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ORIGINAL ARTICLE
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Abstract

Rationale: Early detection of respiratory diseases is critical
to facilitate delivery of disease-modifying interventions.
Extracellular vesicle-enriched microRNAs (EV-miRNAs) may
represent reliable markers of early lung injury.

Objectives: Evaluate associations of plasma EV-miRNAs with
lung function.

Methods: The prospective NAS (Normative Aging Study)
collected plasma EV-miRNA measurements from 1996–2015
and spirometry every 3–5 years through 2019. Associations of
EV-miRNAs with baseline lung function were modeled using
linear regression. To complement the individual miRNA
approach, unsupervised machine learning was used to identify
clusters of participants with distinct EV-miRNA profiles.
Associations of EV-miRNA profiles with multivariate latent
longitudinal lung function trajectories were modeled using
log binomial regression. Biological functions of significant
EV-miRNAs were explored using pathway analyses. Results
were replicated in an independent sample of NAS participants

and in the HEALS (Health Effects of Arsenic Longitudinal
Study).

Measurements and Main Results: In the main cohort
of 656 participants, 51 plasma EV-miRNAs were associated
with baseline lung function (false discovery rate-adjusted
P value, 0.05), 28 of which were replicated in the independent
NAS sample and/or in the HEALS cohort. A subset of
participants with distinct EV-miRNA expression patterns had
increased risk of declining lung function over time, which
was replicated in the independent NAS sample. Significant
EV-miRNAs were shown in pathway analyses to target biological
pathways that regulate respiratory cellular immunity, the lung
inflammatory response, and airway structural integrity.

Conclusions: Plasma EV-miRNAs may represent a robust
biomarker of subclinical lung injury and may facilitate early
identification and treatment of patients at risk of developing
overt lung disease.

Keywords: extracellular vesicles; microRNAs; lung function;
spirometry
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Chronic respiratory diseases, including
chronic obstructive pulmonary disease
(COPD), affect over 540 million people
worldwide and are leading causes of
disability and death (1). The prevalence of
chronic respiratory diseases continues to
increase, which may be partially attributed to
a rising global burden of air pollution and
smoking (2). Spirometry remains the gold
standard for diagnosing many respiratory
diseases (3), but early pathophysiologic
changes precede overt decrements in
spirometric parameters (4, 5). Early detection
of respiratory diseases can facilitate delivery
of disease-modifying interventions that slow
lung function decline (6–8). Thus, as the
burden of respiratory diseases continues
to rise, the need for robust markers of
subclinical lung injury becomes increasingly
urgent.

Circulating extracellular vesicles (EVs)
may be accessible markers of early lung
damage. EVs are nano-sized, membrane-
bound vesicles that arise naturally from cells

in the lung and other organs in the body (9).
EVs facilitate intercellular communication by
transferring biologically active cargo to
neighboring cells. This cargo includes small,
noncoding microRNAs (EV-miRNAs) that
regulate mRNA stability and alter biological
activity in recipient cells (10). EVs are
released in response to inhaled exposures
including cigarette smoke and particulate
air pollution (11, 12). EVs modulate
immunologic processes via their miRNA
cargo (13) and trigger a pro-inflammatory
signaling cascade that may contribute to
airway remodeling (14). EV-miRNAsmay
therefore provide a mechanistic link between
inhaled exposures and the pathogenesis of
chronic lung diseases.

Emerging research suggests changes in
blood EVs correlate with lung function decline
and respiratory diseases. Cross-sectional
profiling of plasma EVs in nonsmokers,
smokers, and COPD patients showed
differential EV concentration, phenotypic
characteristics, and EV-miRNA expression in
COPD patients compared with smokers and
nonsmokers (15). In a prospective study of
48 patients with COPD, higher numbers of
endothelial microparticles, a type of EVs,
were predictive of accelerated lung function
decline (16). However, while prior studies have
suggested associations between plasma EVs
and lung function impairment, the extent to
which these relationships are independent of
confounding factors such as smoking remains
unknown. Further, no prior studies have
examined the role of total EV-miRNAs in the
context of lung function decline over time.
We therefore aimed to evaluate associations of
EV-miRNAs with lung function in two
cohorts of older adults.

Methods

Study Design
The US Veterans Affairs NAS (Normative
Aging Study) is a longitudinal cohort study
based inMassachusetts that recruited 2,280
men aged 21–80 years (17, 18). Participants
were enrolled from 1961 to 1970 and were
free of known chronic medical conditions at
the time of enrollment. Participants under-
went comprehensive medical examinations
every 3–5 years on a continuous rolling basis.

The present study included 656 men in the
main cohort and 80 men in the replication
cohort, all of whomwere among the study’s
original participants, who provided plasma
for EV-miRNAmeasurements between 1996
and 2015. The study was approved by the
Veterans Affairs Boston Healthcare System
Institutional Review Board.

The HEALS (Health Effects of Arsenic
Longitudinal Study) is a prospective cohort
study in Araihazar, Bangladesh (19). A subset
of participants (N=15) who were free of
chronic medical conditions were chosen for
replication. The study was approved by the
Ethical Committee of the Bangladesh
Medical Research Council. All study
procedures were approved by the Columbia
University Institutional Review Board.
All study participants provided consent at
each visit.

EV-miRNA Profiling
Fasting venous blood was collected each
visit and centrifuged to separate plasma.
Plasma samples were immediately stored at
280�C and banked for use in future studies.
Aliquots were thawed just before use in this
study. EVs were isolated using a modified
ultracentrifugation method (20, 21). This
workflow was previously validated by
visualizing EVs using transmission electron
microscopy and immune-gold labeling
with antibodies for CD-81 and CD-63
surface markers according to International
Society for Extracellular Vesicles guidelines
(12, 20, 22, 23).

In NAS, miRNAs were isolated
using the Plasma/Serum Circulating
and Exosomal RNA Purification Kit (Norgen
Biotek) and sequenced using a previously
validated protocol (24, 25). In HEALS,
miRNAs were profiled using the TaqMan
OpenArrayTM system (ThermoFisher
Scientific). Complete protocols for
EV-miRNA sequencing are described in
the online supplement.

Spirometry
Spirometry was performed using water-seal
or portable spirometers in accordance with
American Thoracic Society guidelines (26).
Portable spirometers were validated in
previous studies (27). Lung function

At a Glance Commentary

Scientific Knowledge on the
Subject: Extracellular vesicles (EVs)
are nano-sized, membrane-bound
vesicles that arise naturally from cells
in the lung and contain biologically
active cargo including EV-encapsulated
microRNAs (EV-miRNAs). Emerging
research suggests EV-miRNAs may
provide a mechanistic link between
inhaled exposures and the pathogenesis
of chronic lung diseases.

What This Study Adds to the
Field: This is the first extracellular
vesicle-wide association study to
evaluate associations of global plasma
EV-miRNAs with lung function in
humans. The study suggests that
EV-miRNAs may represent a viable
biomarker of subclinical lung injury
and may help identify individuals at
risk of developing lung
function impairment.
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parameters including the FEV1, FVC, and
the maximal midexpiratory flow (MMEF)
were measured in both cohorts.

Covariates
Covariates were collected at every visit. Age,
sex, and race/ethnicity were self-reported.
Body mass index (BMI) was calculated
based uponmeasured height and weight.
Smoking histories were updated every visit.
Participants reported their smoking start
and stop dates and the average number of
cigarettes smoked per day, which were
used to calculate total smoking pack-years.
Physical activity was assessed using a
validated scale (28) and recorded as
metabolic equivalent tasks (METs) per week.

Main Cohort and Replication
The main analyses were conducted in 656
NAS participants using baseline EV-miRNA
data (Figure E1 in the online supplement).
Parallel replication was performed in 80
independent NAS participants. In addition,
analyses were repeated using EV-miRNAs
measured at a second time point (median
6 years after baseline [interquartile range
(IQR), 4–8]) in 401 of the original 656
participants. The parallel replication used
independent samples and ensured observed
associations were not a product of the
randomly selected samples.

Results were replicated in HEALS, an
external cohort that used a different
miRNA assay. The orthogonal validation in
HEALS was designed to show results are
reproducible on other technological
platforms and in diverse populations.
Further details about replication are
described in the online supplement.

Statistical Analysis
Using an approach similar to a genome-wide
association study, we performed an EVWAS
(EV-miRNA-wide association study). Linear
regression models were fitted to test
associations of EV-miRNAs with baseline
lung function in each group. Models were
adjusted for baseline age, BMI, smoking
pack-years, andMETs. All terms were
modeled as linear because they displayed a
linear association with spirometry data. Use
of generalized additive models and cubic
splines did not improve model fit. False
discovery rate (FDR) correction was used to
account for multiple comparisons (29).

In NAS, final estimates were pooled
from 10 multiple imputed datasets, as five
participants (0.8%) were missing baseline

spirometry and 36 (5.5%) were missing
baseline METs. In sensitivity analyses,
participants with preexisting physician-
diagnosed lung diseases including asthma,
emphysema, and chronic bronchitis were
excluded. To assess potential effect
modification, models were stratified by
smoking status.

DNA Intelligent Analysis (DIANA)-
miRPath version 3.0 software (30) was used
to explore the biological roles of EV-miRNAs
that were positively versus negatively
associated with lung function. To provide
greater confidence in pathway analyses, only
EV-miRNAs that replicated outside of the
main cohort were included in the pathway
analyses. Further, DIANA-miRPath analyses
were restricted to EV-miRNAs with
experimentally validated mRNA interactions
fromDIANA-TarBase (31, 32). Enriched
non-cancer-related Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were
identified using an FDR threshold of,0.05.

Multivariate latent class growth
modeling groups individuals who share
similar longitudinal data patterns and was

used to identify longitudinal lung function
trajectories (33, 34). The measured FEV1,
FVC, FEV1/FVC, andMMEF informed the
latent classes. Multiple link functions and
trajectory class numbers were evaluated.
The optimal model was selected based upon
multiple model fit indices including the
Bayes Information Criteria, the posterior
probability for each class (.70%), and the
interpretability of identified trajectory
shapes (35, 36). Associations of individual
EV-miRNAs with lung function trajectories
were modeled using log binomial regression.
Models were adjusted for baseline age,
BMI, smoking pack-years, andMETs, and
corrected for FDR. Modeling details are
available in the online supplement.

To complement the individual
EV-miRNA approach, unsupervised
machine learning was used to evaluate
associations of complex EV-miRNA profiles,
rather than individual EV-miRNAs in
isolation, with lung function trajectories.
K-means clustering was applied to all plasma
EV-miRNAs to partition participants into
distinct and nonoverlapping clusters based

Table 1. Baseline Characteristics of Normative Aging Study Participants

Main
Analysis

Replication
Group

N 656 80
Age, mean (SD) 73.2 (7.0) 74.1 (6.7)
BMI, mean (SD) 28.3 (4.0) 27.6 (4.6)
Metabolic equivalent of task (hours/week,

median (IQR)
7.4 (2.5–19.6) 7.1 (1.5–16.9)

Self-reported smoking status, no. (%)
Never 200 (30.5) 27 (33.8)
Former 431 (65.7) 49 (61.3)
Current 25 (3.8) 4 (5.0)

Pack-years in ever smokers, median (IQR) 12.0 (0.0–33.3) 10.0 (0.0–32.2)
Baseline lung function, mean (SD)
FVC, L 3.3 (0.7) 3.4 (0.7)
FEV1, L 2.5 (0.6) 2.5 (0.6)
FEV1/FVC 74.9 (8.2) 74.3 (8.8)
MMEF, L/min 239.0 (109.9) 234.4 (108.1)

No. spirometry exams, median (IQR) 3.0 (1.0–4.0) 3.0 (1.0–7.0)
Years of spirometry follow-up, median (IQR) 6.0 (0.0–12.0) 6.0 (0.0–18.0)
Medical comorbidities, no. (%)
Coronary artery disease* 202 (30.8) 22 (27.5)
Diabetes† 128 (19.5) 14 (17.5)
Hypertension‡ 481 (73.3) 53 (66.3)
Lung disease§ 61 (9.3) 4 (5.0)
Obesityjj 181 (27.6) 20 (25.0)

Definition of abbreviations: BMI=body mass index; IQR= interquartile range; L= liters;
MMEF=maximal mid-expiratory flow; SD=standard deviation.
*Coronary Artery Disease: Myocardial infarction or angina pectoris based on Framingham
Study criteria.
†Diabetes: Physician-diagnosed or fasting glucose.126 mg/dL.
‡Hypertension: Blood pressure>140/90 mm Hg.
§Lung Disease: Physician-diagnosed asthma, emphysema, or chronic bronchitis.
||Obesity: BMI> 30.0 kg/m2
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on their EV-miRNA profiles. K-means
clustering is an unsupervised machine
learning algorithm that partitions data
points into groups based on similarities in
the data. Using several internal validation
metrics and measures of stability as guides
(37), varying cluster sizes were produced
and analyzed to ensure the results were not
specific to any chosen cluster size. Log-
binomial regression was used to identify
EV-miRNA profiles associated with lung
function trajectory class, adjusting for age,
BMI, smoking pack-years, and METs. To
characterize the EV-miRNA profiles
associated with lung function trajectories,
least absolute shrinkage and selection
operator (LASSO) regression was used to
identify key EV-miRNA drivers of cluster
formation. The optimal l, which is a tuning
parameter that determines the amount of
coefficient shrinkage in a penalized
regression, was chosen using leave-one-out
cross-validation.

Statistical analyses were performed
using R software (4.0.3) (38).

Results

Baseline Characteristics
The baseline characteristics of the cohorts are
shown in Table 1. The NAS population was
comprised of European-American
participants, while the HEALS cohort was
comprised of Bangladeshi participants
(Table E1in the online supplement). The
mean age in the main NAS cohort was
73.2 (7.0) years. Over 50% of participants
were current or former smokers. In total,
473 (72%) of the main NAS participants had
follow-up spirometry (Figure E2).

EV-miRNAs and Lung Function
In the main NAS cohort, 381 EV-miRNAs
were detected in at least 70% of plasma
samples. Of these, 13 EV-miRNAs were
associated with lower baseline FEV1 and 16
with lower FVC (Figure 1, Figure E3). The
miRNA hsa-miR-24–3p was most strongly
associated with lower lung function, such
that each doubling in hsa-miR-24–3p was

associated with a 134 (95% confidence
interval [CI] 40–220) mL reduction in FEV1

and a 191 (95% CI 80–300) mL decrement
in FVC.

In comparison, 27 EV-miRNAs were
associated with higher baseline FEV1 and 28
with higher FVC (Figure 1, Figure E3). The
miRNA hsa-miR-2110 was most strongly
associated with higher lung function, such
that a 130 (95% CI 70–190) mL increase in
FEV1 and a 165 (95% CI 90–240) mL
increment in FVC were observed per
doubling of hsa-miR-2110.

Results were similar when participants
with preexisting physician-diagnosed lung
diseases (N=61) were excluded from the
analyses (Figure E5) and in analyses stratified
by smoking status (Figure E6). EV-miRNAs
that were associated with lung function were
not associated with other chronic conditions
including hypertension, diabetes, and
coronary artery disease (Figure E7).

In total, 23 of the 51 EV-miRNAs
associated with lung function in the main
analysis were persistently associated with
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point in the plot represents an effect estimate as fold change (x-axis) and –log10 (P value) (y-axis) for each individual miRNA. Red points represent
EV-miRNAs associated with lower baseline lung function and green points are EV-miRNAs associated with higher baseline lung function after correction
for false discovery rate. Models were adjusted for baseline age, body mass index, smoking pack-years, and metabolic equivalents of task. To see a
version of Figure 1 that labels the differentially expressed EV-miRNAs, please refer to Figure E3. L= liters; MMEF=maximal mid-expiratory flow.

ORIGINAL ARTICLE

Eckhardt, Gambazza, Bloomquist, et al.: Extracellular microRNAs and Lung Function 53

 



lung function at a second time point in the
original NAS participants. Due to limited
sensitivity of the HEALS assay, only a
fraction of the EV-miRNAs detected in NAS
were detected in over 33% of HEALS
participants. Nonetheless, across the parallel
replication and external validation groups,
13 EV-miRNAs were consistently associated
with lower FEV1 and 13 with lower FVC
(Tables E2 and E3). Twelve overlapping
EV-miRNAs were associated with both lower
FEV1 and FVC (Figure E4). In comparison,
12 EV-miRNAs were consistently associated
with higher FEV1 and 11 with higher FVC
(Tables E2 and E3); 10 overlapping
EV-miRNAs were associated with both
higher FEV1 and FVC (Figure E4).

Pathway Analysis of EV-miRNAs
A pathway analysis was performed for the
EV-miRNAs that were positively associated
with lung function in the main and
replication cohorts. Significant KEGG
pathways included fatty acid biosynthesis/
metabolism, steroid biosynthesis, adherens
junctions, lysine degradation, protein

processing in the endoplasmic reticulum
(ER), cell cycle, and the hippo, transforming
growth factor-b (TGF-b), and thyroid
hormone signaling pathways (FDR-adjusted
P value, 0.05) (Figure 2A, Table E4).

A separate pathway analysis was
performed for the replicable EV-miRNAs
that were negatively associated with lung
function. Except for steroid biosynthesis and
ER protein processing, the same pathways
were enriched, in addition to five new
pathways including bacterial invasion of
epithelial cells, extracellular matrix (ECM)-
receptor interaction, and the FoxO, mTOR,
and p53 signaling pathways (FDR-adjusted
P value, 0.05) (Figure 2B; Table E5). Ten
EV-miRNAs did not have experimentally
validated mRNA targets (Tables E4 and E5).

EV-miRNAs and Latent Lung Function
Trajectories
Among 656 NAS participants contributing
4,730 person-years of follow-up, the
multivariate latent class growth model
yielded two distinct lung function trajectory
classes (Figure 3). Participants in the “Stable”

trajectory class (N=141) had steady lung
function over time, while participants in the
“Declining” trajectory class (N=332) had
decreasing lung function. The miRNA hsa-
miR-532–5p was associated with higher risk
of belonging to the “Declining” trajectory
class (Relative Risk [RR] 1.12, 95% CI
1.05–1.19), while hsa-miR-193b-5p was
associated with lower risk of belonging to the
“Declining” trajectory class (RR 0.94, 95% CI
0.91–0.97).

In the parallel replication cohort,
“Stable” and “Declining” trajectory classes
were again identified. The hsa-miR-193–5p
was persistently associated with lower risk of
belonging to the “Declining” trajectory class
(RR 0.57, 95% CI 0.37–0.89).

Machine Learning-Generated
EV-miRNA Profiles
To comprehensively capture complex
patterns of EV-miRNAs and identify specific
profiles that precede lung function decline,
unsupervised K-means clustering was
applied to partition participants based on
the similarity of their EV-miRNA profiles.
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Figure 2. Biological pathways targeted by candidate extracellular vesicle-encapsulated microRNAs (EV-miRNAs) that were (A) positively associated with
baseline lung function and (B) negatively associated with baseline lung function. (A) shows biological pathways targeted by the EV-miRNAs that were
positively associated with baseline lung function. (B) shows biological pathways targeted by the EV-miRNAs that were negatively associated with baseline
lung function. The green boxes in (A) and red boxes in (B) indicate KEGG pathways that were enriched for candidate EV-miRNAs (FDR-corrected P value
, 0.05). ECM=extracellular matrix; FDR=false discovery rate; hsa=homosapiens and is the accepted convention to identify human microRNAs;
KEGG=Kyoto Encyclopedia of Genes and Genomes; TGF=transforming growth factor.
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Figure 4. Participant clusters derived through similarities in extracellular vesicle-encapsulated microRNA (EV-miRNA) profiles had differential
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Internal validation metrics (37) suggested
the optimal number of EV-miRNA-based
participant clusters ranged from 3–5
(Figure 4). When participants were divided
into three clusters, one cluster (C1) had
significantly higher risk of belonging to the
“Declining” lung function class (RR 1.19,
95% CI 1.05–1.35) (Figures 4 and E8).
Similarly, when participants were partitioned
into four and five clusters, the same C1
persisted and its participants had consistently
higher risk of belonging to the “Declining”
lung function class (four clusters: RR 1.16,
95% CI 1.00–1.33; five clusters: RR 1.24, 95%
CI 1.06–1.44) (Figures 4 and E8). When non-
C1 clusters were pooled into one reference
group, C1 participants had persistently
higher risk of belonging to the “Declining”
lung function class (Figure E9). In the
parallel replication cohort, we again
identified a subset of participants with higher
risk of belonging to the “Declining” lung
function trajectory based solely on

EV-miRNA profiles (Figure E10). Together,
these results demonstrate that a specific
EV-miRNA profile clearly distinct from the
others (Figure 5A) was associated with future
lung function changes.

We additionally tested whether EV-
miRNA-based clusters were associated with
lung function trajectories independent of
baseline lung function. Adding cluster
groups to models with baseline lung function
as predictors and trajectory class
membership as the outcome significantly
improved model fit (all likelihood ratio
tests, 0.05). This finding demonstrates that
EV-miRNA-based participant clusters
contributed information independent of and
in addition to baseline lung function
measurements.

Identification of EV-miRNA Drivers of
Cluster Formation
LASSO regression was applied to identify key
EV-miRNA drivers that separated C1 from

other EV-miRNA profiles. After
harmonizing the results across models for
three, four and five clusters, LASSO
regression identified 11 EV-miRNAs that
consistently differentiated the C1
EV-miRNA profile from other profiles
(Figure 5B). Eight EV-miRNAs were highly
expressed while three EV-miRNAs had low
expression among C1 participants.

Pathway Analysis of EV-miRNAs with
Differential Expression in C1 Profile
A pathway analysis was performed for the
11 EV-miRNAs that were differentially
expressed in the C1 profile. Thirteen mRNA
targets were identified, 12 of which
overlapped with targets of the EV-miRNAs
that were associated with baseline lung
function (Figure 5C). RNA transport was
additionally enriched for the C1 profile
(FDR-adjusted P value, 0.05) (Table E6).
Together, these results show that this
distinctive EV-miRNA profile, characterized
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Figure 5. Evaluating differential extracellular vesicle-encapsulated microRNA (EV-miRNA) expression in Cluster One participants and identifying
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by changes in 11 EV-miRNAs enriched in
pathways related to lung tissue architecture
and immunity, is associated with future lung
function decline.

Discussion

In a large prospective study of older adults,
plasma EV-miRNAs were associated with
current and prospective lung function.
Distinctive profiles made from a
constellation of EV-miRNAs were
significantly associated with future lung
function decline. Observed associations of
EV-miRNAs with lung function persisted in
both parallel replication and external
validation cohorts. Candidate EV-miRNAs
interacted with mRNA targets that were
enriched in cellular metabolism, airway
structural integrity, and signal transduction
pathways, which are highly relevant for
respiratory cellular immunity and the lung
inflammatory response (39, 40). EV-miRNAs
may represent robust biomarkers of
subclinical lung damage, and may help
identify individuals at risk of developing
symptomatic lung disease.

This study introduces the concept of the
EVWAS, a study of global EV-miRNAs
using an untargeted approach. To our
knowledge, this is the first EVWAS to
evaluate associations of plasma EV-miRNAs
with lung function in humans. Across the
main cohort, a parallel replication cohort,
and an external validation cohort, 13
EV-miRNAs were positively associated with
baseline FEV1 and FVC, and 14 were
negatively associated with baseline lung
function, suggesting a strong association of
EV-miRNAs with flow rates and vital
capacity. Many of the differentially expressed
EV-miRNAs were novel EV-miRNAs with
respect to biological impact on lung function,
including hsa-miR-2110, hsa-miR-24–3p,
and hsa-miR-193–5p. However, our study
also recapitulated findings from prior
targeted studies of plasma EV-miRNAs.
Hsa-let-7d-5p was positively associated with
baseline lung function, which is consistent
with existing literature showing hsa-let-7d-5p
exerts a protective effect on lung function
andmitigates the impact of inhaled
environmental insults (41). In comparison,
hsa-miR-21–5pwas negatively associated
with FVC, which is consistent with prior
research showing hsa-miR-21–5pwas
correlated with FVC decline among patients
with pulmonary fibrosis (42). The observed

relationship between EV-miRNAs and lung
function was not explained by the presence
of comorbidmedical conditions, and there
was no strong evidence for effect
modification by smoking.

Our results broaden the scope of limited
existing research on the role of EVs in lung
disease. Previous cross-sectional studies
identified differential EV concentration, EV
surface protein expression, and EV-miRNA
expression among COPD patients compared
with smokers and nonsmokers (15, 43, 44).
One prior longitudinal study found that
higher numbers of endothelial microparticles
predicted accelerated FEV1 decline in COPD
patients after 1 year of follow-up (16). The
present study expands upon these findings
by evaluating the contribution of easily
accessible plasma EV-miRNAs using an
untargeted and unprecedented approach,
andmay highlight novel therapeutic targets
for improving respiratory health.

While individual EV-miRNAs have clear
associations with lung health, our results also
suggest EV-miRNAsmay function in
biological networks that impact lung
physiology.When participants were
partitioned into EV-miRNA-based clusters to
flexibly capture complex expression patterns
and interplay between EV-miRNAs, one
EV-miRNAprofile was consistently associated
with greater risk of future lung function
decline. This EV-miRNA profile was
associated with declining lung function to
greater extent than other blood-basedmarkers
including C-reactive protein levels and blood
leukocyte concentrations (45, 46). Combined
with the observation that only two individual
EV-miRNAs were prominently associated
with lung function trajectory, the evidence
suggests that a network of EV-miRNAsmay
act in concert to reflect and potentially
generate future lung function impairment.
Future studies should explore whether specific
combinations of EV-miRNAs canmaximize
the predictive value for lung function decline
and incident lung diseases.

In addition to identifying the potential
utility of EV-miRNAs as clinical biomarkers,
our results elucidated the biological pathways
through which circulating EV-miRNAs may
impact respiratory health. EV-miRNAs that
were positively associated with baseline lung
function modulate protein processing in
the ER, which regulates protein folding,
transport and degradation. Surfactant
proteins are synthesized and processed in
the ER and physiologic protein processing
maintains cellular proteostasis in the lungs.

Thus, conserved protein processing may
represent a key pathway through which these
EV-miRNAs preserve lung health (47).

EV-miRNAs that were negatively
associated with baseline lung function
modulate multiple signaling pathways
including the mTOR signaling pathway. In
particular, hsa-miR-27b-3p modulates the
TSC1 (tuberous sclerosis complex 1) gene
(30), which regulates activation of mTOR
signaling (48). Activation of mTOR signaling
drives senescence of regenerative cells in the
lung and contributes to destruction of the
lung parenchyma (49). Significant
EV-miRNAs also modulate the FoxO
signaling pathway. Hsa-miR-126–5p
mediates SIRT1 (sirtuin 1) gene expression
(30), which regulates FoxO activity (50).
FoxO signaling moderates the lung
inflammatory response and antioxidant
genes, and reduced FoxO expression
generates lung inflammation and airspace
enlargement (51). Significant EV-miRNAs
also modulate the p53 signaling pathway.
Specifically, hsa-miR-340–5p mediates
MDM2 (mouse double minute 2) gene
expression (30), which is the primary
regulator of p53 activity (52). In turn, p53
signaling can trigger epithelial cell apoptosis
by activating pro-apoptotic genes, leading to
epithelial damage and distortion of the lung
parenchyma (53).

Aside from regulating key signaling
pathways, EV-miRNAs that were negatively
associated with lung function also impact
susceptibility of epithelial cells to bacterial
invasion. Bacterial invasion triggers
production of pro-inflammatory
cytokines (54), which recruit immune cells
and contribute to chronic airway
inflammation (55–57). Additionally,
significant EV-miRNAs modulate the
interaction between lung cells and the lung
ECM, which consists of elastic and collagen
fibers that maintain lung architecture (58).
The ECM generates biochemical signals that
direct cellular function, and alteration of the
lung ECM-cell surface receptor interaction
can induce airway remodeling and loss of
lung elasticity (59, 60). Future research
should further investigate how plasma
EV-miRNA profiles impact gene expression
levels.

Strengths of the present work include
the prospective population-based cohort
design, evaluation of total EV-miRNAs, large
sample size, and adjustment for well-defined
confounders and determinants of lung
health. However, the study has several
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limitations. First, plasma samples were stored
for several years before analysis, which may
impact EV-miRNA integrity. However,
standard methods of EV enrichment were
implemented, and high-quality miRNA
sequencing data was obtained. Furthermore,
such misclassification should not introduce
confounding to the results. Second, the NAS
cohort represents a homogeneous group of
European-Americans. However, we
successfully replicated our results in
Bangladeshi participants from the HEALS
cohort, suggesting that the interplay between
EV-miRNAs and lung function may
represent a ubiquitous mechanism that is
generalizable across demographic groups.
Third, 28% of the cohort did not have
follow-up spirometry measurements. Loss to
follow-up stemmed primarily from
mortality, nonresponse, and use of
continuous rolling follow-up. Nonetheless,
compared with participants with follow-up
spirometry, those without follow-up
reported older baseline age, higher smoking
pack-years, and lower initial lung function

(Table E7), suggesting any selective survivor
bias would generate an underestimation of
the association between EV-miRNAs and
longitudinal lung function. Fourth, although
it is preferable to have both pre- and
postbronchodilator spirometry (61),
postbronchodilator measurements were not
available in these cohorts. However,
prebronchodilator spirometry is highly
correlated with postbronchodilator
spirometry and remains strongly predictive
of clinical outcomes in longitudinal cohort
studies (62, 63). Fifth, enrichment for
EV-miRNAs naturally captures a small
number of other miRNA carriers including
ribonucleoproteins (64). However, these
miRNAs have also been implicated in
contributing to chronic lung diseases and
are not expected to substantively impact
results (65). Finally, the interactions between
EV-miRNAs and cellular processes need
further investigation. Nonetheless, our
results emphasize the translational
importance of EV-miRNAs in modulating
lung health.

Conclusions
In summary, 28 plasma EV-miRNAs were
consistently associated with lung function
across multiple cohorts. A cluster of
participants with a distinct EV-miRNA
profile experienced increased risk of
accelerated lung function decline. Key
EV-miRNAs may impact respiratory
physiology through biological pathways
that regulate respiratory cellular immunity,
lung inflammation, and airway structural
integrity. Together, these results suggest
that EV-miRNAsmay represent a viable
biomarker of subclinical lung injury and may
help identify individuals at risk of developing
lung function impairment.�
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