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Challenges and Opportunities 
with Causal Discovery Algorithms: 
Application to Alzheimer’s 
Pathophysiology
Xinpeng Shen   1*, Sisi Ma1, Prashanthi Vemuri2, Gyorgy Simon1* & the Alzheimer’s Disease 
Neuroimaging Initiative†

Causal Structure Discovery (CSD) is the problem of identifying causal relationships from large quantities 
of data through computational methods. With the limited ability of traditional association-based 
computational methods to discover causal relationships, CSD methodologies are gaining popularity. 
The goal of the study was to systematically examine whether (i) CSD methods can discover the known 
causal relationships from observational clinical data and (ii) to offer guidance to accurately discover 
known causal relationships. We used Alzheimer’s disease (AD), a complex progressive disease, as a 
model because the well-established evidence provides a “gold-standard” causal graph for evaluation. 
We evaluated two CSD methods, Fast Causal Inference (FCI) and Fast Greedy Equivalence Search (FGES) 
in their ability to discover this structure from data collected by the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI). We used structural equation models (which is not designed for CSD) as control. We 
applied these methods under three scenarios defined by increasing amounts of background knowledge 
provided to the methods. The methods were evaluated by comparing the resulting causal relationships 
with the “gold standard” graph that was constructed from literature. Dedicated CSD methods managed 
to discover graphs that nearly coincided with the gold standard. For best results, CSD algorithms should 
be used with longitudinal data providing as much prior knowledge as possible.

Big data analytics, machine learning, and deep learning have garnered significant interest in the health science 
fields1,2. Due to their excellent predictive accuracy, they are increasingly employed for disease diagnosis and risk 
prediction3. However, in many biomedical applications, achieving high prediction accuracy in and by itself is 
not the primary goal; discovering the risk factor or mechanism that can be altered is often the primary research 
question.

Today’s machine learning applications are largely based on associations. Even though a risk factor may be 
associated with the disease, it does not necessarily mean that it can alter the disease process. In early 2018, a 
Phase 3 trial called “TOMMORROW” tested the effect of a diabetes drug on reducing Alzheimer’s disease (AD) 
dementia risk4. The study measured amyloid deposition, which is an early sign of Alzheimer’s disease and is also 
associated with diabetes. However, since diabetes is not causal to amyloidosis, the study failed in the interim 
analysis5,6. For a successful intervention, the risk factor we intervene on should have a causal (rather than merely 
associative) relationship with the disease outcome.

Clinical research is predominantly focused on causal relationships. Hypothesis-driven clinical research, for 
example, often assumes a causal structure, a set of causal relationships among biomarkers and outcomes, and 
researchers estimate the effect size of these relationships (e.g. causal inference). In such research, drawing a causal 
conclusion is valid, because prior knowledge ascertains that the relationships are indeed causal. However, when 
there is no knowledge of the causality, the causal structure itself needs to be discovered from data through a pro-
cess known as causal structure discovery. A commonly used but incorrect practice is to assume a partial causal 
structure and adjust it based on output statistics of the fitted model using methods such as structural equation 
models (SEM).
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In this work, using AD biomarkers as the predictors and cognition as the outcome, we set out to determine an 
optimal way to discover causal relationships. We used AD as a model for this problem because the AD biomarker 
cascade is well understood7 and the causal relationships between the primary predictors has also been well 
characterized such that a “gold standard” graph can be constructed. Further, the public data set of Alzheimer’s 
disease← neuroimaging initiative (ADNI) has extensive longitudinal data available that is conducive for the sys-
tematic comparisons planned in this manuscript. Here, we focus on comparing the results from dedicated causal 
discovery algorithms and a searching algorithm based on SEM, with our “gold standard” graph. We also investi-
gated the reason behind common mistakes and explored methods to prevent them. These experiments allowed us 
to provide guidelines for discovering causal structure using observational data.

Background
Causal structure discovery algorithms.  Informally, causation is defined as a relationship between two 
variables X and Y such that changes in X lead to changes in Y8. The key difference between association and causa-
tion lies in the potential of confounding. Suppose that no direct causal relationship exists between X and Y but 
rather a third variable Z causes both X and Y. In this case, even though X and Y are strongly associated, altering X 
will not lead to changes in Y. Z is called a confounder. More formally, causation is a direct effect between A and B 
that remains after adjusting for confounding. Confounding can be observed or unobserved (latent).

Causal structure is the set of causal relationships among a set of variables, and causal structure discovery 
is the problem of learning the causal structure from observational data. Dedicated causal structure discovery 
algorithms exist and can be separated into two subtypes, constraint-based and score-based. The constraint-based 
algorithms construct the causal structure based on conditional independence constraints, while the score-based 
algorithms generate a number of candidate causal graphs, assign a score to each, and select a final graph based on 
the scores. In this study, we selected one prominent algorithm from each type: Fast Causal Inference Algorithm 
(FCI), which is a constraint-based algorithm, and Fast Greedy Equivalence Search (FGES), which is a score-based 
algorithm. For brevity, we give a high-level description for FGES and FCI. For more detailed descriptions, we 
refer the reader to the references9–11. Both of the two methods can adjust for observed confounding and one of the 
algorithms, FCI, has some ability to discover latent confounding.

Fast causal inference (FCI).  The central concept behind constraint-based causal discovery algorithm is the 
idea that different causal structures imply different independence relationships. For example, the causal relation-
ship A→- B →C, implies that variable A is independent of C given B. On the other hand, when A →C← B, A and 
B are independent (unconditionally), but become dependent conditional on C. The latter structure is called the 
“V” structure (also known as collider) which has a unique independence relationship compared with other causal 
relationships. In fact, it is one of the “primitives” that constraint-based algorithm, like FCI, looks for.

A feature specific to FCI even among constraint-based methods is its ability to discover latent (unobserved) 
confounders. This is enabled by another primitive, the “Y” structure. Four variables define a “Y” structure when 
they have the following causal relationships: W1  →X ← W2 and X  →Y. Within the “Y” structure, both W1 and 
W2 are independent of Y conditional on X. This conditional independence helps rule out the possibility of an 
unmeasured confounder between X and Y. In other words, when FCI finds a “Y” structure in the graph, the causal 
relationship from X to Y is guaranteed to be unconfounded; otherwise, FCI assumes that possibly unobserved 
confounders exist12.

Fast causal inference (FCI) algorithm.  FCI constructs a causal graph starting with a fully connected undirected 
graph, and removes edges that connect conditionally independent variables. In the second phase, it orients edges 
by identifying the “V” and “Y” structures, and tries to orient the remaining edges based on a set of rules which 
have been explained in detail elsewhere9,13.

Fast greedy equivalence search (FGES) algorithm.  The Greedy Equivalence Search (GES) algorithm also has two 
phases. In the first phase, it starts with a graph containing no edges (corresponding to all variables being inde-
pendent of each other) and greedily adds edges (dependencies) one at a time in the orientation that minimizes 
the Bayes Information Score14 (BIC), which is likelihood penalized for complexity to reduce overfitting. GES then 
removes edges one at a time as long as it decreases the BIC. The FGES10 algorithm used in this work is simply a 
“fast” (parallelized) version of GES11,15. Similarly to FCI, FGES also relies on the “V” structures to orient edges. The 
implied likelihood of the “V” structure is unique while the likelihoods of A →B →C, C →B →A and A ←B →C 
are the same. Thus, FGES will select the “V” structures when it implies a higher likelihood than other structures.

Structural equation modeling (SEM).  Structural Equation Modeling (SEM) is a family of statistical models, 
which, given the underlying causal structure, can estimate the effect size (and other statistics as well) of each 
relationship16. SEM can also suggest modifications to the given causal structure to improve model fit statistics.

While SEM was not designed to discover the causal structure, it is not uncommon to use SEM’s suggested 
modifications to “refine” the graph structure. This feature can be exploited to iteratively build a causal graph, in 
each iteration, adding one edge as per the suggestion by SEM. We implemented this (incorrect) searching method 
under two scenarios: (1) starting from the empty graph (Causal discovery); and (2) starting from a graph obtained 
by deleting 1 or 2 edges from the “gold standard” graph. Note that, within the scope of this paper, we use the term 
“SEM” to represent the algorithm that uses SEM to conduct edge searching, not to estimate the effect size.

Key differences between the algorithms.  Both SEM and FGES are stepwise algorithm which modify 
structure by adding or deleting edges. The biggest advantage of FGES is that it extends the search space by trans-
forming the current structure to other “equivalent” structures. For example, given the edge A →B is in the A, 
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B, and C graph. SEM will try adding one directed edge between C and A or C and B, yielding four possibilities. 
However, FGES considers more possibilities as it can also reverse the existing edge A→B to A ←B, yielding four 
additional possible structures.

Other than the searching strategies (Constraint versus Score based), FCI also differs from the other two algo-
rithms in its assumption about causation: both SEM and FGES operate under the assumption of no unmeasured 
confounders. In other words, all the confounding variables are measured in the dataset. FCI, however, relaxes this 
assumption, and reports an unconfounded relationship only when it encounters a “Y” structure17.

FCI and FGES algorithms are implemented in the Tetrad software package (Version 6.5.4). Figure 1 shows the 
interpretations of different edge types in the output graph. For SEM, we used the R package ‘lavaan’18.

Method
Data.  Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD)19. There are three phases of the ADNI study where the last one, ADNI3, 
is still ongoing. All study participants provided written informed consent, and study protocols were approved by 
each local site’s institutional review board. All methods were carried out in accordance with the relevant guide-
lines and regulations. For up-to-date information, see www.adni-info.org. IRB Review was not required since the 
ADNI data is de-identified and publicly available for download. We focused our study on the first two: ADNI 1 
and ADNI 2/GO. The variables extracted from the data are fludeoxyglucose PET (FDG), amyloid beta (ABETA), 
phosphorylated tau (PTAU), apolipoprotein E (APOE) ε4 allele; demographic information: age, sex, education 
(EDU); and diagnosis on AD (DX). Table 1 presents summary statistics of the data set. After removing records 
with missing values, there are 1008 participants remaining with at least one complete record, and 266 with a reg-
ular two-year follow-up visit.

The “Gold standard” graph.  The AD biomarker cascade has been evaluated widely. The deposition of 
ABETA in the brain is an early event in the disease process and is captured through the decrease in CSF ABETA. 
The only consistently shown risk factors for ABETA are age and the number of APOE4 alleles6,20,21. ABETA causes 
downstream neurofibrillary tangle formation and subsequently neurodegeneration, both of which are captured 
by metabolic dysfunction via FDG-PET22 and PTAU increase measured on CSF23. The two markers FDG-PET 
and CSF PTAU are the strongest predictors of cognitive dysfunction or diagnosis24,25 (in comparison to ABETA). 
Education, a surrogate of cognitive resilience, influences an individual’s cognitive status26. All of these are well 
established relationships in the literature. There are weaker causal associations such as sex influencing some of 
these associations which we did not regard to evaluate the algorithms because the impact of these associations 
is much smaller in comparison to the main effects considered in the “gold standard” graph. The relationships 
described above are shown in Fig. 2.

Background knowledge and cross-sectional vs longitudinal data.  To constrain the relation-
ships that the algorithms can discover, background knowledge can be provided in the form of must-have or 
must-not-have (prohibited) edges. In this paper, we defined three degrees of background knowledge as: (Level 
1) No knowledge: the discovered structure purely reflects the data; no edges are prohibited. (Level 2) Trivial 
background knowledge: (a) edges among demographic variables are prohibited (although association between 
them can remain) (b) edges from biomarkers or diagnosis to demographic variables are prohibited. (Level 3) 

Figure 1.  The interpretation of edges.
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Longitudinal: in addition to the edges prohibited in Level 2, edges pointing from a later time point to an earlier 
time point are also prohibited.

Study design.  Causal discovery study.  We extracted two data sets from ANDI for this part of the study: one 
was a single cross-sectional, and data was collected at the baseline visit made by each participant. The second one 
is longitudinal, where we included data from two cross-sections: the baseline visit, and the visit made at the 24 
months. Records with missing data were removed from further study.

To generate robust results, both the cross-sectional and the longitudinal data were bootstrapped 100 times at 
the participant’s level. Then, the three algorithms, SEM, FCI and FGES were tested on all bootstrap samples for 
evaluation, incorporating the three different degrees of knowledges that were described in the previous section.

SEM-recovery study.  Since most researchers would start with a hypothesized graph and only use SEM to add 
edges, we also tested SEM under this assumed use case: we initialized (hypothesized) graphs by deleting each 
single edge and each pair of edges from the “gold standard” graph, and then tested whether SEM can recover the 
deleted edges after no more than five iterations of edge adding. We chose five in this study because more than five 
times of edge adding will result in a graph with low recall.

Evaluation metrics.  To assess the performance of methods, we defined following evaluation metrics. An 
edge is correct, if and only if the same edge exists in the “gold standard” graph and the orientation of the edge 
coincides with the orientation in the “gold standard” graph; an edge is semi-correct, if and only if the same edge 
exists in the “gold standard” graph and its orientation does not contradict with the true orientation of the edge in 
the “gold standard” graph; And finally, an edge is incorrect if the edge does not exist in the “gold standard” graph 
or if it exists but its orientation is the opposite of the true orientation.

We will present the following metrics:

	 1.	 Number of correct, semi-correct, incorrect edges
	 2.	 Precision: the proportion of correct or semi-correct edges over all edges reported by the algorithm
	 3.	 Recall: the proportion of edges in the “gold standard” graph that are correctly or semi-correctly reported
	 4.	 Occurrence rate: the percentage of the adjacency shows in the result of the 100 bootstrap runs

Label Mean (SD)

Demographic variables

AGE AGE 74.09 (7.46)

SEX SEX 0.55 (0.50)

Education Level EDU 16.15 (2.71)

Biomarkers

Fludeoxyglucose PET FDG 1.22 (0.17)

Amyloid Beta ABETA 986.29 (459.94)

Phosphorylated tau PTAU 27.67 (14.76)

Label subtype (%)

Genetics

APOE epsilon 4 allele APOE4 0 (54%)/ 1 (36%)/ 2 (10%)

Diagnosis

Diagnosis of Alzheimer’s Dementia DX CN (31%)/ MCI (46%)/ AD (23%)

Table 1.  Characteristics for Continuous and Categorical Variables. N = 1008.

Figure 2.  The “gold standard” graph.
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Results
Causal discovery study.  The discovered causal structures generated by SEM, FCI, and FGES algorithms 
across three degrees of prior “knowledge” are shown in this section. The behind-the-scenes mechanism of typical 
mistakes will be examined further in the discussion section.

Experiment 1: Without background knowledge.  In Fig. 3, we present the edges with at least 80% occurrence rate 
in the 100 bootstraps samples (The number located near each edge). The edges that were not in the gold standard 
graph are colored in red. The numbers on the right of each graph are the precision, recall, and the number of cor-
rect, semi-correct, and incorrect edges averaged over the 100 bootstrap samples. To ease direct comparison, the 
variables are laid out almost identically: the same variable occupies the same relative location in all three graphs.

SEM was only able to retrieve two correct edges from the “gold standard” graph (with average precisions 0.24 
and recall 0.30), while FCI and FGES found 4 out of 8 edges correctly or semi-correctly (precision 0.24 and 0.44, 
recall 0.46 and 0.6 correspondingly). Both FCI and FGES successfully recovered the causal relationship between 
genetic variable APOE41 with ABETA, ABETA with FDG, and FDG, PTAU with DX. However, the algorithms 
failed to determine the directionalities of some of the relationships. We also observed that all three algorithms 
reported edges from biomarkers to demographic variables which are certainly errors (e.g. ABETA causes APOE42 
in FCI’s graph). It is important to note that some well-established relationships such as age and amyloid as well 
as education and diagnosis were not discovered in any of the graphs which did not have background knowledge.

Experiment 2: Addition of trivial background knowledge.  Figure 4 presents the causal structures discovered by 
the three algorithms incorporating trivial background knowledge: demographic variables cannot be caused by 
other demographic variables nor by biomarkers (e.g. participant’s age is not affected by education or ABETA 
level). The structure of Fig. 4 is analogous to Fig. 3.

While all the methods made several mistakes, there were significant improvements when trivial background 
information was added. Some of the incorrect causations found by SEM are actually indirect causal relationships 
in the “gold standard”. For example, the effect from APOE42 to DX is an indirect effect that flow through ABETA 
in the ‘gold standard’ graph. All three algorithms discovered the edge ABETA→DX. Though it is not a direct 
casual effect in our “gold standard” graph, ABETA is a common cause of FDG reduction as well as PTAU increase 
and both FDG and PTAU lead to DX. Therefore, the effect of ABETA and DX could be anticipated. Both FCI 
and FGES reported a falsely-directed edge between PTAU and DX. We will see this error is corrected by using 
longitudinal data. The FCI algorithm also reported unmeasured confounders between PTAU and DX with FDG, 
which are interesting hypotheses that need further studies. Among the three algorithms, SEM achieved the lowest 

Figure 3.  Discovered causal structure without background knowledge & their Statistics.
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performance (Precision 0.31, recall 0.39) while FCI and FGES achieved higher and substantial higher perfor-
mance (FCI: 0.42 precision and 0.55 recall; FGES 0.71 precision and 0.68 recall).

Experiment 3: Addition of longitudinal data and trivial background knowledge.  Figure 5 presents the most fre-
quent edges discovered by the three algorithms and their performance metrics. The layout of the graphs is dif-
ferent from the previous Figures because they are built on the longitudinal data set. All nodes associated with 
biomarkers or diagnosis hence appear twice: once with their baseline value (denoted by ‘0.0’ suffix) and once at 24 
months (denoted by the ‘0.24’ suffix). Most of the statistics further improved relative to previous results and FGES 
recovered a graph with only one incorrect edge.

The performance of the SEM algorithm trailed behind the other two dedicated causal discovery algorithms. 
In some of the bootstrap runs, SEM missed the direct effects between the longitudinal measurements of the same 
biomarker (e.g. the estimated probability of SEM discovered the edge ABETA.0 →ABETA.24 is 0.47 where FCI 
and FGES always include this edge).

The FCI algorithm further identified that PTAU at initial visit has an effect on the diagnosis (AD) at 24 
months. In other words, PTAU may have a lagged effect on AD diagnosis which is a highly plausible hypothe-
sis. We also observed that AGE and EDUCATION lead to different FDG and diagnosis at the first visit, but not 
directly to the assessment at 24 months (after adjusting the assessment at baseline visit).

The FGES algorithm incorporated the longitudinal data and successfully discovered the FDG to DX edge. It 
also removed the incorrect edges from DX to PTAU. Furthermore, with longitudinal data, the previously undi-
rected edges identified by FGES got directed without compromising the overall precision and recall.

SEM-recovery study.  Table 2 shows the statistics when we tested SEM’s ability to recover deleted edges 
from the “gold standard” graph. In each run, we deleted a single edge or a pair of edges. The “fully recovery rate” 
represents the percentage of runs in which SEM managed to fully recover the deleted edge(s). The “precision” and 
“recall” columns are defined the same way as in the previous experiments. As we can see from Table 2, when we 
removed only a single edge, the recovery rate is very low (12.5%). When we removed two edges from the “gold 
standard” graph, SEM was unable to recover the true graph.

Discussion
In this study, we compared three different methodologies to recreate the known ground-truth causal structure 
based on an observational dataset using three different degrees of “knowledge”. We used Alzheimer’s disease data 
from ADNI which is a well characterized openly accessible data set. Since the relationships among biomarkers 

Figure 4.  Discovered causal structure with background knowledge & their Statistics.
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and diagnosis in Alzheimer’s disease are well understood, we began with a “gold-standard” causal structure based 
on the existing literature. Then, we applied three algorithms to discover this causal structure from data. This 
work highlights the common errors made by the different algorithms and offers us with ideas and suggestions to 
avoid these errors. In the end, a detailed guideline on how causal discovery algorithm can be applied to discover 
high-quality causal relationships was provided.

Each of the three algorithms used in this work represents a class of algorithms with its specific characteristics. 
Two of the algorithms, FCI and FGES, are dedicated causal discovery algorithms, while the third one, SEM, is 
primarily designed as a confirmatory tool. The dedicated causal discovery algorithms outperformed SEM across 
all three degrees of background knowledge. This is not surprising, because SEM is not specifically designed to dis-
cover causal structure; statistics reported by SEM only indicate possible adjustments to the a priori user-defined 
causal structure. What is surprising is the extent to which FGES outperformed SEM, since both FGES and SEM 
optimize the same criterion, which is BIC. The key difference between FGES and SEM is the scale of the underly-
ing search space: FGES considers a broader array of graphs, all graphs that have the same dependence structure 
(same set of conditional independence relationships among the variables). From the SEM-recovery experiment, 
we also observed that the SEM’s suggestions for adding edges are generally not reliable. These edges may maxi-
mize BIC in SEM’s limited search space, but these are not the overall optimal edges: FGES, with its larger search 
space, managed to (almost perfectly) recover the “gold standard” graph.

With FCI and FGES having similar search spaces, the main differences between them lies in their search 
algorithm. The performance of the score-based algorithm FGES was higher and was more stable than the 
constraint-based algorithm FCI in our study. The decision making of FCI was affected by the incorrect independ-
ence tests introduced by selection bias or data artifacts. These mistakes propagated to other parts of the graph 
through generating incorrect “V” or “Y” structures and eventually caused damage to large portions of the graph. 
In contrast, score-based algorithms consider the likelihood of the global structure while making local decisions; 
so, these errors remain localized. This explains why the discovered structure of FGES before or after adding trivial 

Figure 5.  Discovered causal structure with longitudinal data & their Statistics.

Number of edges 
removed

Fully recover 
rate

Precision. 
Mean

Recall. 
Mean

1 0.125 0.67 0.89

2 0 0.70 0.76

Table 2.  Recovery rate of edges.

https://doi.org/10.1038/s41598-020-59669-x


8Scientific Reports |         (2020) 10:2975  | https://doi.org/10.1038/s41598-020-59669-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

knowledge are more consistent. FCI has the advantage of being able to relax the typical assumption of no unmeas-
ured confounders. This relaxation can be useful when either identifying unmeasured confounders or finding 
unconfounded causal relationships is important. In our study, FCI found that the relationship from ABETA to 
FDG is un-confounded and that unmeasured confounders may exist between FDG, DX (Fig. 4-FCI)

We further investigated the mistakes that FCI and FGES made. We grouped these mistakes into three catego-
ries and described their causes and work-arounds in Table 3.

	 1.	 The first kind of error happens when artifacts in the data induce incorrect edges. For example, FCI 
reported an edge between EDU and SEX (Fig. 3-FCI), because in our sample, the average education level 
of male participants is higher. Avoiding such incorrect edges is important because they can potentially 
create incorrect “V” or “Y” structures that jeopardizes the remaining causal discovery steps. Adding trivial 
background knowledge can resolve this problem by preventing the algorithms from treating association as 
causation.

	 2.	 When universally accepted background knowledge is not available, compensating for data artifacts is more 
difficult and can have distant downstream effects. For example, the APOE42-PTAU-FDG structure was 
inferred as a “V” structure (APOE42 →PTAU ←FDG) in some of the bootstrap runs. This error was a 
result of a single incorrectly inferred independence between APOE42 and FDG from the sample data. This 
error propagated through three associations between (1) APOE42 and PTAU, (2) PTAU and FDG, and (3) 
APOE42 and FDG conditional on PTAU, which led to a “V” structure among the three. We cannot prevent 
this edge using background knowledge unless we know the conditional independence relations between 
APOE42 and FDG beforehand. The use of longitudinal data helped correct these mistakes; as we can see in 
Fig. 5-FCI, the substructure was corrected when longitudinal data was used.

	 3.	 While longitudinal data provides a solution to a number of the problems, the requirement of repeated 
observations can constrain the sample size and introduce some errors of its own. For example, FCI discov-
ered a possible lagged relationship between PTAU at time 0 and DX at month 24 (Fig. 5-FCI), however, the 
same relationship is not observed in the results from FGES (Fig. 5-FGES)–possibly due to the small sample 
size.

In the longitudinal study, local structure across time points are not guaranteed to be the same. For exam-
ple, in the graph discovered by FGES, ABETA.0 causes PTAU.0 but ABETA.24 does not cause PTAU.24. The 
reason is that ABETA.0 is a common parent of ABETA.24 and PTAU.0. PTAU.24 is conditionally independent 
of ABETA.24 given either ABETA.0 or PTAU.0. This conditional independence relationship implies that in the 
presence of ABETA.0 or PTAU.0, ABETA.24 is not needed to explain the variation in PTAU.24.

Even though the final graph learnt from observational data matched the “gold standard” graph closely, our 
conclusions still depend on the correctness of the “gold standard”. In general, we have high confidence in the “gold 
standard” graph as the biological mechanism behind the AD biomarker cascade is well understood and FGES 
managed to discover the “gold standard” almost perfectly. However, it is highly possible that FDG and PTAU only 
explain part of the effect from ABETA on diagnosis of AD; a direct causation from ABETA on DX could exist. 
Although we recommend longitudinal data, collecting data longitudinally is often costly which typically results 
in a smaller sample size. Small sample size lowers the statistical power in causal discovery algorithm which is a 
trade-off. We tried reducing the sample size by 50% and 75% and conducted the same analysis. When we reduced 
the sample size by 50%, the total numbers of discovered edges across 100 bootstrap iterations reduced. However, 
edges that were consistently discovered on the full sample were consistently discovered on the reduced sample as 
well. We achieved similar precision and recall. When we further reduced the sample size (by a total of 75%), the 
total number of edges further reduced. While the most frequently discovered edges continued to get discovered, 
the number of “noise edges”, edges that were discovered only in a few bootstrap iterations, increased.

In conclusion, dedicated causal discovery algorithms outperformed SEM in discovering the causal structure. 
In real-world data analysis, data quality impacted the correctness of the discovered structure. Incorporating prior 
knowledge and using longitudinal data can improve the discovered result by preventing algorithms from make 
some potential mistakes.
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