metabolomics data, it is 

possible to prioritize potential protein-metabolite interactions in humans to further evaluate the 

possible physiological role of hundreds of genes. 

 Here, we combined genomic data targeting SNPs in drug transporter, DME, and related 

genes with non-targeted plasma metabolomics of over 2500 patients from the Framingham 

Offspring Cohort Exam 8 to link SNPs in these genes to the levels of circulating endogenous 

metabolites. Because the majority of circulating molecules are unknowns, we performed 

directed, non-targeted LC-MS approaches to specifically capture and assay small, polar, 

bioactive metabolites, including free fatty acids, eicosanoids and oxylipins, bile acids, fatty acid 

esters of hydroxy fatty acids, and other related metabolites of known and unknown chemistries. 

These types of metabolites have been shown to signal via cell surface G-protein coupled 
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receptors (GPCRs) and nuclear receptors and be critical for a host of physiologic processes [203, 

204].  

This work represents a step forward in understanding the individual and combined roles 

of ADME and other genes in endogenous metabolic processes. Of the several interactions 

reported here, some have been confirmed by independent in vivo or in vitro experiments, 

indicating that many novel SNP-metabolite associations likely have a functional protein-ligand 

relationship. We found metabolites that were linked to multiple SNPs on distinct genomic loci 

containing genes expressed in different cells and tissues, which raises the possibility of 

transporter and/or DME mediated remote communication via small molecule metabolites. We 

also analyzed the existing pharmaceutical GWAS to determine DMIs that may occur in patients 

with genes harboring certain SNPs involved in metabolism. The results indicate that a wide 

range of DMI can result at the interfaces of the Remote Sensing and Signaling (protein) network 

and the ADME (protein) network. 

4.3 MATERIALS AND METHODS 

4.3.1. Sample Population 

Genotyping was performed on the Framingham Heart Study (FHS) Offspring Cohort 

Exam 8 (Table 4.1) [205].  

4.3.2. Gene List 

The initial gene list for targeted SNP-metabolite associations was constructed based on 

the Remote Sensing and Signaling Network reported previously based on a co-expression 

analysis [11]. This network included solute carrier (SLC), ATP-binding cassette (ABC), and 

several DME families. Among the DME families were subfamilies such as cytochrome P450s 

(CYPs), uridine 5'-diphospho-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). 

This list of multi-specific, oligo-specific and mono-specific proteins overlaps considerably with 

genes known to be involved in the absorption, distribution, metabolism, and excretion (ADME) 
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of drugs. The list was enlarged by considering other transporters and DMEs involved in ADME, 

as well as related transporters and enzymes based on their roles in ADME, handling of 

endogenous small molecules, or sequence homologies. In total, this resulted in consideration of 

1131 genes (Supplementary Table 4.S1).   

4.3.3. SNP identification  

SNPs were included in the analysis if they were mapped to genes from Supplementary 

Table 4.S1 using SnpEff [206]. Each SNP was associated with a reference SNP cluster ID (rsID) 

or a position on a chromosome. Those SNPs with an rsID were present in dbSNP version 151. 

All SNPs are in hg19 allele reference format.  

4.3.4. Imputation 

Several genotyping arrays (Affymetrix) were used to identify SNPs for the population. 

SNPs were imputed using Minimac3. SNPs associated with genes within an initial list of 1131 

genes containing drug transporters and drug metabolizing enzymes (Supplementary Table 

4.S1) were queried.  

4.3.5. Metabolomics analysis 

Metabolomic studies were performed using directed, non-targeted liquid 

chromatography-mass spectrometry (LC-MS) approaches to specifically capture and assay small 

polar ‘bioactive’ metabolites. These were deemed to have a higher likelihood of  interacting with 

cell surface receptors involved in signaling. These include free fatty acids, eicosanoids and 

oxylipins, bile acids, fatty acid esters of hydroxy fatty acids, among hundreds of unidentified 

related metabolites [203, 204]. Metabolite levels are used as continuous traits with a mean of 0 

and standard deviation of 1. Identified metabolites were confirmed through internal standards. 

4.3.6. Statistical analysis 

SNP-metabolite p-values were determined using linear mixed models (LMM) with an 

additive genetics model, where 0,1, and 2 indicate the number of effect alleles for each SNP in 
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the targeted set. The BOLT-LMM algorithm was used to account for age, gender, and other 

factors [207]. Each metabolite-SNP association had a p-value and only statistically significant 

associations are reported here. Overall, 673,141 statistically significant SNP-metabolite 

associations were detected. The p-value cutoff for significance was set at 4.9*10-12.  

4.3.7. Genomic loci 

Genomic loci were defined by grouping SNPs that were located within 250,000 base pair 

windows. SNPs on the same chromosome more than 250,000 base pairs apart were considered to 

be on different genomic loci. Genes were then mapped to genomic loci if any portion of the gene 

was within 10,000 base pairs of the genomic locus. For loci without any genes within 10,000 

base pairs, the nearest gene was associated with the locus. The GRCh37 build was used for all 

mapping. Genomic plots were generated using FUMA [208]. Manhattan plots were generated 

using assocplots [209]. 

4.3.8. Tissue-specific enrichment 

Tissue-specific enrichment for genes within genomic loci was calculated using the 

TissueEnrich web-based tool (https://tissueenrich.gdcb.iastate.edu/) [210]. Supplementary 

Table 4.S1 was used as the background gene list, and the 178 genes within the genomic loci was 

used as the input gene list. Tissue expression was determined using the Human Protein Atlas.  

4.3.9. Disease and pharmaceutical variant associations 

The ‘Variant and Clinical Annotations’, ‘Variant, Gene, and Drug Relationship Data’, 

and ‘Clinical Variant Data’ files were downloaded from the PharmGKB database 

(https://www.pharmgkb.org/downloads, accessed on 23 August 2022) [211].  

4.4 RESULTS 

4.4.1. 77 genomic loci are linked to circulating levels of small, polar bioactive molecules 

Plasma and DNA from each participant in the Framingham Offspring Exam 8 Cohort 

were analyzed to identify relationships between specific genes and endogenous metabolites 

(Figure 4.1). We focused on bioactive small, polar molecules, aiming to capture endogenous 

https://tissueenrich.gdcb.iastate.edu/
https://www.pharmgkb.org/downloads
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small molecules that bind receptors involved in signaling. These include eicosanoids, fatty acids, 

and sex steroids that are known to interact with G-protein coupled receptors (GPCRs) and 

nuclear receptors (NRs) [212, 213].  

We analyzed the plasma levels of thousands of unique metabolites and their associations 

with SNPs contained within a set of 1131 genes. Many of these genes were taken from a 

previously constructed co-expression network that is believed to reflect their roles mediating 

endogenous small molecule inter-organ communication, as described in the Remote Sensing and 

Signaling Theory (RSST). The original list of genes consisted of solute carrier (SLC) 

transporters, ATP binding cassette (ABC) transporters, DMEs, including CYPs, SULTs, and 

UGTs, and other drug-related genes that have multi-, oligo-, and mono-specific substrate 

specificity and are expressed in the gut, liver, kidney, and other tissues (Supplementary Table 

4.S1). Their known substrates include a wide range of metabolites, signaling molecules, 

antioxidants, vitamins and cofactors, and gut microbe-derived metabolites.  

In total, 673,141 statistically significant SNP-metabolite associations were reported, 

covering 8,634 unique SNPs and 7,326 unique metabolites (Figure 4.2A). The surveyed 

metabolites ranged from mass to charge ratios (M/Z) of 225.110 to 649.3938 and retention time 

(RT) values ranged from 0.6690834 to 6.988375 seconds. Each SNP was mapped to a genomic 

locus based on its position in the GRCh37 build of the human genome, as described in the 

Methods. We identified 77 distinct genomic loci, which covered 284 unique genes 

(Supplementary Table 4.S2). Each genomic locus was associated with a different set of genes, 

SNPs, and metabolites (Figure 4.2B-G). Genomic locus 15, containing the UGT1A genes, and 

genomic locus 54, containing SLCO1B1, SLCO1B3, SLCO1B7, and SLCO1A2, were associated 

with 42% and 33% of the total interactions, respectively. This is consistent with the functions of 
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these genes, as they are known, largely from in vitro work, to be among the most multi-specific 

transporters and enzymes of xenobiotics and metabolites, with dozens of unique substrates. The 

significant associations are reported in Supplementary Table 4.S3. 

4.4.2. Tissue-specific enrichment of genes with SNPs shows overrepresentation of liver genes 

Of the ~1000 surveyed genes, 178 contained SNPs that were present in our study and 

significantly associated with at least one endogenous metabolite. Tissue-specific enrichment 

revealed that the liver, breast, kidney, gallbladder, duodenum, and small intestine were over-

represented within these genes (Figure 4.3A), using the 1131 genes from Supplementary Table 

4.S1 as the background set. The liver was the most highly enriched organ (adjusted -log-scaled 

p-value = 17.1) with 61 tissue-specific genes (Figure 4.3B). In the pharmaceutical literature, the 

tissues enriched with these genes are traditionally associated with ADME, with some exceptions. 

While not traditionally associated with drug ADME, the breast plays a role in the regulation of 

small molecule metabolites as it contains epithelial tissue that separates the blood and milk and 

expresses important DMEs of the glutathione S-transferase (GST) and UGT2B families. The 

next most enriched tissue was the kidney, followed by the gall bladder and intestinal tissues. The 

178 metabolite-associated genes were largely enriched in the gut, liver, and kidney, consistent 

with previously identified roles in remote sensing and signaling of small, polar, bioactive 

metabolites and signaling molecules across the gut-liver-kidney axis [11] (Figure 4.3C,D).  

4.4.3. Unidentified metabolites are potentially regulated by distinct genomic loci 

Considering that most of the metabolites surveyed were unidentified (chemical identity 

unknown, but unique mass/charge ratio (MZ) and retention time (RT) combination), we aimed to 

understand which genomic loci worked collaboratively to regulate or modulate the levels of 

metabolites rather than focus on the metabolic role of the compound. Depending on the tissue 

expression and cellular localization of the implicated genes, these could be useful examples in 
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determining potential cases of inter and/or intra-organ communication and lead to a more 

mechanistic view. We identified five metabolites that were associated with four distinct genomic 

loci (Table 4.2). Metabolite 1116529 was the only metabolite not associated with both genomic 

loci 28 or 29 and was uniquely associated with genomic loci 15, 19, 48, 54 (Figure 4.4). Thus, 

we presented the genomic regional plots with the implicated SNPs associated with metabolite 

1116529 as an example (Figure 4.5). Metabolite 1116529 was associated with loci containing 

the UGT1A, UGT2B7, ABCC2, and SLCO1B1 genes, which are all multi-specific hepatic 

proteins known to handle metabolites and drugs. Genomic locus 15 includes several genes 

(UGT1A6/7/8/9/10), so it is difficult to associate any single gene with the resulting changes. 

Nonetheless, the UGT1A genes are primarily expressed in the kidney and liver. Two other 

implicated genes, UGT2B7 and ABCC2, are also mainly expressed in the kidney and liver, 

whereas SLCO1B1 is expressed only in the liver.  

Even if unidentified, it is still possible to glean some hints of a metabolite’s potential 

physiological role(s). The function of these proteins (uptake transporter, efflux transporter, and 

glucuronidation enzymes) and their different sites of expression within the liver (apical plasma 

membrane, basolateral plasma membrane, and cytosol) and kidney (apical plasma membrane, 

cytosol) support the view that these proteins work together to regulate the levels of this 

metabolite along the liver-kidney axis. We also investigated phenotypes related to SNPs in this 

genomic locus from dbSNP and the GWAS catalog and found that the SNPs associated with this 

metabolite were also linked to disorders of bilirubin excretion, serum 25-hydroxyvitamin-D 

levels, and testosterone levels [60, 214]. In addition to this metabolite, there are several other 

examples of unidentified metabolites associated with multiple genomic loci. With respect to 

these, 79 metabolites were linked to three distinct loci, including 25 unique combinations; 606 



102 

 

metabolites were linked to two distinct loci; and 6,636 metabolites were associated with only one 

genomic locus (Supplementary Figure 4.S1). 

4.4.4. Circulating eicosanoids, fatty acids, and bile acids are impacted by SNPs in 18 genomic 
loci 

While all 7326 measured metabolites had a unique metabolite ID, most had not had their 

chemical identity confirmed. However, 98 metabolites were identified by name, including 

eicosanoids, fatty acids, and several other signaling molecules. Even in this subset, some 

metabolites have not been unambiguously identified, but their general class is known. For 

example, EIC_45 represents a putative eicosanoid [204]. By limiting our analysis to the 

associations involving these identified metabolites, 762 SNP-metabolite associations were 

analyzed (Supplementary Table 4.S4). These associations spanned 18 genomic loci, with 

genomic locus 54 being associated with 62 identified metabolites, the most of any genomic loci 

surveyed here (Figure 4.6). 

4.4.5. A putative eicosanoid is independently associated with SNPs in Phase I and II drug 
metabolism and transporter genes 

As mentioned in previous sections, we were interested in those metabolites that were 

associated with multiple genomic loci, as they may be examples of genes involved in inter-organ 

or intra-organ communication contributing to the systemic levels of particular metabolites. The 

eicosanoid EIC_311 was the only identified metabolite associated with three unique genomic 

loci (Genomic loci 41, 54, 72) (Figure 4.7). These loci contained SNPs in the CYP3A5, 

SLCO1B1/SLCO1A2, and SULT2A1 genetic regions, respectively. These proteins are primarily 

expressed in the liver and serve critical roles in drug metabolism. CYP3A5 is a Phase I drug 

metabolizing enzyme, SULT2A1 is a Phase II drug metabolizing enzyme, and 

SLCO1B1/SLCO1A2 are drug transporters (Phase III drug handling), suggesting that these genes 

may have a combined role in regulating this eicosanoid. Some of these genomic regions have 
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also been linked to blood metabolite levels, urine metabolite levels in chronic kidney disease, 

and cholelithiasis/cholecystitis [65, 215, 216]. In addition to EIC_311, eight identified 

metabolites were also associated with two distinct genomic loci (Table 4.3). 

4.4.6. Conjugated sex steroids are strongly associated with SLC22 genes 

While our main focus was on the potential shared function of genomic loci in regulating 

circulating metabolites, the associations between genomic loci and identified metabolites 

represented potential physiological roles for the implicated genes. The strongest associations in 

our study were between genomic locus 53 and conjugated sex steroids (Figure 4.8). This 

genomic locus contains a cluster of genes in the SLC22 family that are best known for their role 

in organic anion transport [167]. Recent functional studies have shown that five conjugated sex 

steroids directly interact with SLC22A24 in vitro, as well as in GWAS [217]. Here, we report 

that four similar metabolites (Putative_5a-Androstan-17b-ol-3-one glucosiduronate, 

Putative_Androstan-3-ol-17-one 3-glucuronide, Putative_Androstan-3-ol-17-one 3-glucuronide, 

and Putative_4-Androsten-17b-ol-3-one glucosiduronate) are associated with the genomic locus 

containing SLC22A6, A8, A9, A10, A24, and A25. The strongest associations involve 

Putative_5a-Androstan-17b-ol-3-one glucosiduronate. The SNPs rs78176967, rs142131421, 

rs113939203, and rs113497640, which had log-scaled p-values between -225 and 2-80, 

suggesting a strong functional relationship between one or many of the genes expressed on this 

locus and this metabolite.  

4.4.7. SNPs in drug transporter and DME genes are pleiotropic and linked to multiple identified 
metabolites 

Within our subset of surveyed genes were several that are known to be functionally 

related to multiple classes of drugs. For example, CYP3A4 is among the most promiscuous of 

the DMEs, with hundreds of drug substrates and dozens of endogenous substrates [218]. Among 

endogenous molecules detected by our metabolomics approach, we found that genomic locus 41, 
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which contained CYP3A4, CYP3A5, and others in the CYP3A family, was associated with 

multiple identified metabolites, including bile acids, sex steroids, eicosanoids, and 

prostaglandins. Furthermore, the multi-specific SLCO drug transporters in genomic locus 54 

were associated with 62 metabolites, mainly eicosanoids and fatty acids. Genomic locus 70 

harbored 16 genes, mainly in the CYP4F family, and was associated with 15 metabolites, mostly 

eicosanoids and fatty acids. Although multiple types of genes are included in locus 70, such as 

GPCRs, we expect these associations to be due to functional changes in the CYP4F family. The 

CYP4F family is heavily involved in metabolism of fatty acids and their derivatives [219]. The 

fact that many of the associations in this work have been validated in other studies, suggests that 

the novel associations will prove useful in determining potential metabolic roles for the 

implicated genes.  

4.4.8. Implicated SNPs in endogenous metabolism have been reported to impact drug handling 

As mentioned, many of the SNPs linked to the metabolites in our study have been 

previously associated with the efficacy or toxicity of different drugs. This begets the question of 

potential drug-metabolite interactions (DMI). This might also be expected because many of the 

aforementioned genes are at the interfaces of the Remote Sensing and Signaling (protein) 

Network and the overlapping ADME protein network. Variant-drug relationships were 

downloaded from the PharmGKB database and compared to our data to predict potential DMI. 

Ten SNPs were present in both our study and the PharmGKB database and were associated with 

at least one drug (Figure 4.9). The most common SNP was rs4149056, which is present within 

SLCO1B1. In addition to being linked to 50 unique identified metabolites (Supplementary 

Table 4.S4), this SNP is also associated with affecting 21 unique drugs, including simvastatin, 

lopinavir, and doxorubicin. Most of the SNP-drug pairs associated with SNPs in our study were 

present in genomic locus 54, which is consistent with its role in the regulation of endogenous 
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metabolites. Indeed, SLCO1B1/SLCO1A2 are well known as multi-specific drug transporters 

with a wide array of both xenobiotic and endogenous substrates [220]. In addition to genomic 

locus 54, genomic locus 70 (containing the CYP4F genes) had the second most associations, 

with 14 unique metabolites and 6 unique drugs. As we discuss below, the use of SNPs linked 

with both drug handling and endogenous metabolism is likely to be useful for predicting 

clinically relevant drug-metabolite interactions. 

4.5 DISCUSSION 

The Remote Sensing and Signaling Theory emphasizes the role of multi-, oligo-, and 

mono-specific transporters, enzymes, and regulatory proteins in the homeostasis of endogenous 

metabolites, signaling molecules, antioxidants and other small molecules with “high 

informational content” in bodily fluids and tissues by mediating inter-organ and inter-organismal 

(gut microbe-host) communication [11]. These transporters and enzymes lead to the availability 

of these metabolites and signaling molecules in specific tissues and body fluids, often “setting 

up” the classical signaling events by GPCRs, nuclear receptors and kinases. Since many of the 

molecules involved in signaling via cell surface and nuclear receptors are small, polar, bioactive 

metabolites (e.g., free fatty acids, eicosanoids, bile acids, fatty acid esters of hydroxy fatty acids), 

we utilized non-targeted LC-MS methods that specifically capture these and other 

physiologically-important molecules [203, 204]. This approach also allowed us to explore both 

known and unknown chemistries of circulating molecules.  

Many aspects of Remote Sensing and Signaling Theory are supported in model 

organisms, including mouse and fly [54, 58, 59, 72, 73, 77, 95, 144] and beginning to be 

supported in human studies [12, 137]. Key to the theory is the development of as comprehensive 

a parts list as possible—consisting, for instance, of interacting transporters and enzymes with 

their metabolite substrates. One approach to identifying the Remote Sensing and Signaling 
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(protein) Network has been through the creation and analysis of cross-tissue co-expression 

networks of multi-, oligo- and mono-specific transporters, enzymes and nuclear receptors [11]. 

This led to a preliminary gut-liver-kidney Remote Sensing and Signaling (protein) Network 

involved in endogenous metabolism that included, as hubs, many well-known SLC and ABC 

“drug” transporters and DMEs among its ~600 nodes.  Thus, it was not surprising that there was 

similarity and overlap with a smaller network that specifically integrated ADME proteins [11]. 

However, it is important to keep in mind that the apparent physiological objective of the Remote 

Sensing and Signaling Network is the mediation of endogenous small molecule homeostasis 

while a large part of what the ADME network is presumed to mediate is the metabolism and 

elimination of drugs.  

That said, a major goal here was to define the metabolites and signaling molecules 

regulated or modulated by multi-, oligo- and mono-specific transporters and enzymes in this 

Remote Sensing and Signaling Network. However, because of the considerable overlap in 

proteins of the Remote Sensing and Signaling Network and the ADME protein network, it was 

possible to consider whether drug-metabolite interactions might occur at the interfaces of the two 

networks [137]. 

Determining substrates of transporters or enzymes is typically done with in vitro assays 

or in vivo animal experiments [29]. In silico methods using experimental or predicted protein 

structures have also been used to predict potential substrates, most notably for enzymes [221-

223]. Unfortunately, for membrane bound transporters, there are comparatively few crystal 

structures available, so protein-based predictions are more difficult to generate [80, 224]. GWAS 

or targeted SNP association studies in tandem with metabolomics represent another method for 

determining potential small molecules that may interact with proteins in a direct or indirect way 
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and can suggest a physiological role for these proteins in the modulation of plasma metabolite 

levels (Figure 4.1) [61]. Although in vitro or in vivo experiments are required to confirm the 

interactions, these results can, as described in this study, help broaden the list of potential in vivo 

interactions of endogenous metabolites with human transporters and drug metabolizing enzymes. 

Treating metabolite levels themselves as phenotypes can provide insight on the endogenous 

metabolic roles of genes and the intermediate processes they may participate in [63, 64, 195, 

200].  

By uncovering the molecular mechanisms of these proteins in physiological processes, 

we can improve our understanding of the roles of the hundreds of genes conventionally 

associated with drug ADME (absorption, distribution, metabolism, elimination), as well as others 

involved in broader aspects of small molecule homeostasis. We argue their role in endogenous 

small molecule homeostasis is their major role in humans and other organisms [59, 167], but 

because of the tremendous pharmaceutical and toxicological relevance of these genes, their role 

in endogenous physiology has largely been neglected. Here, we identified 77 genomic loci 

containing 284 unique genes (Figure 4.2) that were associated with the circulating levels of at 

least one endogenous, polar, bioactive molecule of the kind known to bind signaling receptors on 

the cell surface and in the nucleus. 

Many of the surveyed genes are known to play a major role in drug metabolism and work 

together along the gut-liver-kidney axis (Figure 4.3) [72, 225, 226]. Typically, drugs are 

absorbed and enter the bloodstream via intestinal transporters. They then enter the liver through 

hepatic transporters, where the majority of enzymatic drug metabolism occurs. The modified 

compounds are then cleared or re-introduced to the bloodstream by efflux transporters. If the 

modified compounds re-enter the bloodstream, they are taken up, metabolized by DMEs in the 
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kidney, and ultimately cleared into the urine by renal transporters or re-introduced into the 

bloodstream. The same occurs for many small polar metabolites, signaling molecules, 

antioxidants, nutrients, natural products, gut microbe-derived metabolites, and vitamins. Thus, 

the remote communication between proteins expressed across these and other organs via small 

molecules is crucial to the regulation of endogenous metabolism and crosstalk along organ axes 

or organ systems, as is evident in bile acid and urate homeostasis [10, 158]. Defective inter-organ 

communication involving metabolite transporters as in the case of OCTN2, also considered a 

drug transporter, can lead to potentially lethal diseases such as Systemic Carnitine Deficiency 

[227].  

While mainly studied for their roles in the ADME of drugs, here we show a number of 

examples of many of the same ADME proteins jointly contributing to the regulation of a single 

endogenous metabolite or multiple metabolites. As we have shown, this could involve as many 

as four transporters and/or enzymes (Figure 4.4, Figure 4.5, Table 4.1) of the Remote Sensing 

and Signaling Network potentially overlapping with drug handling proteins in the ADME 

network regulating a single metabolite. For example, among unidentified, unique metabolites, 

five metabolites were associated with four distinct loci. In addition, there were 79 metabolites 

associated with three distinct loci, including 25 distinct combinations of loci. Although most of 

these metabolites have yet to be fully defined in terms of chemical identity, the loci that 

influence their circulating levels include multi, oligo, and mono-specific transporters and 

enzymes, including well-known drug handling proteins. For instance, among the identified 

metabolites, the eicosanoid EIC_311 was associated with SNPs near SLCO1B1, CYP3A5, and 

SULT2A1, which are, respectively, a Food and Drug Administration (FDA) highlighted 

transporter, a Phase I DME and a Phase II DME, all on separate chromosomes (Figure 4.7). 
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These genes are heavily involved in ADME and also implicated in remote sensing and signaling 

via co-expression analysis and in vitro interactions with drugs and metabolites [11]. 

Understanding the full extent of the role of these genes can also help better understand drug-

metabolite interactions (DMI). DMIs are often ignored in reference to drug side effects and 

adverse drug reactions, which can potentially be mitigated through better dosing of drugs, so as 

to not overly perturb the Remote Sensing and Signaling Network involved in small molecule 

homeostasis across cells, tissues, organs, and organ systems.  

While most of the SNP-metabolite associations involved unidentified metabolites, the 98 

identified metabolites and their associations with specific SNPs include well-known 

physiological protein-metabolite interactions (Figure 4.6). For example, the UGT1A locus, 

which encodes multi-specific enzymes involved in Phase II drug metabolism, is also known to 

modify bilirubin and mutated in human Gilbert's Syndrome, and that interaction is reflected in 

our results [228]. Likewise, SLC22A9/10/24/25, which appear to be relatively mono-specific or 

oligo-specific in one of the SLC22 transporter subgroup [167], were associated with conjugated 

sex steroids (Figure 4.8). The role of SLC22A24 in human steroid metabolism and disease has 

been previously reported [217]. The CYP3A, CYP4F, CYP2C genes, including multi-specific and 

oligo-specific enzymes, are known to generate and degrade signaling eicosanoids and fatty acids, 

which is reflected in our results here [229-232]. The multi-specific hepatic “drug” transporter 

OATP1B1 (SLCO1B1), associated with statin myopathy [233], also had several associations 

with a wide array of small molecules, including eicosanoids, bile acid conjugates, and fatty acids, 

which is consistent with its known function [234]. FAAH, an enzyme that might be considered 

oligo-specific, is known to modulate the levels of endocannabinoids in tissues, and in this study, 

we show it also influences the levels of endocannabinoids in plasma [235].  
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These existing relationships suggest that many unexplored associations between SNPs 

and identified metabolites may be of great physiological and clinical importance. Among the 

unexplored relationships with no existing literature to date are those between steroid 5-alpha 

reductase 2 (SRD5A2) and xanthine dehydrogenase (XDH) with Allo_Tetrayhydrocortisol in 

genomic locus 11, the SLC17 family (transporters of phosphate and other organic anions) with 

acetyltryptophan in genomic locus 32, and several others. Although we are able to associate a 

gene family with a class of metabolites, more in depth studies would be required to confirm the 

mechanistic relationship between these proteins and metabolites, as well as their joint role in 

regulating certain metabolic pathways. The identification of the very large number of unnamed 

metabolites will also allow the design of more functional assays to better define the metabolic 

role of drug transporters and DMEs and their potential role in DMIs. 

The SNPs in genes that are not known to be functionally related to the ADME of drugs or 

the handling of endogenous metabolites indicate that certain SNPs can indirectly impact the 

levels of plasma metabolites independent of transport and enzymatic activity. Of the three 

genomic loci (8, 49, and 56) that do not contain any transporters or enzymes, each has a different 

potential mechanism for regulating the levels of circulating compounds. The polycystic kidney 

disease 2-like 1 (PKD2L1) gene in genomic locus 49 was linked to 91 metabolites, including 

three named eicosanoids. This gene codes for a calcium channel that is involved in signaling, 

development, and taste; yet its direct association with any polar bioactive molecules has yet to be 

reported [236]. It is expressed in numerous tissues, and the relatively large number of unique 

metabolites it is associated with suggests that general calcium signaling can have important 

consequences on the plasma metabolome. Genomic locus 56 contained HNF1A (hepatocyte 

nuclear factor 1 alpha), a nuclear receptor activated by signaling ligands, HNF1A-AS1, and 
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C12orf43. The open reading frame gene is understudied, but HNF1A and HNF1A-AS1 play 

roles in transcriptional regulation. Indeed, HNF1A regulates many ADME related genes in 

metabolically active organs and thus, can impact circulating metabolite levels (amino acids, 

bicarbonate, sugars) [237, 238]. Genomic locus 8 contains NOS1AP, a gene that binds to NOS1 

for signaling purposes [239]. We examined SNPs in the NOS1 gene but found no significant 

metabolite associations. This suggests that NOS1AP, perhaps through the regulation of NOS1-

mediated signaling, can modulate more complex interactions that ultimately lead to altered levels 

of plasma metabolites.  

The field of pharmacogenomics is expected to play a major role in personalized medicine 

in the future, as drug administration and dosage can be more appropriately determined with 

knowledge of a patient’s genome [240, 241]. Many drugs are taken up into the liver by drug 

transporters (e.g., SLCO family) and then metabolized by Phase I and Phase II DMEs before 

being eliminated through drug transporter-mediated mechanisms, such as members of the SLC22 

family in the kidney. It is important, however, to understand the potential metabolic 

dysregulations that can stem from existing drugs and entities in the drug development pipeline. 

Drug targets differ depending on the intended function, but the proteins involved in the ADME 

processes overlap greatly with those regulating key processes in endogenous physiology (e.g., 

bilirubin metabolism, eicosanoids, bioenergetics). Indeed, the Remote Sensing and Signaling 

Theory argues that drugs often “hijack” endogenous pathways involved in remote organ 

communication and gut microbe-host communication. Thus, common adverse drug reactions, 

drug side effects, and drug-induced metabolic diseases may be caused by the competition 

between drugs and metabolites at the level of so-called drug transporters and drug metabolizing 

enzymes involved in key biochemical pathways. By comparing the previously determined role of 
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SNPs via the PharmGKB database, we related our analysis to potential drug-metabolite 

interactions. For example, the rs4149056 SNP in the SLCO1B1 gene affects drug-response, as 

well as several bioactive molecules. If a patient has this SNP, treatment with a drug impacted by 

this SNP may exacerbate the metabolic consequences. Within our dataset, we identified 10 SNPs 

with evidence of potential drug-metabolite interactions (Figure 4.9).  

As knowledge on the role of ADME genes in endogenous metabolic processes increases, 

more will likely be identified.  It is worth emphasizing again that the untargeted metabolomics 

approach used here focused on small, polar, bioactive metabolites, both identified and 

unidentified, likely to interact with GPCRs, nuclear receptors and other signaling protein—and 

that they were significantly associated with SNPs in multiple distinct genomic loci. We have also 

presented Remote Sensing and Signaling Theory as a framework for understanding 

communication between organs through the regulated expression and function of multi-specific, 

oligo-specific, and (relatively) mono-specific proteins, such as drug transporters, drug 

metabolizing enzymes, and their relatives [7, 8, 11]. The broad substrate specificity of  “drug” 

transporters and “drug” metabolizing enzymes mainly refers to pharmaceutical products—often 

with very different structures and mechanisms of actions, but this multi-specificity likely also 

applies to endogenous metabolites, as is clear with the organic anion transporters (OATs), 

SLC22A6 and SLC22A8 [6]. It is useful to note here that oligo-specific and mono-specific close 

relatives of the well-known drug transporters (OATs and organic cation transporters (OCTs)) are 

strongly implicated in the handling of metabolites like urate (SLC22A12) and carnitine 

(SLC22A5, SLC22A15/16). This fact emphasizes a main concept in the Remote Sensing and 

Signaling Theory—that multi, oligo, and mono-specific transporters and enzymes work within 
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and between organs to optimize endogenous metabolism in cells, tissues, organs, and multi-

organ systems [6, 9, 140]. 

4.6 SUPPLEMENTARY MATERIAL 

 

The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/metabo13020171/s1. 

Supplementary Figure S4.1: Five unique metabolites were associated with 4 unique loci, 79 

unique metabolites were associated with 3 unique loci, 606 unique metabolites were associated 

with 2 unique loci, and 6636 metabolites were associated with one locus.  

Supplementary Table S4.1: Original list of genes selected for targeted SNP associations. These 

genes include transporters, enzymes, and related proteins that are known to handle small 

molecules or related to proteins that do.  

Supplementary Table S4.2: Genomic locus and gene assignments that the detected SNPs 

associated with circulating metabolites map to. Genes are listed by their HUGO gene 

nomenclature committee (hgnc) symbols. ENSEMBL gene IDs are also listed in a separate 

column. The start and end position of each gene on the chromosome is listed. All positions come 

from the GRCh37 build.  

Supplementary Table S4.3: All unique statistically significant SNP-metabolite associations 

detected are listed. Snp: Single nucleotide polymorphism. Snp_cpra: Single nucleotide 

polymorphism with chromosome position and reference and alternate alleles. mtb: Metabolite id. 

MZ: Mass to charge ratio. RT: Retention time. chr: Chromosome. pos: Position. ref: Reference 

allele. alt: Alternative allele. pvalue: P-value indicating statistical strength of association between 

SNP and metabolite. beta: Beta coefficient for fit. se: Standard error. alt_freq: Alternative 

frequency.  
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Supplementary Table S4.4: All unique statistically significant SNP-metabolite associations 

involving identified metabolites. Identity: Putative endogenous metabolite with the unique 

combination of MZ and RT. Genomic Locus: Assigned genomic locus listed in Supplementary 

Table S2. Snp: Single nucleotide polymorphism. Snp_cpra: Single nucleotide polymorphism 

with chromosome position and reference and alternate alleles. mtb: Metabolite id. MZ: Mass to 

charge ratio. RT: Retention time. chr: Chromosome. pos: Position. ref: Reference allele. alt: 

Alternative allele. pvalue: P-value indicating statistical strength of association between SNP and 

metabolite. LogP: Logarithmic value of p-value. beta: Beta coefficient for fit. se: Standard error. 

alt_freq: Alternative frequency. Mass_error: Error bars for accuracy of mass to charge ratio. 

RT_error: Error bars for accuracy of retention time. SMILES (if available): For each entry in 

identity, the isomeric SMILES sequence is listed. For metabolites with unknown identity (e.g., 

EIC_311), NA is listed. 
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Table 4.1 Summary statistics of surveyed participants. 

Participants are from the Framingham Offspring Cohort Exam 8. 

Category  Value 

Participants 2,886 

Men 1,315 

Women 1,571 (54.4%) 

Age 66 ± 9 years 

Body Mass Index (BMI) 28.3 ± 5.4 kg/m2 
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Table 4.2 Five of 7326 unidentified metabolites are associated with four unique 

combinations of genomic loci. 

These metabolites are associated with 4 unique combinations of genomic loci. The mass to 

charge ratio (MZ) and the retention time (RT) of each the 5 metabolites are listed and indicate 
that metabolites 1272586 and 1291919 are likely to be very similar compounds. Genomic loci 28 
(ACSL6), 29 (SLC22A4/5), 46 (SLC16A9), and 54 (SLCO1B1/3/7, SLCO1A2) are associated with 

more than one metabolite, and genomic loci 4 (SLC44A5), 15 (UGT1A6/7/8/9/10), 19 (UGT2B), 
and 31 (ECI2) appear only once. The full list of genes associated with each locus are present in 

Supplementary Table 4.S2.  
 

Genomic 

Locus 1 

Genomic 

Locus 2 

Genomic 

Locus 3 

Genomic 

Locus 4 

mtb MZ RT 

4 28 29 54 1380594 284.2233 4.248833 

15 19 48 54 1116529 607.3553 3.428667 

28 29 46 54 1272586 282.2076 3.878833 

28 29 31 46 1291919 282.2085 3.959 

28 29 46 54 1592026 310.2399 5.155334 
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Table 4.3 Eight identified metabolites are associated with two distinct genomic loci. 

Only one identified metabolite, an eicosanoid identified as EIC_311, was associated with 3 
distinct loci, but eight others were associated with two, suggesting a more specific regulation. 

Some metabolites are presented twice because their identities are expected to be the same despite 

minor differences in their MZ or RT values. 

 

 

  

Identity Genomic 

Locus 1 

Genomic 

Locus 2 

MZ RT 

Eicosanoid_13,14-dihydro-15-keto-tetranor-PGE2 [M-H] 3 32 297.1744 1.816083 

Eicosanoid_12-HHTrE [M-H+Acetate] 47 54 339.2178 3.669167 

Eicosanoid_12-HHTrE [M-H+Acetate] 47 54 339.2197 3.766292 

Putative_N-Oleoyl-L-serine 2 54 368.2847 6.353979 

Putative_N-Oleoyl-L-serine 2 54 368.286 6.253 

Endocannabinoid_Oleoyl Ethanolamide  [M-H+Acetate] 2 70 384.3096 6.401 

Endocannabinoid_Oleoyl Ethanolamide  [M-H+Acetate] 2 70 384.3174 6.479625 

Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2491 2.152167 

Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2492 2.0535 

Putative_Androstan-3-ol-17-one 3-glucuronide 41 53 465.2498 2.2015 

Putative_5a-Androstan-3a,17b-diol-17b-glucuronide 19 53 467.2574 2.035 

Putative_5a-Androstan-3a,17b-diol-17b-glucuronide 19 53 467.2634 1.89625 

Putative_Chenodeoxycholic acid 24-acyl-b-D-glucuronide 19 54 567.3177 2.890625 

Putative_Chenodeoxycholic acid 24-acyl-b-D-glucuronide 19 54 567.3182 2.76575 

Putative_1,3,5(10)-Estratrien-3,17b-diol diglucosiduronate 41 54 623.3406 2.713333 

Putative_1,3,5(10)-Estratrien-3,17b-diol diglucosiduronate 41 54 623.342 2.58075 

Putative_1,3,5(10)-Estratrien-3,17b-diol diglucosiduronate 41 54 623.3441 2.540667 
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Figure 4.1 Schematic for data acquisition and subsequent analysis. 

Plasma was collected from each patient and analyzed by liquid chromatography/mass 
spectrometry, which sought to capture small, polar, bioactive molecules presumed most likely to 

be involved in signaling via cell surface and other receptors. DNA was collected from 
participants and SNPs within a subset of genes were associated with the levels of plasma 

metabolites. 
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Figure 4.2 The targeted SNP association study linked SNPs in drug-related genes, like 

enzymes and transporters, to the circulating levels of small, polar, bioactive molecules. 

A) Manhattan plot showing the targeted SNP-metabolite associations on the genome. The 

chromosome and relative genomic location are marked on the x-axis, and the log-scaled p-value 
is marked on the y-axis. Each point in the plot represents an association between the SNP and a 
measured metabolite. B) Schematic showing the unique genes associated with genomic locus 70, 

where an edge represents a gene located within or near the genomic locus, as described in the 
Methods. C) The 77 distinct loci were associated with 284 unique genes, including pseudogenes. 

Loci were associated with different numbers of unique genes ranging from 19 to 1. D) Schematic 
showing the unique SNPs associated with genomic locus 9, where an edge represents an SNP 
located within the genomic locus. E) With respect to SNPs, 8634 unique SNPs were detected, 

with nearly each loci containing unique SNPs. Some genomic loci, such as genomic loci 47 and 
54, were associated with over 1000 distinct SNPs. The number of unique SNPs for each locus 

ranged from 1149 to 1. F) Schematic showing the unique metabolites associated with genomic 
locus 5, where an edge represents a statistically significant association. G) 7326 unique, small, 
polar, bioactive metabolites were measured in the plasma of the participants. Genomic loci 15 

and 54 were associated with the highest number of unique metabolites (2059 and 3014, 
respectively). Unique metabolites associated with each locus ranged from 3014 to 1. 

  



121 

 

 
 

A

B C

D E

F G



122 

 

 

 

Figure 4.3 Tissue specific enrichment reveals over-representation of organs active in 

ADME. 

A) The genes with significant associations with metabolites were compared to the reference 
genes listed in Supplementary Table 4.S1. The liver, breast, kidney, gallbladder, duodenum, 

small intestine, urinary bladder, bone marrow, and seminal vesicle all had significant enrichment. 
B) Genes enriched in the liver. C) Genes enriched in the kidney. D) Genes enriched in the small 
intestine. 
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Figure 4.4 Metabolite 1116529 (MZ: 607.3553, RT: 3.428667) is associated with genomic 

loci 15, 19, 48, and 54. 

SNPs within the aforementioned genomic loci are all linked to metabolite 1116529. Genomic 
locus 15 contains regions relating to the UGT1A genes, genomic locus 19 contains regions 
relating to the UGT2B7 gene, genomic locus 48 contains regions relating to the ABCC2 gene, 

and genomic locus 54 contains regions relating to the SLCO genes. 
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Figure 4.5 Genomic regions associated with metabolite 1116529, which is associated with 4 

distinct loci. 

A) Genomic locus 15. B) Genomic locus 19. C) Genomic locus 48. D) Genomic locus 54. In all 
panels of the figure, the SNPs associated with the levels of circulating metabolite 1116529 are 

represented by points, where purple points refer to the top lead SNP, and other SNPs are 
represented by points colored by their r2 value. The r2 value, which represents phenotypic 
variation, is high in these regions and reference SNPs that have previously been analyzed. The 

nearest mapped genes are shown below each plot. 
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Figure 4.6 A total of 762 SNP-metabolite associations with identified metabolites were 

reported, with 18 unique genomic loci and 98 identified metabolites. 

Values in the heatmap represent the log of the p-value of each SNP-metabolite association, with 

a lower value indicating a stronger relationship between the genomic locus and the metabolite. 
For improved visualization, the identity of the metabolites in the x-axis has been shortened to 

include only the first 50 characters. The colorbar showing log-scaled p-values has been adjusted 
to improve visualization, and the highest values go beyond -100. The full names for each 
identified metabolite are present in Supplementary Table 4.S4. 



126 

 

 

Figure 4.7 Several identified metabolites were associated with multiple distinct loci. 

Genomic loci are indicated by blue nodes. All green and purple nodes are identified metabolites. 
For improved visualization, only those associated with multiple distinct loci are shown in purple 

and have their identities shown in the figure. The identities for all the green metabolite nodes are 
listed in Supplementary Table S4. Notably, the eicosanoid EIC_311 is associated with 3 distinct 
genomic loci, consisting of genomic locus 41 (containing regions relating to the CYP3A genes), 

genomic locus 54 (containing regions relating to the SLCO genes), and genomic locus 72 
(containing regions relating to the SULT2A1 gene).  
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Figure 4.8 Genomic locus 53, containing SLC22 genes, is associated with conjugated sex 

steroid hormones. 

A) The SLC22 genes, SLC22A6, SLC22A8, SLC22A9, SLC22A10, SLC22A24, and SLC22A25 

are highly associated with circulating levels of 5a-Androstan-17b-ol-3-one glucosiduronate, 
4aAndrostan-17b-ol-3-one glucosiduronate, Androstan-3-ol-17-one 3-glucuronide, and 5a-

Androstan3a,17b-diol-17b-glucuronide. The specific associations between SNPs and identified 
metabolites are listed in Supplementary Table 4.S4. B) The chemical structure of 5a-
Androstan-17b-ol-3-one glucosiduronate is shown as a representative example of the metabolites 

potentially regulated by these transporter genes. C) The SNPs shown are associated with the 
levels of any implicated metabolites, where purple points refer to the top lead SNP, and other 

SNPs are represented by points colored by their r2 value. The r2 value, which represents 
phenotypic variation, is high in these regions and reference SNPs that have previously been 
analyzed. The nearest mapped genes are shown below each plot. SNPs, which are not in linkage 

disequilibrium of any significant independent lead SNPs in the selected region, are colored grey. 
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Figure 4.9 Some SNPs in ADME genes are involved in the regulation of both drugs and 

endogenous metabolites. 

A) Certain SNPs are associated with levels of multiple identified metabolites in our study and 
with several drugs from other independent studies. Rs4149056, a SNP that impacts the function 
of SLCO1B1, is the most frequent SNP with respect to metabolites and drugs. B) rs887829 

(UGT1A1) is an example of a SNP that is associated with three different drugs and identified 
metabolites that are all related to bilirubin (Supplementary Table 4.S4). The SNP is shown as a 

pink node, the drugs are blue nodes, and the identified metabolite IDs are shown as orange 
nodes. 
  

A B
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CHAPTER 5: IN SILICO APPROACHES FOR DETERMINING 

TRANSPORTER FUNCTION 
 

5.1 ABSTRACT 

Organic anion transporter 1 (OAT1) is a renal drug transporter known for its role in the 

clearance of pharmaceutical products. However, recent studies have shown that OAT1 handles 

multiple other classes of small molecule compounds, such as endogenous metabolites and natural 

products. In this work, we analyze the full extent of OAT1 function using ligand and protein-

based models. Determining transporter function has largely relied upon in vivo and in vitro 

experiments, which can be expensive, time-consuming, and suffer from inter-lab variability. As 

such, there is a need for computational models. We first use clinical in vivo plasma and urine 

metabolomics from participants treated with probenecid, an OAT-inhibiting drug, to develop 

binary classification machine learning models to determine likely OAT-mediated compounds. 

These models were trained on endogenous metabolite data and were tested on a set of drugs. 

While these models were largely ineffective in determining OAT-mediated drugs, they led us to 

characterize the total chemical space covered by OAT1. We curated a list of OAT1-interacting 

molecules and clustered them based on molecular descriptors. Upon revealing multiple distinct 

clusters, including some containing combinations of drugs, endogenous metabolites, and natural 

products, we aimed to analyze potential different binding mechanism using the predicted protein 

structure of human OAT1.  We performed ligand docking studies to analyze protein-ligand 

interaction fingerprints, revealing specific sets of residues implicated in the handling of 

traditional OAT1 probes. Overall, this work represents a step forward in analyzing the chemical 

space associated with a single multispecific drug transporter from a multi-scale perspective. 
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5.2 INTRODUCTION 

Organic anion transporter 1 (OAT1/SLC22A6) is a renal transporter primarily expressed 

on the basolateral side of the proximal tubule in the kidney. OAT1 has been mainly studied for 

its role in the excretion of dozens of small molecule drugs, including antibiotics, antivirals, 

NSAIDs, and many other classes of drugs [3, 99, 242, 243]. Recent work by our group and 

others, however, has shown that the specificity of OAT1 with respect to interacting molecules is 

not limited to drugs [5, 6, 21, 140, 164, 197]. Endogenous metabolites, natural products, toxins, 

and other classes of small molecules interact with OAT1 in vitro and in vivo [8, 42, 77, 95, 100, 

101, 154, 171]. To date, the majority of these results have come from in vitro transport assays, 

but in vivo metabolomics results from humans treated with OAT1-inhibiting drugs and Oat1 

knockout mice have recently provided novel data with increased physiological relevance to these 

results [54, 73, 137]. The dozens of compounds associated with OAT1 are characteristic of some 

multi-specific proteins, such as drug transporters and drug-metabolizing enzymes. 

Understanding the molecular basis for transporter interaction with a variety of small 

molecules is one of the active questions in the drug transporter field. Experimental evidence 

indicates broad function for drug transporters like OAT1, but the specific nature of these 

interactions, like the molecular descriptors or the protein residues, are relatively unexplored. 

Several types of models, including ligand-based, protein-based, and systems biology-based 

models, have been applied to better understand the complete function of OAT1 [76, 77, 244, 

245]. Ligand-based models have been useful, but the bulk of these models rely upon results from 

in vitro assays, where dozens to hundreds of experiments must be conducted to generate 

sufficient data with which to train quantitative structure activity relationship (QSAR) or machine 

learning models. Regression models can be built to predict the Ki or Km of a particular compound 

or classification models can be built to predict whether a compound is an inhibitor/substrate. 
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Pharmacophore models, which combine structurally similar compounds to create superimposed 

structures, have also been applied to understand OAT1/3 function [76, 77]. While these types of 

models are useful, they are dependent on the results of in vitro assays, which do not recapitulate 

key physiological factors.  

In addition to ligand-based models, protein-based models have been used to better 

understand protein-ligand interactions. These kinds of models have been difficult to generate for 

drug transporters because of their localization to the plasma membrane makes determining 

experimental structures very difficult [80]. Previous work with OAT1 has emphasized 

predictions based on bacterial homologs [86]. However, advances in artificial intelligence have 

generated high quality structure predictions for transmembrane proteins based on existing 

structures, enabling a new kind of analysis [87]. The structure of OAT1 has been analyzed in 

part, but not extensively in the context of protein-ligand interactions [89, 91]. It has long been 

thought that multi-specific drug transporters have multiple modes of action, given the diversity 

of the small molecule structures, including compounds with a variety of origins and mechanisms 

of action, the transporters interact with, but this has yet to be fully explored for OAT1.  

In this work, we first build ligand-based machine learning models based on endogenous 

metabolite data from the plasma and urine of a clinical probenecid administration study to 

predict whether other small molecule endogenous metabolites can be predicted to be OAT-

mediated.  Most machine learning models for transporter function have been developed using in 

vitro data. Here, we leverage existing in vivo metabolomics data to develop binary classification 

models that can predict whether compounds will be altered in vivo. We focused on clinically 

relevant data using plasma and urine data from humans treated with probenecid, as our model’s 

predictions could be validated with clinical drug-drug interactions involving probenecid. The 
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combination of blood and urine data with knowledge of probenecid’s mechanism of action 

implies that the compounds have been impacted by inhibition of OAT1 or OAT3. After testing 

the models with small molecule drugs, the results suggested that endogenous metabolite data 

were not sufficient to predict drug-related function. 

To address this, we then aimed to understand the entire chemical space covered by OAT1 

by focusing on all compounds with in vivo or in vitro evidence. We applied unsupervised 

learning techniques to better explore the chemical space associated with a single transporter, 

OAT1. These methods revealed multiple diverse clusters, suggesting different binding 

mechanisms for OAT1. To explore the possibility of multiple mechanisms, we used the predicted 

human OAT1 protein structure by AlphaFold2. This protein structure was embedded in a lipid 

bilayer plasma membrane for physiological relevance and docking experiments were performed 

to better understand how structurally diverse compounds interact with putative binding pockets. 

This work provides a multi-scale framework for understanding the full extent of drug transporter 

function.  

5.3 RESULTS 

5.3.1 Machine learning binary classification models are built using in vivo metabolomics data 

Our first step to developing clinically relevant machine learning models was to leverage 

the plasma and urine metabolomics data our group had previously acquired  (Figure 5.1A) [137]. 

In this experiment, healthy human participants received an oral dose of probenecid, an OAT-

inhibiting drug. Over 1,000 metabolites were measured, including 400 with known chemical 

structures measured in both the plasma and urine. We were particularly interested in those that 

were significantly elevated in the plasma and significantly decreased in the urine because they 

are likely OAT-mediated due to inhibition of the blood-facing proteins OAT1 and OAT3 by 

probenecid. With these data, we aimed to generate models that can predict probenecid-sensitive 



133 

 

drug-drug interactions in vivo, furthering our understanding of OAT function. These models 

represent an advance in three distinct ways: 1) they do not require a large number of laborious in 

vitro assays, as metabolomics simultaneously measures the circulating levels of hundreds of 

metabolites, 2) they predict in vivo alterations, which are more physiologically relevant than the 

results stemming from 2-dimensional cell culture assays, and 3) they leverage data on 

endogenous metabolites to make predictions for drugs, natural products, and other classes of 

compounds.  

We collected a list of 400 metabolites with valid structures that were measured in both 

the plasma and the urine of the probenecid-treated human participants. We first generated a 

binary target variable, with a compound being considered ‘Altered’ (OAT-mediated) if the 

compound had a p-value below 0.1 in both plasma and urine, a positive fold change in the 

plasma over 1.1, and a negative fold change in the urine below 0.9, with p-values and fold 

changes determined by comparing post and pre-treatment metabolomes in the initial study [137]. 

These criteria led to 64 metabolites that were considered ‘Altered’, with ‘Altered’ suggesting 

OAT mediation. For the negative cases, which we labeled as ‘Unaltered’, we focused on 

compounds that were not significantly altered in the expected  way in either the plasma or urine. 

After applying this criteria, 64 metabolites were in the ‘Altered’ class and 122 in the ‘Unaltered’ 

class (Figure 5.1B). With target variables assigned, we then calculated molecular descriptors for 

each compound. After scaling, we trimmed the molecular descriptors to a list of 22 interpretable 

features, including molecular weight, total polar surface area, and max partial charge, using 

variance and correlation thresholds. Using iterative feature selection, we further filtered these 22 

to 10 molecular descriptors.  
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5.3.2. XGBoost and Random Forest models performs best in predicting OAT-mediated 
endogenous metabolites 

With the trimmed features and the target variables, we then aimed to build binary 

classification machine learning models. The data were split into training and test sets, with the 

‘Altered’ cases equally represented in both sets. We also accounted for the imbalanced dataset 

using oversampling techniques on the training data. We then applied multiple algorithms (e.g., 

Random Forest, XGBoost) to build binary classification models, and their hyperparameters were 

tuned. Classification reports were then generated with the test data, and each model was ranked 

using a combination of metrics, including accuracy, f1, and roc_auc. Overall, the XGBoost and 

Random Forest models performed the best (Figure 5.1C). These XGBoost and Random Forest 

models predicted the ‘Altered’ class correctly 63% and 59% of the time, respectively. They 

performed better in predicting the ‘Unaltered’ class with an accuracy of 82% for XGBoost and 

83% for the Random Forest. The classification report for the Random Forest model is shown as a 

representative example (Figure 5.1D). We also generated ROC curves to compare all the 

models, with XGBoost performing the best with an area under the curve of 0.806 (Figure 5.1E). 

5.3.3. Endogenous metabolite data are insufficient in predicting drug-related function 

 We applied our trained XGBoost model to a novel data consisting of FDA-approved 

drugs. We compared our prediction on these drugs to a list of known clinically relevant drug-

drug interactions involving probenecid to compare the results from our models. We found 155 of 

the drugs implicated in probenecid-sensitive drug-drug interactions were present in our list of 

FDA-approved drugs. Of the 155 drugs, which should be considered ‘Altered’ by our XGBoost 

model, only 67 were predicted to be ‘Altered’, while 88 were predicted to be ‘Unaltered’. Closer 

examination of these predictions shows that some OAT-interacting compounds were considered 

‘Altered’, such as antibiotics (e.g., cefazolin), NSAIDs (e.g., indomethacin), and other drugs 

(e.g., oseltamivir). However, the drugs predicted to be ‘Unaltered’ included many classic OAT-
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interacting compounds, such as furosemide, acyclovir, and ibuprofen (Supplementary Table 

S5.1). These results suggest that while some drug-drug interactions likely occurring at the site of 

OATs can be predicted using data from in vivo metabolomics data, endogenous metabolite data 

alone are not sufficient in predicting drug-related function. As such, we decided to further 

analyze the potential structural differences between drugs and metabolites for a specific 

transporter, OAT1. We focused on the wide array of compounds that have been associated with 

OAT1 in vitro and in vivo experimentally. 

5.3.4. Compounds interacting with OAT1 are structurally distinct 

OAT1 (SLC22A6, initially NKT) was discovered in 1997 and identified as a transporter 

[98]. Since then, several model systems have been used to study its function in vitro and in vivo. 

To maximize the data available, we curated results from literature reporting OAT1 interaction 

regardless of the model system used. This resulted in a list of 485 unique compounds, consisting 

of drugs and metabolites, but also natural products, which have recently gained research 

attention (Supplementary Table S5.2). We first aimed to see how these compounds fit in with 

the library of known small molecules from the Human Metabolome Database (HMDB), which 

consisted of over 200,000 unique small molecules. We calculated molecular properties and 

performed PCA on the initial 22 molecular descriptors to better visualize the data, which 

revealed that OAT1 covers a reasonable area of the total known small molecule chemical space 

(Figure 5.2A). We then aimed to see if these compounds known to interact with OAT1 were 

structurally similar to one another by calculating Morgan fingerprints for each compound, which 

enabled comparison. Tanimoto similarity coefficients between each of the compounds revealed 

that very few pairs of molecules were similar (Tanimoto similarity > 0.70), indicating diversity 

among the compounds (Figure 5.2B). This led us to further explore the set of OAT1-interacting 

molecules from a structural basis.  
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5.3.5. Supervised and unsupervised learning methods reveal diverse sets of OAT1-interacting 
compounds  

Given that our initial interest in OAT1 function was on distinguishing between the types 

of small molecules OAT1 handles, we initially labelled each of the OAT1-interacting 

compounds as either a drug, metabolite, or natural product. Because our goal was to identify the 

features that separated these compounds, we performed linear discriminant analysis with a subset 

of 22 uncorrelated molecular descriptors. The two linear discriminant axes combined to explain 

nearly all the variance and demonstrated a separation between the categorical variables 

(metabolite, drug, natural product) that were assigned to each compound (Figure 5.3A). Linear 

discriminant analysis maximizes the variance between the data points based on their categorical 

variable, using a weighted combination of the features. We analyzed the molecular descriptors 

with the highest weights in the axes and found that some, such as molecular weight (MolWt), 

octanol-water partition coefficient (MolLogP), TPSA/SArea (Total Polar Surface Area divided 

by Labute Accessible Surface Area), and fraction of carbon atoms that are SP3 hybridized 

contributed to the separation of these compounds (Figure 5.3B).  

Though the separation with our assigned groups was effective, we also wanted to explore 

how many clusters form within the dataset with unsupervised learning techniques. We applied 

multiple clustering algorithms (Affinity Propagation, OPTICs, hierarchical clustering, etc.) to the 

dataset and found either too few or too many clusters. As such, we used K-Means clustering, 

which required an a priori number of clusters to be determined. We applied the silhouette score 

and Davies-Bouldin index evaluation metrics to determine the optimal number of clusters and 

found that 5 or 6 were appropriate selections based on each metric, respectively (Figure 5.4A, B, 

Supplementary Table S5.3). To better visualize the data, the clusters were mapped to a 

dimension reduction performed with PCA, which shows some separation between the clusters 
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(Figure 5.4C). We were particularly interested in clusters that had similar counts of drugs, 

endogenous metabolites, and natural products. For example, in K-Means = 6, Cluster 2 contained 

44 drugs, 47 metabolites, and 29 natural products (Figure 5.4D). These particular clusters 

suggest that competitive interactions between different classes of compounds could be occurring, 

indicating that drug-metabolite and drug-natural product interactions at OAT1 should be 

considered. We then aimed to understand how these different clusters may interact with the 

OAT1 protein structure. 

5.3.6. Predicted OAT1 structure has two distinct binding sites 

Given the structurally diverse compounds that have been shown to interact with OAT1 in 

vivo and in vitro, we investigated how these different clusters may interact with OAT1 at the 

molecular level, as it is possible that there are distinct binding mechanisms. OAT1, along with 

most other membrane transporters, has no experimentally derived protein structure. However, 

recent advances in protein structure prediction have generated high confidence templates for 

these proteins. We utilized the AlphaFold2 protein structure for OAT1 to analyze potential 

interactions between the protein and its hundreds of interacting compounds. We first analyzed 

the protein structure to assess whether the prediction agreed with previous knowledge on OAT1. 

OAT1, and SLC22 transporters in general, are characterized by 12 transmembrane domains, a 

large extracellular loop and two smaller intracellular loops. For the canonical OAT1 structure, 

residues 31-135 comprise the extracellular loop, while residues 270-337 and residues 506-563 

make up two distinct intracellular loops, respectively. The predicted AlphaFold2 structure aligns 

with the location of these loops and indicates an inward-facing conformation. 

To add physiological relevance, we embedded the protein structure in a mammalian 

membrane and prepared the combined structure using MOE’s QuickPrep feature (Figure 5.5A). 

We then focused on identifying likely binding sites for the structure. MOE’s SiteFinder function 
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uses a calculated metric, protein-ligand binding index (PLB), to determine the most likely sites 

for protein-ligand interactions. This analysis yielded two binding sites, with the highest-ranking 

site situated on the intracellular side of the protein (Figure 5.5B), while the second highest 

ranking was located on the extracellular side of the membrane (Figure 5.5C). Site 1 was much 

larger and consisted of 82 residues, while Site 2 had only 30 residues. Given that this structure is 

unvalidated experimentally, we then reviewed existing mutagenesis studies to see if any of the 

implicated residues were present in either site (Table 5.1) [91]. Site 1 contained nine residues 

that had been associated with reduced transport, while Site 2 contained only one. Most of these 

studies have been conducted with PAH as the probe substrate, so we investigated whether other 

compounds may interact with similar residues. 

5.3.7. Ligand docking reveals potential different binding mechanisms for Site 1 
 

We prepared a library of ligands that have been shown to interact with OAT1 in any in 

vivo or in vitro experiment for docking experiments. In these two separate experiments, each 

ligand was screened against both identified ligand binding sites and the top 3 poses for each 

compound were retained for further analysis. After docking, we used the protein-ligand 

interaction fingerprints (PLIFs) calculated by MOE. Not every compound input for docking 

resulted in a valid protein-ligand docking interaction, which led to 1220 PLIFs for Site 1 and 

1132 PLIFs for Site 2. These PLIFs show which residues are involved in the virtual docking 

experiments. Our results for Site 1 show 55 fingerprints across 23 residue positions. The most 

common residue is Lysine at position 321 with any interaction occurring. Arginine 273 and 

Glutamine 455 were also involved in numerous PLIFs (Figure 5.6A). Interestingly, neither of 

these residues has been previously implicated in any mutagenesis studies. Among those that had 

been shown to be relevant to in vitro transport were Tyrosine 354, Arginine 454, and Arginine 
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466. Site 2 has 42 distinct fingerprints across 17 residues, with Arginine 423 involved in 37.3% 

of the total interactions (Figure 5.6B). None of the residues implicated in the PLIFs had been 

previously associated with altered transport activity. 

We next wanted to understand our PLIF residues in each site in the context of structural 

diversity. For a more interpretable result, we decided to focus on molecules that have previously 

been used as probes for OAT1 function that were grouped into d istinct clusters in the 

unsupervised learning processes, using the results from K = 6 clusters. We chose to emphasize 

the interactions with para-aminohippurate (PAH) (Cluster 3), 6-carboxyfluorescein (Cluster 1), 

tenofovir (Cluster 6), and probenecid (Cluster 2), as each of these molecules has either been used 

in the context of OAT1 transport or inhibition.  

Because mutagenesis studies had implicated some residues in Site 1, we chose to focus 

on the protein-ligand interactions occurring within that putative binding site. Interestingly, the 

preferred poses of each ligand within the pocket interacted with different residues. Para-

aminohippurate (PAH) interacted with Valine 211 and Glutamine 455, 6-carboxyfluourescein 

interacted with Serine 277 and Lysine 321, probenecid interacted with Aspartate 157, and 

tenofovir interacted with Arginine 161 and Serine 278 (Figure 5.7A, B, C, D). We also noted 

that other classes of compounds, such as the natural product quercetin-3-glucuronide (Cluster 4), 

which interacted with Threonine 208, Glutamate 326, Glycine 322, and Threonine 451 (Figure 

5.7E). We also analyzed the gut-derived uremic toxin indoxyl sulfate (Cluster 6), which 

interacted with Methionine 452 and Glutamine 455. Though this specific combination is unique 

among the surveyed compounds, Glutamine 455 interacted with both PAH and indoxyl sulfate, 

despite their being in different clusters (Figure 5.7F).  None of the residues implicated in these 

fingerprints were among those that had been shown to have an in vitro impact on the transport of 
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probe substrates, indicating that more residues may be relevant in transport or inhibition 

processes. While our studies are limited, they suggest that for structurally diverse compounds, 

there may be multiple binding mechanisms in the OAT1 protein that are dependent upon specific 

residues. The total results, including all compounds in each docking pose, are shown in 

Supplementary Table S5.4 for Site 1 and Supplementary Table S5.5 for Site 2. 

5.4 DISCUSSION 

 

 In this work, we explored OAT1 function using in silico approaches, including ligand-

based and protein-based strategies. We first developed binary classification machine learning 

models based on in vivo metabolomics data from the plasma and urine of probenecid-treated 

humans as a proxy to OAT-mediated handling of small molecules. We calculated molecular 

descriptors for each molecule measured to use as features and used a binary target variable 

defined by p-values and fold changes in both plasma and urine to build predictive models. These 

models were entirely trained on limited endogenous metabolite data, and while they were able to 

predict some probenecid-sensitive drug-drug interactions, they were ineffective in predicting 

OAT-mediated drugs. We then analyzed the chemical space associated with OAT1 by compiling 

all experimental data and found that OAT1 interacts with multiple structurally distinct clusters of 

small molecule compounds. This diversity suggested different binding mechanisms for certain 

ligands, which we explored by docking each compound against the predicted structure for human 

OAT1. These analyses revealed residues in a putative intracellular binding pocket that may be 

important in mediating specific protein-ligand interactions. 

 Though most drug transporter machine learning models use in vitro data [69], previous 

models generated by our group have used in vivo metabolomics to distinguish OAT1 and OAT3 

function [74]. Our work here has a different goal and focuses on compounds that are either OAT-
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mediated or not OAT-mediated. Another advantage is that the models developed were trained 

and tested using in vivo metabolomics data from the same experiment. However, due to 

limitations in metabolomics data available, these models only contained 192 total metabolites, 

with 64 classified as OAT-mediated and 128 metabolites serving as negative cases. This led to 

models that performed relatively well on the test set consisting of endogenous metabolites. 

However, when the trained model was exposed to a novel dataset consisting of FDA-approved 

drugs, the model incorrectly predicted that numerous drugs would not be altered, when in vivo 

probenecid drug-drug interactions provided evidence that the drug would be altered. It should be 

noted, however, that probenecid-sensitive drug-drug interactions may not be a direct result of 

OAT1/3 inhibition, as probenecid may have roles as clinical inhibitors of other renal and 

extrarenal transporters and even enzymes [22, 179]. Acquisition of a validation set would require 

multiple, expensive experiments, so we relied upon existing data, despite the limitations. 

While these models were relatively unsuccessful, the framework can be applied when 

higher quality data is obtained. As metabolomics experiments become cheaper and more 

accessible, there will be an increasing need to analyze the data from a structural perspective. The 

ligand-based approach we employ here is flexible and can be useful in interpreting several 

metabolomics experiments with different goals, as the binary target variable can be modified 

depending on the specifics of the experiment. For example, depending on treatment, genetic 

knockout, or another physiologically relevant factor, a different biological sample or 

combination of biological samples may be more appropriate. The expected change (e.g., elevated 

in plasma, decreased in urine) in these types of experiments could be refined to identify either a 

binary target variable or even multiple classes for a target variable.   
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 Though we noted the limitations of our machine learning models, the indication that 

endogenous metabolite data cannot be used to predict drug-related function merited further 

exploration. By collecting all the compounds associated with OAT1 by in vivo or in vitro 

experiments, we were able to probe the full extent of the function of OAT1. The list of OAT1-

interacting compounds consisted of drugs, endogenous metabolites, and natural products. To 

simplify the problem, we included small molecules from a variety of different experiments and 

did not distinguish between substrates and inhibitors. We first separated these using linear 

discriminant analysis with their assigned categorical variables, which demonstrated that a 

combination of interpretable molecular descriptors was able to separate these distinct OAT1-

interacting compounds with different origins and mechanisms of actions. While this may be the 

case for OAT1, future studies can explore whether other drug transporters have similar 

characteristics. 

While this analysis showed a general separation between classes, there did appear to be 

some compounds on the edges of their pre-defined categorical variables (drugs, metabolites, 

natural products) suggesting that there may be organic clusters that are based on molecular 

descriptors rather than categorical assignments. We performed K-Means clustering with the 

calculated optimal number of clusters and found that 5 or 6 distinct clusters were present in the 

dataset. These results yielded clusters that mainly consisted of different types of molecules, 

suggesting that some competitive interactions between similar compounds may be more likely 

than others. Drug-drug interactions have dominated research about competitive interactions at 

transporters, but our work suggests drug-metabolite and drug-natural product interactions should 

also be considered [21, 137, 246]. Future studies can emphasize the differences between 
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substrates and inhibitors, as it is possible that certain molecular descriptors may be characteristic 

of one or the other.  

 To explore the possibility of structurally distinct molecules having different binding 

modes, we used the recently predicted AlphaFold2 prediction for OAT1 [87]. AlphaFold2 has 

been shown to be effective in predicting the structure of transmembrane proteins and cautious 

application of the predicted structures could yield valuable insights [247]. The protein structure 

prediction, while limited in some capacity, did recapitulate many of the features that OAT1 and 

SLC22 transporters possess, allowing for protein-ligand interaction analysis that had not 

previously been possible. Recent results have made use of predicted OAT1 structures in the 

context of the empty structure, or the structure bound with a specific ligand [89, 91]. Here, we 

focus on the potential interactions between a putative binding site and multiple different 

experimentally confirmed interacting compounds. Our mixed results show that it is possible that 

different residues contribute to the binding and potentially the transport of structurally diverse 

compounds. While these studies can be improved with more conformations of the transporter 

(outward occluding, inward open, etc.) and long molecular dynamic simulations, they provide a 

basis for understanding the broad range of interacting molecules with OAT1 from the 

perspective of the protein. These results can be supported by in vitro mutagenesis studies altering 

the implicated residues.   

 Overall, the studies presented in this work elucidate the molecular descriptors and 

potential OAT1 amino acid residues that are important in protein-ligand interactions. OAT1 has 

a wide array of interacting molecules, including drugs, endogenous metabolites, and natural 

products, with distinct chemical features. When analyzed from the perspective of the protein, 

though the evidence is not absolute, it appears that certain residues may be more important than 
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others for specific small molecule compounds with a subset of molecular descriptors. With the 

increasing accessibility of metabolomics data and experimentally derived or predicted protein 

structure, a similar approach can also be applied to other membrane-bound transporters. This 

work could help detail the specific nature of important drug-drug, drug-metabolite, drug-natural 

product, or metabolite-natural product interactions at the site of multi-specific drug transporters. 

5.5 MATERIALS AND METHODS 

5.5.1. Metabolomics data collection and preparation 

In vivo plasma and urine metabolomics data from humans treated with probenecid [137] 

were collected with the associated fold changes, p-values and SMILES sequences. Only 

compounds measured in both the plasma and the urine were included to isolate kidney-specific 

probenecid-sensitive transporter function, which included 400 metabolites. Binary classifications 

for altered and unaltered compounds were added using p-value and fold change cutoffs in the 

plasma and the urine. Positive cases were both elevated in the plasma and decreased in the urine, 

while negative cases were unaltered in both the plasma and the urine. SMILES sequences were 

input into the MolFromSMILES package in RDKit to generalte .mol files, which were then used 

as inputs into the RDKit Molecular Descriptors package to generate 208 molecular descriptors 

for each molecule, with some dropped due to poor interpretability. Most data science techniques 

were applied using a combination of the sklearn, numpy, and pandas packages in Python. 

Visualizations were performed with the seaborn package. Data was scaled using sklearn’s 

StandardScaler function. Following pre-processing with variation (0.90 or higher) and 

correlation thresholds (0.75 correlation), 22 interpretable molecular features ('qed', 'MolWt', 

'MaxPartialCharge', 'MinPartialCharge', 'FpDensityMorgan1', 'fr_Ar_NH', 'fr_C_O', 'fr_NH1', 

'fr_NH2', 'TPSA', 'FractionCSP3', 'NumAliphaticHeterocycles', 'NumAliphaticRings',' 

NumAromaticCarbocycles', ‘NumAromaticHeterocycles', 'NumRotatableBonds', 'MolLogP', 
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'fr_Al_COO', 'fr_Al_OH', 'fr_C_O_noCOO', 'fr_ether', 'TPSA/SArea') were retained. Molecules 

with any missing values were dropped. Following iterative feature selection, we retained 10 

molecular descriptors ('MolLogP', 'MolWt', 'TPSA/SArea', 'qed', 'MaxPartialCharge', 

'FpDensityMorgan1', 'TPSA', 'NumAromaticCarbocycles', 'FractionCSP3', 'MinPartialCharge'), 

including the engineered TPSA/SArea.   

5.5.2. Machine learning models 

 The observations and the remaining features were then split into training and test sets 

with a 70/30 split, with the binary target variable being stratified to ensure equal representation 

in the training and test sets. Because of the imbalanced dataset, synthetic minority oversampling 

technique (SMOTE) in the imblearn package was used to generate synthetic data points for the 

minority class. Other balancing methods were also explored. Multiple algorithms (Logisitic 

Regression, K-Nearest Neighbors, Support Vector Machines, Decision Tree, Random Forest, 

XGBoost) were assessed following on the training data. Hyperparameters for each model were 

determined using GridSearchCV with cross validation over a customized set of parameters. The 

StratifiedShuffleSplit function in sklearn was used in the hyperparameter optimization for cross 

validation. Multiple different scoring functions (f1 score, roc_auc, precision, recall, etc.) for the 

hyperparameter optimization were used, but f1_weighted was ultimately used. Evaluation of the 

models was assessed with multiple metrics (accuracy, balanced_accuracy, roc_auc, f1, etc.) with 

a combination of the factors being used to determine the best performing model on the training 

data. The resulting models were then used on a novel dataset consisting of drugs with existing 

clinical literature being used to validate the probenecid-sensitive interactions. 

To test the machine learning models on novel data, we downloaded a list of FDA-

approved drugs (https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php). The drugs in this dataset 



146 

 

were preprocessed identically to the endogenous metabolites as previously described, leading to 

10 molecular descriptors for each drug. We collected a list of known clinically relevant drug-

drug interactions involving probenecid to compare the results from our models 

(https://www.drugs.com/drug-interactions/probenecid-index.html) to serve as the validation set. 

5.5.3. OAT1-interacting compound literature search and dimensionality reduction 
 

We curated a list of OAT1-interacting compounds from the literature including all 

human, mouse, and rat in vivo and in vitro OAT1 experiments (Supplementary Table S5.3). All 

data reported were included with no specific threshold for interaction. Some compounds from in 

vivo knockout mouse experiments were removed due to their outlier status with respect to 

chemical structure. Compounds were labeled as drugs, endogenous metabolites, and natural 

products based on expert opinion. 485 compounds were collected in total. Molecular fingerprints 

(Morgan) were calculated for 483 compounds to determine Tanimoto similarity coefficients 

between all compounds. Molecular descriptors were calculated for 478 compounds as described 

for the machine learning, with 22 uncorrelated features being retained.  

We then applied different dimensionality reduction techniques for improved visualization 

and analysis. We used sklearn’s principal component analysis (PCA), linear discriminant 

analysis (LDA), and tSNE to separate the compounds based on their assigned class (metabolite, 

drug, natural product). We then analyzed the axes for the linear dimensionality reduction 

methods to determine which molecular features contribute to the individual axes. 

We also calculated molecular descriptors for all compounds in HMDB 

(https://hmdb.ca/downloads), including all OAT1-interacting molecules (accessed in January 

2023). PCA was calculated and two components were retained to show the chemical space 

covered by OAT1 vs the known chemical space. 

https://www.drugs.com/drug-interactions/probenecid-index.html
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5.5.4. Unsupervised Learning 
 

For clustering purposes, to reduce the dimensions, we used the results from the PCA in 

visualizations. Sklearn clustering algorithms were applied, including but not limited to K-Means, 

hierarchical, affinity propagation, and others. To determine the optimal number of clusters for K-

Means, we used clustering evaluation metrics in sklearn, including the silhouette score and 

Davies-Bouldin score.  

5.5.5. Ligand Preparation 

PubChem IDs were used to download molecular structures for each compound. They 

were then uploaded into a structural database within Molecular Operating Environment 2022 

(MOE). Chemical fingerprints, pharmacophores, and atomic force energy fields were calculated 

for each compound.  

5.5.6. Protein Structure Preparation 

Human OAT1 currently does not have a published crystal structure that can be used for 

molecular dynamics simulations and docking, so we used the predicted protein structure. The 

human protein structure for SLC22A6 was downloaded directly from the AlphaFold2 database 

(https://alphafold.ebi.ac.uk/entry/Q4U2R8) on December 3, 2022. The structure displayed high 

confidence, with 485 of the 563 residues having a per-residue confidence score (pLDDT) of 

greater than 70, which we considered suitable for further simulations and analysis.   

The resulting structure was prepared with CHARMM-GUI for simulation in a lipid 

bilayer membrane [248]. The membrane was composed of POPC with a dimension of 90 x 90, 

and a water bounding box of 155 Angstroms. Potassium and chlorine ions were placed in the 

solvent using Monte Carlo placement at 150 mM. We used AMBERFF19, Lipid17, and the OPC 

water model to parameterize the system before simulating with OpenMM. We followed the 

default CHARMM-GUI minimization and equilibration steps, which consisted of 5000 steps of 

https://alphafold.ebi.ac.uk/entry/Q4U2R8
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minimization, followed by six stages of equilibration with decreasing levels of constraints on 

system. We ran the production MD simulation for 50 ns, without any constraints at a 2 fs 

simulation timestep. We expect that the final frame of the simulation will be sufficiently 

equilibrated and more physically accurate compared to the structure produced directly from 

AlphaFold. Furthermore, because OAT1 is membrane bound, it is essential to model the 

phospholipid membrane prior to running any docking simulations, as this will influence the 

regions of the protein available to ligand binding. The combined structure was then corrected 

using MOE’s QuickPrep feature. MOE’s SiteFinder tool was then used to identify high 

likelihood binding sites on the protein structure, which revealed two putative binding sites on the 

intracellular and extracellular side of the protein. These were then used as the sites for two 

separate docking studies.  

5.5.7. Ligand Docking Analysis 

Ligand docking was performed in MOE. Default docking parameters were used. The 

relationship between the ligands and the putative binding sites were analyzed using the protein-

ligand interaction fingerprints (PLIFs) as calculated by MOE. The ligand interaction diagrams 

were used to visualize the PLIFs. 

5.6 SUPPLEMENTARY MATERIAL 

 

Supplementary Table S5.1: Predicted classes of drugs involved in probenecid-sensitive drug-

drug interactions. 

Supplementary Table S5.2: All OAT1-interacting molecules from in vitro and in vivo 

experiments.  

Supplementary Table S5.3: Clustering assignments for K = 5 and K = 6 in KMeans clustering.  

Supplementary Table S5.4: Protein-ligand interaction fingerprints occurring at Site 1 with 

molecules identified by Pubchem ID.  -: bit not set, D: sidechain hydrogen bond donor, A: 
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sidechain hydrogen bond acceptor, d: backbone hydrogen bond donor, a: backbone hydrogen 

bond acceptor, O: solvent hydrogen bond, I: ionic attraction, M: metal ligation, R: arene 

attraction, H: hydrophobic surface contact, Q: charged surface contact, P: partial hydrophobic 

contact, C: total surface contact. 

Supplementary Table S5.5: Protein-ligand interaction fingerprints occurring at Site 2 with 

molecules identified by Pubchem ID.  -: bit not set, D: sidechain hydrogen bond donor, A: 

sidechain hydrogen bond acceptor, d: backbone hydrogen bond donor, a: backbone hydrogen 

bond acceptor, O: solvent hydrogen bond, I: ionic attraction, M: metal ligation, R: arene 

attraction, H: hydrophobic surface contact, Q: charged surface contact, P: partial hydrophobic 

contact, C: total surface contact. 
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Table 5.1 OAT1 Mutagenesis sites associated with reduced transporter function. 

 

Substrate Residue Present in Site 1 (82 

residues) 

Present in Site 2 (30 

residues) 

PAH 30   

PAH 36   

PAH 39   

PAH 56   

PAH 86   

PAH 92   

PAH 97   

PAH 113   

PAH 189   

Adefovir, cidofovir, 
tenofovir 

203 YES  

PAH 230 YES  

PAH 335   

PAH 341   

PAH 353 YES  

PAH 354 YES  

PAH 379   

PAH 394 YES  

PAH 427   

PAH 431   

PAH 434   

Cidofovir 438 YES  

PAH 440   

PAH 454 YES  

PAH 466 YES  

PAH 478   

PAH 490  YES 

PAH 503   

PAH 504   

PAH 506   

PAH 512 YES  
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Figure 5.1 XGBoost and Random Forest binary classifiers trained on molecular descriptors 

are able to predict OAT-mediated endogenous metabolites. 

A) Plasma and urine metabolomics data were combined, and molecular descriptors were 

calculated for each compound measured in both experiments. B) Each compound was classified 
as altered or unaltered based on p-value and fold change criteria in both plasma and urine. 
Overall, 64 were considered altered and 128 were considered unaltered. C) Of the surveyed 

binary classification algorithms, XGBoost and Random Forest performed the best in roc_auc, f1, 
balanced accuracy, and accuracy on the test data. D) Classification report for the Random Forest 

model. E) ROC curves show that XGBoost performs the best with respect to area under the 
curve (AUC). The dashed line where true positive rate is equal to false positive rate represents an 
untrained model.  
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Figure 5.2 OAT1 covers a relatively large range of known chemical space, but the 

compounds are not similar. 

A). Principal component analysis of the molecular descriptors all molecules in the Human 

Metabolome Database, including the collected OAT1-interacting molecules, reveals that OAT1 
covers a wide range of the known chemical space. B) Morgan fingerprints were calculated for 

each chemical structure, which enabled the calculation of Tanimoto similarity. The compounds 
were all compared to one another, with the majority having low similarity metrics. 

 

  

A B
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Figure 5.3 Linear discriminant analysis can separate OAT1-interacting molecules based on 

categorical groupings of drugs, metabolites, or natural products. 

A) Linear discriminant analysis of the OAT1-interacting compounds reveals separation between 

the different categorical variables. B) Eight features contributed most to linear discriminants 1 
and 2, which optimize for the variance between the categorical variables.  
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Figure 5.4 OAT1-interacting molecules can be split into distinct clusters based on 

molecular descriptors. 

A) The silhouette score evaluation metric was used to determine the optimal number of clusters 

for K-Means Clustering and indicated that 5 was the best score using this metric B) The Davies-
Bouldin index evaluation metric was used to determine the optimal number of clusters for K-
Means Clustering and indicated that 6 clusters was the best score using this metric. When taken 

with the silhouette score, we decided to choose either 5 or 6 clusters for K-Means clustering.  C) 

Principal component analysis was performed using the molecular descriptors for the OAT1-

interacting compounds to improve visualization. Each point represents an individual small 
molecule, with the color representing the cluster it belongs to and the shape of the point 
representing its categorical assignment. D) The counts for each categorical assignment are 

presented for each individual cluster, showing that some clusters contain different classes of 
small molecules.  
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Figure 5.5 Predicted OAT1 structure was embedded in a mammalian plasma membrane 

and used for docking studies. 

A) OAT1 predicted protein structure was embedded in a mammalian cell membrane. B) The 
most likely binding sites on the protein were identified. Site 1 is present on the intracellular 
(bottom) side of the protein. C) Site 2 is located on the extracellular (top) side of the protein. The 

binding sites are colored differently from the protein, where hydrophilic regions are purple, 
neutral regions are gray, and lipophilic regions are green. D) Naproxen, a non-steroidal anti-

inflammatory drug, was one of the compounds that has been shown to interact with OAT1 
experimentally. E) All compounds were docked against each binding site. Naproxen is shown as 
a representative example here.  
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Figure 5.6 Protein-ligand interaction fingerprints describe the residues implicated in 

binding. 

A) Site 1, consisting of 80 residues, is located on the intracellular side of the transporter and has 

55 unique fingerprints covering 23 residues. B) Site 2, consisting of 30 residues, is located on the 

extracellular side of the transporter and has 42 unique fingerprints covering 17 residues.   
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Figure 5.7 Prototypical OAT1 probe substrates and inhibitors seem to interact with 

different residues in Site 1. 

A) PAH (para-aminohippurate) is a probe traditionally used in tandem with radiolabeling to 
measure OAT1 transport function. The top-ranked docked pose interacts with Valine 211 and 
Glutamine 455. B) 6-carboxyfluorescein is a fluorescent probe used to measure OAT1 function 

in vitro. The top-ranked docked pose interacts with Serine 277 and Lysine 321. C) Probenecid is 
a drug used to inhibit OAT1 in vitro and in vivo. The top-ranked docked pose interacts with 

Aspartate 157. D) Tenofovir is an antiviral drug primarily cleared via OAT1. The top-ranked 
docked pose interacts with Arginine 161 and Serine 278. E) Quercetin-3-glucuronide is a natural 
product shown to inhibit OAT1 in vitro. The top-ranked docked pose interacts with Threonine 

208, Glutamate 316, Glycine 322, and Threonine 451. F) Indoxyl sulfate is a uremic toxin 
transported by OAT1 in vivo and in vitro. The top-ranked docked pose interacts with Methionine 

452 and Glutamine 455.  
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Chapter 5 is being prepared for publication. The dissertation author was the primary 

author of this chapter. 
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CHAPTER 6: CONCLUSION 
 

6.1 DISCUSSION 

 This dissertation performs a multi-scale analysis using in vivo, in vitro, and in silico tools 

of a single drug transporter, OAT1 (SLC22A6), and extends to preliminary analyses for other 

drug-handling genes, such as transporters and enzymes. We demonstrated OAT1 plays an 

important role in mediating the levels of various endogenous metabolites, notably multiple gut-

derived compounds with signaling roles. While this had been partially probed in the past, the 

work presented here provides novel and robust evidence for this role in a single experiment 

supported by in vivo mouse and human studies. Furthermore, we combined available data for 

OAT1 to develop both ligand and protein-based models to better characterize the full extent of 

drug transporter function (endogenous metabolites, drugs, natural products, etc.). 

 Considering the association between OAT1 and some microbiome associated uremic 

toxins present in chronic kidney disease [249], we first aimed to understand to which extent 

OAT1 handled gut microbiome derived endogenous metabolites. The gut microbiome has been a 

major research topic in recent years because of the impact that it  can play in healthy and disease 

states [250]. The tools to explore the bacterial species and communities in the gut have made 

analyzing the metabolic capabilities of the microbiome more accessible and have improved our 

understanding of this nuanced inter-organismal communication. While simplifying the 

microbiome to a single ‘organism’ is reductive because of the hundreds of unique species 

present, framing the interactions between the host (human, mouse, etc.) as a relationship between 

two organisms provides a clearer picture. There may be some physical interactions between the 

gut microbes and the intestine, but one of the main ways that the gut microbiome can interact 

with the host is via the production of small molecules with signaling roles in the host. 
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 Gut microbiome-derived small molecules are compounds that cannot be produced by the 

host alone. The genes (enzymes, transporters) expressed by the diverse bacterial species in the 

gut provide machinery for generating compounds that can have important roles within the host. 

For example, some gut-microbiome derived metabolites have been shown to have signaling roles 

in the brain, the heart, and other organs [16]. While this signaling role is crucial, the ADME 

properties of these compounds have been largely ignored. It is imperative to understand the 

proteins that are responsible for the generation and clearance of these compounds. The work 

presented in Chapter 2 shows that OAT1, a renal drug transporter, mediates the circulating levels 

of 40 gut microbiome-derived metabolites, as evidenced by in vivo serum metabolomics of a gut 

microbiome-depleted knockout mouse model [251]. These results were also supported by two 

types of in vitro assays, with one assay demonstrating inhibition of traditional OAT1 transport 

and the other assay showing competitive binding to the OAT1 protein. OAT1 has a broad array 

of substrates/inhibitors, but it is likely that other multi-specific transporters, such as OATPs and 

MRPs, also contribute to the ADME of gut microbiome-derived compounds and inter-

organismal communication. Deeper analyses could also focus on the specific bacterial species 

involved in the generation of transporter-specific substrates. 

 The vast majority of drug transporter-related studies have used in vitro cell assays or in 

vivo knockout mouse models. While these have generally been useful, there is still a gap 

between preclinical and clinical studies. In Chapter 3 of this dissertation, we analyze the short-

term effect of an oral dosage of an OAT-inhibiting drug, probenecid, on the plasma and urine 

metabolomes healthy human participants after 5 hours [137]. Probenecid, a drug used to treat 

gout via URAT1 inhibition, has been shown to inhibit OAT1 and OAT3 in vivo, making it the 

closest analog to a chemical OAT1/OAT3 human knockout. Though probenecid has been shown 
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to inhibit other transporters expressed in diverse tissues, this has primarily been shown in vitro. 

By focusing on the compounds elevated in the plasma and decreased in the urine, we were able 

to isolate the impact of renal drug transporter inhibition.  

 For multiple drug transporters, including OAT1 and OAT3, it has long been known that 

they have some endogenous substrates, but the extent to which these transporters contribute to 

physiology had yet to be determined. The clinical probenecid study described in Chapter 3 of this 

dissertation identifies hundreds of simultaneous drug-metabolite interactions in the plasma in the 

urine. For uptake transporters expressed on the basolateral (blood-facing) side of cells, inhibition 

would lead to the accumulation of compounds in the blood, as they can no longer enter the cell 

and must remain in circulation. This inhibition is likely to have downstream effects, such as 

decreased levels of substrates in the urine, because uptake from the blood is often the rate 

limiting step for clearance of compounds.   

 Of the compounds measured in both the plasma and the urine, 97 were significantly 

elevated in the plasma and significantly decreased in the urine, suggesting they are substrates of 

OAT1 or OAT3. To ensure the specific interaction at the site of the transporters of interest, we 

overlapped our results with the serum metabolomics from our knockout mouse studies, and 

identified 25 metabolites, including many gut microbiome-derived metabolites, including some 

that were specific to OAT1 or OAT3, indicating that these transporters have shared and distinct 

functions. We also identified a hyper-specific drug-metabolite interaction at the site of URAT1, 

with urate being the only compound that was significantly elevated in the urine and significantly 

decreased in the plasma. This is consistent with the known function of URAT1, as it is an uptake 

transporter on the apical membrane with high specificity for urate. This dissertation focuses on 

multi-specific transporters, like OAT1, with dozens of unique substrates, but it is also important 
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to note that proteins within the same family as multi-specific transporters can have very limited 

substrate specificity with clinical relevance. Overall, Chapter 3 shows that taking common, non-

toxic drugs has a profound impact on the levels of endogenous metabolites that may be 

substrates of transporters. Future studies could focus on the impact of other common individual 

drugs or drug combinations, especially those that inhibit other important drug transporters, on 

endogenous metabolism in both the short-term and the long-term, as these could explain 

metabolic side effects stemming from drug administration. 

Having established that OAT1 played an important role in endogenous metabolite 

handling with a genetic knockout mouse model and a human inhibition study, we then aimed to 

understand how single nucleotide polymorphisms (SNPs) in drug transporter and drug 

metabolizing enzyme genes can influence the circulating levels of small, bioactive polar 

molecules, such as fatty acids, eicosanoids, and bile acids in Chapter 4 of this dissertation. By 

combining genomic and untargeted plasma metabolomics data from a large human cohort, we 

were able to identify statistically significant associations between SNPs and hundreds of 

metabolites. While one our initial goals was to see if OAT1 was strongly linked to any 

metabolites, an advantage of this methodology is that several other genes were surveyed. Due to 

potential mechanistic interactions, we limited our study to ~1000 genes including transporters, 

enzymes, and other related genes. 

The targeted-SNP study led to over 600,000 statistically significant associations. To 

simplify this, we grouped SNPs within a certain number of base pairs to each other into genomic 

loci, as it is often difficult to determine whether a single SNP is the causative SNP for the 

observed phenotype. We found 77 distinct genomic loci associated with 7,326 metabolites, with 

the vast majority of these metabolites being unidentified but having a unique combination of 
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mass to charge ratio (M/Z) and retention time (RT). One of our first goals was to understand 

which genomic loci combined to regulate specific metabolites. We found five metabolites (all 

unidentified) that were associated with four distinct loci, suggesting that the circulating levels of 

these compounds are dependent upon the endogenous function of multiple drug-related genes 

expressed in key metabolic organs, such as the liver, kidney and intestine. In addition to the few 

examples of four distinct loci associated with a single metabolite, we also identified 79 

metabolites associated with three loci, and 606 associated with two distinct loci. Taken together, 

these results support the belief that drug-handling genes, such as drug transporters and drug-

metabolizing enzymes, combine to perform crucial physiological functions. This also suggests 

that shared substrate specificity may be a key function of the network of ADME genes. 

We then turned our attention to the ~100 metabolites that were identified and found 

dozens of associations that had been previously established, such as SLCO transporter genes with 

bilirubin and SLC22 transporter genes with conjugated sex steroids. That many of these 

associations had been confirmed by independent in vivo and in vitro experiments demonstrates 

the strength of the approach and implies that other unexplored associations may prove to be true. 

While not all relationships between SNPs and metabolites will lead to physiologically relevant 

interactions, these data generate strong hypotheses for potential roles of drug-handling genes. We 

also remarked that some SNPs identified in our study, such as rs4149056 in the SLCO1B1 gene, 

had previously been associated with several drugs and can impact the toxicity, efficacy, or 

clearance. This is consistent with the theme of this dissertation, as it provides evidence that a 

drug transporter can have a wide array of interacting molecules including endogenous 

metabolites and drugs. This also suggests that certain populations may be susceptible to drug-

metabolite interactions. Our approach of using genomic data also opens the door for use in 
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personalized medicine. By understanding the consequences of specific SNPs on circulating 

endogenous metabolites, we can better understand the ‘baseline’ physiology of individuals and 

apply this in various treatments.  

 The bulk of this dissertation uses in vivo metabolomics data to gain insight on the 

physiological role of OAT1 and some other drug-handling genes. While these data have 

increased our knowledge on the endogenous function of these proteins, these experiments are 

relatively expensive, as well as difficult to design and execute. Being able to generate high 

confidence predictions would aid in better understanding not only the endogenous function of 

drug transporters, but the complete role, including interactions with drugs, toxins, and natural 

products. In Chapter 5 of this dissertation, we developed ligand-based and protein-based models 

to better understand transporter-ligand interactions. 

 Our first approach was to leverage the data acquired from clinically relevant in vivo 

metabolomics data to build machine learning models. Typically, machine learning models 

require high throughput in vitro assays for sufficient data. However, in our case, since multiple 

metabolites are measured in metabolomics experiments, we were able to develop binary 

classification models. Though our number of observations was relatively low compared to 

traditional machine learning models, this work is clinically relevant and generated in the same 

experiment. The models also provide a framework upon which future models focused on 

different problems can be improved.  

We chose to focus on the combined human plasma and urine data from Chapter 3 of this 

dissertation. Through the use of both samples, we assigned a binary classification to each 

endogenous metabolite of ‘Altered’ (if it was significantly elevated in the plasma and 

significantly decreased in the urine) or ‘Unaltered’ (if it was not significantly altered in both 
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plasma and urine). These classifications allowed us to focus on the compounds that are likely 

OAT-mediated, as probenecid has been shown to inhibit both OAT1 and OAT3 in vivo. For the 

features in these models, we calculated molecular descriptors for each chemical structure and 

trimmed down to a subset of interpretable features, such as molecular weight. We then trained 

multiple binary classification algorithms on the training data and tuned the hyperparameters for 

optimal performance. Upon achieving reasonable accuracy on the test data consisting of 

endogenous metabolites, we applied our XGBoost model to novel data that only included drugs. 

The results could be, in part, validated by accessible clinical drug-drug interaction data involving 

probenecid. Ultimately, though our models predicted some OAT-mediated, probenecid-sensitive 

drug-drug interactions, the models were unable to predict OAT-mediated drugs from endogenous 

metabolite data alone, suggesting diverse mechanisms for different kinds of compounds. 

 To simplify our problem, we focused on OAT1 because of the available data describing 

its function, though probenecid inhibits both OAT1 and OAT3 at comparable levels. We 

collected data from all relevant in vivo and in vitro experiments to better understand the full 

extent of OAT1 interacting compounds. This literature search yielded nearly 500 compounds and 

included drugs, endogenous metabolites, and natural products. We then explored the chemical 

space covered by these using dimensionality reduction techniques on the molecular descriptors 

and found that based on a categorical assignment (drug, endogenous metabolite, natural product) 

the compounds could be largely separated with linear discriminant analysis, though the 

separation was not perfect for some cases. We further explored this by performing K-Means 

clustering using the molecular descriptors on the compounds and identified 5 or 6 as the optimal 

number of clusters. Most of these clusters included compounds from different classes (drug, 
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endogenous metabolite, natural product), raising the possibility that features inherent to the 

chemical structures may be more important than the known function of the compounds.  

Given the structural and functional diversity among these compounds, we then analyzed 

the protein-ligand interactions between the predicted human OAT1 structure and the wide array 

of compounds identified in our literature search with molecular docking studies. We first added 

physiological relevance to our studies by embedding the human OAT1 structure in a mammalian 

plasma membrane and identifying the most likely binding sites. These studies suggested that 

traditional probes of OAT1 function interacted with distinct sets of residues within a putative 

binding pocket on the intracellular region of the transporter. Though they must be supported by 

in vitro assays with the implicated residues altered, it is possible that there are multiple, distinct 

binding mechanisms for a specific drug transporter that contributes to its diverse function. 

 Chapters 2-5 of this dissertation represent a major advance in our understanding the 

physiological role of OAT1 and some other drug-handling genes (e.g., OAT3, OATP1B1). The 

strategies employed here can be adapted to focus on other multi-specific, oligo-specific, or 

mono-specific transporters to better characterize the seemingly important role in helping the 

regulation of endogenous metabolism.   

6.2 FUTURE DIRECTIONS 

 

 While this dissertation represents a major step forward in understanding the function of 

OAT1, it is by no means a complete exploration of drug transporter function. The body of work 

described here can be built upon with some of the following future research directions.  

The endogenous role of OAT1 presented in this dissertation makes use of in vivo serum 

and urine metabolomics data to establish the impact that a renal drug transporter can have on the 

circulating levels of dozens of molecules not previously associated with OAT1. These studies are 
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inherently limited by the libraries of small molecule compounds available with current 

metabolomics technologies. In the studies described in this dissertation, roughly ~1300 

identified, unique metabolites are detected in either human plasma, human urine, or mouse 

plasma. The libraries of available compounds will only expand in the coming years as 

metabolomics technologies advance. Furthermore, some metabolomics platforms are able to 

measure exact concentrations of specific compounds rather than semiquantitative values that can 

only be compared across samples. Specific values for the levels of compounds in different 

conditions, such as those in this dissertation, can provide insight on the capacity of OAT1 and 

other drug transporters. Other genetic knockout mouse models can be analyzed using these 

approaches. 

Improved metabolomics can also be coupled with human studies, such as those described 

in this dissertation. The probenecid experiment described in Chapter 3 demonstrates the impact 

that a non-toxic drug has on the plasma and urine metabolome after a single oral dosage. This 

striking effect on endogenous metabolism may be, in part, recapitulated by other drugs that 

inhibit OAT1/3. Probenecid’s mechanism of action is the inhibition of transporters, but other 

drugs (e.g., antivirals, antibiotics, NSAIDs) may lead to similar outcomes given that they are 

transported by or inhibit OAT1. In a similar fashion, common combinations of drugs may 

exacerbate the individual effect by further inhibiting OAT1 or perturbing the function of other 

transporters/enzymes. Given the increasing rate of drug prescriptions, it is important to account 

for multiple xenobiotics stressing the system and the potential drug-metabolite interactions that 

occur.  

Beyond OAT1, drugs that interact with other transporters (e.g., statins with OATPs) can 

also be administered to healthy patients and the appropriate body fluids can be collected for 
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metabolomics analysis. In this dissertation, as we were focused on renal drug transporters, the 

plasma and urine provided us with information on the putative function of OAT1 and OAT3. For 

hepatic and intestinal transporters, bile and feces samples, respectively, would be more indicative 

of function. Collecting these biological samples and others would also support studies such as 

the genomic work described in Chapter 4 of this dissertation. While in our study we focus on the 

plasma, other biological samples, such as the urine, bile, feces, or cerebrospinal fluid , would be 

useful in showing the total effect of SNPs in genes that are primarily expressed in excretory 

organs. Future experiments could also factor in disease states, as it has been shown that chronic 

kidney disease has an impact on the expression of renal and extrarenal drug transporters [252]. 

Whether SNPs in these genes would exacerbate the impaired function is an important factor in 

personalized treatment. 

 The work presented in Chapter 5 of this dissertation describes the use of ligand-based 

machine learning models to predict transporter function. While this work combines newly 

available in vivo metabolomics data with machine learning algorithms, there is still room for 

improvement. For one, the quality of the data that is input into the models will only improve over 

time. As previously described, the current metabolomics technology in the plasma and the urine 

limited us to 400 metabolites measured in the same experiment. This is by no means the full 

repertoire of metabolites that are likely to exist in physiology, and future work will likely 

discover more metabolites in the blood, urine, bile, or feces, which could uncover further roles 

for drug transporters. 

 In addition to in vivo metabolomics data, higher quality in vitro data can also lead to 

different kinds of models that can even be combined with the in vivo data. Building ligand -based 

models from in vitro data is difficult because of the various systems, conditions, and probes used 
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across multiple groups. Furthermore, it is common for only positive results to be published (i.e., 

significant inhibition, transport), making it challenging to populate a dataset with sufficient 

positive and negative outcomes. High throughput data from the same lab and experimental 

conditions are also very scarce. As these datasets become easier to generate and publicly 

available, more models will be built, leading to increased interpretation of differing results, and 

ultimately, a better understanding of transporter function.  

 A shortcoming of the machine learning framework that we developed to better 

understand changes in in vivo metabolomics data is that all compounds in the altered class are 

treated the same. Though we did apply a fold change and p-value threshold to identify these 

altered compounds, there does appear to be some chemical diversity between the compounds 

present. Separating them into more distinct groups based on their features may also lead to 

multiple models that focus on a smaller subset of compounds. The splitting of altered compounds 

into multiple groups could be performed based on chemical diversity but would likely be better 

informed by expertise with respect to a specific transporter and its known function. Machine 

learning technologies have also advanced in recent years. For example, XGBoost and LightGBM 

are novel algorithms that have been developed within the last decade. Future algorithms could 

lead to more robust results.  

 Chapter 5 of this dissertation makes use of a high confidence human protein structure that 

proved useful in learning more about OAT1 function at the atomic level. However, these models 

can be much improved. Experimentally derived structures would likely yield more accurate 

representations of the protein's folding with and without specific ligands bound. Observing 

transporters with bound ligands from the different clusters identified in this work would clarify 

binding mechanisms and whether competition for particular binding sites is occurring. Another 
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shortcoming of this dissertation’s study is that we focus on only a single conformation of the 

transporter. Transport and inhibition are complex processes where the transporter goes through 

multiple conformations, such as outward open, inward open, outward occluded, and inward 

occluded. For a protein-based model to fully capture the biological process, molecular dynamics 

must be able to capture all these steps with each experimentally tested compound. Docking and 

transport results will also benefit from advances in algorithms and computing power that allow 

for the exploration of more demanding simulations. 

From the physiological perspective, a model that incorporates the other transporters 

(sodium-potassium pump, NaDC3) required for tertiary OAT1 function would more accurately 

represent the process, as these membrane proteins could have an important effect on the overall 

rate of transport. The sodium potassium pump creates an electrochemical gradient that supports 

the sodium dicarboxylate exchange occurring through NaDC3, which ultimately contributes to 

the intracellular level of dicarboxylates. OAT1 operates via exchange of an extracellular organic 

anion for an intracellular dicarboxylate. These mechanistic processes have not been factored into 

any model and are likely necessary for a complete understanding of how the transporter operates.  
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