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Abstract— 3D LiDAR scanners are playing an increasingly
important role in autonomous driving as they can generate
depth information of the environment. However, creating large
3D LiDAR point cloud datasets with point-level labels requires a
significant amount of manual annotation. This jeopardizes the
efficient development of supervised deep learning algorithms
which are often data-hungry. We present a framework to
rapidly create point clouds with accurate point-level labels
from a computer game. The framework supports data collection
from both auto-driving scenes and user-configured scenes. Point
clouds from auto-driving scenes can be used as training data
for deep learning algorithms, while point clouds from user-
configured scenes can be used to systematically test the vulner-
ability of a neural network, and use the falsifying examples to
make the neural network more robust through retraining. In
addition, the scene images can be captured simultaneously in
order for sensor fusion tasks, with a method proposed to do
automatic calibration between the point clouds and captured
scene images. We show a significant improvement in accuracy
(+9%) in point cloud segmentation by augmenting the training
dataset with the generated synthesized data. Our experiments
also show by testing and retraining the network using point
clouds from user-configured scenes, the weakness/blind spots
of the neural network can be fixed.

I. INTRODUCTION

Autonomous driving requires accurate and reliable percep-
tion of the environment. Of all the environment sensors, 3D
LiDARs (Light Detection And Ranging) play an increasingly
important role, since their resolution and field of view
exceed radar and ultrasonic sensors and they can provide
direct distance measurements that allow detection of all
kinds of obstacles [1]. Moreover, LiDAR scanners are robust
under a variety of conditions: day or night, with or without
glare and shadows [2]. While LiDAR point clouds contain
accurate depth measurement of the environment, navigation
of autonomous vehicles also relies on correct understanding
of the semantics of the environment. Most of the LiDAR-
based perception tasks, such as semantic segmentation[3],
[4], [2] and drivable area detection[5], [6], require significant
amount of point-level labels for training and/or validation.
Such annotation, however, is usually very expensive.

To facilitate the manual annotation process, much work
has been done on interactive annotation. Annotation methods
have been proposed for labeling 3D point clouds of both in-
door scenes [7] and outdoor driving scenes [8]. These meth-
ods utilize little computer assistance during the annotation
process and thus need a significant amount of human effort.
In [9], [10], approaches have been proposed to enhance the

man-machine interaction to improve annotation efficiency. In
[11], [12], annotation suggestions for indoor RGBD scenes
are proposed by the system that are interactively corrected
or refined by the user. In order to provide faster interactive
labeling rates, [13] proposes a group annotation approach for
labeling objects in 3D LiDAR scans. Active learning has also
been introduced in the annotation process to train a classifier
with fewer interactions [14], [15], yet it requires users
to interact with examples one-by-one. Other frameworks
further take into account the risk of mislabeling and cost
of annotation. [16] proposes a model of the labeling process
and dynamically chooses which images will be labeled next
in order to achieve a desired level of confidence.

Recently, video games have been used for creating large-
scale ground truth data for training purposes. In [17], a video
game is used to generate ground truth semantic segmentation
for the synthesized in-game images. However, human effort
is still required in the annotation process. In [18], the same
game engine is used to generate ground truth 2D bounding
boxes of objects in the images. [19] further extends the work
of [17] so that various ground truth information(e.g. semantic
segmentation, semantic instance segmentation, and optical
flow) can be extracted from the game engine. In addition,
many driving simulation environments[20], [21], [22] have
been built in order to obtain various kinds of labeled data for
autonomous driving purposes. Many of these work[18], [17],
[19], [22] show the effectiveness of synthetic data in image-
based learning tasks by showing improved performance after
training with additional synthetic data. However, little work
has been done on extracting annotated 3D LiDAR point
clouds from simulators, not to mention showing the efficacy
of the synthetic point clouds during the training process of
neural networks.

Note that even if we could provide large amounts of
training data, it is still almost impossible for any algorithms
to achieve 100% accuracy. For Cyber-Physical Systems used
for safety critical purposes, such as autonomous driving, ver-
ifying neural networks is of extreme importance [23]. In [24],
a framework is proposed to systematically analyze Convolu-
tional Neural Networks (CNNs) used in objection detection
in autonomous driving systems. However, the framework
only takes into account cars from direct front/back view and
thus has a very limited modification space. In addition, each
background image needs to be manually annotated, making
it expensive to generate a dataset with large diversity. To the
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(a) (b) (c)
Fig. 1: Sample data extracted from an in-game scene. (a): Image of the scene; (b): Point cloud of car (Blue dots) mapped
to image after calibration matches car in image; (c): Extracted point cloud from the same scene.

best of our knowledge, no similar work has been done on
LiDAR point clouds. In this paper, we propose an extraction-
annotation-CNN testing framework based on a popular video
game. The main contributions of this framework are as
follows:

• The framework can automatically extract point-cloud
data with ground truth labels together with the corre-
sponding image frame of the in-game scene, as shown
in Fig. 1.

• The framework can do automatic calibration between
collected point clouds and images which can then be
used together for sensor fusion tasks.

• Users can construct specified scenarios in the frame-
work interactively and the collected data(point clouds
and images) can then be used to systematically test,
analyze and improve LiDAR-based and/or image-based
learning algorithms for autonomous driving.

We conducted experiments on a Convolutional Neural
Network (CNN)-based model for 3D LiDAR point cloud
segmentation using the data collected from the proposed
framework. The experiments show 1) significantly improved
performance on KITTI dataset[8] after retraining with ad-
ditional synthetic LiDAR point clouds, and 2) efficacy of
using the data collected from user-configured scenes in the
framework to test, analyze and improve the performance of
the neural network. The performance improvements come
from the fact that the data collected in the rich virtual world
contains a lot of information that the neural network failed to
learn from the limited amount of original training samples.

II. TECHNICAL APPROACH

A. In-Game Simulation Setup and Method for Data Collec-
tion

We choose to utilize the rich virtual world in Grand Theft
Auto V (GTA-V), a popular video game, to obtain simulated
point clouds as well as captured in-game images with high
fidelity1. Our framework is based on DeepGTAV2, which
uses Script Hook V3 as a plugin.

1The publisher of GTA-V allows non-commercial use of footage of
gameplay [17].

2https://github.com/aitorzip/DeepGTAV
3http://www.dev-c.com/gtav/scripthookv/
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Fig. 2: Sample configurable parameters of the virtual LiDAR.
(a) shows front view of the virtual LiDAR: black dotted line
is the horizontal line, α is the vertical field of view (FOV),
θ is the vertical resolution, σ is the pitch angle; (b) shows
top view of the virtual LiDAR, β is the horizontal FOV, and
φ is the horizontal resolution.

In order to simulate realistic driving scenes, an ego car
is used in the game with a virtual LiDAR scanner mounted
atop, and it is set to drive autonomously in the virtual world
with the AI interface provided in Script Hook V. While
the car drives on a street, the system collects LiDAR point
clouds and captures the game screen, simultaneously. We
place the virtual LiDAR scanner and the game camera at
the same position in the virtual 3D space. This set-up offers
two advantages: 1) a sanity check can be easily done on the
collected data, since point clouds and corresponding images
must be consistent; 2) calibration between the game camera
and the virtual LiDAR scanner can be done automatically,
and then collected point clouds and scene images can be
combined together as training dataset for neural networks
for sensor fusion tasks. Details of the proposed calibration
method will be described in Section II-B.

Ray casting is used to simulate each laser ray emitted by
the virtual LiDAR scanner. The ray casting API takes as
input the 3D coordinates of the starting and ending point
of the ray, and returns the 3D coordinates of the first point
the ray hits. This point is used, with another series of API
function calls, to calculate, among other data, the distance of
the point, the category and instance ID of the object hit by
the ray, thus allowing automatic annotation on the collected
data.

In our framework, users can provide configurations of
the LiDAR scanner including vertical field of view (FOV),
vertical resolution, horizontal FOV, horizontal resolution,

https://github.com/aitorzip/DeepGTAV
http://www.dev-c.com/gtav/scripthookv/


pitch angle, maximum range of laser rays, and scanning
frequency. Some of the configurable parameters are shown
in Fig. 2.

B. Automatic Calibration Method

The goal of the calibration process is to find the corre-
sponding pixel in the image for each LiDAR point. In our
framework, the calibration process can be done automatically
by the system based on the parameters of the camera and
LiDAR scanner. In addition, the centers of the camera
and LiDAR scanner are set to the same position in the
virtual world, making the calibration projection similar to
the camera perspective projection model, as shown in Fig. 3.

The problem is formulated as follows: for a certain laser
ray with azimuth angle φ and zenith angle θ, calculate
the index (i, j) of the corresponding pixel on image. Fc,
Fo, P , P ′ and Pfar are 3D coordinates of a) center of
camera/LiDAR scanner, b) center of camera near clipping
plane. c) point first hit by the virtual laser ray (in red),
d) pixel on image corresponding to P , and e) a point far
away in the laser direction, respectively. m and n are the
width and height of the near clipping plane. γ is 1/2 vertical
FOV of camera while ψ is 1/2 vertical FOV of the LiDAR
scanner. Note that LiDAR scanner FOV is usually smaller
than camera FOV, since there is usually no object in the top
part of the image, and the emitting laser to open space is not
necessary. After a series of 3D geometry calculation, we can
get:

i =
Rm

m
· (f · tan γ · m

n
− f

cos θ
· tanφ),

j =
Rn

n
· (f · tan γ + f · tan θ),

(1)

where f =
∥∥∥−−−→FcFo

∥∥∥, and (Rm, Rn) is the pixel resolution of
the image/near clipping plane.

Further, in order for the ray casting API to work properly,
the 3D coordinates of Pfar are also required. Using similar
3D geometry calculations, we obtain:

P ′ = Fc + f · −→xc −
f

cos θ
· tanφ · −→yc − f · tan θ · −→zc ,

Pfar = Fc + k · (P ′−Fc),
(2)

where k is a large coefficient, and −→xc ,−→yc ,−→zc are unit vectors
of the camera axis in the world coordinate system.

An example of the calibration result is shown in Fig. 1.
After simulation, both image and point cloud of the specified
in-game scene are collected by the framework (Fig. 1 (a, c)).
Then with the proposed calibration method, we map all the
points with category ”Car” to the corresponding image. As
shown in Fig. 1 (b), the mapped car point cloud (blue dots)
matches the car in the image fairly accurately.
C. Configurable In-game Scene

Besides the auto-driving mode for large-scale data col-
lection, our framework offers a configurable mode, where
the user can configure desired in-game scenes and collect
data from them. One advantage of configurable scenes is
generating training data of driving scenes that are dangerous

u
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Fig. 3: Projection for Calibration. Fo is the center of the near
clipping plane of the camera; Fc is the center of the camera
and of the LiDAR scanner; the red line is the laser ray and
P is the point hit by the ray; the calibrated on-image point
has pixel index (i, j) and 3D coordinates P ′; γ is the 1/2
camera vertical FOV and ψ is the 1/2 LiDAR vertical FOV;
φ and θ are the azimath and zenith angles of the laser ray.

or rare in real world. Another advantage is that we can
systematically sample the modification space(e.g. number of
cars, position and orientation of a car) of an in-game scene.
The data can then be used to test neural network, expose
its vulnerabilities and improve its performance throuth re-
training. Our framework offers a large modification space
of the in-game scene. As shown in Fig. 4, the user can
specify and change 8 dimensions of in-game scene: car
model, car location, car orientation, number of cars, scene
background, color of car, weather, and time of day. The first 5
dimensions affect both LiDAR point cloud and scene image,
while the last three dimensions affect only the scene image.
An example of sampling is shown in Fig. 5, where the scenes
are only sampled from the spatial dimensions (X, Y) with
only one car in each scene. X and Y are the location offset of
the car relative to the camera/LiDAR location in the left-right
and forward-backward directions. Fig.5 (b) shows collected
point cloud of the samples shown in Fig.5 (a). The red points
represent car points while the blue points represent the scene
background. The collected point clouds match the scenes
well thus allowing the use of the data to test neural nets
systematically.

III. EXPERIMENTS AND RESULTS

We performed experiments to show the efficacy of our data
synthesis framework: 1) Data collected by the framework can
be used in the training phase and help improve the validation
accuracy; 2) Collected data can be used to systematically test
a neural network and improve its performance via retraining.

A. Evaluation Metrics

Our experiments are performed on the task of LiDAR
point cloud segmentation; specifically, given a point cloud
detected by a LiDAR sensor, we wish to perform point-wise
classification, as shown in Fig. 6. This task is an essential
step for autonomous vehicles to perceive and understand the
environment, and navigate accordingly.



Car Model Car Location Car Orientation

Number of Cars Reference Scene Background

Car Color Weather Time of Day
Fig. 4: Modification dimensions of the framework with image in center showing the reference scene.

X

Y

(a) (b)
Fig. 5: Scenes with one car sampled from spatial dimensions and corresponding point cloud. (a) shows the scene image
while changing the location of the car on X(left-right) and Y(forward-backward) directions; (b) shows point clouds (red for
car and blue for background) of scenes in (a).

Ground	truth	segmentation Predicted	segmentation

Fig. 6: LiDAR point cloud segmentation

To evaluate the accuracy of the point cloud segmentation
algorithm, we compute Intersection-over-Union (IoU), Pre-

cision and Recall as:

IoUc =
|Pc ∩ Gc|
|Pc ∪ Gc|

, P rc =
|Pc ∩ Gc|
|Pc|

, Recallc =
|Pc ∩ Gc|
|Gc|

.

Here, Pc denotes the set of points that our model predicted
to be of class-c, Gc denotes the ground-truth set of points
belonging to class-c, and |·| denotes the cardinality of a
set. Precision and Recall measures accuracy with regard to
false positives and false negatives, respectively; while IoU
takes both into account. For this, IoU is used as the primary
accuracy metric in our experiments.

B. Experimental Setup

Our analysis is based on SqueezeSeg [2], a convolutional
neural network based model for point cloud segmentation.



To collect the real-word dataset, we used LiDAR point cloud
data from the KITTI dataset and converted its 3D bounding
box labels to point-wise labels. Since KITTI dataset only
provides reliable 3D bounding boxes for front-view LiDAR
point clouds, we limit the horizontal field of view(FOV)
to the forward-facing 90◦. This way, we obtained 10,848
LiDAR scans with manual labels. We used 8,057 scans for
training and 2,791 scans for validation. Each point in a KITTI
LiDAR scan has 3 cartesian coordinates (x, y, z) and an
intensity value, which measures the amplitude of the signal
received. Although the intensity measurement as an extra
input feature is beneficial to improve the segmentation accu-
racy, simulating the intensity measurement is very difficult
and not supported in our current framework. Therefore we
excluded intensity as an input feature to the neural network
for GTA-V synthetic data. We use NVIDIA TITAN X GPUs
for the experiments during both the training and validation
phases.

C. Experimental Results

For the first set of experiments, we used our data synthesis
framework to generate 8,585 LiDAR point cloud scans
in autonomous-driving scenes. The generated data contain
(x, y, z) measurements but do not contain intensity. The
horizontal FOV of the collected point clouds are set to be
90◦ to match the setting of KITTI point clouds described in
Section III-B.

To quantify the effect of training the model with synthetic
data, we first trained two models on the KITTI training set
with intensity included and excluded, and validated on the
KITTI validation set. The performance is shown in the first
2 rows of Table I as the baseline. The model with intensity
achived better result. Then we trained another model with
only GTA-V synthetic data. As shown in the third row
of Table I, the performance drops a lot. This is mostly
because the distributions of the synthetic dataset and KITTI
dataset are quite different. Therefore, through training purely
on synthetic dataset, it is hard for the neural network to
learn all the required details for the KITTI dataset, which
might be missing or insufficient in the synthetic training
dataset. Finally, we combined the KITTI data and GTA-V
data together as the training set and train another model. As
shown in the last row of Table I, the performance is improved
significantly, almost 9% better than the accuracy achieved
only using real-world data. Despite the loss of the intensity
channel, the GTA+KITTI dataset gives better accuracy than
if intensity is included. This demonstrates the efficacy of the
synthetic data extracted in our framework.

Then we used our framework to systematically test
SqueezeSeg. As an illustrative experiment, we only per-
formed sampling in the car location X-Y dimensions as in
Fig. 5, rather than the whole modification space. 555 scenes
were sampled to test SqueezeSeg, with the IoU results shown
in Fig. 7. The blue and green dots show the car locations
resulting in low IoU. Most of the ”blind spot” are locations
far from the LiDAR scanner, but there are also closer
locations that result in low IoU scores. Close locations with

TABLE I: Segmentation Performance Comparison on the
Car Category. Only data used in the first row has Intensity
channel.

Precision Recall IoU
KITTI w/ Intensity 66.7 95.4 64.6

KITTI w/o Intensity 58.9 95.0 57.1
GTA-V only 30.4 86.6 29.0

KITTI w/o Intensity
+ GTA-V 69.6 92.8 66.0

All numbers are in percentage.

low IoUs are dangerous in autonomous driving, since they
can mislead the decision-making system of the autonomous
vehicles and result in immediate accident.

Fig. 7: IoU scatter with the change of car location

Further experiments are then done to show the efficacy
of using synthetic data from the proposed framework to
possibly improve performance of the network on bad sam-
ple points in the modification space. We synthesized to-
tally 2,250 LiDAR point cloud scans in 15 different scene
backgrounds. In each scene background, only one car is
placed with the same orientation as the camera view. We
obtained 150 point cloud scans in each scene background by
changing the position of the car (X,Y ) in the sampled space:
S = {(x, y) | x ∈ {−5, · · · , 4}, y ∈ {5, · · · , 19}}, where
X,Y are respectively the left-right and forward-backward
offset relative to the position of the camera. For each scene
background, the position and orientation of the camera were
fixed.

We split the collected point cloud scans based on the
scene background. 1200 point cloud scans in the first 7
backgrounds are used as validation set V , and the rest 1050
scans, which we call retraining set R, are used for retraining
purpose. First, we train a neural network with purely KITTI
data and do evaluation on the synthetic 1200 scans in the
validation set. We define mean IoU(mIoU) for each point in
the 15× 10 X-Y modification space as averaging IoUs over
all the 7 scene backgrounds:

mIoU(i, j) =
1

n

n∑
k=1

IoU(i, j, k),

where n is the number of scene backgrounds (n = 7 in this
experiment), (i, j) is in {(i, j) | i ∈ [−5, 4], j ∈ [5, 19], i, j ∈



Z} and IoU(i, j, k) refers to the IoU of the point cloud scan
sampled at (i, j) in the X-Y modification with the kth scene
background.

The mIoU map of the validation set is computed, as shown
in Fig. 8. We can see that the pre-trained network performs
poorly on positions that are far away, at the boundary of
the FOV. But more surprisingly, we also observed that on
position (-3, 5), which is fairly close to the ego-vehicle, the
mIoU score is also very low. Detection errors at such near
distance can be very dangerous.

4 2 0 2 4
X

6

8

10

12

14

16

18

Y

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8: mIoU map of the validation set before retraining

Based on the mIoU map, we choose positions with an
mIoU smaller than a threshod to form a retraining set, as
shown in Fig. 9.

Then all the point clouds in the retraining set R with
a selected position are added to the original training set.
After the retraining process, we re-evaluate the validation
set, with the new mIoU map shown in Fig. 10. As the
figure shows, at almost all the close-to-center positions
originally with low mIoU, the neural network performs
much better than before the retraining. In order to visualize
the performance improvements better, we plot the mIoU
improvement after the retraining process for each position.
The mIoU improvements are sorted and plotted in Fig. 11.
We see that after retraining, performance on point clouds
at most of the positions gets much better, with slightly
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Fig. 9: mIoU map of the validation set after selection with
mIoU less than 0.65 set to 0. All the point clouds in the
retraining set R corresponding to the blue positions in the
new mIoU map will be added to the original training set.
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Fig. 10: mIoU map of the validation set after retraining
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Fig. 11: mIoU improvements in ascending order for all 150
positions

degraded performance at only a small fraction of positions.
Meanwhile, the performance on KITTI dataset remained
almost the same with IoU changing from 60.8% to 60.6%.
These experiments show the efficacy of using synthetic data
from user-configured scenes of the proposed framework to
test, analyze and improve the performance of neural networks
through retraining.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a framework that synthesizes
annotated LiDAR point clouds from a virtual world in a
game, with a method to automatically calibrate the point
cloud and scene image. Our framework can be used to:
1) obtain a large amount of annotated point cloud data,
which can then be used to help neural network training;
2) systematically test, analyze and improve performance of
neural networks for tasks such as point cloud segmentation.
Experiments show that for a point cloud segmentation task,
synthesized data help improve the validation accuracy (IoU)
by 9%. Furthermore, the systematical sampling and testing
framework can help us to identify potential weakness/blind
spots of our neural network model and fix them. The first set
of experiments also show the effectiveness of the intensity
channel in LiDAR point clouds. In the future, we will work
on simulating the intensity information, which we believe
will definitely help the research in this field.
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