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Abstract
Motivation: Recent advances in multimodal single-cell omics technologies enable multiple modalities of molecular attributes, such as gene
expression, chromatin accessibility, and protein abundance, to be profiled simultaneously at a global level in individual cells. While the increasing
availability of multiple data modalities is expected to provide a more accurate clustering and characterization of cells, the development of
computational methods that are capable of extracting information embedded across data modalities is still in its infancy.

Results: We propose SnapCCESS for clustering cells by integrating data modalities in multimodal single-cell omics data using an unsupervised
ensemble deep learning framework. By creating snapshots of embeddings of multimodality using variational autoencoders, SnapCCESS can be
coupled with various clustering algorithms for generating consensus clustering of cells. We applied SnapCCESS with several clustering
algorithms to various datasets generated from popular multimodal single-cell omics technologies. Our results demonstrate that SnapCCESS is
effective and more efficient than conventional ensemble deep learning-based clustering methods and outperforms other state-of-the-art multi-
modal embedding generation methods in integrating data modalities for clustering cells. The improved clustering of cells from SnapCCESS will
pave the way for more accurate characterization of cell identity and types, an essential step for various downstream analyses of multimodal
single-cell omics data.

Availability and implementation: SnapCCESS is implemented as a Python package and is freely available from https://github.com/PYangLab/
SnapCCESS under the open-source license of GPL-3. The data used in this study are publicly available (see section ‘Data availability’).

1 Introduction

The development of novel single-cell technologies, such as cel-
lular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) (Stoeckius et al. 2017), shared single-cell profiling
of RNA and chromatin (SHARE-seq) (Ma et al. 2020), and
trimodal single-cell profiling by TEA-seq (Swanson et al.
2021), enables the profiling of gene expression, protein
abundance, and/or chromatin accessibility in the same cell.
The availability of multiple data modalities in individual
cells promises more precise characterization of cells such as
clustering cells into distinctive cell types (Zhu et al. 2020).
To analyze such multimodal single-cell omics data, however,
require effective computational methods that are capable of
integrating data modalities for extracting the underlying bio-
logical signals.

While various methods exist for enabling the clustering of
multimodal single-cell omics data, such as by simple feature
concatenation or more sophisticated methods that integrate
clustering output from each modality (Adossa et al. 2021,
Miao et al. 2021) or construct similarity graphs for joint clus-
tering (Wu et al. 2022), a popular approach is to integrate

data modalities through learning an embedding that encodes
multiple data modalities into a shared latent space, from
which any clustering algorithm that accepts the embedding as
input could be used for clustering cells (Lin et al. 2022, Liu
et al. 2023). For example, Jvis-learn performs joint dimension
reduction of data modalities for generating embeddings of
multimodal single-cell omics data (Do and Canzar 2021). It
automatically determines the relative importance of each data
modality that emphasizes distinguishing characteristics while
reducing noise. MOFAþ implements a Bayesian group factor
analysis framework to infer a low-dimensional embedding
that captures shared variation across multiple modalities
(Argelaguet et al. 2020). Recently, deep learning-based meth-
ods such as totalVI (Gayoso et al. 2021) use a variational
autoencoder (VAE) to learn an embedding for integrating
RNA and ADT modalities such as in CITE-seq data, and
MultiVI (Ashuach et al. 2021) uses a VAE to integrate
RNA and ATAC modalities such as in SHARE-seq data. The
multimodality integrated embeddings generated from these
methods can be subsequently applied for cell clustering using
any clustering algorithms that accept embeddings as input.
Thus, the utility and quality of the multimodality-integrated
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embeddings will have a large impact on clustering multimodal
single-cell omics data.

Here we aim to improve the clustering of multimodal
single-cell omics data by developing an ensemble deep
learning-based framework that generates a multi-view of
multimodality-integrated embeddings. This is motivated by
our previous work on autoencoder-based ensemble clustering
of scRNA-seq data that demonstrates consensus derived from
multiple embeddings each generated from perturbing the in-
put data can lead to significantly better clustering results
(Geddes et al. 2019). Such a single-cell consensus clusters of
encoded subspaces (scCCESS) approach benefits from the
multi-view of the input data (Cao et al. 2020) and is generic
to clustering algorithms. Built on this concept, we propose
SnapCCESS, an ensemble clustering framework that uses
VAE and the snapshot ensemble learning technique (Huang
et al. 2017) to learn multiple embeddings each encoding mul-
tiple data modalities, and subsequently generate consensus
clusters for multimodal single-cell omics data by combining
clusters from each embedding. The innovation in SnapCCESS
includes (i) implementing an ensemble deep learning frame-
work for creating a multi-view of latent spaces from which
multimodality embeddings of multimodal single-cell omics
data can be generated, and (ii) designing a snapshot ensemble
learning approach to significantly improve the computational
efficiency of the proposed framework.

By applying SnapCCESS to multimodal single-cell omics
datasets generated by various biotechnologies and protocols,
we show that SnapCCESS is effective and computationally ef-
ficient in learning multiple embeddings compared to conven-
tional ensemble deep learning methods. We found that
multimodal data generally offer more information than single
modality alone and SnapCCESS leverages such information
to improve cell clustering. We also show that embeddings
learned from SnapCCESS are generalizable and can be cou-
pled with various clustering algorithms for improving consen-
sus clustering of multimodal single-cell omics data. Lastly, we
demonstrate the competitive performance of SnapCCESS
with the other state-of-the-art methods for generating embed-
dings of data modalities for clustering cells. Together, our
work showcases the effectiveness of a novel unsupervised en-
semble deep learning framework for performing clustering
analysis of multimodal single-cell omics data.

2 Materials and methods
2.1 SnapCCESS framework for generating

embeddings of multimodal single-cell data

To integrate the high-dimensional feature space in each mo-
dality of multimodal single-cell omics data, SnapCCESS enco-
des features from multiple data modalities into a latent space
using the VAE component of our recently published Matilda
framework (Liu et al. 2023) to jointly learn to reconstruct
each data modality (Fig. 1a).

Specifically, SnapCCESS first learns different data modali-
ties using modality-specific encoders and decoders (denoted
using different colors in Fig. 1a). The encoders in the VAE
component include one learnable point-wise parameters layer
and one fully connected layer to the input layer. Because sur-
face protein modality has significantly fewer features than
RNA and ATAC modalities, we empirically set the numbers
of neurons for encoders of RNA, surface proteins, and ATAC
modalities to be 185, 30, and 185, respectively. To learn a

latent space that integrates the information across modalities,
SnapCCESS concatenates the output from the encoder trained
from each data modality to perform joint learning using a
fully connected layer with 100 neurons. The embeddings of
input data were obtained from the latent space of VAE by
minimizing the loss function L defined as follows:

L ¼
XM
m¼1

kðXm � X̂mÞk2 þ KL½Nðlxm
;rxm
Þ;Nð0;1Þ�

where X represents the original input, X̂ represents the recon-
structed data, i is the ith modality, and M is the number of
modalities in a multimodal data. Nð�Þ presents a normal dis-
tribution, which is learnable in VAE.

SnapCCESS employs the snapshot technique for ensemble
learning (Huang et al. 2017). The key idea behind snapshot
ensemble learning is to train multiple versions of a single
model by using a cyclic learning rate scheduler. Since the en-
semble is formed from a single training process, snapshot en-
semble learning is significantly faster while maintaining a
similar performance when compared to conventional ensem-
ble methods that train individual models from multiple train-
ing processes [see Huang et al. (2017) for more comparative
analyses]. In SnapCCESS, the learning rate of the training
model was set up to be the shifted cosine function, which
could help the training model converge to multiple local min-
ima and then get multiple lower-dimensional embeddings
(Fig. 1b). This is defined as follows:

SðtÞ ¼ S0

2
cos

p mod t � 1; ceil T
E

� �� �

ceil T
E

� �
0
B@

1
CAþ 1

0
B@

1
CA

where S0 is the initial learning rate, t is the iteration number,
T is the total number of training iterations, E is the number of
learning rate cycles, and modð�Þ refers to the modulo
operator.

2.2 Clustering algorithms for ensemble clustering of

embeddings

To create consensus clustering, embeddings generated from
SnapCESS and conventional VAE ensemble method were
used for generating clustering results and then combined for
deriving consensus results. Since the embeddings generated by
these methods can be coupled with various clustering
algorithms for creating consensus clustering results, we have
included three different clustering algorithms for testing
their effectiveness. These include a simple k-means clustering
algorithm, a more sophisticated spectral clustering method,
and SIMLR, a kernel-based clustering method designed for
scRNA-seq data analysis (Wang et al. 2017). In particular,
for the simple k-means clustering, we utilized the kmeans
function in the stats package with the default settings. For
the spectral clustering algorithm, we employed the
spectralClustering function from the CiteFuse package
(Kim et al. 2020) with the default parameters to perform spec-
tral clustering. Lastly, we used the SIMLR_Large_Scale
function in the SIMLR package with the number of principal
components set to 20 as recommended. For all clustering
algorithms, the number of clusters was set to be the same as
the number of cell types in each dataset based on the cell-type
annotation from the original study. After obtaining individual
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clustering output from each clustering method, a fixed-point
iteration algorithm gð�Þ for obtaining hard least squares
Euclidean consensus partitions was applied to compute the
consensus clusters of individual partitions using clue package
cl_consensus function (Hornik 2005):

R ¼ gðf ða1Þ; f ða2Þ; . . . ; f ðanÞÞ

where R is the clustering result and f ð�Þ represents performing
a given clustering approach using an embedding ai. All clus-
tering analyses were carried out in the R programming
environment.

2.3 Evaluation settings and datasets
2.3.1 Conventional VAE ensemble

Conventional ensemble deep learning typically relies on per-
turbing the initialization and/or input data to train individual
base models that can be used for creating the final ensemble
model (Cao et al. 2020). To compare the performance of
SnapCCESS with the conventional VAE ensemble method, we
implemented a conventional VAE ensemble learning model by
using random initialization of the VAE neural networks. For
a fair comparison, we used the same VAE model as in
SnapCCESS to learn the latent space for integrating the data
modalities in multimodal single-cell omics data. The same
numbers of neurons for encoders and decoders were used as
in SnapCCESS and the learning rate was fixed at 0.02. To ob-
tain multiple embeddings, multiple VAEs were trained each
with a different set of network initialization weights on the in-
put dataset.

2.3.2 Settings for other multimodal embedding generation
methods

MOFAþ: MOFA2 (v1.6.0) which implements MOFAþ
(Argelaguet et al. 2020) was used to generate multimodality
embeddings of the six datasets. Following the author’s tuto-
rial (https://raw.githack.com/bioFAM/MOFA2_tutorials/mas
ter/R_tutorials/getting_started_R.html), pre-normalized data-
sets were first used to create the mofa object using create_
mofa function. The data were then used as input for
the modal training using run_mofa function with default
parameters. We use the “get factors” function with factors ¼
“all” to obtain the embeddings for each input dataset.

Jvis-learn: Jvis-learn (v0.0.12) (Do and Canzar 2021) was
employed for generating multi-modality embeddings of the
six datasets. The pre-normalized datasets were used as input
for creating the j-SNE embeddings that joint multimodal
omics data via the “JTSNE” function.

totalVI: totalVI is designed for anayzing CITE-seq data
(Gayoso et al. 2021). In this study, the totalVI procedure
implemented in the scvi-tools package (v0.17.3) was used for
generating multimodality embeddings of the three CITE-seq
datasets. Following the author’s tutorial (https://docs.scvi-
tools.org/en/stable/tutorials/notebooks/totalVI.html), the raw
count matrices of RNA and ADT were first normalized using
the normalize_total and log1p functions and then top
4000 most variable genes were selected using the highly_
variable_genes function. The data were input for model
training using scvi.model.TOTALVI.setup_anndata,
scvi.model.TOTALVI, and train functions in scvi-tools.
The latent space of RNA and ADT modalities was generated
using the get_latent_representation function.

MultiVI: MultiVI is a sibling of totalVI and specifically
designed for anayzing data with RNA and ATAC modalites
(Ashuach et al. 2021). Here, the MultiVI procedure imple-
mented in the scvi-tools (v0.17.3) was used for multimodality
integration of the SHARE-seq and SNARE-seq datasets. In ac-
cordance with the author’s tutorial (https://docs.scvi-tools.
org/en/stable/tutorials/notebooks/MultiVI_tutorial.html), the
raw count matrices of RNA and gene activity score matrices
from ATAC and the paired matrix of RNA and ATAC were
utilized as input. These data were first concatenated using the
organize_multiome_anndatas function in scvi-tools
and then used for model training using scvi.model.
MULTIVI.setup_anndata, scvi.model.MULTIVI and
train functions in scvi-tools. The latent space of RNA and
ATAC modalities was generated using the get_latent_
representation function.

2.3.3 Datasets and pre-processing

Ramaswamy CITE-seq dataset (Ramaswamy et al. 2021):
The raw RNA and ADT matrices of PBMC from three
healthy donors were downloaded from NCBI GEO using the
accession number GSE166489. We used the healthy donor
(GSM5073072) in our analysis. After filtering RNA and ADT
expressed in less than 1% of the cells and genes, discarding

Figure 1 The proposed SnapCCESS framework of ensemble deep learning of embeddings for multimodal single-cell data clustering. (a) A VAE is used to

encode the high-dimensional features from multimodal data to a low-dimensional latent space. (b) The training process of SnapCCESS is based on the

snapshot ensemble deep-learning model using learning rate annealing cycles where the model converges to and then escapes from multiple local

minima, and multiple snapshots were taken at these minima for creating a multi-view of embeddings. The schematic illustrates using epoch of 1 for

generating snapshots. The consensus clustering is derived from combining individual clustering results each from a snapshot embedding.
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cell types with fewer than 50 cells, we obtained 9745 cells and
21 cell types, with 11 039 RNA and 189 ADT features.

Stephenson CITE-seq dataset (Stephenson et al. 2021): The
PBMC CITE-seq data of healthy individuals sequenced by
NCL medical center was used in this study. The raw matrices
of RNA and ADT and the annotation of cells to their respec-
tive cell types from the original study were downloaded from
the EMBL-EBI ArrayExpress database under the accession
number E-MTAB-10026. RNA and ADT in this dataset were
filtered by removing those that expressed in less than 1% of
the cells and genes, cell types were filtered by removing those
that have less than 50 cells. After filtering, 64 197 cells from
15 cell types (4999 RNA, 192 ADT) were kept for analysis.

Hao CITE-seq dataset (Hao et al. 2021): The raw RNA
and ADT matrices from this CITE-seq dataset were down-
loaded from NCBI GEO under the accession number
GSE164378. As the above, RNA and ADT in this dataset
were filtered by removing those that expressed in less than
1% of the cells and genes, and cell types were filtered by re-
moving those that have less than 50 cells. In total, 67 035 cells
(11 451 RNA, 228 ADT) and 29 cell types in batch 1 of the
dataset were used in the analysis.

Chen SNARE-seq dataset (Chen et al. 2019): The SNARE-
seq data that measures RNA and ATAC from matched cells
in the adult mouse brain cortex sample (AdBrainCortex) was
downloaded from NCBI GEO under the accession number
GSE126074. The cell-type information was obtained from the
authors. For ATAC data, peaks with no expression across
cells were removed. We then summarized the ATAC data
from peak level into gene activity scores using the
CreateGeneActivityMatrix function in Seurat. We fil-
tered out RNA and ATAC quantified in fewer than 1% of the
cells and genes, and removed cell types that have less than 50
cells, resulting in a dataset with 9930 cells (11 011 RNA,
16 443 ATAC peak features) and 20 cell types for the subse-
quent analyses.

Ma SHARE-seq dataset (Ma et al. 2020): The SHARE-seq
data that measures RNA and ATAC from matched cells in
mouse skin samples were downloaded from NCBI Gene
Expression Omnibus (GEO) under the accession number
GSE140203. Similar to the above, we first removed peaks
with no expression across cells, and then summarized the
ATAC data from peak level into gene activity scores using the
CreateGeneActivityMatrix function in Seurat. We fil-
tered out RNA and ATAC quantified in fewer than 1% of the
cells and genes, and remove cell types that have less than 50
cells, resulting in a dataset with 32 968 cells (8765 RNA,
17 413 ATAC peak features) and 23 cell types for the subse-
quent analyses.

Swanson TEA-seq dataset (Swanson et al. 2021): TEA-seq
enables simultaneous single-cell profiling of transcripts, epito-
pes, and chromatin accessibility. The processed matrices of
TEA-seq data from measuring PBMC were downloaded from
the NCBI GEO under the accession number GSE158013,
with raw RNA expression, ADT expression, and peak accessi-
bility (ATAC) measured for the same cells in four data
batches. Due to the low batch effect presented in the four
datasets, we merged the four data batches. We summarized
the matrix of ATAC from peak level to gene activity scores us-
ing the CreateGeneActivityMatrix function in the
Seurat package. Genes with fewer than 1% quantifications
across all cells and all genes in the three modalities are re-
moved. This resulted in a dataset with 25 286 cells and nine

cell types, including 9772 RNA, 46 ADT, and 16 520 ATAC
peak features.

Each data modality was first normalized by a z-score trans-
formation and then fed into each of their modality-specific
encoders in SnapCCESS. The integrated embeddings were
jointly learned across all modalities using outputs of
modality-specific encoders (see Section 2.1).

2.4 Performance evaluation criteria
2.4.1 Clustering concordance performance evaluation

For evaluating clustering performance, we used adjusted
Rand index (ARI) and normalized mutual information (NMI)
to evaluate the clustering concordance with respect to pre-
defined cell-type annotations from their original studies (Kim
et al. 2019). Let S be a set of N cells, then a clustering U on
S is a way of partitioning S into non-overlap subset
U1;U2; . . . ;UR. Here, we define U ¼ U1;U2; . . . ;UR as the
real cell-type labels with R cell types, V ¼ V1;V2; . . . ;Vc is a
partition with C clusters generated by a clustering. Pair
counting-based measures can be used for counting pairs of
items on which the partition U and V agree or disagree.

Specifically, the
N
2

� �
item pairs in S can be classified into

one of the four types: (i) N11: the number of pairs that are in
the same partition in both U and V; (ii) N00: the number of
pairs that are in different partitions in both U and V; (iii) N01:
the number of pairs that are in the same partition in U but in
different partitions in V; (iv) N10: the number of pairs that are
in different partitions in U but in the same partition in V.
Following this, ARIand NMI can be defined as follows:

ARIðU;VÞ ¼ 2ðN00N11 �N01N10Þ
ðN00 þN01ÞðN01 þN11Þ þ ðN00 þN10ÞðN10 þN11Þ

NMIðU;VÞ ¼ IðU; VÞ
HðUÞ þUðVÞ

where IðU; VÞ is the mutual information between U and V,
defined as

IðU; VÞ ¼
XR

i¼1

XC

j¼1

jUi \ Vjj
N

log2

NjUi \ Vjj
jUijjVjj

and Hð:Þ is the entropy of partitions, in which

HðUÞ ¼ �
XR

i¼1

jUij
N

log2

jUij
N

; HðVÞ ¼ �
XC

j¼1

jVjj
N

log2

jVjj
N

To investigate the performance of SnapCCESS in terms of
major and minor cell-type identification, we split the cell types
in each dataset into two sets. The first set included major cell
types, defined as those with a number of cells greater than or
equal to the median value of the number of cells per cell type.
The second set included minor cell types, defined as those
with a number of cells less than the median value of the num-
ber of cells per cell type.

2.4.2 Assessment of the run time usage

To evaluate the computation speed of SnapCCESS and the
conventional VAE ensemble clustering method, all bench-
mark tasks were allocated to a research server with an
NVIDIA GPU GeForce RTX 2080 Ti. The elapsed run
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time was calculated by using the Python function time.-
per_counter(). Time for each method only takes into ac-
count the deep learning network building and model training
steps.

3 Results
3.1 SnapCCESS is an effective and efficient

ensemble deep learning method for clustering

multimodal single-cell omics data

We first evaluated the performance of SnapCCESS and com-
pared its performance with a conventional VAE ensemble
clustering method on the six multimodal single-cell omics
datasets generated from different biotechnological platforms.
The concordance of the k-means clustering output from each
method with respect to the cell-type annotation from the orig-
inal study of each dataset was quantified using ARI (Fig. 2a)
and NMI (Supplementary Fig. S1) and the procedure was re-
peated 20 times to account for the variability in the clustering
results. Notably, we found that ensemble learning improves
the clustering performance of both methods and the clustering
concordance increases while the variability reduces with the
ensemble size (i.e. the number of base clusters). We also found
that in general the improvement plateau at around the ensem-
ble size of 50.

A key advantage of SnapCCESS is its ability to generate in-
formative embeddings from multiple local minima and there-
fore requires much fewer epochs during the ensemble learning
process (Fig. 1b). To validate this, we tested using epochs of
1, 2, and 10 in SnapCCESS and the conventional VAE ensem-
ble clustering. As expected, in most cases the conventional
VAE ensemble clustering requires a high number of epochs to
achieve high performance (Fig. 2a and Supplementary Fig.
S1). In comparison, SnapCCESS achieves comparable perfor-
mance using only one epoch in training the ensemble model at

the sizes of 50 and 100. Since the epoch is a key parameter
that defines the number of times the VAE will work through
an input dataset, in general training on more epochs requires
more computing time. To evaluate this, we recorded the com-
putation time of SnapCCESS and the conventional VAE en-
semble on each dataset. Indeed, we found that, for both
methods, fewer epochs resulted in significantly faster compu-
tation, especially with large ensemble sizes (Fig. 2b). Under
the same number of epochs, the computation time of both
methods is very similar. Nevertheless, from our above analy-
ses, only SnapCCESS could achieve high performance in clus-
tering cells with a low training epoch and significantly
outperforms the conventional VAE ensemble with an epoch
of 1. Taken together, these findings demonstrate that combin-
ing individual clustering results derived from multiple embed-
dings does lead to more accurate and reproducible consensus
clustering of multimodal single-cell omics data, and the
SnapCCESS framework for ensemble deep learning of embed-
dings can achieve high-performance cell clustering using sig-
nificantly less computational time.

3.2 Diagnostic analysis of SnapCCESS reveals its

ability to improve major and minor cell-type

identification

We evaluated the performance of SnapCCESS using different
initial learning rates and varying numbers of cells in the data-
set. Using the Swanson TEA-seq dataset, we found that the
default learning rate of 0.02 resulted in high cell clustering
performance whereas a larger learning rate of 0.2 led to a sig-
nificant reduction in performance (Supplementary Fig. S2a).
Next, we subsampled the cells from the Swanson TEA-seq
dataset to test the impact of the number of cells on the perfor-
mance of SnapCCESS. We found that datasets with small
numbers of cells have a significant impact on the performance
of SnapCCESS when no ensemble was used (base of 1)

Figure 2 Clustering performance of SnapCCESS and conventional cluster ensembles trained by different numbers of epochs. (a) Concordance of cell-type

clustering on six multimodal single-cell omics data. The x-axis is the number of base clusters for the ensemble and the y-axis is the concordance of the

clustering output and the cell-type annotation in the original studies quantified by ARI. The k-means clustering algorithm was used for clustering the

embeddings generated from each method. The entire procedure was repeated 20 times for capturing the performance variability. (b) Comparison of

computation time for SnapCCESS and conventional VAE cluster ensembles. The x-axis is the number of base clusters included in the cluster ensembles

and the y-axis is the elapsed time in the unit second. Results from SnapCCESS are presented as solid lines and those from conventional VAE cluster

ensembles are presented as dashed lines. Epochs of 1, 2, and 10 were tested and denoted using different colours.
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(Supplementary Fig. S2b). In comparison, SnapCCESS with
an ensemble size of 50 base clusters are much more robust to
data with small cell sizes, highlighting a key advantage of the
ensemble technique.

To further investigate the performance of SnapCCESS on
minor cell-type identification, we split the cell types in each
dataset into two sets with one containing major cell types and
the other containing minor cell types (see Section 2.4.1). We
then assessed each set for its concordance of clustering output
and the pre-defined cell-type labels. We found in all six
datasets a higher clustering performance of SnapCCESS
(epoch¼ 1) with an ensemble of 50 compared to those with-
out using the ensemble in both the major and minor partitions
of the cell types (Fig. 3a and Supplementary Fig. S3a). Lastly,
as a case study, we visualized the Ramaswamy CITE-seq data-
set and highlighted the MAIT-NKT cells using either the ADT
modality (Fig. 3a) or the RNA modality (Supplementary Fig.
S3b). We found that SnapCCESS with a base of 50 led to
much better identification of cells from this cell type than
those from using a base of 1 (Fig. 3c and Supplementary Fig.
S3c). Taken together, these results suggest that the use of the
snapshot ensemble technique in SnapCCESS can improve the
identification of both the major and minor cell types.

3.3 Integrated embedding of multimodality

generally leads to more precise cell clustering

One of the key motivations in conducting multimodal single-
cell omics experiments is the anticipation that the availability
of multiple molecular features in individual cells will lead to
more precise characterization of cell identity and heterogene-
ity in complex multicellular organisms and biological systems

(Zhu et al. 2020). To investigate this, for each dataset, we
trained SnapCCESS (epoch¼1) using either all available data
modalities or each unimodality independently, and then per-
formed cell clustering using the k-means clustering algorithm
on either the integrated embedding of multimodality or
embeddings from each unimodality. We found that in general
clustering of cells using integrated embeddings of multimodal-
ity leads to significantly better results than from using any
unimodality alone (Fig. 4a and Supplementary Fig. S4).
Among the clustering results using unimodal embeddings,
those generated from RNA modality generally performed sim-
ilarly or better compared to those from ADT modality. The
clustering performance of ATAC modality appears to be
lower compared to other modalities, which may be due to the
higher dimensionality and data sparsity in ATAC data modal-
ity (Xiong et al. 2019). Together, these results support the
expectation that taking into consideration of multiple molecu-
lar features of cells can lead to a more precise downstream
characterization of the biological systems, and further high-
light the utility of modality integration methods for analyzing
multimodal single-cell omics data.

3.4 SnapCCESS improves various clustering

algorithms

Since the ensemble deep learning of embeddings in
SnapCCESS is independent of clustering algorithms, we
next tested the performance of the SnapCCESS framework
(epoch¼ 1) by coupling it with a spectral clustering algorithm
and SIMLR, a kernel-based clustering algorithm. Note that
the two large CITE-seq datasets, Stephenson CITE-seq and
Hao CITE-seq, were excluded due to the exponential growth
of computational complexity with the number of cells in a
dataset for the spectral clustering algorithm. Overall, we ob-
served a clear increase in clustering performance with the in-
creasing ensemble size, regardless of the types of clustering
algorithms and concordance evaluation metrics (Fig. 4b and
Supplementary Fig. S5). Nonetheless, compared to the simple
k-means clustering algorithm, the application of more ad-
vanced SIMLR clustering and spectral clustering algorithms
generally led to improved cell clustering as measured by their
concordance to the cell-type annotation. These findings are of
particular interest to SIMLR, which was originally designed
for analyzing unimodal scRNA-seq data, as they demonstrate
that embeddings learned by SnapCCESS from multimodal
single-cell omics data can be used for a clustering algorithm
designed for unimodal single-cell omics data.

Similar to the results from k-means clustering, the improve-
ment from SIMLR and spectral clustering also peaked around
the ensemble size of 50 (Fig. 4b and Supplementary Fig. S5).
This is also consistent with the results from scCCESS for
scRNA-seq data analysis (Geddes et al. 2019), suggesting an
ensemble size of 50 may be a suitable choice for the ensemble
deep learning component in the SnapCCESS framework.

3.5 SnapCCESS performs competitively to the

state-of-the-art embedding generating methods

for multimodal single-cell clustering

Various methods exist for generating embeddings from multi-
ple data modalities in single-cell multimodal omics data.
Some of the state-of-the-art examples include totalVI designed
for combining RNA and ADT modalities in CITE-seq data
and its sibling MultiVI for combining RNA and ATAC mo-
dalities such as in SHARE-seq and SNARE-seq, and Jvis-learn

Figure 3 Concordance of clustering output and the pre-defined cell-type

labels on (a) major and minor cell type quantified by ARI in each of the six

datasets. (b) TSNE visualization of Ramaswamy CITE-seq data using ADT

modality. MAIT-NKT cells are highlighted in red. (c) Zoom in of MAIT-NKT

cell clustering using SnapCCESS with 1 or 50 base clusters.
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and MOFAþ which are generic and can be applied to all data
modality combinations. Given the applicability of each
method, we compared SnapCCESS (epoch¼ 1 and ensemble
size of 50) with TotalVI on the CITE-seq datasets, MultiVI on
SHARE-seq and SNARE-seq datasets, and MOFAþ and Jvis-
learn on all six datasets with two or three modalities. In par-
ticular, we used the multimodality-integrated embeddings
generated from each of these methods as input to k-means,
SMILR, and spectral clustering algorithms and examined the
concordance of clustering output with cell-type annotation us-
ing ARI (Fig. 5a) and NMI (Fig. 5b).

We found that SnapCCESS performed competitively to
other multimodality embedding generation methods. In most
cases, its performance is significantly better than totalVI when
applied to CITE-seq datasets and MultiVI when applied to
SHARE-seq and SNARE-seq datasets (Fig. 5). While
MOFAþ also performed well especially on CITE-seq datasets,
SnapCCESS appears to be slightly better than MOFAþ when
used for generating embeddings and performing cell clustering
on the SHARE-seq and the trimodal TEA-seq datasets.
Interestingly, while clustering of the embeddings from
Jvis-learn using k-means and spectral clustering algorithms
performed reasonably well, the use of SIMLR on Jvis-learn
generated embeddings leads to poor results in many cases.
These results may indicate the varying degree of generalizabil-
ity of the multimodality embedding generation methods on
different clustering algorithms. To this end, multimodality
embeddings generated from the other four methods (i.e.
SnapCCESS, totalVI, MultiVI, and MOFAþ) worked well
regardless of the used clustering algorithm.

4 Discussion and conclusion

A main challenge in single-cell omics data analysis is in han-
dling the high-dimensionality of the feature space (Yang et al.
2021). Embedding learning is a popular approach for reduc-
ing feature dimension for subsequent analysis such as cluster-
ing of cells. While many methods have been designed to

generate embeddings for unimodality scRNA-seq data, only a
few methods are specifically designed for and can be applied
to integrate data modalities in multimodal single-cell omics
data. Our comparison to these methods highlights the utility
of forming ensembles of embeddings for dimension reduction
of multimodal single-cell omics data and their subsequent ap-
plication in cell clustering.

A key innovation in SnapCCESS is the adaptation of the
snapshot ensemble learning technique (Huang et al. 2017)
which significantly reduces the computation time and resour-
ces for multiple embeddings compared to conventional VAE
ensembles. The underlying idea of the snapshot ensemble is to

Figure 4 Comparison of embeddings learned from multimodality and unimodality, and evaluation of the SnapCCESS framework with alternative clustering

algorithms on multimodal single-cell omics data. (a) Concordance of cell-type clustering quantified by ARI on six multimodal single-cell omics data using

SnapCCESS generated embeddings from either all modalities in a dataset or each data modality alone. The entire procedure was repeated 20 times for

capturing the performance variability. The k-means clustering algorithm was used. (b) Concordance of the cell-type annotations and cell clustering output

from each clustering algorithm. The x-axis is the number of base clusters in the ensemble and the y-axis is the concordance quantification by either ARI.

Both (a) and (b) were repeated 20 times for capturing the performance variability.

Figure 5 Comparison of SnapCCESS framework (epoch¼ 1 and

ensemble size of 50) with other multimodality embedding generation

methods on cell clustering using k-means, SIMLR, and spectral clustering

algorithm. (a) Quantification of clustering concordance to cell-type

annotation using ARI. (b) Similar to (a) but quantifying clustering

concordance using NMI. Each bar indicates the average performance

across datasets with 20 repeats, and error bars represent the standard

deviation.
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save multiple versions of a single model during the training
process by using a cyclic learning rate scheduler. In
SnapCCESS, this allows us to capture the multi-view of the la-
tent space which leads to better clustering performance (Cao
et al. 2020). Nevertheless, the clustering of each embedding
generated from SnapCCESS is still performed individually.
While parallelization can be implemented to speed up the pro-
cess, designing clustering algorithms that can cluster cells via
multiple embeddings simultaneously could further improve
computational efficiency. Related to this, there are various en-
semble deep learning methods that aim to reduce computation
time by using techniques such as model branching and neuron
deactivation (Cao et al. 2020). The effectiveness of these alter-
native approaches for learning embeddings from multimodal
single-cell omics data remains to be tested.

The utility of the embeddings generated from multimodal
single-cell omics data is much wider than cell clustering.
While clustering is one application that can make use of
embeddings learned from such data, other tasks such as su-
pervised cell-type classification (Abdelaal et al. 2019) and
unsupervised number of cell-type estimation (Yu et al. 2022)
that take the embeddings as input can also be applied for ana-
lyzing multimodal single-cell omics data. Therefore, designing
methods that can generate better embeddings will impact vari-
ous downstream analyses and applications of multimodal
single-cell omics data. To this end, the utility of ensemble
deep learning methods for these applications (e.g. cell-type
classification, number of cell-type estimation) should be inves-
tigated in future studies.

While the current study evaluates the SnapCCESS frame-
work for clustering cells into discrete groups, the cell-type
structures from many biological systems are hierarchical, with
subpopulations of cells existing in each major cell type (Lin
et al. 2020). The development of multimodal single-cell omics
technologies facilitates the characterization of such hierarchi-
cal cell-type relationships. Therefore, developing methods
that are capable of multi-resolution clustering of cells on data-
sets with multimodal molecular attributes is a direction of fu-
ture research. Another recent expansion in the single-cell
omics field is the increasing availability of spatial single-cell
omics data produced by an array of new spatial profiling tech-
nologies (Larsson et al. 2021). Combining spatial data with
other omics data types produced from the same cells and sam-
ples has the potential to uncover a wealth of information, in-
cluding spatial-related cell-type structure, and will help us
gain a deeper understanding of cell and tissue development
and disease progression. Developing clustering algorithms for
integrating spatial data with other omics datasets is challeng-
ing and requires further methodological innovation.

In summary, our previous work demonstrated that ensem-
ble learning of embeddings provides an effective approach for
improving downstream clustering analyses by providing a
multi-view of the input data (Geddes et al. 2019). Here we ex-
tend this idea for single-cell multimodal omics data analysis
by introducing SnapCCESS, an efficient ensemble deep learn-
ing framework using VAE and snapshot techniques, gaining
high performance in cell clustering while alleviating the limita-
tion on computation efficiency in conventional ensemble
learning methods. Since the clustering of individual embed-
dings can be performed independently from each other, the
proposed framework can benefit from further speed up by
parallelization of embedding clustering. We expect
SnapCCESS to serve as a useful tool and spark the future

development of ensemble deep learning methods for multi-
modal single-cell omics data analysis.
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