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Abstract

Maximum and minimum mean cycle problems are important problems with many applica
tions in performance analysis of synchronous and asynchronous digital systems including rate
analysis of embedded systems, in discrete-event systems, and in graph theory. Karp's algorithm
is one of the fastest £ind commonest algorithms for both of these problems. We present this
paper mainly in the context of the maximum mean cycle problem. We show that Karp's al
gorithm processes more vertices and arcs than needed to find the maximum cycle mean of a •
digraph. This observation motivatedus to propose a new graph unfolding scheme that remedies
this deficiency and leads to three faster algorithms with different characteristics. Asymptotic
analysis tells us that our algorithms always run faster than Karp's algorithm. Experiments on
benchmark graphs confirm this fact formost of the graphs. Like Karp's algorithm, they are also
applicable to both the maximum and minimum meancycle problems. Moreover, one of them is
among the fastest to date.



I. Introduction

The average weight of a directed cycle is the total weight of the arcs on the cycle divided by
the total number of the arcs on the cycle, and is called the cycle mean. The maximum mean cycle
problem for a directed graph (digraph) with cycles is to find a cycle having the maximum average
weight, called the maximum cycle mean, over all directed cycles in the graph. Such a cycle is
called a critical cycle. The minimum mean cycle problem and the minimum cycle mean are
defined analogously. Both of these problems have many important applications in performance
analysis of digital systems, in discrete-event systems, and in graph theory. For instance, some
of the uses in performance analysis that are more relevant to our study are as follows. The
minimum mean cycle problem has applications in finding the cycle period in an asynchronous
system [1], [2], and in data-flow partitioning ofsynchronous systems [3]; the maodmum meancycle
problem has applications in finding the iteration bound of a data-flow graph for digital signal
processing [4], in performance analysis of synchronous, asynchronous, or mixed systems [5], and
in rate analysis for embedded systems [6].

The application in rate analysis for embedded systems is the reason that we have become
interested in the maximum mean cycle problem. We have recently proposed a framework for
an interactive analysis of rate constraints and debugging of their violations in an embedded
system [6]. Rate constraints are often imposed by designers on the execution rate of each process
in the system in order to ensure correct timing behavior and achieve performance goals. These
constraints are usually placed under an overall view of the system and in an ad hoc manner. As
the design goes along, it becomes more and more difficult for the system to conform to these
constraints. Due to diverse interactions of the process^ in the system with one another and the
system's environment, synthesizing even one process can create constraint violations for all the
other processes. Designers may need to make refinements as violations occur. However, spotting
these violations and debugging them are tedious and difficult tasks due to the complexity and size
of current designs, the number of refinements needed, and so on. Our framework automates this
whole process. The framework includes modules to check the consistency of the imposed rate
constraints, compute the execution rate of each process (rate analysis), compare the imposed
and computed rates to check satisfiability or for possible constraint violations, output useful
information to help the designer in case of violations. This useful information is usually in
the form of critical cycles, which are a byproduct of a maximum mean cycle algorithm. The
interactive nature of this framework requires it to be very fast. The most time consuming part is
the rate analysis part, and the rate analysis part uses a maximum mean cycle algorithm. Even
a small improvement in running time of the maximum mean cycle algorithm employed can pay
off a lot as the time saved can accumulate to big gains because the number of refinements or
iterations to carry out such a constraint-driven design of embedded systems is not known in
advance and can potentially be large.

There are many algorithms proposed for the minimum mean cycle problem, e.g., [1], [7], [8],
[9], [10], [11]. A more complete list is given in [7]. In this paper, we focus on Karp's algorithm [8]
among them because of three reasons: 1) it has one of the best asymptotic running times, 2)
it also works for the maximum mean cycle problem (as proved in [12]), and 3) it is usually
the algorithm of choice [3], [4], [5]. Originally, Karp [8] gave a theorem (Karp's theorem) to
characterize the minimum cycle mean in a digraph and an algorithm to compute it efficiently.
Although the rimning time of Karp's algorithm is given in [8] as 0{nm) for a strongly connected
digraph with n nodes and m arcs, its actual running time is 0(nm), i.e., its best and worst case
running times are the same, as also observed in [7], [11]. In this paper, Karp's theorem and



algorithm refer to their maximum mean cycle forms as defined in [12].
In this paper, we propose a graph unfolding scheme for the maximum mean cycle problem.

This scheme is also applicable to the minimum mean cycle problem. The proposed scheme
leads to three new algorithms. These algorithms have different characteristics in terms of ac
tual rimning time, asymptotic running time, data structures, and implementation complexity.
We evaluate these algorithms using asymptotic analysis and running experiments on benchmark
graphs. Asymptotic analysis tells us that our algorithms are alwaysfaster than Karp's algorithm.
Experimental results validates this fact for most of the test cases in practice. The main contri
bution of this paper is the application of our unfolding scheme to the maximum and minimum
mean cycle problems and the algorithms it yields.

The rest of the paper is organized as follows. § II gives the necessary definitions and our
notation. § III discussed Karp's theorem and Karp's algorithm in detail. Then, we motivate
our approach on an example graph in § IV. Our unfolding scheme is discussed in detail in § V.
We explain the details of our aigorithms in § VI. Unfolding generates a graph called unfolded
graph, and the running time of our dgorithms depends on the sizeof that graph. § VII develops
bounds on the size of the unfolded graph. Using these bounds, we work out the time and space
complexity analysis of each algorithm in § VIII. We next discuss our experiments on benchmark
graphs and their results in § IX. Finally, we conclude this paper in § X.

II. Definitions and Notation

Let G = {V, E) be a digraph where the vertex set V has n vertices and the arc set E has m
arcs. Each arc e = (u, u) from vertex u to vertex u has a weight i£j(e) = u;(ii, u). We allow G to
have self-loops, i.e., arcs from and to the same vertex; thus, m can be equal to n^. We use the
adjacency-list representation of G with two arrays, Adjin and AdjOut., where each array has n
lists, one for each vertex in V. The list Adjln[v] for vertex v contains all the predecessors of u,
i.e., all those vertices u such that there is an arc (u,v) in E. Similarly, the list AdjOut[v] for
vertex t; contains aJl the successors of v, i.e., all those vertices u such that there is an arc (u,«)
in E.

A path of length k from vertex u to vertex u' is a sequence < uqi ^i,..., Ufc > of vertices such
that u = uoj u' = Ujt, and (t;j_i,u,) € for i = 1,2,..., A;. The weight w(p) of path p is the
sum of the weights of the arcs in p. A path < uo, vi,..., Vfc > is a cycle if vq = Ufc. The mean
weight A(C) of a cycle C of length k is defined as w(C)/k. The mean weight of a cycle gives
the average weight of each arc on the cycle. The maximum cycle mean X" of a digraph G is
equal to maxc{A(C)} where C ranges over all directed cycles in G. The minimum cycle mean
is defined analogously. A cycle whose mean weight equals the maximum cycle mean is called a
critical cycle. We adopt the following conventions as in [7]: 1) the maximum over an empty set
is —oo; 2) —oo 4- it; = -co for any w, 3) -co oo = 0. By the first convention, we assume that
the input graphs in this paper have at least one arc. In our implementation, we use a very large
real number to represent oo, which explains why the third convention holds.

III. Karp's Theorem and Algorithm

Let G be a strongly connected digraph and s be an arbitrary vertex (the source). For every
u € V and every nonnegative integer k, define Dk(v) as the maximum weight of a path of length
k from s to u; if no such path exists, then Dk{v) = -oo. Then, the maximum cycle mean A* of
G is given by the following theorem. Its proof Cctn be found in [8], [12].



Theorem 1: (Karp's Theorem) The maximum cycle mean A* of G is given by

A — max mm ; . (11
v^V Q<k<n-1 n — k

If G is not strongly connected, then we can find the maximum cycle mean by finding the
strongly connected components of G (in linear time), determining the maximum cycle mean for
each component, and then taking the largest of these as the maximum cycle mean of G. Unless
stated otherwise, we consider only strongly connected graphs henceforth.

In [8], Karp's algorithm is given by the following recurrence for jDfc(u):

Dk(v) = max [j[)fc_i(u) + uj(u,tj)], fc = l,2,...,n (2)
(ti,v)€£

with the initial conditions Do{s) = 0 and i?o(v) = —oOj v ^ s. This is also the form used in
other works, e.g., [7], [13], [1^ We give the algorithm in Fig. 1, called Karp's algorithm, to
compute A* based on this recurrence. The algorithm mainly fills the entries of an array of size
(n + 1) Xn, called the table and labeled D, such that D[k, u] = Dk{v) for k = 0,1,..., n and
V6 V. We say that row k of D represents the kth level or level k.

For simplicity, we present this algorithm and our algorithms in three parts: heady body, and
tail. These parts almost always realize the same goals for all the algorithms. Below we explain
Karp's algorithm in detail. Many points will also apply to our algorithms.

The head initializes each table entry with -co and determines the source. Note that -co is
both the identity for the max operation and is a flag to indicate the lack of a path. In case of
Karp's algorithm, weselect the first vertex of the vertex list as the source (denoted s) because the
source can be an arbitrary vertex as guaranteed by Karp's theorem. Moreover, Karp's algorithm
takes the same time regardless of the identity of the source. The length of the path from s to
itself, D[0, s], is set to 0, and the end of the predecessor list, 7r[0, s], is set to NIL. We later use
the array tt to construct critical cycle(s).

The body finds Djb(t;) for each vertex u € V" and each k = 1,2, ...,n, and constructs the
predecessor lists in tt. The body basically uses the recurrence in Eq. 2. That is, for each vertex u,
it checksevery predecessor uof v (line 7), and computes i?fc(u) as Dk{v) = max{Z)fc(t;), T^A:-i(ti) +
w{u, u)} (lines 8-9). If Dk(v) happens to be updated due to a predecessor u, u is also designated
as the predecessor of v in the predecessor lists (line 10).

The tail finishes up the work by computing Eq. 1. For each vertex u, it computes the fraction
in Eq. 1 for each A: = 0,l,...,n~l, takes the minimum of all these fractions (corresponding to
the min operation in Eq. 1), and stores the result in M[u]. The particular k that leads to the
minimum in M[v] is also recorded in K[u], which will be useful for critical cycle construction.
As for the max operation in Eq. 1, the tail checks M[v] as they are computed and updates A
(lines 18-19). The Aof line 21 is the maximum cycle mean A*. The vertex that leads to A* is
also stored in v* for later reference in critical cycle construction.

IV. Motivation

We give the example digraph in Fig. 2 to illustrate Karp's algorithm as well as base our
motivation on. The digraph in Fig. 2(a) is the input graph with 4 vertices and 5 arcs. The
diagram in Fig. 2(b) presents how the algorithm works starting from the source s and gives the
table entries. Each row (column) of circles corresponds to a row (column) of the table where each
row is identified by an integer and each column by a vertex. The symbol € represents —oo. The
numbers just to the right of each circle represent the values stored at the corresponding table



Input: A strongly connected dlgnq>b G s (K,£).
Output: A* of G.

/♦ Head ♦/

1 for each level Jc, A; = 0,1,..., n, do
2 for eewdi vertex v € V" do
3 Z?[fc,v]< 00
4 D[0,s] <- 0; ir[0, s] NIL /* s is any vertex in V */

/♦ Body ♦/

5 for each level Jb, A; = 1,2,..., n, do
6 for each vertex u € do
7 for each predecessor vertex u € Adjln[v] do
8 if (D[A:, v] < Z)[fc —l,ii} + u;(u,i;)) then
9 w] 4-i?[fc - l,u]+ iD{u,t»)/* max */

10 7r[fc,v]^ti

/* Tail V
11 A < CO

12 for each vertex t; € K do

13 M[v] i—hoc /* the identity for min */
14 for each level A, ib = 0,1,..., n —1, do
15 if (Af[t;] > (D[n,v] —D[fc,t;])/(n —k)) then
16 M[v] f- (D[n,v]- D[k,v])/{n - fc) /* min */
17 K[v] i- k
18 if (A < Af[u]) then
19 A <- Af[t;] j* max */
20 v* 4-

21 return A

Fig. 1. Karp's maximum mean cycle algorithm.

entries, e.g., D[2,c] = 9 sind D[3,a] = -oo. There are two cycles in this graph: < s,a,6,c,s >
and < s, 6, c, s >. As we have only two cycles, we can just use the definition of the maximum
cycle meztn instead of Ek}. 1 to find the maximum cycle mean. The maximum cycle mean is then
meix{ (3 + 4 + 7 + 2)/4, (2+ 7 + 2)/3)} = 4, and < s, a, 6,c,s > is the critical cycle.

One important point is that the running times of Karp's algorithm and our algorithms are
proportional to the number of vertices and the arcs visited during the process. As a result, we
want to reduce their numbers. Karp's algorithm visits every arc (solid or dotted) in the diagram
to fill the entries of the table. This is because at each level, Karp's «tlgorithm has to check every
predecessor of each vertex at that level (except for the 0th level). Thus, Karp's algorithm visits
20 arcs for this example, the total number of solid and dotted arcs. However, if we exclude all
the dotted arcs, corresponding to the diagram in Fig. 2(c), the remaining (solid) arcs are enough
to find the same maximum cycle mean. If we do so, we will visit only 9 arcs, which means more
than 50% less work. Why is this so? Consider the recurrence given in Eq. 2. If Dk-\ (u) = -oo
for a predecessor u of u, then u cannot contribute to the computation of Dfc(u). In other words,
if there is no path from s to ii with {k - 1) arcs, then the path from s to t; with k arcs, if exists,
cannot pass through u. In particular, if Dk^i(u) = -oo for every predecessor u of u, there
is no need even to touch any of these predecessors at all because Dk{v) = —oo by definition.
These arguments prove that it does not necessary to check every predecessor of each vertex at
every level. How can we ensure that? If we implement the recurrence above as it is, which
makes v dependent on all of its predecessors and is the scheme that Karp's algorithm uses, we
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Fig. 2. (a) A 4-vertex digraph, (b) The entries of D and arcs visited, (c) The solid arcs of (b).

cannot eliminate unnecessary work. Instead, we propose the following unfolding scheme, which
we formally define in the next section. Intuitively, it works as follows: starting from the source,
visit in the next level the successors of all the vertices in the current level until the nth level is
reached. In the case of the example above, visit the successors a and 6 of s at the 1st level, visit
only the successors of a and 6 in the 2nd level, which are b and c, and so on.

V. Unfolding

Unfolding is the scheme that we propose to reduce the work required to find the maximum
cycle mean. It is also applicable to the minimum meancycle problem. This scheme is the basis of
all our algorithms. The concept of unfolding is not new, e.g., see [13], [15], but our formulation
of unfolding is. Moreover, to our knowledge, we are the first to use it for the maximum and
minimum mean cycle problems.

Going from the Arth level of a graph G to the (k + l)th level is called the (A: + l)th iteration
of G. This iteration visits all the arcs that originate from the fcth level. We also say that the
0th level corresponds to the 0th iteration. Given a graph G = (V,E), unfolding generates all the
iterations from the 0th to the nth and also creates a new graph, called the unfolded graph and
denoted Gu = (Vy,£'c/), in the process. The unfolded graph is a weighted graph with weighted
vertices and arcs. Arc weights directly come from those in G but the vertex weights are computed
during unfolding. Vertices in the unfolded graph are denoted as corresponding to vertex v
in G, where k indicates that is inserted into Gu in the A:th iteration. Also note that u*' is at
level k. The weight of vertex in Gu is and £)fc(u) is as defined in § III.

Unfolding proceeds by the following two rules for A: = 0,1,..., n —1. Let-s GV be the vertex
designated as the source.

1. Initially, s® is in Vu, and Do{s) = 0.
2. If G Vu and (u, tt) G E, then (u*, G Eu with = i(;(u, u) and do either

of the following:
(a) if ^ Vu, then GVu with Djt+i(«) = Dk{v) + w{v, u), or
(b) if GVu, then GVu with Dk+i{u) = max{I?fc+i(u),jDfc(u) + tD(u,u)}.

The first rule above initializes the weight of when it is inserted into Vu for the first time,
and the second rule update its weight if necessary. In our algorithms, we combine the two parts
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Fig. 3. Unfolding of the graph in Fig. 2(a).

of the second rule above into one by appropriate initialization, i.e., by initializing the vertex
weights to —00 before processing them.

Fig. 3 illustrates the above rules on the example graph of Fig. 2(a). The iterations from 0
to 4 correspond to diagrams (a) to (c), respectively. Since we use the table D to implement
unfolding, we present the iterations and the unfolded graph on the table. In this figure, each
circle (empty or filled) represents an entry ofD such that each entry has the value shown to the
right ofthe corresponding circle. The filled circles and the arcs are the vertices and the arcs ofthe
unfolded graph. We do notshow thearc weights because they are readily available from Fig. 2(a);
moreover, the vertex weights of the unfolded graph can easily be determined: the number right
to each vertex is its weight. As Fig. 3(e) shows, the unfolded graph has 10 vertices and 9 arcs: a
filled circle at the fcth row and uth column corresponds to vertex and an arc between vertices

and to arc of the unfolded graph, i.e., Vu = {s°, a\ 6\ 6^, c^, c^, a"*, 6**}
and Eu = {(s°, a^), (s°, 6^), (a\ 6^), (6\ c^), (6^, c^), (c^, (s^, a"*), (s^ &^), (c^ 5^)}.

Note that the unfolded graph is a finite, acyclic graph. It is finite because the total number
of iterations required is n, and it is acyclic because it is impossible to create a back edge (one
from a higher level to a lower one) hence a cycle by construction. This property alone implies
that the vertex weights can be computed in polynomial time. Moreover, using this property, the
argument in § IV, and induction on k, we can prove the correctness of unfolding. As such a proof



is quite easy, we just mention the following lemma without proof.
Lemma 1: Unfolding correctly computes Dk{v) for each u € V and = 0,1,..n.
We have to mention one more property of unfolding as it will later have some implications for

memory space allocated in two of our algorithms by constraining the total number of vertices in
one iteration. The {k + l)st iteration of unfolding is between the levels k and {k + 1) only. It
involves the vertices at both of these levels and the arcs from the kth to the {k + l)st but no
more. Actually, Karp's algorithm has a similar property. Thus,

Lemma 2: Unfolding works on exactly two levels in one iteration.

VI. Faster Maximum Mean Cycle Algorithms

We now give three algorithms, named DGl, DG2, and DG3, to compute the maximum cycle
mean in a strongly connected digraph. These algorithms are all based on unfolding. They are
presented in decreasing order in terms of their asymptotic running times but in increasing order
in terms of sophistication and their actual running times. Moreover, they are presented in the
context of the maximum mean cycle problem. To apply these algorithms to the minimum mean
cycle problem, we have to exchange min operation with max operation and -co with +oo, or
vice versa.

In Karp^s algorithm and our algorithms, the most time consuming part is usually the body.
Also in our case, it is mainly the body that implements unfolding. The body of Karp's algorithm
has very tight loops, and the innermost loop contains only one conditional and two assignments.
We tried to make DGl as similar to Karp's algorithm as possible to make use of that advantage
of Karp's algorithm. DG2 is a more sophisticated implementation of unfolding to obtain better
asymptotic time complexity in the body, and DG3 is a further improvement on DG2.

All of our algorithms are asymptotically faster than Karp's algorithm. One more advantage is
that it does matter for our algorithms how we choose our source vertex. With a "suitable" source,
the work done by the algorithms can be further reduced. We use a function FindSource{G) to
find such a source. This function is explained in § VI-D.

A. Our First Algorithm (DGl)

Our first algorithm, called DGl, is given in Fig. 4. DGl has almost the same structure as
Karp's algorithm. We tried to make the innermost loop in DGl to contain as few statements as
possible while still using unfolding. The use of unfolding is evident from the change of k from
0 to n —1 (line 7), and the use of the successor lists AdjOut (line 11). Main differences from
Karp's algorithm are the call to FindSource(G) in the head to determine a suitable source, the
use of Visit and turn, and the elimination of some unnecessary work in the tail. FindSource{G)
is explained later in detail.

The need for Visit and turn can be explained as follows. DGl still goes over every vertex
at every level but eliminates unnecessary arc visits using Visit and turn. Initially, Visit[s, 0] is
set to true to indicate that unfolding begins by visiting the source s. The flag turn is used to
differentiate between the two levels needed by Lemma 2 such that whatever the value of turn
is for the current level, its value for the next level is 1 - turn. Suppose we are at level k with
turn set to 0. We could also have turn set to 1 because it is more important that turn toggles
between levels rather than that turn is 0 or 1. Then, if u is to be visited at this level, u must
pass the test at line 9. Line 10 shows that u is being visited at level k. Since the successors of v
are to be visited in the next level (level (k + 1)) by the definition of unfolding, their Visit fields
are set to true at line 15.



The tail is almost the same as that of Karp's algorithm except for line 19. Line 19 guarantees
that there will be no processing for vertex v if = -ooi l-e-i If there is no path of length n
from s to V. The proof of the correctness of this argument can be stated using the definition of
the D values and Karp's theorem. First, we know that there will be at least one path of length n
from s to some vertex in as we assume that G is strongly connected with at least one arc. This
implies that the array M will have at least one real value. Now assume = —oo for some
vertex v. Again since G is strongly connected, there is at least one real number in the column
for Vin Z?, and so the fraction in Karp's theorem takes on the value of -co for v at least once.
By noting that Karp's theorem first involves a minimization operation in the column for v in D,
and also using the third convention of § 11, we find that M[v] = -co. The fact that this value
is the identity for the max operation and so does not affect the output of the max operation at
lines 25-26 completes the proof.

Input: A strongly cozmected digraph C = (V,E).
Output: A" of G.

f* Head ♦/

1 for each level fc, = 0,1,..., n, do
2 for each vertex t> € V do

3 y] < 00
4 Set Kistt[y,0] <- Fisit{v,l] false for Vy € V
5 s 4— FindSourcc(G); D[0,5] 0
6 zrfO.a] ^ NIL\ turn =0; V^istf[s, turn] <- true

/♦ Body */
7 for each level fc, fc = 0,1,..., n —1 do
8 for each vertex v do

9 if (Vi5it[y,turn] = true) then
10 Kisttfy, turn) false
11 for each successor vertex u € AdjOut[v] do
12 if iD[k + 1, u] < D[k, y] + u>(v, u)) then
13 D[k + 1,u] D[k, y] + u>(y, u) /* max */
14 jr[fc + l,u] <— y
15 Vtaif[u, 1 —turn] ^ true
16 turn ^ 1 — turn

/* Tail ♦/

17 X i 00

18 for each vertex y € V do
19 if (V'isit[y,turn] = true) then
20 Af[y] +00 /* the identity for min */
21 for each level lb, Jt = 0,1,..., n —1, do
22 if (Af[y] > (D[n,y]-G[fc,y])/(n-jk)) then
23 Af[y] (£)[n, v] - D[Jb, y])/(n - k) /* min */
24 K[v] lb
25 if (A < Af[y]) then
26 Af- M[v] I* max */
27 y' 4

28 return A

Fig. 4. Our first maximum mean cycle algorithm DGl.



B. Our Second Algorithm (DG2)

Our second algorithm, called DG2, is given in Fig. 5. DG2 reveals the flavor of unfolding
better because it touches on as many vertices and arcs as required by unfolding. We use a
circular queue, denoted Q, to process the vertices of the unfolded graph. By Lemma 2, Q should
have a size of 2n elements, as there cannot be more than 2n elements in two successive levels.

This renders unnecessary the need for a check to see if Q is full. There is also no need for a check
to see if Q is empty because G has at least one arc by assumption.

The head is like that of DGl but the tail is exactly the same as that of Karp's algorithm.
The head and the body contain queue functions as appropriate. Each queue element contains
a vertex v and the length of the path from s to v, which is also the level number at which v
is visited. Line 9 eliminates duplicates from the queue. We used an array and standard queue
functions to implement the queue.

Input: A strongly connected digraph G = {V, E).
Output: A' of G.

/* Head */
1 for each level k, k = do
2 for each vertex v £V do

3 oo

4 a FindSource{G); D[0, a] 0
5 jr[0, a] NIL; Enqueue{Q, < 0, a >)

/* Body */
6 < k,v Degueue{Q)
7 do

8 for each successor vertex u € AdjOut\y\ do
9 if (Z?[fc + l,u] = —oo) then

10 Enqtieue(Q, < fc + 1, u >)
11 if (Z)[fc + 1,u] < £>[A:, y]+ ty(v,u)) then
12 Z)[fc + 1, o] D[ky y] + «;(y, u) /* max */
13 7r[fc + 1, u] <— y
14 < k,v Dequeue{Q)
15 while (k < ra)

f* Tail */
16 A < oo

17 for each vertex y € V" do

18 A/[y] A—hoo /* the identity for min *f
19 for each level fc, /: = 0,1,..., r» —1, do
20 if (M[y] > (i)[n,y] —i!)[fc, y])/(n - fc)) then
21 M[v] (D[n,y] —D[fc,y])/(n —fc) /* min */
22 ^ fc

23 if (A < M[y]) then
24 A•(- Af[u] /* max */
25 y' <-

26 return A

Fig. 5. Our second maximum mean cycle algorithm DG2.



C. Our Third Algorithm (DG3)

Our third algorithm, cadied DG3, is given in Fig. 6. DG3 is based on DG2, the main difference
being that DG2 eliminates the initialization of D in the head. To do that, we noted that a
vertex v may not be included at each iteration of unfolding, i.e., the entry £)[/:, u] will stay at
—00 for some k even after the last iteration. But, the tail must know which entries of the table
D contain a valid entry, i.e., an entry that is not -co. The array Valid points to valid entries:
Valid[k,v] gives the last level (obtained from array LastLevel) that is less than k and such that
D[Valid[k, u], u] ^ -co. Only the valid entries are initialized (line 14). The entries of Valid are
like a linked list and the end of the list is signified by —1. The tail is also altered accordingly.
The rest is self-explanatory. Note that we can also use linked lists instead of the table D because
for sparse graphs, many of the table entries are probably not needed. We also implemented
this extension but saw that the resulting algorithm was very slow although it had the lowest
asymptotic space complexity.

D. Finding a Suitable Source

The source vertex mentioned in Karp's theorem is arbitrary. However, a different source may
pay off a lot. For example, consider the same example given in Fig. 2. In (c), the unfolded
graph contains 9 arcs when unfolding starts from s. Suppose instead we selected 6 as the source.
Then, the unfolded graph would contain 6 arcs, yielding an improvement in the running time.
Basically, by a suitable source, we mean a source vertex that leads to the "optimum" unfolding,
by which we mean the one with the smallest unfolded graph in terms of the number of arcs.
How can we find the optimum unfolding then? We can unfold the graph starting from each
vertex once and select as the source the vertex leading to the least arcs. The problem with this
approach is that it will take time probably larger than the running time of the whole process
of finding the maximum cycle mean. Then, we should resort to a fast heuristic. The function
FindSource{G) given in Fig. 7 implements our heuristic. Our heuristic is to unfold the graph
for a limited number, denoted N, of iterations, starting from each vertex, and returning as the
source the vertex leading to the least number of arcs in these N iterations. We did experiments
on our test suite by chstnging N from 1 to 30, and saw that N = 10 worked reasonably well,
compromising between the running time and the solution quality. Note that the implementation
of FindSource{G) assumes that the degree of each vertex is available. Using these degrees and
the arrays F and L (for First and Last), it counts the number of arcs that will result from
unfolding the graph N times. The running time of FindSource{G) is Q(N{n + m)), which is
equal to ©(m) as iV is a constant and G is strongly connected.

E. Finding A Critical Cycle

We sometimes need to find a critical cycle as well as its mean, which is the case in the framework
mentioned in § I. We noted that only [7], [8], and [14] give some information as to how to find
a critical cycle. However, neither of them give it in an algorithmic form. Due to its importance,
we present an algorithm in Fig. 8 to find one. Recall that in the tails of the algorithms above,
we save the vertex in v* that leads to the maximum cycle mean. The algorithm in Fig. 8 first
constructs a path of length n from s to v* using the information stored in array tt and puts it
into array P. Then, it finds the weight of each prefix of this path to facilitate finding the weight
of any subpath of the path in P. Using array K of the k values recorded in the tails, we find the
length of the critical cycle on P, which is n - K[v']. Finally, we go through each subpath of that
length on P and check its weight to see if it is a critical cycle. We output the cycle as soon as we



Input: A strongly connected digraph G = {V,E).
Output: A" of G.

/* Head */
1 for each vertex t» € V do

2 LastLevel[v] < 1
3 s FindSource{G)
4 Z?[0,s] 0; Jr[0,s] 4- NIL
5 Ka/td[0, s] i 1; LastLevel[s] 4- 0
6 Engueue{Q, < 0, s >)

/♦ Body ♦/

7 < k,v >4— Z?equeue(Q)
8 do

9 for each successor vertex u € AdjOtit[v'\ do
10 if {LastLevel\u] < + I) then
11 Engueue(Q, < A+ l,ti >)
12 Valid[k + 1, u] 4— LastLevel[v]
13 LastLevel[u] 4— + 1
14 D[k + 1, ti] 4 oo
15 if + l,u] < D[k, v] + t«(v,u)) then
16 D[k + 1,u] 4- v] + u»(t;, u) /* max */
17 B-ffc + 1, u] 4- y
18 < k,v >4- Dequeue{Q)
19 while {k < n)

/* TaU V
20 A 4 oo

21 for each vertex v € V do

22 if {LastLev€l[v] = n) then
23 M[u] 4- +00 /* the identity for min */
24 A; 4—Vah(i[n, v]
25 while (k > —1) do
26 if (M[v] > {D[n, o] —!)[/:, v])/(n —k)) then
27 M[v] 4— {D[n, y] — y])/(n —k) f* min */
28 i<f[y] 4- k
29 fc 4— Ka/td[A:,y]
30 if (A < M[y]) then
31 A 4- Af[y] /* max */
32 y* 4

33 return A

Fig. 6. Our third maximum mean cycle algorithm DG3.

find it. The running time of this algorithm is 0(n) because it is dominated by.loops and the other
steps take constant time, including line 10 as w{P[k —1],P[k]) = Z)[fc, P[k]]—D[k —1,P[k —1]].

Although this algorithm finds only one critical cycle, we can modify it to find more. Recall
that in the tails, we first compute the min of the columns of D into array M and then find the
max of these minimum values. It is possible that there are more than one value among these
minimum values that is equal to the maximum found. We can easily go through the M array
entries and can determine all these minimum values. Then, we can run this algorithm for each
vertex that has one of these minimum values instead of just for u*. Moreover, the path stored
into P may contain more than one critical cycle, and so we can continue checking after outputting
each critical cycle found.



Input: A strongly connected digraph G = (V,E).
Output: A source vertex s.
1 for each vertex t; € V do

2 F{v) •«- 0
3 for each iteration t = 1,..., AT do
4 for each vertex t» € V do

5 ^

6 for each successor vertex u € Ad70ut(t;) do
7 L{v)^L{v) + F{u)
8 for each vertex v G V do

9 F(v) Liv)
10 Find s such that L(s) ss niinv€v{^(u)}
11 return s

Fig. 7. Our algorithm to lind a suitable source vertex.

Input: A', u*, and array tt.
Output: A critical cycle of G.
1 fc <— n
2 P[k] t,'
3 while {k > 0) do
4 P[k'-l]^ir[k,P[k]]
5 it^fc-l

/* P now has a path from s to v**/
6 <-0

7 vr[jt] +- 0
8 while {k < n) do
9 k^k+l

10 W[k] i- W[k - 1]+ w{P[k - 1],P[k])
/* W now has all prefix path costs on P.*/

11 icn <— n —Ar[u"]
12 fc 0

13 while {k < /ffu']) do
14 if {{P[k] = P[k + ten]) and {W[k+ len] - W[k] = A')) then
15 return P[k] •••P[k + len]
16 fc f- fc + 1

Fig. 8. Algorithm to find a critical cycle.

VII. Bounding the Size of Unfolded Graph

In this section, we derive bounds on the size of the unfolded graph. These bounds are also
instrumental in understanding the improvements we have obtained in the running time. Let
t{v), c(t;) and d{v) be the number of times an arc originates from vertex v (except at the 0th
level), the number of levels (except the 0th level) at which v is included, and the out-degree of
V, respectively. Consider a strongly connected graph G = (V,E) with n vertices and m arcs
that may also include self-loops. Then, we have the following equations for the unfolded graph
Gu = (Vu,Eu):

\Eu\ = d(s) + X] \^u\ = 1+2 c(t;) (3)
vev vev

where the first term in each equation is for the source vertex at the 0th level. Note the special
relationship between t(t;) and c(u): if v is included at the nth level, then t(t;) = c(t;) —1, or else



t(v) = c(u).
Since we allow self-loops, we have 1 < d{v) < n. Also, we have n levels in total when we

exclude the 0th level. Thus, an arc can originate from vertex v if t; is included at any or all of
the levels from 1 to n -1, i.e., 1 < t(u) < (n - 1), and v can be included at any or all of the levels
from 1 to n, i.e., 1 < c(t;) < n. Inclusion at successive levels probably stems from self-loops.
Plugging these values into Eq. 3, we can bound the size of the unfolded graph in terms of the
parameters of G as

^ < \Eu\ < (n - 1)*^ + and (1+ ") < |Vu| < (1+ (4)

where (n-l)m-f n < nm if n < m, which is the case when G is strongly connected. The smallest
unfolded graph occurs when G is a ring with n vertices and m arcs, ajid the largest one occurs
when G is a complete graph with self-loops on every vertex.

VIII. Complexity Analyses

For space complexity analysis, we note that the arrays used in the algorithms consume much
of the space. Every algorithm uses D, an array of size (n-!-1) x n. The other arrays are at most
as large as D. Hence, wecan say that the space usage is dominated by Z?, and all the algorithms
have the same space complexity of ©(n^).

For time complexity analysis, we will examine each algorithm separately. For Karp's algorithm,
our analysis is fairly straightforward and proceeds as follows. The running time is dominated
by the nested for loops in each part: The head runs in ©(n^); the body goes through each
predecessor of each vertex at every level, so runs in ©(nm); finally, the tail visits each table
entry, and so runs in ©(n^). The total running time comes to ©(n^ -h nm), which is ©(nm) as
we assume that the input is a strongly connected graph.

As for DGl, we have the following. The head initializes the table and array Visit, which take
©(n^) time and ©(n) time respectively. FindSource runs in ©(m), so the head runs in ©(n^)
time in total. The body checks every vertex at every level but visits the arcs of the unfolded
graph only. So, it runs in ©(n^ -t- [F'c/I). The tail runs in ©(n^) in the worst case but can run
in less time due to line 19, e.g., if the graph is a ring, the tail takes linear time. Hence, the tail
runs in O(n^) time, and the total running time for DGl is ©(n^ -1- |jE'[7|).

As for DG2, the head (even with FindSource) and the tail have the same running time as
those in Karp's algorithm. Thus, they both run in ©(n^) time. The body visits only the vertices
and the arcs in the unfolded graph and runs in ©(lEt/l). Hence, the total running time for DG2
is ©(n^ -H \Eu\)- Here also note that the queue functions run in constant time.

As for DG3, the head mainly has a for loop to initialize LastLevel and FindSource, so runs
in ©(m) due to the latter. The body, similar to that ofDG2, visits only the vertices and the arcs
in the unfolded graph and runs in ©(|Ec/|). The tail has an interesting behavior. Due to the use
of array Valid, the tail checks only the vertices in the unfolded graph. Also, due to line 22, it
runs in 0(|V[;|) time. Thus, the total running time for DG3 is 0(|Vt7l -H iF^t/l), which seems to
be the best we can get given the size of the unfolded graph.

A summary of the running times is given in Tab. I and in the following theorem. We conclude
from these analyses that our algorithms have the same running time as Karp's algorithm only in
the worst case; for all the other (and common) cases, our algorithms outperform Karp's algorithm
asymptotically. The running time difference can be significant, e.g., DG3 requires 0(n) time for
a ring graph but Karp's algorithm requires ©(n^).



TABLE I

Time complexity of each algorithm in 0-notation unless noted otherwise.
I Alg. I Head | Body | Tail | Total 1

+ \Eu\

\Eu\

n' + nm

+ \Eu\
+ |£u|

0{\Vu\ + \Eu\

Theorem 2: For a strongly connected graph with n vertices and m arcs, Karp's algorithm runs
in ©(nm) time, and our algorithms run in 0{nm.) time. For a non-strongiy connected graph
with the same parameters, all of the algorithms run in 0{nm) time.

IX. Experimental Results and Discussion

In this section, we report the results of our experiments that we did to see the performance
of our algorithms in practice. We coded all the algorithms in C, and did experiments on a Sun
SPARC 20 with 64 MB real memory, running Sun OS R.5.4. We used two groups of benchmark
graphs as our test suite^. The first group of graphs were obtained from the high-level synthesis
benchmarks. The second group consists of signal transition graphs used in [16], [17].

Tab. II presents the size ofeach test case and the experimental results in terms of the number
of vertices and arcs visited and the running time. In the table, the first group consists of the first
8 graphs (whose names are capitalized), and the second group consists of the rest, 42 graphs,
of the graphs (whose names are all in lower case). We included an extra large ring graph at
row 9, R2000, to show the performance in the best case for our algorithms. Rings graphs also
occur naturally, e.g., mod4-counter in the second group. The numbers reported are for the whole
graphs, i.e., they are for all thestrongly connected components. The running time is the sum of
the user and system CPU times (in seconds) from the beginning of execution of the algorithm
to its completion.

From Tab. II, we can observe the following. Each observation is also discussed below.

1. DGl and Karp's algorithm (column 4) visit the same number of vertices but DG2 and DG3
(column 5) visit a lot less thanboth ofthem. The improvement achieved ranges from 99.95%
on R2000 to 13.32% on MC6502-GROUP0. The improvement is more than 50% on 43 out
of 52 graphs in the table.

2. All our algorithms (column 7) visit a lot less arcs than Karp's algorithm (column 6) does.
The improvement achieved ranges from 99.95% on R2000 to 13.47% on MC6502-GROUP0.
The improvement is more than 50% on 43 out of 52 graphs in the table.

3. Our algorithms visit as many arcs as should be visited to get the result. For example, since
there is only one cycle in a ring graph (R2000), the maximum cycle mean can be found by
computing the mean weight of that cycle in time linear in the size of the graph (excluding
the complexity of the head and tall). Karp's algorithm instead takes time quadratic in the
size of the graphs. The behaviors of the algorithms are evident from row 9 of Tab. II. DG3
is the fastest because it does as much work as required. DGl and DG2 visit as many arcs as
there are in R2000 but the times spent during head and tail take most of the running time.
Note the number of vertices and arcs Karp's algorithm visits, which is why it is the slowest
on this simple graph. This weakness of Karp's algorithm is usually expected to be seen in
sparse graphs.

^The program and the test suite are available from the authors.



4. DGl is almost always the fastest algorithm among the three (columns 8-11). For only three
of the graphs (in the second group), Karp's algorithm runs faster than DGl. We think that
this might have resulted from the resulotion of the timer we used.^

5. Karp's algorithm sometimes outperforms DG2 and DG3 especially on graphs in the first
group. As DG2 and DG3 do much less work, this observation seems a bit strange. However,
the reason is simple. As we mentioned earlier, the body is the most time consuming part
of these algorithms, and Karp's algorithm has a body with very tight, small loops. This is
actually the biggest advantage of Karp's algorithm. The innermost loop in DG2 and DG3
has to include more statements to realize unfolding. This together with possible cache misses
due to the circular queue seems to be the reason for this behavior.

We should mention that the number of vertices and arcs visited is independent of implementa
tion, so is a better indicator of the improvements that our algorithms achieve. This fact should
be observed especially for the benchmarks in the second group because the running time figures
for them are very small. In summary, DG3 is asymptotically the fastest algorithm to the extent
that it is one of the fastest in the literature; however, we think that DGl is the best choice,
considering the behavior in practice. The implementation complexity of DGl is also no worse
than that of Karp's algorithm.

X. Conclusions

In this paper, we discussed the maximum mean cycle problem and an algorithm, Karp's algo
rithm, that has been commonly used to solve it. We showed the shortcomings of Karp's algorithm
and proposed a graph unfolding scheme for the maximum mean cycle problem to remedy them.
The proposed scheme leads to three faster maximum mean cycle algorithms with different charac
teristics. We evaluated these algorithms both in theory using asymptotic analysis and in practice
using experiments on benchmark graphs in comparison with Karp's algorithm. Asymptotic anal
ysis shows that our algorithms are always faster than Karp's algorithm. Experimental results
give a somewhat different picture. One of our algorithms is always faster than Karp's algorithm,
but the other two are sometimes slower. We concluded that this is due to the very tight loops in
Karp's algorithm, which probably makes the constants in its asymptotic running time smaller.
Experiments also show that our algorithms process a lot less vertices and arcs than Karp's al
gorithm does, as we expected from the asymptotic analysis. This observation, unlike that from
actual running times, is more promising because it is independent of any implementation of these
algorithms. We also have to mention that our improvements are also applicable to the minimum
mean cycle problem and that one of our algorithms is one of the fastest to date.
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TABLE II

Benchmarks and experimental results.

Name

DIFFEQ
ELLIPTIC

GCD
MC6502-GROUF0
MC6502-GROUP1
MC6502-GROUP2
PARKER1986

TSENG

R2000

172 204

307 344

49 55

2219 2410

620 671

2928 3198

172 177

136 161

2000 2000

# vertices
visited

rii<

# arcs
visited

Karp DG[123]

2439 11780 6035

4719 26602 13324

59 465 37

92599 583823 505207
13684 68508 52375

178447 960221 754319

5830 14863 11005

136 360 34
20002000 4000000

adfast 12 144 18 180 23

alloc-outbound 24 576 32 600 33

chul33 14 196 23 238 26

chul50 14 16 196 31 224 36

chul72 15 16 225 16 240 17

combuf2 16 19 172 27 195 29 '

converta 14 16 196 26 224 29

ebergen 14 16 196 26 224 29

full 8 12 64 14 96 21

hazard 10 12 100 12 120 14

hybridf 16 26 256 86 416 142

ircv-bm 51 64 2601 230 3264 289

master-read 28 40 784 425 1120 609

mmu 16 20 256 55 320 68

mmuO 16 20 256 55 320 68

mmul 16 24 256 127 384 187

mod4-counter 16 16 256 16 256 16

mp-forward-pkt 16 26 256 25 416 40

mrO 22 31 484 168 682 229

mrl 18 25 324 114 450 155

mux2 53 74 2809 1947 3922 2744

nak-pa 20 24 400 26 480 30

nowick 16 21 256 20 336 25

par-4 20 23 400 44 460 50

pe-rcv-ifc 63 81 3969 991 5103 1247

pe-send-ifc 62 83 3844 1066 5146 1464

postofhce 45 93 2025 1550 4185 3169

qr42 14 16 196 26 224 29

ram-read-sbuf 22 28 484 35 616 43

rev-setup 17 20 289 57 340 70

rpdft 22 22 484 22 484 22

sbuf-ram-write 24 29 576 42 696 51

sbuf-read-ctl 16 19 256 19 304 22

sbuf-send-ctl 26 31 676 42 806 49

sbuf-send-pkt2 30 35 900 201 1050 237

sendr-done 8 9 64 9 72 10

seq8 36 36 1296 36 1296 36

seq-mix 21 21 441 21 441 21

spec-seq4 20 20 400 20 400 20

trcv-bm 49 62 2401 224 3038 284

tsend-bm 44 54 1936 181 2376 222

vme2int 22 28 484 106 616 135

wrdatab 24 33 576 269 792 375
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