
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Foundations for Model-Agnostic Recourse Verification

Permalink
https://escholarship.org/uc/item/3c88m7qn

Author
Kothari, Avni

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3c88m7qn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Foundations for Model-Agnostic Recourse Verification

A Thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Avni Kothari

Committee in charge:

Professor Lily Weng, Chair
Professor Taylor Berg-Kirkpatrick, Co-Chair
Professor Julian McAuley

2023

Copyright

Avni Kothari, 2023

All rights reserved.

The Thesis of Avni Kothari is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . v

List of Tables . vi

Acknowledgements . vii

Vita . viii

Abstract of the Thesis . ix

Introduction . 1

Chapter 1 Background and Setup . 4
1.1 Related Work . 4
1.2 Recourse Verification . 5

Chapter 2 Methodology . 10
2.1 Verification with Reachable Sets . 10
2.2 Algorithms . 13

Chapter 3 The Value of Recourse Verification . 16
3.1 Experiments . 16
3.2 Demonstrations . 19

Chapter 4 Conclusion . 22
4.1 Concluding Remarks . 22
4.2 Limitations . 22

Appendices . 24

Bibliography . 46

iv

LIST OF FIGURES

Figure 1. Example of Fixed Point . 3

Figure 3.1. Breakdown of Reachable Sets in heloc . 20

v

LIST OF TABLES

Table 1.1. Catalog of Actionability Constraints . 7

Table 3.1. Experimental Results . 17

vi

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Lily Weng, Professor Berk Ustun, and Bogdan

Kulynych for all their support and patience with me during this process. I would also like to

thank all my family and friends who supported me during this time.

All content in this thesis is a reprint of the paper Prediction without Preclusion Recourse

Verification with Reachable Sets written in collaboration with Bogdan Kulynych, Lily Weng,

and Berk Ustun. The thesis author is the primary investigator and first author of this paper.

vii

VITA

2016 Bachelor of Arts, University of Texas at Austin

2017–2021 Software Engineer at Edovo and 8th Light

2022 Teaching Assistant, Department of Computer Science
University of California San Diego

2023 Master of Science, University of California San Diego

FIELDS OF STUDY

Major Field: Computer Science

Studies in Mathematics

Studies in Economics

viii

ABSTRACT OF THE THESIS

Foundations for Model-Agnostic Recourse Verification

by

Avni Kothari

Master of Science in Computer Science

University of California San Diego, 2023

Professor Lily Weng, Chair
Professor Taylor Berg-Kirkpatrick, Co-Chair

Machine learning models are often used to decide who will receive a loan, a job interview,

or a public service. Standard techniques to build these models use features that characterize

people but overlook their actionability. In domains like lending and hiring, models can assign

predictions that are fixed—-meaning that consumers who are denied loans and interviews are

permanently locked out from access to credit and employment. In this work, we introduce a

formal testing procedure to flag models that assign these “predictions without recourse," called

recourse verification. We develop machinery to reliably test the feasibility of recourse for any

model given user-specified actionability constraints. We demonstrate how these tools can ensure

ix

recourse and adversarial robustness in real-world datasets and use them to study the infeasibility

of recourse in real-world lending datasets. Our results highlight how models can inadvertently

assign fixed predictions that permanently bar access and the need to design algorithms that

account for actionability when developing models and providing recourse.

x

Introduction

Machine learning models routinely assign predictions to people – be it to approve an

applicant for a loan [30], a job interview [6, 59], or a public benefit [76, 16, 20]. Models in

such applications use features that capture individual characteristics without accounting for how

individuals can change them. In turn, models may assign predictions that are not responsive

to the actions of their decision subjects. In effect, even the most accurate model can assign a

prediction that is fixed (see Fig. 1).

The responsiveness of machine learning models to our actions is a vital aspect of their

safety in consumer-facing applications. In fraud detection and content moderation [32, 50,

40], for example, models should assign fixed predictions to prevent malicious actors from

circumventing detection. In lending and hiring, however, predictions should exhibit some

sensitivity to actions. Otherwise, models that deny loans and interviews may permanently

preclude access to credit and employment – thus violating rights and regulations such as equal

opportunity [4] and universal access [10].

There is a broad lack of awareness that models in lending and hiring may inadvertently

assign fixed predictions. In this work, we propose to test for this effect by certifying the

infeasibility of recourse [66, 68, 38]. In contrast to prior work on recourse [36, 69], our goal

is verification – i.e., to check if a model assigns predictions that every decision subject can

change through actions on its features. This procedure can return falsifiable information about

a model by certifying that recourse is feasible or infeasible under a given set of actionability

constraints. In practice, verification is a challenging computational ask – as a procedure may

return information that is “incorrect” or “inconclusive” when it fails to complex actionability

1

constraints or fails to check the the predictions of a model over the entire space defined by these

constraints.

This work proposes a model-agnostic approach for recourse verification with reachable

sets – i.e., regions of feature space that are confined by actionability constraints. Reachable sets

are a powerful tool for verification because they can be constructed directly from the actionability

constraints and can be used to characterize the feasibility of recourse for all possible models.

In particular, any model will assign a prediction without recourse if it fails to assign a target

prediction over its reachable set. The main contributions of this work include:

1. An introduction to a model-agnostic approach for recourse verification with reachable sets.

Salient classes of reachable sets are identified and theory is developed to show how they can

be used to design practical verification algorithms.

2. Fast algorithms to delineate reachable sets from complex actionability constraints. The

algorithms in this work can be used to ensure that a model can provide recourse in model

development or deployment, and are designed to abstain when they are unable to certify

recourse in order to avoid incorrect outputs.

3. An empirical study of the infeasibility of recourse using several real-world datasets, realistic

actionability constraints, and common model classes. The results illustrate the prevalence

of predictions without recourse in lending applications, and highlight the pitfalls in flagging

these examples with recourse provision. Finally, this work includes a demonstration of how

this method can be used to ensure recourse in consumer-facing applications like lending and

content moderation.

4. A Python library that implements our tools, is available in this repository.

2

https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md

Features Action Set Reachable Set Dataset ERM

has_phd age≥60 A(x1,x2) RA(xxx) n− n+ f̂ R̂(f̂)

0 0 {(1,1),(0,1),(1,0),(0,0)} {(1,1),(0,1),(1,0),(0,0)} 10 25 + 10
0 1 {(1,0),(0,0)} {(1,1),(0,0)} 11 25 + 11
1 0 {(0,1),(0,0)} {(1,1),(0,0)} 12 25 + 12
1 1 {(0,0)} {(0,0)} 27 15 - 15

Figure 1. Example of Fixed Point
Stylized classification task where the most accurate linear classifier assigns a prediction without recourse
to a fixed point. We predict y = repay_loan using two features (x1,x2) = (has_phd, age≥60) that
can only change from 0 to 1. Here, (has_phd, age≥60) (1,1) is a fixed point that will be assigned a
prediction without recourse by any classifier f such that f (1,1) =−1. We show that this point is assigned
a prediction without recourse by f̂ , the empirical risk minimizer for a dataset with n− = 60 negative
examples and n+ = 90 positive examples.

3

Chapter 1

Background and Setup

1.1 Related Work

This work is related to research on algorithmic recourse, which studies how to change

the prediction of a given model through actions in feature space [66, 68]. Much work on this

topic develops methods for provision – i.e., to provide a person with an action to change the

prediction of a given model [see e.g., 31, 14, 54, 36, 69, 70, 60, 34]. The focus of this work is

instead on verification – i.e., to test if a model assigns predictions that each person can change

using any action. Although actionability is a defining characteristic of recourse, the fact that

it may induce infeasibility is not often discussed [see 66, 37, 12, for exceptions]. This work

motivates the need to study and test infeasibility by showing that recourse may not exist under

realistic actionability constraints.

The methods presented in this work share the same low-level machinery as a number

of methods to find recourse actions or counterfactual explanations for specific model classes

[66, 64, 56]. These methods solve combinatorial optimization problems and thus are capable

of providing proofs of infeasibility as well are capable of encoding the same actionability

constraints as we do. In this paper, however, it can be seen that this machinery can be used

for model-agnostic verification. This approach is valuable as it is enables to verify recourse

feasibility for models that are hard to encode as part of combinatorial optimization.

There is a need for verification as a procedure to safeguard access in consumer-facing

4

applications, and to operationalize recourse provision [68, 62]. This motivation is shared by a

stream of recent work on the robustness of recourse with respect to distributions shifts [61, 22],

model updates [65, 57], group dynamics [2, 55, 24], and causal effects [48, 38, 71]. Testing

infeasibility may be valuable for eliciting individual preferences over recourse actions [73, 78,

77], measuring the effort required to obtain a target prediction [28, 23], and building classifiers

that incentivize improvement [63, 41, 42, 1, 26], or preventing strategic manipulation [25, 13, 46,

52, 51, 18, 8, 27]. The tools presented in this work can support other verification tasks that test

the sensitivity of model predictions to perturbations in semantically meaningful feature spaces,

such as ensuring adversarial robustness on tabular data [47, 35, 29, 72, 50, 40] or stress testing

for counterfactual invariance [67, 49, 58].

1.2 Recourse Verification

Consider a standard classification task where there is a given a model f : X → Y to

predict a label y ∈ Y = {−1,+1} using a feature vector xxx = [x1, . . . ,xd] in a bounded feature

space X1× . . .×Xd = X . Here, each instance represents a person, and that f (xxx) = +1 represents

a target prediction (e.g., loan approval).

The goal is to study if a person can attain a target prediction from a given model by

performing actions on its features. Each action represents a vector aaa = [a1, . . . ,ad] ∈ Rd that

would shift a feature vector from xxx to xxx+aaa = xxx′ ∈ X . The set of all actions available to a person

from xxx ∈ X is denoted through the action set A(xxx) where 000 ∈ A(xxx).

Recourse

Given a model f : X → Y and a point xxx ∈ X with action set aaa ∈ A(xxx), the recourse

provision task seeks to find an action to attain a target prediction by solving an optimization

5

problem of the form:

min cost(aaa | xxx)

s.t. f (xxx+aaa) = +1,

aaa ∈ A(xxx),

(1.1)

where cost(aaa | xxx) ≥ 0 is a cost function that captures the cost of enacting aaa from xxx [66]. This

is a challenging computational optimization problem given that it (1.1) combines two kinds of

difficult constraints: (i) aaa ∈ A(xxx), which are non-convex and discrete in the general case (see

Table 1.1); and f (xxx+aaa) = +1, which may are difficult to encode for models with complex

decision boundaries (e.g., neural networks and random forests).

The recourse verification task seeks to determine the feasibility of the optimization

problem in (1.1) – i.e., to test if f (xxx) = f (xxx+aaa) for all aaa ∈ A(xxx). The verification procedure is

formalized as a function such that:

Recourse(xxx, f ,A) =

Yes, only if there exists aaa ∈ A(xxx) such that f (xxx+aaa) = +1

No, only if f (xxx+aaa) =−1 for all aaa ∈ A(xxx)

⊥, otherwise

A procedure certifies feasibility for xxx if it returns Yes, and certifies infeasibility if it

returns No. The procedure also abstains by outputting the flag ⊥ when it cannot evaluate the

conditions to certify feasibility or infeasibility. This may occur, for example, when we call

verification using an underspecified action set Ã(xxx)⊂ A(xxx) and discover that f (xxx+aaa) =−1 for

all aaa ∈ Ã(xxx).

6

Table 1.1. Catalog of Actionability Constraints
We show whether a constraint is separable (can be specified for each feature independently) and convex.
We show an example of each constraint type to show that they can be expressed in natural language and
encoded as a constraint in a combinatorial optimization problem.

Constraint Type Sep. Cvx. Sample Constraint Features Encoding

Immutability ✓ ✓ n_dependents should not change x j = n_dependents a j = 0

Monotonicity ✓ ✓ prior_applicant can only increase x j = prior_applicant a j ≥ 0

Integrality ✓ ✗ n_accounts must be positive integer ≤ 10 x j = n_accounts a j ∈ Z∩ [0− x j,10− x j]

Encoding: Categorical Features ✗ ✗
preserve one-hot encoding
of married,single

x j = married

xk = single
a j +ak = 1, {a j,ak} ∈ {0,1}

Encoding: Ordinal Features ✗ ✗
preserve one-hot encoding of
max_degree_BS,max_degree_MS

x j = max_degree_BS

xk = max_degree_MS

a j = x′j− x j ak = x′k− xk

x′j + x′k = 1 x′k ≥ x′j,
{x′j,x′k} ∈ {0,1}

Logical Implications ✗ ✗

if is_employed= TRUE

then work_hrs_per_week≥ 0
else work_hrs_per_week= 0

x j = is_employed,
xk = work_hrs_per_week

a j = x′j− x j ak = x′k− xk

x′j ∈ {0,1} x′k ∈ [0,168],
x′k ≤ 168 x′j

Deterministic Causal ✗ ✗
if years_at_residence increases
then age will increase commensurately

x j = years_at_residence

xk = age
a j ≤ ak

Use Cases

Suppose that the model f assigns a prediction without recourse to xxx. Such predictions

may be undesirable in tasks where we would like to ensure access (e.g., lending), and desirable

in applications where we would like to safeguard against gaming (e.g., content moderation):

Recourse. This work verifies a model violates the right to access by testing if it assigns a

prediction without recourse: Recourse(xxx, f ,A) = No. Here, the focus is on a use case in which

the action set A(xxx) is the set of the minimal constraints that apply to every decision subject,

described shortly. In this case, predictions are flagged without recourse even under conservative

assumptions as a basic test of infeasibility.

Robustness. This work certifies that the model f is not vulnerable to adversarial manipu-

lation: Recourse(xxx, f ,A) = No where the true label of xxx is y =−1. The action set A(xxx) can be

specified to capture illegitimate actions [e.g., 18] or to represent an adversary’s threat model [e.g.,

40].

This work minimizes the chances that a model will assign predictions without recourse

by calling verification routines at model development and deployment. In the former, we would

test if a model assigns a prediction without recourse over training examples. In the latter, we

would call the procedure for previously unseen points at prediction time to flag violations in

7

deployment.

Pitfalls of Verification

Methods for recourse provision may return results that are incorrect or inconclusive when

used for verification unless they are designed to certify infeasibility. In practice, any procedure

that can certify infeasibility should be able to: (1) account for constraints in an action set and (2)

check every action in the action set. When methods fail to satisfy these requirements, they may

exhibit two kinds of pitfalls:

Loopholes: A loophole is an instance where a method returns an action that violates actionability

constraints. In practice, a method for recourse provision returns loopholes if it fails to account

for a subset of actionability constraints. Formally, the procedure solves the recourse problem

in (1.1) using a relaxed action set Aext(xxx)⊆ A(xxx). The result is an action that is not technically

feasible.

Blindspots: A blindspot refers to an instance where a method fails to certify feasibility. Formally,

a blindspot arises when a method for recourse provision overlooks certain actions in an action

set. This may occur, for example, with methods that are designed to search for actions using a

heuristic search.

Specifying Action Sets

Semantically meaningful features will often admit hard actionability constraints. As

shown in Table 1.1, we can state these conditions in natural language and encode them as

constraints in an optimization problem. Although actionability differs substantially across

individuals and context [see 68, 5], every task will admit a set of minimal constraints that can be

gleaned from a data dictionary –e.g., conditions that pertain to how a feature is encoded or its

physical limits (e.g., work_hrs_per_week≤ 168).

In settings where we may wish to impose assumptions constraints on actionability, the

functionality shown in Table 1.1 will be able to handle assumptions surrounding actionability

in a way that promotes transparency, contestability, and participatory design. Individuals can

8

write their assumptions in natural language – allowing stakeholders to scrutinize and contest

these assumptions even without technical expertise in machine learning. If stakeholders disagree

on these assumptions, they can tell if these disagreements impact the results of their analysis

(e.g., via an ablation study). Ultimately if stakeholders cannot reach a consensus, one can run

verification under the “most conservative” actionability constraints they agree on. We observe

that this collection is not empty, as it will always contain a set of minimal constraints.

9

Chapter 2

Methodology

2.1 Verification with Reachable Sets

This work introduces a model-agnostic approach for recourse verification. This approach

stems from the observation that recourse is feasible over regions of features that are confined by

actionability constraints. These regions can be delineated through a reachable set, defined below.

Definition 1 (Reachable Set). Given a point xxx and action set A(xxx), its reachable set contains all

feature vectors that can be attained using an action aaa ∈ A(xxx): RA(xxx) := {xxx+aaa | aaa ∈ A(xxx)}.

Even though reachable sets theoretically map to action sets, action sets are easier to

specify indirectly through constraints (see Section 1.2). Obtaining the reachable set from a

specification of the action set is not trivial, and methods are provided for doing so in the next

sections.

Given any model f : X→Y , we can verify recourse for a point xxx by evaluating predictions

over its reachable set R = RA(xxx) or its interior approximation R = Rint
A ⊂ RA(xxx).

10

Recourse(xxx, f ,R) =

Yes, if there exists xxx′ ∈ R

No, if f (xxx′) =−1 for all xxx′ ∈ R = RA(xxx)

⊥, if f (xxx′) =−1 for all xxx′ ∈ R⊂ RA(xxx)

The procedure in Section 2.1 has two key benefits:

1. Model-Agnostic Certification: It provides a way to certify infeasibility for any model. In

this setting, a model-agnostic approach may simplify verification because it only considers

actionability constraints. In contrast, a model-specific approach would have to solve an

optimization problem with two kinds of challenging constraints as in Eq. (1.1): (i) prediction

constraints f (xxx+aaa) = +1, and (ii) actionability constraints aaa ∈ A(xxx).

2. Safety through Abstention: It will abstain when it cannot certify recourse. For instance,

suppose that we call the procedure using an interior approximation of the reachable set

Rint
A (xxx)⊂ RA(xxx) and fail to find a point in Rint

A (xxx) that achieves the target prediction. In this

case, an abstention is valuable because it flags xxx as a potential prediction without recourse.

In practice, this leads to practical benefits. For example, we can call Recourse(xxx, f ,R) with

an approximate reachable set R = Rint
A (xxx) to screen points that have recourse. We can then

revisit those points on which the procedure abstained with either a better approximation or

the full reachable set R = RA(xxx).

Certain classes of reachable sets can support verification:

Definition 2 (Fixed Point). A point xxx is fixed if its reachable set only contains itself: RA(xxx) = {xxx}.

Fixed points can occur in clusters. If the features of A(xxx) are separable and some of them

are immutable, then xxx has a set of sibling points NA(xxx): all points that contain modifications of

the immutable features of xxx. If xxx is a fixed point, then every sibling xxx′ ∈ NA(xxx) is also fixed.

11

Definition 3 (Fixed Region). A fixed region is a reachable set RA(xxx) such that for any xxx′ ∈ RA(xxx)

we have RA(xxx′)⊆ RA(xxx).

Given a fixed point, we can determine if a model violates recourse by checking its

prediction on a single point. Given a fixed region, we can verify recourse for all points within it

without generating reachable sets. Fixed points arise under common actionability constraints.

For instance:

Proposition 4. Any classification task with bounded features whose actions obey monotonicity

constraints must contain at least one fixed point.

The resulting points give rise to more complex confined regions as new features are added to the

dataset:

Proposition 5. Consider adding a new feature Xd+1 ⊆ R to a set of d features X ⊆ Rd . Let

Ad+1(xd+1) be the actions from a point with feature value xd+1 ∈ Xd+1. Any fixed point xxx ∈ X

induces the following confined regions in the (d +1)-dimensional space:

• |Xd+1| fixed points feature space, if xd+1 is immutable.

• A fixed point zzz0 := (xxx,vd+1) where vd+1 is an extreme point of Xd+1.

• A fixed region if Ad+1(xd+1) = Ad+1(x′d+1) for any xd+1,x′d+1 ∈ Xd+1.

Proposition 5 provides a cautionary result. For instance, suppose that we have identified

fixed points. To enable recourse for them, we could choose to source additional features. In this

case, we must take care that these new features remove the fixed points and regions and not only

propagate them.

Reachable sets let us verify recourse for an arbitrary classifier using a set of labeled

examples.

Theorem 6 (Certification with Labeled Examples). Suppose we have a dataset of labeled

examples {(xxxi,yi)}n
i=1. Every model f : X → Y can provide recourse to xxx if:

12

FNR(f)<
1

n+
n

∑
i=1

1[xxxi ∈ R ∧ yi =+1] (2.1)

where FNR(f) := 1
n+ ∑

n
i=11[f (xxxi) =−1 ∧ yi =+1] is the false negative rate of f and where n+

is number of positive examples, and R⊆ RA(xxx) is any subset of the reachable set.

The proof of Theorem 6 relies on the pigeonhole principle, and is provided in Section 4.2.

The theorem states that given a reachable set RA(xxx), we immediately know that any model that is

sufficiently accurate on positive examples in the dataset must provide recourse for xxx. Conversely,

having measured a model’s false negative rate, we know that there exists recourse for reachable

sets with a certain level of prevalence of positive examples.

2.2 Algorithms

In this section, algorithms are presented for recourse verification with reachable sets. The

algorithms are designed to certify recourse in a way that minimizes abstentions – i.e., to cover

the detection of as many predictions without recourse as possible. To this end, they can delineate

fixed points in general feature spaces, construct reachable sets over discrete feature spaces, and

identify predictions with recourse by testing reachability over samples.

Fixed Point Detection

The first method is to detect fixed points, which are also used as a building block in later

methods. They can be verified if xxx is a fixed point by solving the optimization problem:

FindAction(xxx,A(xxx)) := argmin ∥aaa∥ s.t. aaa ∈ A(xxx)\{0}. (2.2)

If FindAction(xxx,A(xxx)) is infeasible, we know that xxx is a fixed point. FindAction(xxx,A(xxx))

is formulated as a mixed integer program, and it is solved with an off-the-shelf solver [see e.g.,

21]. Once we know that xxx is fixed, we can certify Recourse(xxx, f ,A) = Yes if f (xxx) = +1 and No

if f (xxx) =−1. This approach avoids loopholes and blindspots by addressing the key requirements

13

for verification. In particular, it supports a rich class of actionability constraints. A formulation

is presented that can encode all actionability constraints from Table 1.1 in Section 4.2.

Verification on Observed Data

The next method can certify recourse by testing if a point xxx can reach another point xxx′

assigned a positive prediction:

IsReachable(xxx,xxx′,A(xxx)) := min 1 s.t. xxx = xxx′−aaa, aaa ∈ A(xxx)

As before, this problem is formulated as mixed integer program and it is solved using

an off-the-shelf solver. Given a set of positive samples S+, we can apply this method for all

xxx′ ∈ S+ to maximize the chance of finding if the point xxx has recourse. If such reachable points

are identified using this method, we can certify Recourse(xxx, f ,A) = Yes.

Reachable Set Generation

The next method can certify feasibility and infeasibility in a discrete feature space by

constructing a reachable set. The procedure is presented for generating a reachable set of a

given point xxx in Algorithm 1. For this, FindAction(xxx,A(xxx)) (line 3) is repeatedly solved, while

removing the previous solution from the considered action set at every next step (Line 5). The

procedure continues until the problem becomes infeasible or another stopping condition is met.

For example, as described in Section 2.1, we might be interested in generating only a subset of

the reachable set Rint
A (xxx)⊂ RA(xxx). In this case, the stopping condition could be that the algorithm

has identified a certain minimum number of points in the reachable set.

Full Sample Audit

In Algorithm 2, an algorithm is presented to produce a collection of reachable sets for

each point in a dataset – i.e., a collection that can be used to perform the verification procedure

in Section 2.1. This procedure seeks to reduce the time needed to build this data reachable sets

by exploiting the properties of fixed points and fixed regions in Section 2.1 For instance, if a

14

Algorithm 1. GetReachableSet
Require: xxx ∈ X , where X is discrete; A(xxx)
Require: Action Sets A(xxx)

R←{xxx},F ← A(xxx)
repeat

if FindAction(xxx,F) is feasible then
aaa∗← FindAction(xxx,F)

R← R∪{xxx+aaa∗}
F ← F \{aaa∗}

until stopping condition
Output R⊆ RA(xxx)

reachable set is a fixed region, then by definition we do not need to generate reachable sets for

any other point in the fixed region. The full auditing procedure is detailed with optimizations

In certain use cases, we can do this without the need to get the reachable sets of all points in a

dataset. For example, if we run the audit during model development to ensure feasibility, we can

stop once we find any prediction without recourse.

Algorithm 2. SampleAudit
Require: Sample S = {xxxi}n

i=1; A(·)
C←{ }
repeat

xxxi← Pop(S)
Ri← GenReachableSet(xxxi,A(xxxi))
if Ri = {xxxi} then (for separable action sets)

S← S\NA(xxxi,A(xxxi))
else if Ri is a fixed region then

S← S\Ri

C←C∪{Ri}
until no points remain in S

Output C, collection of reachable sets for xxxi

15

Chapter 3

The Value of Recourse Verification

3.1 Experiments

This work presents an empirical study of infeasibility in recourse. The goal is to study

the prevalence of predictions without recourse under actionability constraints, and to characterize

the reliability of verification using existing methods. The code to reproduce the results is in this

repository and additional details in Section 4.2.

Setup

Three publicly available lending datasets are used in Table 3.1. Each dataset pertains to a

task where predictions without recourse preclude access to credit and recourse provision. Each

dataset is used to fit a classifier using logistic regression (LR) and XGBoost (XGB). Reachable

sets are constructed for each training example using Algorithm 1 in CPLEX v22.1 on a 3.2GHz

CPU with 8GB RAM. We benchmark our method (Reach) against baseline methods for recourse

provision: AR [66], a model-specific method that can certify infeasibility for linear models with

separable actionability constraints; DiCE [53], a model-agnostic method that supports separable

actionability constraints.

We evaluate the feasibility of recourse under nested action sets: Non-Separable, which

includes constraints on immutability, monotonicity, and non-separable constraints such as causal

relations; Separable, which includes constraints on immutability and monotonicity; Simple, which

includes constraints on immutability. To certify feasibility, we use standard discretization into

16

https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md

Table 3.1. Experimental Results
Reliability of recourse of verification over datasets, model classes, and actionability constraints. We
determine the feasibility of recourse for training examples using our method (Reach), then use them
to evaluate the reliability of verification using salient methods for recourse provision. We report the
following metrics for each method and model type: Recourse – % of points where a method certifies that
recourse exists, No Recourse – % of points where the method certifies no recourse exists, Abstain – % of
points in which Reach cannot determine if recourse exists, Loopholes – % of points whose actions are
inactionable, Blindspots – % of points where a method fails to return an action.

Simple Separable Non-Separable

Dataset Model Type Metrics Reach AR DiCE Reach AR DiCE Reach AR DiCE

german

[15]
n = 1,000
d = 24

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

90.8%
0.0%
9.2%

—
—

99.1%
0.9%

—
0.0%
0.0%

94.7%
—
—

0.0%
5.3%

91.9%
0.4%
7.7%

—
—

95.5%
4.5%

—
0.0%
0.0%

82.7%
—
—

0.0%
17.3%

94.9%
2.1%
3.0%

—
—

22.4%
4.5%

—
73.1%

0.0%

11.3%
—
—

71.4%
17.3%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

90.4%
0.0%
9.6%

—
—

—

94.7%
—
—

0.0%
5.3%

91.9%
0.4%
7.7%

—
—

—

84.5%
—
—

0.0%
15.5%

94.9%
2.1%
3.0%

—
—

—

21.3%
—
—

62.8%
16.0%

givemecredit

[33]
n = 8,000
d = 13

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

100.0%
0.0%
0.0%

—
—

100.0%
0.0%

—
0.0%
0.0%

100.0%
—
—

0.0%
0.0%

99.9%
0.0%
0.1%

—
—

99.9%
0.1%

—
0.0%
0.0%

99.9%
—
—

0.0%
0.1%

99.9%
0.1%
0.1%

—
—

64.9%
0.0%

—
35.1%

0.0%

53.6%
—
—

46.4%
0.0%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

100.0%
0.0%
0.0%

—
—

—

100.0%
—
—

0.0%
0.0%

99.9%
0.0%
0.1%

—
—

—

99.9%
—
—

0.0%
0.1%

99.9%
0.1%
0.1%

—
—

—

28.6%
—
—

71.4%
0.0%

heloc

[17]
n = 3,184
d = 29

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

24.7%
0.0%

75.3%
—
—

85.2%
14.8%

—
0.0%
0.0%

51.7%
—
—

0.0%
48.3%

29.0%
0.0%

71.0%
—
—

62.2%
37.8%

—
0.0%
0.0%

48.2%
—
—

0.0%
51.8%

57.3%
41.9%

0.8%
—
—

23.5%
37.8%

—
38.8%

0.0%

20.4%
—
—

27.8%
51.8%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

84.4%
0.0%

15.6%
—
—

—

99.8%
—
—

0.0%
0.2%

35.1%
0.0%

64.9%
—
—

—

57.5%
—
—

0.0%
42.5%

73.2%
26.4%

0.5%
—
—

—

23.4%
—
—

34.1%
42.5%

bins of continuous features. We summarize the reliability of recourse verification for each dataset,

method, and model class in Table 3.1. In what follows, we discuss these results in detail.

On Predictions without Recourse

The results show how recourse may not exist under actionability constraints. Recourse is

generally feasible under simple constraints such as immutability and integrality, with infeasibility

mainly arising as we consider more complex constraints. On german, for example, LR only

assigns predictions without recourse under Separable and Non-Separable constraints to 0.4% and

17

2.1% of the data, respectively.

Minor variations are found in the prevalence of predictions without recourse across

model classes. Given that the reachable sets do not change under a fixed dataset and actionability

constraints, these differences reflect differences in the number of negative predictions across

models. We observe that predictions without recourse can drastically change across model

types that are equally accurate at a population level. In Non-Separable heloc, for example, we

observe a 15.5% difference in predictions without recourse between LR and XGB even though

both classifiers have similar performance in terms of the area under the ROC curve (AUC) on the

test dataset (0.729 vs 0.737). This highlights the potential to choose between models to ensure

recourse.

On Pitfalls of Verification

Our results highlight common failure modes in using methods for recourse provision

for verification as described in Section 1.2. In heloc, for example, we observe 26.4% of points

without recourse with XGB. In cases where recourse is feasible, methods may fail to return any

actions. However, we may be unable to tell if a point has recourse or if a method was unable

to generate it in the first place. For example, DiCE fails to find actions for 42.5% of points.

However, there may exist feasible actions. This effect highlights the potential failure to account

for actionability constraints by, e.g., post-hoc filtering [45]. In this case, DiCE cannot produce

any actions after filtering a set of diverse counterfactual explanations to enforce implication

constraints related to deterministic causal relationships and a thermometer encoding.

On the Value of Model-Agnostic Verification

Although methods such as AR are capable of providing a certificate of infeasibility

for linear models under separable constraints, they start yielding loophole actions as soon as

the constraints become more complex. For instance, in heloc, AR flags 37.8% of predictions

as without recourse with Separable, but fails to certify additional 4.1% of predictions without

recourse under Non-Separable constraints. Reach does have limitations in verifying recourse when

18

it hits a predefined hard limit for building out the full reachable that we set to 25 points for

these experiments. Although the number of abstentions can be reduced by increasing the hard

limit, we can also certify more points by using the methods in conjunction with one another. For

instance, for points where Reach abstains, AR can be used in non-separable cases to determine

the feasibility of a point, and if DiCE can find actions for an individual, Reach can determine

if the action is feasible. In cases where DiCE or AR cannot find actions for constraints that are

non-separable, Reach can be used to determine if the point is fixed or if we indeed observe

recourse infeasibility.

3.2 Demonstrations

This section demonstrates how this method can be used ensure recourse in lending. An

additional study to show how we can evaluate adversarial robustness in content moderation is

shown in Section 4.2.

Setup

We work with the FICO heloc dataset [17], which covers n = 3184 consumers and con-

tains d = 29 features about their credit history. Here, yi =+1 if a consumer i has duly repaid a

home equity loan. Our goal is to ensure recourse over the training data – so that we can flag mod-

els that permanently deny access to credit [39, 9], and use recourse provision methods to produce

adverse action notices [3]. We work with a domain expert in the U.S. credit industry to identify

common constraints on features. Our final action set includes 24 constraints, both separable

(e.g., RevolvingTradesWBalance is a positive integer, MostRecentTradeLastYear can only in-

crease), and non-separable (e.g., RevolvingDebtBurdenLeq30, RevolvingDebtBurdenGeq60).

Results

We generate reachable sets for all points in the training data using Algorithm 1 and use

them to perform recourse verification for LR and XGB classifiers. We summarize the feasibility of

recourse in Fig. 3.1. Our results reveal 733 predictions without recourse for LR, and 453 for XGB.

19

LR XGB
+

|

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0

100

0

100

S
iz

e
of

 R
ea

ch
ab

le
 S

et

Recourse − Incorrect
Recourse − Correct
No Recourse − Incorrect
No Recourse − Correct

Figure 3.1. Breakdown of Reachable Sets in heloc
Composition of reachable sets for the heloc for LR and XGB. Each plot shows the size of reachable
sets for each training example delineated by Algorithm 1. The top row displays sizes of reachable
sets for samples with negative predictions and the bottom row for samples with positive predictions.
Correct/incorrect denotes where the true label does/does not equal the predicted label and Recourse/No
Recourse denotes if recourse is feasible/infeasible. We highlight predictions without recourse for both
correctly classified and incorrectly classified negative points. We can see predictions without recourse are
prevalent with all reachable set sizes and can be drastically different between classifiers.

In this case, we find 5 fixed points that are assigned positive predictions. Thus, all predictions

without recourse stem from a generalized reachable set. The mix of individual feature constraints

and constraints on the interactions between features causes fixed points and reachable sets with

no recourse.

A specific example is a consumer with 10 years of account history, and 15 open credit and

fixed loans with a majority of them paid off. Among their open fixed loans, there is a substantial

remaining balance that needs to be paid, and they experienced a delinquent trade within the past

year. They are denied by both classifiers. This consumer has the ability to reach 7 other points

by reducing their one credit card loan with balance and increasing the number of years they have

open and active loans. However, even if with all these changes, they will still be denied approval.

Our results can guide interventions in model development to ensure recourse. At a

minimum, practitioners can use the information from this analysis for model selection. In this

20

case, we find that both classifiers have similar performance in terms of AUC, but XGB assigns

280 fewer predictions without recourse. More generally, we can identify immutable features

that lead to infeasibility in predictions. In this case, our analysis reveals that a key feature

among individuals assigned predictions without recourse is MaxDelqEver, which determines

the maximum duration of delinquency. In this case, one can restore recourse by replacing this

feature with an alternative that is mutable MaxDelqInLast5Years.

21

Chapter 4

Conclusion

4.1 Concluding Remarks

This work highlights the inherent value of infeasibility in recourse – i.e., as a tool to

ensure access in consumer-facing applications. The normative basis for access stems from

principles of equality of opportunity (e.g., in hiring) and universal access (e.g., in affordable

healthcare). In such settings, we would a model to ensure access – even if this comes at a cost –

because it reflects the kind of society we want to build.

Ensuring access may benefit all stakeholders in consumer-facing applications. In lending,

for example, we only observe labels for consumers who are assigned a specific prediction [due

to selective labeling 44, 11, 74]. Thus, consumers assigned predictions without recourse cannot

generate labeled examples to signal their creditworthiness [9]. In the United States, these effects

have cut off credit access for large consumer segments whose creditworthiness is not known [see,

e.g., 26M “credit invisibles” 75].

4.2 Limitations

Given that actionability varies across individuals as well as subpopulations, verification

should be used as a test to flag models that will preclude access, rather than as a tool to “rubber-

stamp” for safety. Our treatment of infeasibility does not consider probabilistic causal effects –

e.g., when changing a feature may induce changes in other features as per a probabilistic causal

22

model [see 37, 43, 12, 71]. Our machinery may be useful for modeling complex interactions in

these settings. However, infeasibility requires a probabilistic definition that can characterize the

“reducible” uncertainty due to model development from the uncertainty in the underlying causal

process.

23

Appendices

24

Notation

Symbol Meaning

X ⊆ Rd feature space
Y = {−1,+1} label space
X j ⊆ R feature space for feature j
aaa ∈ A(xxx) action vector from xxx ∈ X
A(xxx) action set for xxx ∈ X . 000 ∈ A(xxx)
A j(xxx) set of feasible actions for feature j from xxx
RA(xxx) := {xxx+aaa | aaa ∈ A(xxx)} reachable set from xxx
Rint

A (xxx)⊂ RA(xxx) inner approximation of a reachable set from xxx
NA(xxx) set of sibling points from xxx
f : X → Y classification model
S+ := {(xxxi,yi)}n+

i=1 s.t. yi =+1 a set of positive examples
S− := {(xxxi,yi)}n+

i=1 s.t. yi =−1 a set of negative examples
n+ := |S+| number of positive examples in a sample
n− := |S−| number of negative examples in a sample
[k] := {1, . . . ,k} set of positive integers from 1 to k

25

Proofs

In this Appendix, we present proofs of our claims in Section 2.1.

Proof of Theorem 6

Theorem 6. Suppose we have a dataset of labeled examples {(xxxi,yi)}n
i=1. Every model f : X→Y

can provide recourse to xxx if:

FNR(f)<
1

n+
n

∑
i=1

1[xxxi ∈ R ∧ yi =+1] (1)

where FNR(f) := 1
n+ ∑

n
i=11[f (xxxi) =−1 ∧ yi =+1] is the false negative rate of f and where n+

is number of positive examples, and R⊆ RA(xxx) is any subset of the reachable set.

Proof. The proof is based on an application of the pigeonhole principle over the positive examples

S+ := {xxxi | yi =+1, i ∈ [n]}. Given a classifier f , denote the total number of true positive and

false negative predictions over S+ as:

TP(f) :=
n

∑
i=1

1[f (xxxi) = +1∧ yi =+1] FN(f) :=
n

∑
i=1

1[f (xxxi) =−1∧ yi =+1].

Say that for a given point xxx with a reachable set R = RA(xxx), the classifier obeys:

TP(f)> n+−|S+∩R|.

In other words, the number of correct positive predictions exceeds the number of positive

examples outside R. In this case, by the pigeonhole principle, the classifier f must assign

a correct prediction to at least one of the positive examples in R – i.e., there exists a point

xxx′ ∈ S+∩R such that f (xxx′) = yi =+1. Given R⊆ RA(xxx), we have that xxx ∈ RA(xxx). Thus, we can

reach xxx′ from xxx by performing the action aaa = xxx′− xxx – i.e., we can change the prediction from

f (xxx) =−1 to f (xxx+aaa) = +1.

26

We recover the condition in the statement of the Theorem as follows:

TP(f)> n+−|S+∩R| (2)

FN(f)< |S+∩R|, (3)

FNR(f)<
1

n+
n

∑
i=1

1[xxxi ∈ R ∧ yi =+1] (4)

Here, we proceed from Eqn. (2) to Eqn. (3) by using the fact that TP(f) = n+−FN(f), and

from Eqn. (3) to (4) by dividing both sides by 1
n+ and applying the definition of the false negative

rate.

Proof of Proposition 4

Proposition 4. Any classification task with bounded features whose actions obey monotonicity

constraints must contain at least one fixed point.

Proof. Consider a set of d features (x1, . . . ,xd) = xxx ∈ X over a bounded feature space. Let l j and

u j denote the lower and upper bounds on feature j, so that x j ∈ [l j,u j] for all j ∈ [d]

We will proceed to construct a fixed point over X under the following conditions: (i)

each feature is monotonically increasing, so that a j ≥ 0 for all j ∈ [d]; (ii) each feature is

monotonically decreasing, so that a j ≤ 0 for all j ∈ [d]; (iii) each feature is either monotonically

increasing or monotonically decreasing so that a j ≥ 0 or a j ≤ 0 for all j ∈ [d].

In the case of (i), the fixed point corresponds to a feature vector xxx∈X such that x j = u j for

all j ∈ [d]. We proceed by contradiction. Suppose xxx is not a fixed point, then there exists an action

aaa′ ∈ A(xxx) such that aaa′ ̸= {0}. In turn, there exists a′j > 0. Let xxx′ = xxx+aaa′ then x′j = x j +a′j > u j

which violates our initial assumption that x′j ∈ [l j,u j]. Thus, xxx must be a fixed point.

In the case of (ii), the fixed point corresponds to a feature vector xxx∈X such that x j = l j for

all j ∈ [d]. We proceed by contradiction. Suppose xxx is not a fixed point, then there exists an action

aaa′ ∈ A(xxx) such that aaa′ ̸= {0}. In turn, there exists a′j < 0. Let xxx′ = xxx+aaa′ then x′j = x j +a′j < l j

which violates our initial assumption that x′j ∈ [l j,u j]. Thus, xxx must be a fixed point.

27

In the case of (iii), by combining the above, it can be seen that as long as x j satisfies

monotonicity constraints which can either be increasing or decreasing there must contain at least

one fixed point.

x j =

u j, if j ∈ J+

l j, if j ∈ J−

where J+ is the set of indices with monotonically increasing constraints and J− is the set of

indices with monotonically decreasing constraints.

Proof of Proposition 5

Proposition 5. Consider adding a new feature Xd+1 ⊆ R to a set of d features X ⊆ Rd . Any

fixed point xxx ∈ X induces the following confined regions in the (d +1)-dimensional space:

• |Xd+1| fixed points in the (d +1)-dimensional feature space, if xd+1 is immutable.

• A fixed point zzz0 := (xxx,xd+1) where xd+1 is an extreme point of Xd+1, that is, xd+1 := maxXd+1

or xd+1 :=minXd+1 if (d+1)-th feature is monotonically increasing (respectively, decreasing)

in the action set A(zzz0), and the constraints in A(zzz0) are separable.

• A fixed region if RA(x1,x2, . . . ,xd,xd+1) = RA(x1,x2, . . . ,xd,x′d+1) for any two xd+1,x′d+1 ∈

Xd+1.

Proof. Let us denote the (d +1)-dimensional feature space as X̄ := X1× . . .×Xd×Xd+1.

• Suppose a point xxx′ ∈ X̄ has the same feature values as xxx in its first d dimensions. As xd+1 is

immutable, the only feasible action for x′d+1 is ad+1 = 0. This holds for any possible value of

x′d+1. This implies that for all feature values of the (d +1)-th feature, xxx′ remains a fixed point.

Therefore, there must exist |Xd+1| fixed points.

• Observe that if vd+1 is an extreme point, then the only possible action is ad+1 = 0 because

28

the d + 1-th feature must satisfy a monotonicity constraint. As the constraints in A(zzz0)

are separable by assumption, and A(xxx) = {0}, zzz0 must also have only one possible action

A(zzz0) = {0}.

• Given any xxx′ ∈ X̄ where the first d dimensions are the same as in xxx, we have RA(xxx′) = RA(xxx).

As any other xxx′′ ∈ RA(xxx′) also shares the first d dimensions and is also xxx′′ ∈ RA(xxx), we have

that RA(xxx′)⊆ RA(xxx).

29

Supplement to Section 2.2 – Algorithms

In this Appendix, we describe how to formulate and solve the optimization problems

in Section 2.2 as mixed-integer programs. We start by presenting a MIP formulation for the

optimization problem solved in the FindAction(xxx,A(xxx)) routine. We then describe how this

formulation can be extended to an optimization problem in the IsReachable(xxx,xxx′,A(xxx)) routine.

Finally, we describe how this formulation can be extended to the complex actionability constraints

in Table 1.1.

MIP Formulation for FindAction

Given a point xxx ∈ X , an action set A(xxx), and a set of previous optima A opt, we can

formulate FindAction(xxx,A(xxx)) as the following mixed-integer program:

min
aaa ∑

j∈[d]
a+j +a−j

s.t. a+j ≥a j j ∈ [d] positive component of a j (5a)

a−j ≥−a j j ∈ [d] negative component of a j (5b)

a j =a j,k +δ
+
j,k−δ

−
j,k j ∈ [d],aaak ∈A opt distance from prior actions (5c)

εmin≤ ∑
j∈[d]

(δ+
j,k−δ

−
j,k) aaak ∈A opt any solution is εmin away from aaak (5d)

δ
+
j,k≤M+

j,ku j,k j ∈ [d],aaak ∈A opt
δ
+
j,k > 0 =⇒ u j,k = 1 (5e)

δ
−
j,k≤M−j,k(1−u j,k) j ∈ [d],aaak ∈A opt

δ
−
j,k > 0 =⇒ u j,k = 0 (5f)

a j ∈A j(xxx) j ∈ [d] separable actionability constraints on j (5g)

δ
+
j,k,δ

−
j,k ∈R+ j ∈ [d] signed distances from a j,k (5h)

u j,k ∈{0,1} j ∈ [d] u j,k := 1[δ+
j,k > 0] (5i)

The formulation finds action in the set aaa ∈ A(xxx)/A opt by combining two classes of

30

constraints: (i) constraints to restrict actions aaa ∈ A(xxx) and (ii) constraints to rule out actions in

aaa ∈A opt.

The formulation encodes the separable constraints in A(xxx) – i.e., a constraint that can

be enforced for each feature. The formulation must be extended with additional variables and

constraints to handle constraints as discussed in Section 4.2. These constraints are handled

through the a j ∈ A j(xxx) conditions in Constraint 5g. This constraint can handle a number of

actionability constraints that can be passed solver when defining the variables a j, including

bounds (e.g., a j ∈ [−x j,10−x j]), integrality (e.g., a j ∈ {0,1} or a j ∈ {L−x j,L−x j+1, . . . ,U−

x j}), and monotonicity (e.g., a j ≥ 0 or a j ≤ 0).

The formulation rules out actions in aaa ∈ A opt through the “no good" constraints in

Constraints (5c) to (5f). Here, Constraint (5d) ensures feasible actions from previous solutions by

at least εmin. We set to a sufficiently small number εmin := 10−6 by default, but use larger values

when working with discrete feature sets (e.g., εmin = 1 for cases where every actionable feature

is binary or integer-valued). Constraints (5e) and (5f) ensure that either δ
+
j,k > 0 or δ

−
j,k > 0.

These are “Big-M constraints" where the Big-M parameters can be set to represent the largest

value of signed distances. Given an action a j ∈ [aLB
j ,aUB

j], we can set M+
j,k := |aUB

j −a j,k) and

M−j,k := |a j,k−aLB
j |.

The formulation chooses each action in aaa ∈ A(xxx)/A opt to minimize the L1 norm. We

compute the L1-norm component-wise as |a j| := a+j + a−j where the variables a+j and a−j are

set to the positive and negative components of |a j| in Constraints (5a) and (5b). This choice

of objective is meant to induce sparsity among the actions we recover by repeatedly solving

Algorithm 1. Given that the objective function does not affect the feasibility of the optimization

problem, one could set the objective to 1 when solving the problem for fixed-point detection.

MIP Formulation for IsReachable

Given a point xxx ∈ X , an action set A(xxx), we can formulate the optimization problem for

IsReachable(xxx,xxx′,A(xxx)) as a special case of the MIP in (5) in which we set A opt = /0 and include

31

the constraint aaa = xxx− xxx′. In this case, any feasible solution would certify that xxx′ can be attained

from xxx using the actions in A(xxx). Thus, we can return IsReachable(xxx,xxx′,A(xxx)) = 1 if the MIP is

feasible and IsReachable(xxx,xxx′,A(xxx)) = 0 if it is infeasible.

Encoding Actionability Constraints

We describe how to extend the MIP formulation in (5) to encode salient classes of

actionability constraints. Our software includes an ActionSet API that allows practitioners to

specify these constraints across each MIP formulation.

Encoding Preservation for Categorical Features

Many datasets contain subsets of features that reflect the underlying value of a categorical

attribute. For example, a dataset may encode a categorical attribute with K = 3 categories

such marital_status ∈ {single,married,other} using a subset of K− 1 = 2 features such

as married and single. In such cases, actions on these features must obey non-separable

actionability constraints to preserve the encoding – i.e., to ensure that a person cannot be

married and single at the same time.

We can enforce these conditions by adding the following constraints to the MIP Formula-

tion in (5):

L≤ ∑
j∈J

x j +a j ≤U (6)

Here, J ⊆ [d] is the index set of features with encoding constraints, and L and U are lower

and upper limits on the number of features in J that must hold to preserve an encoding. Given

a standard one-hot encoding of a categorical variable with K categories, J would contain the

indices of K−1 features (i.e., dummy variables for the K−1 categories other than the reference

category). We would ensure that all actions preserve this encoding by setting L = 0 and U = 1.

32

Logical Implications & Deterministic Causal Relationships

Datasets often include features where actions on one feature will induce changes in the

values and actions for other features. For example, in Table 1.1, changing is_employed from

FALSE to TRUE would change the value of work_hrs_per_week from 0 to a value ≥ 0.

We capture these conditions by adding variables and constraints that capture logical

implications in action space. In the simplest case, these constraints would relate the values for

a pair of features j, j′ ∈ [d] through an if-then condition such as: “if a j ≥ v j then a′j = v j′". In

such cases, we could capture this relationship by adding the following constraints to the MIP

Formulation in (5):

Mu≥ a j− v j (7)

M(1−u)≥ v j−a j (8)

uv j′ = a j′ (9)

u ∈ {0,1}

The constraints shown above capture the “if-then" condition by introducing a binary variable

u := 1[a j ≥ v j]. The indicator is set through the Constraints (7) and (8) where M := aUB
j − v j.

If the implication is met, then a j′ is set to v j′ through Constraint (9). We apply this approach

to encode a number of salient actionability constraints shown in Table 1.1 by generalizing the

constraint shown above to a setting where: (i) the “if" and “then" conditions to handle subsets of

features, and (ii) the implications link actions on mutable features to actions on an immutable

feature (i.e. so that actions on a mutable feature years_since_last_application will induce

changes in an immutable feature age).

Custom Reachability Conditions

We now describe a general-purpose solution to specify “reachable" values for a sub-

set of discrete features. These constraints can be used when we need to encode constraints

33

that require fine-grained control over the actionability of different features. For example,

when specifying actions over one-hot encoding of ordinal features (e.g., max_degree_BS and

max_degree_MS as in Table 1.1) or as ‘thermometer encoding" (e.g.,monthly_income_geq_2k,

monthly_income_geq_5k, monthly_income_geq_10k). In such cases, we can formulate a set

of custom reachability constraints over these features given the following inputs:

• index set of features J ⊂ [d],

• V , a set of all valid values that can be realized by the features in J.

• E ∈ {0,1}k×k, a matrix whose entries encode the reachability of points in V : ei, j = 1 if and

only if point vi can reach point v j for vi,v j ∈V .

Given these inputs, we add the following constraints for each j ∈ J to the MIP Formulation in

(5):

a j = ∑
k∈E[i]

ei,ka j,ku j,k (10)

1 = ∑
k∈E[i]

u j,k (11)

u j,k ≤ ei,k (12)

u j,k ∈ {0,1}

Here, u j,k := 1[xxx′ ∈V] indicates if we choose an action to attain point xxx′ ∈V . Constraint (10)

defines the set of reachable points from i, while Constraint (10) ensures that only one such point

can be selected. Here, ei,k is a parameter obtained from the entries of E for point i, and the

values of a j,k are set as the differences from x j to x′j where xxx,xxx′ ∈V . We present examples of

how to use these constraints to preserve a one-hot encoding over ordinal features in Fig. 1, and

to preserve a thermometer encoding in Fig. 2.

34

Figure 1. Here V denotes valid combinations of features in columns 1 - 3. E in column 4 and shows which points
can be reached. For example, [1,1,0,0] represents point [0,0,0] can be reached and point [1,0,0] can be reached,
but no other points can be reached.

V
IsEmployedLeq1Yr IsEmployedBt1to4Yrs IsEmployedGeq4Yrs E

0 0 0 [1,1,0,0]
1 0 0 [0,1,1,0]
0 1 0 [0,0,1,1]
0 0 1 [0,0,0,1]

Figure 2. Here V denotes valid combinations of features in columns 1 - 3. For these features, we wanted to produce
actions that would reduce NetFractionRevolvingBurden for consumers. E in column 4 and shows which
points can be reached. For example, [1,1,0,0] represents point [0,0,0] can be reached, and point [1,0,0] can be
reached, but no other points can be reached.

V
NetFractionRevolvingBurdenGeq90 NetFractionRevolvingBurdenGeq60 NetFractionRevolvingBurdenLeq30 E

0 0 0 [1,1,0,0]
1 0 0 [0,1,0,0]
0 1 0 [1,1,1,0]
0 1 1 [1,1,1,1]

35

Supplement to Section 3.1 – Experiments

For each dataset, the Simple action set contains only immutability features and integrality

constraints. The Separable action set contains the same actionability constraints as simple

and adds monotonicity constraints. The Non-Separable action set contains all the actionability

constraints as separable and adds non-separable constraints.

Actionability Constraints for the heloc Dataset

We use the action set shown in Table 4. The non-separable constraints are described in

Section 4.2.

Actionability Constraints for the givemecredit Dataset

We show a list of all features and their separable actionability constraints in Table 1. The

non-separable actionability constraints for this dataset include:

1. Logical Implications on AnyRealEstateLoans and MultipleRealEstateLoans. Here, if

AnyRealEstateLoans changes from 1 to 0, then MultipleRealEstateLoans must also

change from 1 to 0.

2. Logical Implications on AnyOpenCreditLinesAndLoans and

MultipleOpenCreditLinesAndLoans. Here, if AnyOpenCreditLinesAndLoans changes

from 1 to 0, then MultipleOpenCreditLinesAndLoans must also change from 1 to 0.

3. Custom Constraints to Preserve Thresholds for features MonthlyIncomeIn1000sGeq2,

MonthlyIncomeIn1000sGeq5, MonthlyIncomeGeq7K. An example can be found in Fig. 2.

Here the feasible actions increase the consumer’s MonthlyIncome and the maximum value a

user can have is where MonthlyIncomeGeq2K = 1, MonthlyIncomeGeq5K = 1, and

MonthlyIncomeIn1000sGeq7 = 1

36

4. Custom Constraints to Preserve Thresholds for features TotalCreditBalanceGeq1K,

TotalCreditBalanceGeq2K, TotalCreditBalanceGeq5K. An example can be found in fig-

ure 2. Here the feasible actions decrease the consumer’s TotalCreditBalance and the

minimum value a consumer can have is where TotalCreditBalanceGeq1K = 0,

TotalCreditBalanceGeq2K = 0, and TotalCreditBalanceGeq5K = 0

Table 1. Overview of Separable Actionability Constraints for the givemecredit dataset.

Feature Name LB UB Actionable Monotonicity

Age 21 90 F

NumberOfDependents 0 10 F

DebtRatioGeq1 0 1 F

MonthlyIncomeGeq2K 0 1 T 0

MonthlyIncomeGeq5K 0 1 T 0

MonthlyIncomeGeq7K 0 1 T 0

TotalCreditBalanceGeq1K 0 1 T 0

TotalCreditBalanceGeq2K 0 1 T 0

TotalCreditBalanceGeq5K 0 1 T 0

AnyRealEstateLoans 0 1 T 0

MultipleRealEstateLoans 0 1 T 0

AnyOpenCreditLinesAndLoans 0 1 T 0

MultipleOpenCreditLinesAndLoans 0 1 T 0

37

Actionability Constraints for the german Dataset

We show a list of all features and their separable actionability constraints in Table 2. The

non-separable actionability constraints for this dataset include:

1. One Hot Encoding for features savings_acct_le_100, savings_acct_bt_100_499, savings_acct_bt_500_999,

savings_acct_ge_1000 An example of this can be found in Section 4.2. Here, actions must

restrict only one category to be selected.

Table 2. Overview of Separable Actionability Constraints for the german dataset.

Feature LB UB Actionable Monotonicity

age 19 75 F

is_male 0 1 F

is_foreign_worker 0 1 F

has_liable_persons 1 1 F

max_approved_loan_duration_geq_10_m 0 1 F

max_approved_loan_amt_geq_10k 0 1 F

max_approved_loan_rate_geq_2 0 1 F

credit_history_no_credits_taken 0 1 F

credit_history_all_credits_paid_till_now 0 1 F

credit_history_delay_or_critical_in_payment 0 1 F

loan_required_for_car 0 1 F

loan_required_for_home 0 1 F

loan_required_for_education 0 1 F

loan_required_for_business 0 1 F

loan_required_for_other 0 1 F

max_val_checking_acct_ge_0 0 1 T +

max_val_savings_acct_ge_0 0 1 T +

years_at_current_home_ge_2 0 1 T +

employed_ge_4_yr 0 1 T +

savings_acct_le_100 0 1 T 0

savings_acct_bt_100_499 0 1 T 0

savings_acct_bt_500_999 0 1 T 0

savings_acct_ge_1000 0 1 T 0

has_history_of_installments 0 1 T +

Overview of Model Performance

38

Table 3. Performance of LR and XGB models for all 3 datasets. We show the performance of each model on the
training dataset and a held-out dataset. We perform a random grid search to tune the hyperparameters for each
model and split the train and test by 80%/ 20%. We use the entire dataset to calculate the number of predictions
without recourse.

Dataset Model Type Sample AUC

heloc LR Train 0.738
heloc LR Test 0.730
heloc XGB Train 0.733
heloc XGB Test 0.737
givemecredit LR Training 0.653
givemecredit LR Test 0.644
givemecredit XGB Training 0.651
givemecredit XGB Test 0.640
german LR Training 0.752
german LR Test 0.690
german XGB Training 0.753
german XGB Test 0.690

39

Supplement to Section 3.2 – Demonstrations

Actionability Constraints for the heloc Dataset

We show a list of all features and their separable actionability constraints in Table 4. The

non-separable actionability constraints for this dataset include:

1. Logical Implications on MostRecentTradeInLastYear and

MostRecentTradeInLast2Years is explained in section Section 4.2. Here, if

MostRecentTradeInLastYear changes from 0 to 1 then MostRecentTradeInLast2Years

must also change from 0 to 1.

2. Custom Constraints to Preserve Thresholds for features

NetFractionRevolvingBurdenGeq90, NetFractionRevolvingBurdenGeq60,

NetFractionRevolvingBurdenLeq30. An example can be found in figure 2. Here, feasible

actions must decrease the consumer’s NetFractionRevolvingBurden. Therefore, the lowest

category a consumer can reach is NetFractionRevolvingBurdenLeq30 = 1.

40

Table 4. Overview of Separable Actionability Constraints for the heloc dataset.

Feature LB UB Actionable Monotonicity

AvgYearsInFileGeq3 0 1 T 0

AvgYearsInFileGeq5 0 1 T 0

AvgYearsInFileGeq7 0 1 T 0

AvgYearsInFileGeq9 0 1 T 0

ExternalRiskEstimate 36 89 F

InitialYearsOfAcctHistory 0 2 T +

ExtraYearsOfAcctHistory 0 48 F

MostRecentTradeWithinLastYear 0 1 T +

MostRecentTradeWithinLast2Years 0 1 T +

AnyDerogatoryComment 0 1 F

AnyDelTradeInLastYear 0 1 F

AnyTrade120DaysDelq 0 1 F

AnyTrade90DaysDelq 0 1 F

AnyTrade60DaysDelq 0 1 F

AnyTrade30DaysDelq 0 1 F

NumInstallTrades 0 55 F

NumInstallTradesWBalance 1 23 F

NumRevolvingTrades 1 85 F

NumRevolvingTradesWBalance 0 32 T -

NetFractionInstallBurdenGeq90 0 1 F

NetFractionInstallBurdenGeq70 0 1 F

NetFractionInstallBurdenGeq50 0 1 F

NetFractionInstallBurdenGeq30 0 1 F

NetFractionInstallBurdenGeq10 0 1 F

NetFractionInstallBurdenEq0 0 1 F

NetFractionRevolvingBurdenGeq90 0 1 T 0

NetFractionRevolvingBurdenGeq60 0 1 T 0

NetFractionRevolvingBurdenLeq30 0 1 T 0

NumBank2NatlTradesWHighUtilizationGeq2 0 1 T -

41

Prototypes of Predictions without Recourse

Table 5. This prototype discussed in ??. This example was chosen because the consumer has negative classifications
for both LR and XGB for all possible actions. Although this consumer has feasible actions they are still unable
to obtain recourse since every reachable point is negatively classified. In this demo, there are 453 examples of
consumers that may have feasible actions, but they are still predictions without recourse by LR and XGB. In this
table, xxx represents all the feature values for this consumer. aaa1, . . . ,aaa7 represent all the feasible actions for this
consumer.

Actions

Feature xxx aaa1 aaa2 aaa3 aaa4 aaa5 aaa6 aaa7

AvgYearsInFileGeq3 1 - - - - - - -

AvgYearsInFileGeq5 0 1 - 1 1 1 1 1

AvgYearsInFileGeq7 0 - - 1 - 1 1 1

AvgYearsInFileGeq9 0 - - - - - 1 1

ExternalRiskEstimate 59 - - - - - - -

InitialYearsOfAcctHistory 2 - - - - - - -

ExtraYearsOfAcctHistory 8 - - - - - - -

MostRecentTradeWithinLastYear 1 - - - - - - -

MostRecentTradeWithinLast2Years 1 - - - - - - -

AnyDerogatoryComment 0 - - - - - - -

AnyDelTradeInLastYear 1 - - - - - - -

AnyTrade120DaysDelq 0 - - - - - - -

AnyTrade90DaysDelq 0 - - - - - - -

AnyTrade60DaysDelq 1 - - - - - - -

AnyTrade30DaysDelq 0 - - - - - - -

NumInstallTrades 8 - - - - - - -

NumInstallTradesWBalance 2 - - - - - - -

NumRevolvingTrades 7 - - - - - - -

NumRevolvingTradesWBalance 1 - -1 - -1 -1 - -1

NetFractionInstallBurdenGeq90 0 - - - - - - -

NetFractionInstallBurdenGeq70 1 - - - - - - -

NetFractionInstallBurdenGeq50 1 - - - - - - -

NetFractionInstallBurdenGeq30 1 - - - - - - -

NetFractionInstallBurdenGeq10 1 - - - - - - -

NetFractionInstallBurdenEq0 0 - - - - - - -

NetFractionRevolvingBurdenGeq90 0 - - - - - - -

NetFractionRevolvingBurdenGeq60 0 - - - - - - -

NetFractionRevolvingBurdenLeq30 1 - - - - - - -

NumBank2NatlTradesWHighUtilizationGeq2 0 - - - - - - -

42

Certifying Adversarial Robustness in Bot Detection on Social Media
Platforms

Our machinery can also certify adversarial robustness to manipulations that normally

cannot be captured by traditional threat models such as perturbations within an Lp ball [see,

e.g., 29, 50, 35, 72, 7]. In this demonstration, we show that our methods enable to reason about

the behavior of arbitrary models under semantically meaningful adversarial manipulations of

the feature vectors. Specifically, we do so by building action sets that encode constraints from

Table 1.1. In what follows, we showcase this by evaluating the adversarial robustness of a bot

detector on a social media platform.

Table 6. Features used for the Twitter bot detector. The groups of features age_of_account_*,
user_replied_*, user_favourited_*, and user_retweeted_* are non-separable thermometer-
encoded.

Feature LB UB Actionable

source_automation 0 1 F

source_other 0 1 F

source_branding 0 1 F

source_mobile 0 1 F

source_web 0 1 F

source_app 0 1 F

follower_friend_ratio 0.83 1.16×105 F

age_of_account_in_days_geq_365 0 1 T

age_of_account_in_days_geq_730 0 1 T

age_of_account_in_days_le_365 0 1 T

user_replied_geq_10 0 1 T

user_replied_geq_100 0 1 T

user_replied_le_10 0 1 T

user_favourited_geq_1000 0 1 T

user_favourited_geq_10000 0 1 T

user_favourited_le_1000 0 1 T

user_retweeted_geq_1 0 1 T

user_retweeted_geq_10 0 1 T

user_retweeted_geq_100 0 1 T

user_retweeted_le_1 0 1 T

Setup

We use the dataset of Twitter accounts from April 2016 annotated by experts [19] as

genuine (“human”) labeled as y =+1 or those representing inauthentic behavior (“bot”) labeled

43

as y = −1. As before, we consider a processed version with n = 1438 accounts and d = 20

features on their account history and activity (e.g., age of account, number of tweets, re-tweets,

replies, use of apps), listed in Table 6. As in Section 3.2, we train a logistic regression and an

XGBoost model. We set aside 287 accounts (20%) as a held-out test dataset.

Our goal is to demonstrate the use of Algorithm 2 for evaluating the robustness of a

detector to adversarial manipulations. We assume that the adversary starts with a bot account that

is correctly detected as bot, and aims to modify the features of the account until it is classified

as human. The capabilities of the adversary include procuring additional tweets, retweets, and

replies; waiting to increase the account age, and adding tweets from previously unused categories

of apps. As this is a complex model of adversarial capabilities which includes non-separable

constraints, it cannot be captured by the commonly considered box constraints or Lp distances.

To evaluate adversarial robustness, we perform the following procedure. We run Algo-

rithm 2 to generate reachable sets for all correctly classified bot accounts. We then evaluate

the prediction of the detector on each of the points in the corresponding reachable set. Second,

we measure adversarial robustness through a version of the robust error metric [as per 40]: the

proportion of the bot accounts from the test set that are correctly classified as bots yet can have

their predictions altered through adversarial actions. Formally, for a set of correctly predicted bot

examples {(xxxi,yi)}m
i=1 from the test data, i.e., such that every yi =−1 (“bot”) and f (xxxi) =−1,

we define the robust error as:

1
m

m

∑
i=1

1[∃xxx′ ∈ RA(xxxi) s.t. f (xxx′) = +1]. (13)

Results

In our test data, we have 88 (out of 287 total accounts) bot accounts that are correctly

classified as bots. We generate the 88 corresponding reachable sets for each account, and evaluate

the predictions in each. Fig. 3 shows the distribution of reachable set sizes.

To evaluate the robustness of classifiers, in Table 7, we show the performance metrics of

44

LR XGB

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0

100

S
iz

e
of

 R
ea

ch
ab

le
 S

et

Robust
Non−Robust

Figure 3. Composition of reachable sets for Twitter bot detection with LR and XGB models. Each plot shows the
size of reachable sets generated by Algorithm 1 for every correctly classified bot account in the test set. Robust/Non-
Robust denotes if the bot example can flip the prediction via manipulations within action set or not.

Table 7. Robust error and performance of LR and XGB models trained for Twitter inauthentic behavior detection
task. All metrics are computed on the test data.

Model Type AUC Error Robust Error

LR 0.697 34.1% 44.8%
XGB 0.698 34.5% 33.3%

the classifiers along with the computed robust error. We find that for the majority of bots it is

not possible to flip their prediction with any possible action within the adversarial model, with

the robust error being approximately 33.3% for XGB and 44.82% for LR. Despite both classifier

attaining similar error and AUC, XGB is more robust to adversarial manipulations.

In summary, our method enables to find adversarial examples, thus evaluate adversarial

robustness, in tabular domains under a complex model of adversarial capabilities.

45

Bibliography

[1] Tal Alon, Magdalen Dobson, Ariel Procaccia, Inbal Talgam-Cohen, and Jamie Tucker-Foltz. Mul-
tiagent evaluation mechanisms. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 1774–1781, 2020.

[2] Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, and
Cynthia Liem. Endogenous macrodynamics in algorithmic recourse. In First IEEE Conference on
Secure and Trustworthy Machine Learning.

[3] Sarah Ammermann. https://www.consumercomplianceoutlook.org/2013/second-quarter/
adverse-action-notice-requirements-under-ecoa-fcra/, 2013.

[4] Richard Arneson. Equality of Opportunity. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2015 edition, 2015.

[5] Solon Barocas, Andrew D Selbst, and Manish Raghavan. The hidden assumptions behind coun-
terfactual explanations and principal reasons. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 80–89, 2020.

[6] Miranda Bogen and Aaron Rieke. Help wanted: An examination of hiring algorithms, equity, and
bias. Upturn, December, 7, 2018.

[7] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe, and Salvatore
Orlando. Treant: training evasion-aware decision trees. Data Min. Knowl. Discov., 2020.

[8] Yatong Chen, Jialu Wang, and Yang Liu. Strategic recourse in linear classification. arXiv preprint
arXiv:2011.00355, 2020.

[9] Jennifer Chien, Margaret Ew Roberts, and Berk Ustun. Learning through Recourse under Censoring.
NeurIPS Workshop on Learning and Decision-Making with Strategic Feedback, 2021.

[10] Norman Daniels. Equity of access to health care: some conceptual and ethical issues. The Milbank
Memorial Fund Quarterly. Health and Society, pages 51–81, 1982.

[11] Maria De-Arteaga, Artur Dubrawski, and Alexandra Chouldechova. Learning under selective labels
in the presence of expert consistency. arXiv preprint arXiv:1807.00905, 2018.

46

https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/
https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/

[12] Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial ro-
bustness of causal algorithmic recourse. In International Conference on Machine Learning, pages
5324–5342. PMLR, 2022.

[13] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic
classification from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics
and Computation, pages 55–70. ACM, 2018.

[14] Michael Downs, Jonathan L Chu, Yaniv Yacoby, Finale Doshi-Velez, and Weiwei Pan. Cruds:
Counterfactual recourse using disentangled subspaces. ICML WHI, 2020:1–23, 2020.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[16] Virginia Eubanks. Automating inequality: How high-tech tools profile, police, and punish the poor.
St. Martin’s Press, 2018.

[17] FICO. Fico heloc, 2018.

[18] Ganesh Ghalme, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic classifi-
cation in the dark. In International Conference on Machine Learning, pages 3672–3681. PMLR,
2021.

[19] Zafar Gilani, Ekaterina Kochmar, and Jon Crowcroft. Classification of twitter accounts into auto-
mated agents and human users. In Proceedings of the 2017 IEEE/ACM international conference on
advances in social networks analysis and mining 2017, pages 489–496, 2017.

[20] Michele E Gilman. Poverty lawgorithms: A poverty lawyer’s guide to fighting automated decision-
making harms on low-income communities. Data & Society, 2020.

[21] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D.
Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano. Miplib 2017:
data-driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

[22] Hangzhi Guo, Feiran Jia, Jinghui Chen, Anna Squicciarini, and Amulya Yadav. Rocoursenet: Distri-
butionally robust training of a prediction aware recourse model. arXiv preprint arXiv:2206.00700,
2022.

[23] Vivek Gupta, Pegah Nokhiz, Chitradeep Dutta Roy, and Suresh Venkatasubramanian. Equalizing
recourse across groups. arXiv preprint arXiv:1909.03166, 2019.

[24] Moritz Hardt, Eric Mazumdar, Celestine Mendler-Dünner, and Tijana Zrnic. Algorithmic collective
action in machine learning. arXiv preprint arXiv:2302.04262, 2023.

[25] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification.

47

In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
111–122. ACM, 2016.

[26] Keegan Harris, Valerie Chen, Joon Kim, Ameet Talwalkar, Hoda Heidari, and Steven Z Wu. Bayesian
persuasion for algorithmic recourse. Advances in Neural Information Processing Systems, 35:11131–
11144, 2022.

[27] Keegan Harris, Hoda Heidari, and Steven Z Wu. Stateful strategic regression. Advances in Neural
Information Processing Systems, 34:28728–28741, 2021.

[28] Hoda Heidari, Vedant Nanda, and Krishna Gummadi. On the long-term impact of algorithmic
decision policies: Effort unfairness and feature segregation through social learning. In International
Conference on Machine Learning, pages 2692–2701. PMLR, 2019.

[29] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In NIPS, 2017.

[30] Mikella Hurley and Julius Adebayo. Credit scoring in the era of big data. Yale JL & Tech., 18:148,
2016.

[31] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards
realistic individual recourse and actionable explanations in black-box decision making systems.
arXiv preprint arXiv:1907.09615, 2019.

[32] Johannes Jurgovsky, Michael Granitzer, Konstantin Ziegler, Sylvie Calabretto, Pierre-Edouard
Portier, Liyun He-Guelton, and Olivier Caelen. Sequence classification for credit-card fraud
detection. Expert Systems with Applications, 100:234–245, 2018.

[33] Kaggle. Give Me Some Credit. http://www.kaggle.com/c/GiveMeSomeCredit/, 2011.

[34] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike. Counterfactual explanation trees:
Transparent and consistent actionable recourse with decision trees. In International Conference on
Artificial Intelligence and Statistics, pages 1846–1870. PMLR, 2022.

[35] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensemble
classifiers. In ICML, 2016.

[36] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic
recourse: definitions, formulations, solutions, and prospects. 2021.

[37] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from coun-
terfactual explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 353–362, 2021.

[38] Amir-Hossein Karimi, Julius Von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic re-
course under imperfect causal knowledge: a probabilistic approach. Advances in neural information

48

http://www.kaggle.com/c/GiveMeSomeCredit/

processing systems, 33:265–277, 2020.

[39] Niki Kilbertus, Manuel Gomez-Rodriguez, Bernhard Schölkopf, Krikamol Muandet, and Isabel
Valera. Improving consequential decision making under imperfect predictions. arXiv preprint
arXiv:1902.02979, 2019.

[40] Klim Kireev, Bogdan Kulynych, and Carmela Troncoso. Adversarial robustness for tabular data
through cost and utility awareness. In Network and Distributed System Security (NDSS) Symposium,
2023.

[41] Jon Kleinberg and Manish Raghavan. How Do Classifiers Induce Agents To Invest Effort Strategi-
cally? ArXiv e-prints, page arXiv:1807.05307, July 2018.

[42] Jon Kleinberg and Manish Raghavan. How do classifiers induce agents to invest effort strategically?
ACM Transactions on Economics and Computation (TEAC), 8(4):1–23, 2020.

[43] Gunnar König, Timo Freiesleben, and Moritz Grosse-Wentrup. Improvement-focused causal
recourse (icr). arXiv preprint arXiv:2210.15709, 2022.

[44] Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. The
selective labels problem: Evaluating algorithmic predictions in the presence of unobservables. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 275–284, 2017.

[45] Thibault Laugel, Adulam Jeyasothy, Marie-Jeanne Lesot, Christophe Marsala, and Marcin De-
tyniecki. Achieving diversity in counterfactual explanations: a review and discussion. arXiv preprint
arXiv:2305.05840, 2023.

[46] Sagi Levanon and Nir Rosenfeld. Strategic classification made practical. In International Conference
on Machine Learning, pages 6243–6253. PMLR, 2021.

[47] Daniel Lowd and Christopher Meek. Adversarial learning. In ACM SIGKDD international confer-
ence on Knowledge discovery in data mining, pages 641–647, 2005.

[48] Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual
explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.

[49] Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, and Alexander D’Amour.
Causally motivated shortcut removal using auxiliary labels. In International Conference on Artificial
Intelligence and Statistics, pages 739–766. PMLR, 2022.

[50] Yael Mathov, Eden Levy, Ziv Katzir, Asaf Shabtai, and Yuval Elovici. Not all datasets are born equal:
On heterogeneous tabular data and adversarial examples. Knowledge-Based Systems, 242:108377,
2022.

[51] John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in disguise.

49

In International Conference on Machine Learning, pages 6917–6926. PMLR, 2020.

[52] Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic classi-
fication. In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages
230–239, 2019.

[53] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 607–617, 2020.

[54] Duy Nguyen, Ngoc Bui, and Viet Anh Nguyen. Feasible recourse plan via diverse interpolation. In
International Conference on Artificial Intelligence and Statistics, pages 4679–4698. PMLR, 2023.

[55] Andrew O’Brien and Edward Kim. Toward multi-agent algorithmic recourse: Challenges from
a game-theoretic perspective. In The International FLAIRS Conference Proceedings, volume 35,
2022.

[56] Axel Parmentier and Thibaut Vidal. Optimal counterfactual explanations in tree ensembles. In
International Conference on Machine Learning, pages 8422–8431. PMLR, 2021.

[57] Martin Pawelczyk, Teresa Datta, Johannes van-den Heuvel, Gjergji Kasneci, and Himabindu
Lakkaraju. Algorithmic recourse in the face of noisy human responses. arXiv preprint
arXiv:2203.06768, 2022.

[58] Francesco Quinzan, Cecilia Casolo, Krikamol Muandet, Niki Kilbertus, and Yucen Luo. Learning
counterfactually invariant predictors. arXiv preprint arXiv:2207.09768, 2022.

[59] Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. Mitigating bias in algorith-
mic hiring: Evaluating claims and practices. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 469–481, 2020.

[60] Goutham Ramakrishnan, Yun Chan Lee, and Aws Albarghouthi. Synthesizing action sequences
for modifying model decisions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5462–5469, 2020.

[61] Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Algorithmic recourse in the wild: Under-
standing the impact of data and model shifts. arXiv preprint arXiv:2012.11788, 2020.

[62] Alexis Ross, Himabindu Lakkaraju, and Osbert Bastani. Learning models for actionable recourse.
Advances in Neural Information Processing Systems, 34:18734–18746, 2021.

[63] Yonadav Shavit, Benjamin Edelman, and Brian Axelrod. Causal strategic linear regression. In
International Conference on Machine Learning, pages 8676–8686. PMLR, 2020.

[64] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable predictions
of tree-based ensembles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD

50

international conference on knowledge discovery and data mining, pages 465–474, 2017.

[65] Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algorithmic
recourse. arXiv preprint arXiv:2102.13620, 2021.

[66] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. pages
10–19.

[67] Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
ance to spurious correlations: Why and how to pass stress tests. arXiv preprint arXiv:2106.00545,
2021.

[68] Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 284–293,
2020.

[69] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning:
A review, 2020.

[70] Sahil Verma, Keegan Hines, and John P Dickerson. Amortized generation of sequential algorithmic
recourses for black-box models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8512–8519, 2022.

[71] Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, and
Bernhard Schölkopf. On the fairness of causal algorithmic recourse. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 9584–9594, 2022.

[72] Daniël Vos and Sicco Verwer. Efficient training of robust decision trees against adversarial examples.
In Marina Meila and Tong Zhang, editors, ICML, 2021.

[73] Zijie J Wang, Jennifer Wortman Vaughan, Rich Caruana, and Duen Horng Chau. Gam coach:
Towards interactive and user-centered algorithmic recourse. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pages 1–20, 2023.

[74] Dennis Wei. Decision-making under selective labels: Optimal finite-domain policies and beyond. In
International Conference on Machine Learning, pages 11035–11046. PMLR, 2021.

[75] Colin Wilhelm. Big data and the credit gap. https://www.politico.com/agenda/story/2018/02/07/
big-data-credit-gap-000630, February 2018.

[76] S Wykstra. Government’s use of algorithm serves up false fraud charges. undark, 6 january, 2020.

[77] Prateek Yadav, Peter Hase, and Mohit Bansal. Inspire: A framework for integrating individual user
preferences in recourse.

[78] Prateek Yadav, Peter Hase, and Mohit Bansal. Low-cost algorithmic recourse for users with uncertain

51

https://www.politico.com/agenda/story/2018/02/07/big-data-credit-gap-000630
https://www.politico.com/agenda/story/2018/02/07/big-data-credit-gap-000630

cost functions. arXiv preprint arXiv:2111.01235, 2021.

52

	Thesis Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Background and Setup
	Related Work
	Recourse Verification

	Methodology
	Verification with Reachable Sets
	Algorithms

	The Value of Recourse Verification
	Experiments
	Demonstrations

	Conclusion
	Concluding Remarks
	Limitations

	Appendices
	Bibliography

