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Genotype by random 
environmental interactions gives 
an advantage to non-favored minor 
alleles
A. Mahdipour-Shirayeh1, A. H. Darooneh2, A. D. Long  3, N. L. Komarova4 & M. Kohandel  1

Fixation probability, the probability that the frequency of a newly arising mutation in a population will 
eventually reach unity, is a fundamental quantity in evolutionary genetics. Here we use a number of 
models (several versions of the Moran model and the haploid Wright-Fisher model) to examine fixation 
probabilities for a constant size population where the fitness is a random function of both allelic state 
and spatial position, despite neither allele being favored on average. The concept of fitness varying with 
respect to both genotype and environment is important in models of cancer initiation and progression, 
bacterial dynamics, and drug resistance. Under our model spatial heterogeneity redefines the notion of 
neutrality for a newly arising mutation, as such mutations fix at a higher rate than that predicted under 
neutrality. The increased fixation probability appears to be due to rare alleles having an advantage. The 
magnitude of this effect can be large, and is an increasing function of the spatial variance and skew in 
fitness. The effect is largest when the fitness values of the mutants and wild types are anti-correlated 
across environments. We discuss results for both a spatial ring geometry of cells (such as that of a 
colonic crypt), a 2D lattice and a mass-action (complete graph) arrangement.

Virtually every species displays variation of the level of DNA. All variants at some time in the past were a newly 
arising mutation at a frequency of 1/N in a haploid population. There is an extensive population genetics literature 
describing the fate of such mutations in populations (see e.g. refs 1–3). Newly arising unconditionally deleterious 
mutations are typically quickly eliminated (although it is well-known that weakly deleterious mutations can also 
persist or even fix), mutations whose impact on fitness is equivalent to the wild-type allele at a loci will fix with 
probability 1/Ne (where Ne is the effective population size of the species), and mutations with a fitness advantage 
of s will fix with approximate probability s.

The probability of fixation has been widely studied by population geneticists, physicists and mathematicians 
for almost a century, starting with the early works by Fisher4, Haldane5 and Wright6, culminating in the work 
of Kimura7. These models have been extended in a number of ways, which can be roughly divided into three 
approaches: Markov chain methods, branching processes, and diffusion approximations (see ref. 8 and the ref-
erences therein). These fixation probabilities have been derived using several methods and are considered quite 
robust9–18. A “Moran process”19 is one of the models used to derive these fixation probabilities. Under this model 
at each time step in a population of constant size N, a random individual is chosen for death and is then replaced 
with the progeny of another individual chosen for reproduction. The probability to reproduce is proportional to 
the individual’s fitness. The order of the update (birth-death or death-birth) has been studied in refs 20 and 21.

An attractive feature of a Moran process is its analytical tractability; also, since each time step consists of one 
individual replacing another, it is relatively easy to incorporate a spatial aspect to evolution. The Moran model 
allows for a natural spatial extension, such as a ring or a spatial lattice. In such cases, only neighboring individuals 
compete with one another to reproduce. If fitness values are equal with respect to genotype, but perhaps vary 
spatially, under a Moran process the probability of a newly arising non-favored (or neutral) mutation fixing is 
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still 1/Ne (see e.g. refs 22–25). What if instead of fitness being only a function of spatial location, it is additionally 
a function of genotype? Such genotype by environmental interactions (GEI) are likely quite common. Classic 
examples include plant size along an altitudinal transect in Potentilla glandulosa26, the emergence of the car-
bonaria form of the peppered moth as a response to the industrial revolution27, adaptive melanism in pocket mice 
living on different colored substrates28, and a repeated reduction of armor plating in freshwater sticklebacks29.

Several studies have investigated the importance of environmental fluctuations in evolutionary dynamics. 
Lewontin and Cohen30 studied a growing population in a randomly varying environment where the growth rate 
is a random variable. Other studies concerning population growth under environmental noise include Frank and 
Slatkin31, Haccou and Iwasa32, Yoshimura and Jansen33, and Mustonen and Lässig34. There have also been many 
other investigations of the environmental alteration in population genetics35–37.

Furthermore, environmental effects and randomness in fitness have also been studied in the context of the 
speed of invasion dynamics38, environmental-induced plasticity39, 40, and also in game theoretical models41–43. 
Various evolutionary strategies were discussed in Patra and Klumpp24 to show how the spatial structure of the pop-
ulation and environmental alterations might be beneficial for higher phenotypically heterogeneous populations.

More recently, in ref. 44, the authors considered two different types of heterogeneity, one where individu-
als had regional fitness values (‘partisan voter model’) and the other where their random fitness independently 
and intrinsically changed for individuals. Using mean-field approximation, they compared the time to fixation 
for each of these two models and studied the population-size dependency of ultimate time to fixation for finite 
populations. Melbinger and Vergassola45 considered the effect of environmental alterations on the fitness of 
species. They showed that variability in the growth rates played an important role in neutral evolution and the 
fixation time was reduced in the presence of time dependent environmental fluctuations. In addition, Cvijović 
et al.46 found that temporal fluctuations in environmental conditions could influence the fate of mutation and 
subsequently the efficiency of natural selection. Recently, Dean et al.47 studies stochastic and continuous time 
approaches for the selection of a two-allele haploid model under random environment, and argued that with a 
zero mean selection coefficient, temporal environmental fluctuations increase genetic polymorphism, which is 
in contrast with the classical selection theory. Assuming a stochastically neutral condition for alleles with and 
without a genetic mutation, they showed that randomness in selection increased the fixation probability in com-
parison to neutral drift. The derived fixation probability was based on approximating the ratio of growth rates of 
the diverse genotypes.

Expanding on the previous work, in this paper we consider environmental-induced random effects on the 
dynamics of mutants. The main focus of our work is spatial fitness fluctuations (as opposed to temporal fluctua-
tions considered in many of the studies listed above), and we specifically address the question of mutant fixation. 
Our most intriguing and counterintuitive finding is that if both mutant and wild type fitness values come from 
exactly the same distribution, minority mutants nonetheless enjoy a selective advantage (averaged over all reali-
zations of fitness landscapes). This phenomenon holds for both death-birth and birth-death formulations of the 
Moran process as well as for the Haploid Wright Fisher process. We further expand our calculations to consider a 
variety of scenarios, including the influence of the higher moments of the fitness distribution under identical and 
different fitness probability distributions, as well as the role of correlations between the two fitness distributions.

Method
The calculations for this study have been performed for several different stochastic update rules. Here we give a 
detailed description of one of these rules (the death-birth Moral process). Others (the birth-death Moran process 
and the haploid Wright-Fisher model) are described in the Supplement. Envisage the Moran process19, where in 
a constant population of asexually reproducing agents (or cells), at each update, a cell is removed and replaced 
with the offspring of another cell according to some rules. Which cell gets to go and which one reproduces is 
decided probabilistically. For example, suppose that death (removal) happens with the same probability for all, 
and reproduction is performed for one of the “neighboring” cells, with probabilities proportional to the cells’ 
fitness (see ref. 20 for other rules). The notion of neighborhood is defined by spatial interactions and here we will 
specifically focus on the mass-action case where the whole population belongs to a cell’s neighborhood, and on a 
circular arrangement where each cell has only two neighbors. Reproduction is assumed to be faithful, such that 
the offspring cell inherits the type of the parent cell. As the updates continue, the population size remains con-
stant, and eventually with certainty the whole population will be replaced with the offspring of a single cell (and 
the corresponding type will “fixate” in the population).

Let us first assume that the fitness of all but one cell is equal to 1, and a single cell has a smaller fitness, r < 1 
(we will refer to this cell as a mutant, and the rest of the cells as wild type cells). Not surprisingly, the mutant cell in 
this case will have a smaller fixation probability compared to any of the wild type cells. In fact, in the mass-action 
problem the probability of such disadvantageous mutant fixation, PN, is exponentially small in terms of the popu-
lation size N, and (for large N) is given by (1/r − 1)rN. In the opposite case of an advantageous mutant (r > 1), the 
probability of mutant fixation is larger than the probability of fixation of wild type cells and is given by 1 − 1/r for 
large population. Similar results also hold in the case of a circular geometry, where the probabilities of disadvanta-
geous and advantageous mutant fixation are given respectively by 2rN−2(1 − r)/(3 − r) and 2(r − 1)/(3r − 1)14. Not 
surprisingly, if the fitness of the mutant is exactly the same as the fitness of the rest of the cells (r = 1, a “neutral” 
mutant), the probability that the whole population is eventually replaced by the offspring of such a mutant is 
exactly the same as the probability of fixation of any other cell, and is equal 1/N (this result holds both for mass 
action and for circular geometry).

The simple situations described above are idealizations because, for example, they do not include the inhomo-
geneity of the environment. Let us suppose that the fitness of a cell depends not only on its type but also on the 
spatial location. We will assume that the fitness of a wild type cell at a given location is drawn from a fixed proba-
bility distribution. We further assume that the fitness of a mutant cell in a given location is also taken from exactly 



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 5193  | DOI:10.1038/s41598-017-05375-0

the same distribution. In other words, for a single realization of a Moran process we need to assign the fitness 
values of wild type and mutant cells for each location, and these values remain fixed throughout the realization. 
What is the probability of mutant fixation (starting with one mutant cell at a randomly chosen location) averaged 
over realizations? Simple intuition would suggest that it is 1/N, because the fitness values of the mutant are taken 
from the same distribution as those for the wild type, and the probability is averaged over all the possible realiza-
tions. We show that the answer 1/N however is only true for N ≤ 3. Starting from N = 4, the average probability of 
fixation, 〈PN〉, of mutant in such a random landscape is greater than 1/N. In fact, for relatively small values of N 
the function 〈PN〉N grows linearly with N and for larger population sizes it continues to grow but becomes loga-
rithmic (to compare, 〈PN〉N = 1 in the absence of randomness). One should note that when the mutants are 
advantageous then 〈PN〉N grows linearly with N and the slope increases with the standard deviation of the fitness 
distribution. If the fitness of the wild type is constant (r = 1), but the fitness of a mutant cell r( ) at a given location 
is selected from a fixed probability distribution, then the average fixation probability is negatively correlated with 
the variance of fitness distribution of mutants (for both advantageous and neutral mutants)48. This could be due 
to the fact that increments and decrements of fitness values compared to the background fitness do not have a 
symmetric effect on the fixation probability. For example, if r = 1 and = .∓�r 1 0 5, then the devastating effect of 
hitting the value = .r 0 5 cannot be compensated by a relatively mild advantage of hitting = .r 1 5.

Consider a circle with N = 3 individuals. We denote the fitness for the wild (mutant) type by ai(bi), i = 1, 2, 3. 
Further, Ps, where s is a binary number of length 3, stands for the probability of mutant fixation starting with 
configuration s, where “1” stands for mutant and “0” for the wild type. Defining α α β= +α

βf : /( ), we obtain for 
the death-birth Moran process:
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The solution to this system, averaged over all realizations of the fitness configurations for a given distribution 
is P100 = P100 = P100 = 1/3 and P110 = P101 = P001 = 2/3. This results in the fixation probability 〈P3〉 = 1/3, starting 
from one mutation. The above formulation can be generalized to larger N, but against expectations, the proba-
bility of fixation starting from one mutant for N ≥ 4 is greater than 1/N, and more generally, the probability of 
fixation starting from i < N/2 mutants is greater than i/N. The linear algebraic system can be solved exactly for 
relatively small values of N. For larger N, we perform numerical simulations of the Moran model (the results are 
verified by solving the corresponding Kolmogorov system of equations for 10,000 realizations). The birth-death 
formulation of the Moran process and the haploid Wright-Fisher model (see the Supplement for details) reveal 
similar patterns. In these cases, the probability of a mutant to fixate starting from i < N/2 mutants is greater than 
i/N, even for N = 3 (and for N > 3).

Results and Discussion
Here we model GEI using a Moran process with two alleles, a pre-existing allele “A”, and a newly arising mutation 
“a”, where we randomly assign fitness values based on genotype and position in the ring. We consider three such 
GEI models. In the first, fitness is purely a function of location in the ring, with the two alleles having equal fitness 
at any given location. This treatment serves as a control in our numerical results, since the variance in fitness 
between locations in the ring can be held the same as our other models. In the second anti-correlated selection 
coefficient model, the selective coefficient for the wild type A allele randomly varies around the ring and is given 
by r + σi, where σi is randomly drawn from a zero mean distribution; while the fitness of the newly arising, 
mutant allele a at any given location is simply r − σi. Finally, under a third more general GEI model the selective 
coefficients for the two alleles at each location are either randomly drawn from the same zero mean distribution 
or the fitness values for A are just shuffled with respect to location for a (in this second case all moments are 
identical). We are interested in the expected probability of the newly arising mutation fixing, averaged over all 
realizations of the fitness landscape. As demonstrated in Fig. 1 we observe that the mean fixation probabilities are 
1/N for a newly arising mutation under our control condition, whereas under our other two models, where GEI 
exists, newly arising mutations appear to have a selective advantage and fix with a probability greater than 1/N. 
The increased likelihood of fixation cannot be explained simply by a reduction in effective population size in the 
population due to a high variance in reproductive success49, since the controls have an identical variance in fitness 
yet do not exhibit increased fixation rates.

Under our GEI Moran model, newly arising mutants with no average selective advantage behave as if they are 
advantageous. For varying values of N, we carried out numerical simulations of the Moran model and verified 
results by solving the corresponding Kolmogorov system of equations (see the Method Section). The results for a 
circle are presented in Fig. 2 where the average fixation probability of a newly arising mutation (〈PN〉, where 〈.〉 is 
the expected value with respect to a given probability distribution) times N is plotted against N (under neutrality 
〈PN〉N = 1 so this is a convenient way to represent the increased fixation probability). For relatively small values of 
N, 〈PN〉N increases linearly with N, while the increase of 〈PN〉N appears to become sub-linear asN becomes large. 
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The magnitude of the effect is large and depends on the variance and the higher moments of the underlying fitness 
distribution with respect to location. While the increased fixation probability is only about 1% for N = 4, fixation 
probabilities can increase by a factor of twenty for larger N. The larger the variance in fitness across environments 
the greater the deviation of PN from the neutral result for small values of N, but at the same time the lower the size 
N at which the behavior of 〈PN〉N becomes sub-linear.

The linear regime (see the panel in Fig. 2) allows us to calculate the effective fitness increment acquired by 
the non-favored minority allele. In the simple (non-random) Moran process on a complete graph (where all cells 
are connected), fixation probability of an advantageous mutant with fitness r (with wild type fitness given by 1) 
is given by (1 − 1/r)/(1 − 1/rN) ≈ (r − 1)/r (for large N). Similarly, for a circle this quantity is given by 2(r − 1)/
(3r − 1). It follows that fixation probability times N will behave as a linear function in N. Finding the slope of 
straight lines in the panel of Fig. 2 (for circles) and Supplement Figure S1 (for complete graphs) and calculating 
the effective fitness of the mutants, we can estimate the amount of positive selection experienced by minority 
mutants in each case. The results are presented in Supplement Figure S2. As expected, the fitness increment is 
zero for σ = 0 and it grows with standard deviation, reaching an 8% fitness increase as the standard deviation 
approaches 1.

Figure 1. The average mutant fixation probability (starting with one mutant cell) as a function of the standard 
deviation of the bimodal fitness distribution for different degrees of correlation between mutant and non-
mutant fitness values (N = 8), obtained from the exact analytical calculations for the death-birth Moran process 
(see the Method Section).

Figure 2. The average mutant fixation probability times N as a function of N for a death-birth Moran process 
in a circle. The fitness of both mutants and wild types comes from the same probability distribution and is given 
by 1 − σ and 1 + σ with equal probability (the bimodal distribution). For a neutral mutant, this function is 
expected to look like a horizontal line at level 1; a deviation from horizontal indicates selective advantage. The 
inset shows the behavior for small values of N. The points in the main figure as well in the small internal figure 
are based on stochastic simulations and error bars are standard error of the mean for a set of 5 realizations. The 
solid curves in the main figure are based on fitting the numerical simulation data to logarithmic functions. In 
the small internal figure, curves show the results of exact analytic calculation.

http://S1
http://S2
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We have extended our calculations to the birth-death formulation of the Moran process and to the 
Wright-Fisher (diploid) model (see Supplement). Again, the minority mutant in the presence of randomness 
behaves as if it is selected for. The magnitude of the effect is larger for the birth-death process compared to the 
death-birth process, and even larger for the Wright-Fisher model. For these two models, the mutant fixation 
probability increases above 1/N even in the N = 3 case (Supplement Figures S3 and S4). The case N = 3 in the 
death-birth Moran process is special, because following a death event, only two cells remain to compete with 
each other for the chance of reproduction. As a consequence, the N = 3 case for the death-birth process behaves 
similarly to the N = 2 case for the other two processes (birth-death Moran and Wright Fisher), exhibiting the 
probability of fixation of 1/N. Moreover, we have calculated the fixation probability for a 2D lattice (Supplement 
Figures S5) and for different shapes of the probability distributions (Supplement Figures S6 and S7). The same 
core results hold in all these situations.

As the fitness probability distributions of mutants and wild type cells are identical, the only factor that differ-
entiates newly arising from pre-existing alleles under our model is the fact that initially newly arising mutations 
are a minority. In fact, newly arising mutations fix at a rate greater than that expected under neutrality only if 
initially they are minority. We carried out numerical simulations where we started the newly arising mutation at 
frequencies greater than 1/N and looked at fixation probabilities relative to the same probability expected under 
neutrality (see Supplement Figure S8). It appears that the increased likelihood of fixation under our model is 
primarily due to initially rare variants being much more likely to enter the population, and as the new mutation 
become more common its behavior is more neutral like. It is of interest that once the new mutation reaches a fre-
quency of greater than 50% its likelihood of eventual fixation is actually lower than under neutrality, this makes 
intuitive sense since the pre-existing allele at the locus then becomes the rarer more favored allele. The “advan-
tage” afforded by being a minority can override a reproductive disadvantage.

Some intuition that contributes to our understanding of this interesting phenomenon may come from con-
sidering different configurations of random landscapes and thinking about resulting fixation probabilities. For 
a minority mutant (say, one mutant), the biggest hurdle to overcome is to not go extinct and expand to a sizable 
community. Once this is achieved, the probability of extinction becomes small, and the probability of fixation 
only weakly depends on N. Now, suppose that N is large, and consider all fitness configurations in a vicinity of 
size M around the mutant. A certain fraction of configurations (which is independent of N) will be favorable, 
that is, in all the spots inside the vicinity the mutant will have higher fitness than the wild type; the probability 
of this is calculated easily from combinatorics, and depends on M but not on N. When this happens, the mutant 
will rise with a high probability to size M, and therefore will have completed the hardest part of the journey. What 
is left is to fixate from size M, which is done with a probability that decays with N slower than 1/N. This shows 
that because of the presence of favorable fitness landscapes, a minority mutant receives a boost in the probability 
of fixation, which only slowly decays with N. As a result, its fixation probability is higher than neutral. Figure 3 
demonstrates that mutants whose fitness values come from a distribution with a lower mean could behave as if 
they are advantageous (that is, fixate with a probability larger than1/N). This shows that being a minority can 
compensate for having a lower mean fitness.

If we keep both the mean and the standard deviation of the fitness distributions constant, and vary the third 
moment (skewness), we observe that 〈PN〉N is the largest for the largest negative skewness (Fig. 4). Next, let us 
suppose that while having equal means, the standard deviation of the two distributions can be different (where 
larger standard deviations signify larger randomness). It turns out that for the minority population, it is beneficial 
to be as deterministic as possible. Larger standard deviations of the background distribution and smaller standard 
deviations of the mutant distribution lead to higher values of mutant fixation probabilities (Fig. 5).

Figure 3. The average mutant fixation probability as a function of the standard deviation of the bimodal fitness 
distribution (N = 8) for different average fitness values of the mutants, with 〈r〉 = 1 and σ σ= ~ (equal standard

−deviations), in a death birth Moran process. Normally, a neutral mutant will have 〈PN〉 = 1/N = 0.125 
(dashed horizontal line). Mutants with the mean fitness less than that of the wild type behave as if they are 
advantageous.

http://S3
http://S4
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The effects of spatial structure and heterogeneity are important in biological models, including evolutionary, 
biomedical, and social network models. It is known that structure of the network can suppress or amplify the fixa-
tion probability50, 51. In addition, the heterogeneity of the spatial structure has impacts on the fixation probability, 
see for example21, 44, 48, 52, 53. Although several papers have focused on the study of heterogeneous networks, less 
effort has been devoted to understanding the effect of heterogeneity, due to the spatial fitness distribution and 
environmental stress, and its effect on the invasion probability. In real systems, the fitness of individuals strongly 
depends on the microenvironmental conditions. For example, in models of bacterial growth or cancer progres-
sion, fitness can be a function of the spatial distribution of nutrients and microenvironment. As demonstrated 
here, random fitness distributions can significantly influence biological and social systems dynamics, leading to 
an increased probability of newly arising mutations fixing.

Although the model of this paper is motivated in terms of the fixation probability of a newly arising mutation 
in a haploid population, it is equally applicable to a clone that is reproducing and colonizing new environments. 
Thus, an important biological application of the ring geometry studied here is the model of a human colonic 
crypt, where stem cells are situated along circular bands (in this context, fixation is referred to as monoclonal 
conversion)54. These cells divide leading to proliferation or differentiation (equivalent to removal in our models), 
and the origins of colon cancer can be studied by examining selection dynamics of mutants in such a system. Of 
particular importance is theAPC+/− mutant, which in many models is considered neutral or slightly disadvanta-
geous. Such a mutant taking over in one of about 107 crypts in a colon is often a first step in the pathway to colon 
cancer. If the randomness of the environment is taken into account, the theoretical likelihood of such an event 
can be significantly higher than predicted by the standard theories. In fact, given the relatively small population 
size of the stem cell pool, such mutants will behave as if they are advantageous, leading to very different dynamics, 
see for example16, 55.

Figure 4. The function 〈PN〉N in terms of the skewness (N = 4, death–birthMoranprocess). We assume that the 
mean fitness of the mutants is equal to that of the wild types, and σ σ=

. As before, 〈PN〉N greater that unity 
indicates that the mutants experience selective advantage; the effect is the largest for the largest negative 
skewness.

Figure 5. The heat plot for PN as a function of the two standard deviations (N = 8, death–birthMoranprocess). 
The amount of variance in the distribution of fitness values of the wild types (mutants) increases along the 
horizontal (vertical) axis. The largest fitness advantage of mutants (in red, right bottom corner) corresponds to 
the largest variation of the wild types and smallest variation of the mutants.
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The results of our model have far reaching consequences: the rate of molecular evolution may be higher for 
genes that are important in GEI, the relationship between patterns of standing variation versus divergence may 
be more complex than is generally thought, and in processes where fixation events are commonly observed (e.g., 
tumorigenesis)–fixed mutants may not necessarily be “adaptive”, but instead only exhibit environment heter-
ogeneity. A large part of population genetics theory relies on the idea that neutral alleles fix with probability 
1/Ne. This fundamental notion plays a role in famous concepts such as Kimura’s molecular clock, genetic drift, 
evolutionary divergence, and coalescence56, 57. In this paper we show that non-favored mutants can behave as if 
they are selected for, and fixate at rates much higher than 1/Ne under models where genotype by environmental 
interactions exist. Our findings have implications for studies of between species DNA divergence and within 
species standing variation, which may not match neutral expectation. Tests for neutrality versus selection, as well 
as inferences about demography will also be impacted58.
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