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The transfer of logically general
scientific reasoning skills

Anthony M. Harrison (anh23@pitt.edu)
Christian D. Schunn (schunn@pitt.edu)

Department of Psychology, University of Pittsburgh
3939 O’Hara St

Pittsburgh, PA 15260 USA

Abstract

Extending the paradigm introduced by Schraagen (1993),
two near-expert groups and novices completed two
scientific discovery tasks, one from each of the experts’
domains. In this way, both groups designed simulated
experiments from within and outside of their domain. The
role of domain familiarity on the application of general
scientific reasoning skills is explored by contrasting the
performance of the experts in their domain to that in the
unfamiliar domain. Results indicate that at the graduate
level, near-experts are able to apply general scientific
reasoning skills across dissimilar domains, while novices
still have difficulty with the transfer.

Introduction
How common are scientific reasoning skills across
different domains of practice? Schraagen (1993) as well
as Schunn and Anderson (1999) address this issue in their
experiments. Both studies relied on the same basic
paradigm: two groups of expert researchers and one group
of novices were asked to design and conduct a series of
experiments in a scientific discovery task. One of the
expert groups was familiar with the domain that the task
was drawn from (e.g. cognitive psychologists working on
a memory experiment), whereas the other was less
familiar with the domain, but still from the same general
field (e.g. social psychology). The scientific reasoning
skills (e.g. experimental design, hypothesis generation,
and data evaluation) exhibited by both expert groups were
similar and mapped cleanly onto those mentioned in the
literature (e.g. Klahr & Dunbar, 1988; Dunbar, 1993;
Chinn & Malhotra, 1999). The novices showed a similar
pattern of failures as those found by other researchers
focusing on non-scientists (e.g. Kuhn, Schauble & Garcia-
Mila, 1992; Klahr, Fay & Dunbar, 1993; Zajchowski &
Martin, 1993).

Almost all studies that have focused on non-scientists
have found remarkably poor performance (see Detterman,
1992 for a review) on scientific reasoning skills.
Fortunately, those that have studied practicing scientists
in their own domain have found just the opposite (e.g.
Dunbar, 1997). Why is it that expert scientists do so well
outside of their domain of expertise, yet novices do so
poorly? Schunn and Anderson (1999), as well as
Schraagen (1993), report that the differences found

between the practicing scientists and the novices could
not be accounted for by general reasoning ability
differences. This leaves two alternative explanations:
context of the problem influencing the transfer of the
skills, and scientific training itself.

While the studies conducted by Schraagen (1993) and
Schunn and Anderson (1999) seem to point towards the
influence of scientific training, there is a problem with
interpreting it in that way. Both of these studies utilized
highly similar groups of experts (all were experimental
psychologists of some sort). The similarity of the domains
of expertise might be confounding the influence of
context on transfer. While the experiments were designed
such that the task would be unfamiliar to one of the expert
groups, it is likely that they were familiar enough to
provide sufficient context cues to trigger the use of the
appropriate scientific strategies. The novices, however,
would not have had the cues to signal which strategies
would be appropriate. If the studies had utilized more
dissimilar experts this would not have been an issue. As it
is, the transfer context remains a confounding factor.

Voss et al. (1986) provide some support for the transfer
hypothesis. Their studies looking at the problem solving
of novices and dissimilar experts found that the quality of
the reasoning was dependent upon the match of the task to
the expert's domain. They report chemists' reasoning
being roughly equivalent to that of the novices when
attempting to solve political science problems, while the
political scientists exhibited a higher quality of reasoning
on the same tasks. However, while the Schraagen and
Schunn & Anderson studies utilized science-based
domains that were overly similar, the Voss, et al. study
utilized a non-science-based domain. This makes
comparisons across the studies problematic.

The difficulty of transferring skills from one context to
another has long been a recognized problem (e.g.
Thorndike & Woodworth, 1901; Singley & Anderson,
1989; Detterman, 1992). Singley and Anderson propose
that transfer can only occur between two situations for
identical elements. This transfer then depends on how the
elements were encoded. If researchers only use scientific
reasoning skills when faced with problems in their
domain, it is possible that they will be coded in a manner
that is specific to that context. It would therefore be
unlikely that they would use the strategies when those
context cues were absent. So in this situation, the
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superficial elements of the unfamiliar task mask the
relevance of using scientific skills. Unless there is a more
abstract understanding of these skills (more general
encoding), they will fail to be used in other scientific
reasoning contexts.

Much like the experiments of Schraagen (1993) and
Schunn and Anderson (1999), this study was designed to
explore the differences in scientific reasoning in novices,
task experts (at experimentation in general) and domain
experts (in the problem domain). The core difference is
that instead of using a single task, there are two
isomorphic discovery tasks from different scientific
domains. Each of the expert groups is a domain expert in
one of the two tasks, making each group task experts for
both and domain experts for only one. This design allows
us to look specifically at the influence of domain
familiarity on the transfer of scientific reasoning. Should
domain familiarity play a key role in the transfer of the
scientific reasoning skills, we would expect the skills to
only manifest themselves when the experts are within
their natural domain. When working in the unfamiliar
domain, their performance would be more like that of the
novices. If, however, they are able to recognize the deeper
scientific structure of the unfamiliar problem, then their
performance should be better than that of the novices and
qualitatively equivalent to that seen in their natural
domain.

Methods
Participants were recruited from two major universities:
33 undergraduates, 16 from one university, and 17 from
the other. The graduate samples were each drawn from a
different university (due to enrollment). 11 biology
graduate students and 17 industrial/organizational
psychology students were recruited, all had completed at
least two years of study. Participants were paid for their
participation.

Participants were asked to complete two isomorphic
experiment-based exploration tasks: they were to
determine how each of six task relevant independent
variables (IV) affects the outcome of the dependent
variable (DV). For example, the biology task had
participants design experiments to determine how each
variable (water temperature, turbidity, dissolved oxygen,
pH, fecal and phosphorus contents) influenced the growth
of a certain bacteria that was responsible for the
development of open sores on fish. The industrial
psychology task had participants design experiments to
determine the role of manager characteristics (e.g.
technical, critical reasoning, writing skills) on the
objectivity of employee appraisals.

Experiments were designed and conducted in a
computer simulated laboratory where participants were
able to manipulate each IV in question; run and view
experiments; take notes on hypotheses, experiments, and

outcomes; as well as assign conclusions as to the
influences of the IVs on the DV. No data analysis or
graphing tools were provided. Each task was self-paced,
allowing participants to conduct as many experiments as
they needed in order to draw their conclusions. The
simulated experiment lab was built with Java™ allowing
the recording of all user actions for playback1.

The task domains were selected based on graduate
enrollment in the domains across two universities. Experts
in the domains (instructors and researchers) were
recruited during the design of the tasks to maximize the
external validity of the tasks. The tasks, from
microbiology and industrial/organization psychology,
were based on experiments found in the literature. The
IVs’ qualitative effects on the DVs were maintained for 4
of the 6 variables. Two IVs from each task were modified
so that they would produce anomalous results. One was
anomalous from a theoretical perspective (TA), which
was merely an inversion of the qualitative trend. The
second was data anomalous (DA) in that a 20% subset of
the variable’s range produced extreme values. The
anomalous variables were added to test the sensitivity of
the participants to data anomalies (e.g. Chinn & Brewer,
1993).

Results
The critical comparisons in this study are two orthogonal
comparisons: the experts vs. novices (graduates and
undergraduates), as well as between the two groups of
experts. The expert analyses are between the experts
within their domain and outside their domain (domain and
task experts respectively). The In-Domain group consists
of the biology graduates working on the biology task and
the psychology graduates solving the psychology task.
The Out-Domain group consists of the same participants,
merely performing the opposite task. Unless otherwise
noted, all tests are repeated measure ANOVAs with the
two tasks as the repeated factor. Specific statistical
measures are reported in table 1; significance is assumed
at p<0.05. Task presentation was counter-balanced, and
there were no significant effects of task order on any of
the reported measures.

Experimental Design Measures
Participants spent on average 43 minutes on each of the

two tasks. While the graduate students spent a little longer
on each task (approx. 47 minutes) than the novices
(approx. 39 minutes), the differences were nonsignificant.
Likewise, the number of experiments designed and
conducted in each task did not differ significantly either
between the novices and the experts (37 and 47

                                                            
1 The experiment can be downloaded from the author’s website
http://simon.lrdc.pitt.edu/~harrison/
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respectively) or within the In-Domain and Out-Domain
groups (48 and 45 respectively).

The next design measure considered the breadth of the
experimental space that the participants searched (Klahr
& Dunbar, 1988). Each IV that they could manipulate had
a fixed range, which were divided into five equally-sized
bins. For each unique experiment that manipulated a
given variable, the total number of bins visited was
computed. The more complete the variable range covered,
the more informative the results will be with respect to
that variable on the whole.

As expected, the novices covered a significantly smaller
range than the graduates (see figure 1).  However, there
were no differences between the In-Domain experts (e.g.
biology graduate students performing the biology task,
and vice versa) and the Out-Domain experts (e.g.
psychology students performing the biology task).

Looking at the breadth of search for the two anomalous
variables yielded similar findings. The novices searched a
much narrower space for the theory anomalous and data
anomalous variables. Likewise, there were no significant
differences between the domain and task experts.
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Figure 1. Breadth of experimental space search for all, theory
anomalous (TA), and data anomalous (DA) variables.

Another design measure looked at the conservativeness
of the experimental designs. With the lack of any data
analysis tools, maximizing the interpretability of each
simulated experiment was very important. Participants
conducted experiments one at a time. The only way to
draw conclusions was to compare outcomes of successive
experiments. If the comparisons were confounded
(multiple IV manipulations), accurate conclusions would
be very difficult to draw. Two versions of a VOTAT
(vary one thing at a time) score were computed for each
task (Tschirgi, 1980). The local VOTAT was computed
by averaging the number of variables manipulated in one
experiment when compared to the immediately previous
experiment. The global VOTAT was computed between
the current experiment and the most similar previous
experiment (regardless of when it occurred).  Since there
were no significant differences between the two measures

across groups and tasks, the two were combined into an
average composite.  The novices consistently manipulated
multiple variables per experiment, averaging 1.42 changes
per experiment, which was significantly more than the
graduate sample’s 1.23. There were no differences
between the experts within or outside their domains.
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Figure 2. Average number of variables manipulated per
experiment. One change at a time yields optimal interpretability

in this scenario.

Note-taking
It is hard to argue against the importance of meta-

processing skills in scientific reasoning. For this study, we
chose to look at the note taking behavior of the
participants. This is analogous to practice of scientists
keeping a detailed lab notebook (Dunbar, 1997). The first
measure is merely one of length, how much note taking is
going on. Novices took very few notes (if any), which is
in stark contrast to the experts who took significantly
longer notes. For the experts, there were no differences in
note-taking length when in or out of their natural domain.

Notepad Length
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Figure 3. Length of notes (in characters) taken during
experiment. Significant difference between novices and experts,

none between the experts.

Knowing how much note taking was occurring lead us
next to ask how they were utilized. A simple three-
category scheme was developed a priori. Notes could be
categorized as non-existent (including uninterpretable and
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irrelevant notes), effects tracking (documenting variable
values and experiment outcomes, effectively duplicating
the provided experiment log), or hypothesis tracking
(documenting hypotheses, suspected relationships, etc.).
As can be seen in figure 4, all groups did an equal amount
of effects tracking. The significant differences were in the
amount of hypothesis tracking that the experts did.
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Figure 4. Type of notepad usage. Significant difference
between novices and experts, χ2(2,N=61)=5.9, p<0.05. No

significant differences between expert groups.

Data Interpretation
The final set of measures where designed to assess the

participants’ ability to interpret the data and draw
conclusions regarding the relationships between the
independent variables and the outcome measure.
Participants were asked to write out their conclusions for
each variable including the qualitative trend, critical
values, magnitude, and any “strange” properties. One
point was awarded for each property that was correct.
Averaging across each of the variables yielded an overall
interpretation accuracy score. Making it conditional on
the breadth of the experiment space that was searched
further refined each variable’s score. For instance, any
conclusions about critical values would be erroneous if
they had not explored the variable range within which the
values occurred. The left most graphs in figure 5 show
both the raw and the conditional overall interpretation
accuracy scores. Once more the novices scored lower than
the experts with no significant differences between
experts in or out of their domains. The differences
between the raw and conditional scores were
nonsignificant; participants did not appear to be drawing
conclusions beyond what was possible given the data
collected.
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Figure 5. Interpretation accuracy scores, conditional on
breadth of search.

The conditional accuracy scores for the anomalous
variables were also examined (right half of figure 5). For
the theoretically anomalous (TA) variables there were no
differences among the three groups. The difference
between In- and Out-Domain participants for the TA
variable would likely be magnified if established domain
experts had been used instead of the graduate students.
There was a significant difference between novices and
experts for the data anomalous (DA) variables, but this is
directly attributable to the differences in the breadth of
search for the data anomalous variables (see figure 1).

IQ Surrogates
Since this study had to be conducted across multiple
universities, one of the first concerns was general IQ
differences between the sampled populations. Using SAT
and GRE scores as IQ surrogates, simple ANOVAs were
computed. There were no significant differences within
the novice undergraduate samples across the two
universities, allowing the collapsing of the two groups.
There were significant differences between the graduate
samples (one from each university) and the novices. The
post-hoc LSD showed no differences between the two
graduate samples. Figure 6 shows the average combined
SAT/GRE scores of the three groups. Further more,
regression models were run on all the key dependent
measures to test for IQ effects. None of the models
approached even marginal significance: higher IQ
participants did not perform better than the lower IQ
participants. This data suggests that the IQ confound
cannot account for the expertise effects found.
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Figure 6. Combined SAT/GRE scores as IQ surrogates. No
significant effects due to IQ.

Measure Undergraduates
v. Graduates

(p-value)

In-Domain v.
Out-Domain

(p-value)
Breadth of search

Overall
Theory

Data

0.002
0.04
0.02

0.429
0.894
0.987

VOTAT 0.02 0.86
Note length 0.001 0.93
Note usage† 0.05 0.875
Data interpretation

Overall
Theory

Data

0.00
0.41
0.03

0.234
0.301
0.952

IQ surrogates†† 0.000 0.34
Table 1.  Significance of the planned comparisons. All measures

are repeated measure ANOVAs with the tasks as the repeated
factor, except for † Note usage (Chi-squared) and the †† IQ

surrogate (standard ANOVA).

Discussion
Across the board expert groups performed significantly
better than the novices, both inside and out of their
domains. Additionally, there were no significant
differences between the experts in or out of their natural
domains. The findings mirror those of Schunn and
Anderson (1999) and Schraagen (1993), even with the use
of graduate students as opposed to established and
practicing experts. Regardless of the domain, experts used
the same general strategies in solving the discovery
problems. Had the Out-Domain performance been
significantly different from the In-Domain performance,
bringing it closer to that of the novices, we could
conclude that domain familiarity was influencing the
transfer of the scientific reasoning skills.

The only major divergence from the former studies was
the lack of a difference between the experts when it came
time to draw conclusions from the data collected. While
data interpretation per se has nothing to do with a
particular domain, both Schraagen (1993) and Schunn and
Anderson (1999) found qualitative differences between

their task and domain experts. Both expert groups in this
study performed equally poorly (but still significantly
better than the novices). However, this could have been
due to the fact that these tasks produced more data than
those in other studies and lacked any analysis tools, such
as graphs or tables (a common criticism leveled by the
graduate students during the debriefing questionnaire).

Another difference in this study was the inclusion of
anomalous variables (both theoretical and data based).
Given that anomalies often draw the attention of scientists
(Dunbar, 1997; Chinn & Brewer, 1993), it was interesting
to see how sensitive the two expert groups were to them.
One might expect that upon detection of an anomaly, that
participants would search that section of the experimental
space more thoroughly. Unfortunately, this is not seen for
any of the expert groups (see figure 1). There are no
reliably significant differences between the search
patterns in terms of breadth or VOTAT (data not shown).
This is not to say that the experts did not notice the
anomalies; they just didn’t exploit them in their
experiments, in contrast to the findings of Dunbar (1997)
and Tricket, et al (2001). This difference is likely due to
the use of graduate students as opposed to established
researchers.

Summary
Much like the studies of Schunn and Anderson (1999) and
Schraagen (1993), we were interested in exploring the
generality of scientific reasoning skills. Both studies
concluded that while the quality of the reasoning was
domain specific, the processes used were general. As was
seen in these studies there are strong differences between
the experimental skills exhibited by novices and the
experts, or in this case, the developing experts. These
differences cannot be attributed to a simple variable such
as differences in intelligence. What’s more is that the two
expert groups behaved qualitatively the same whether
they are working in their familiar domain or in a novel
one. They were able to transfer the appropriate skills
based on the deeper scientific structure and were not
negatively influenced by the unfamiliar domain. The
bidirectional transfer across a wider context difference is
more evident in this study because of the utilization of
genuinely dissimilar target domains, as opposed to the
psychological domains used by Schunn & Anderson and
Schraagen or the chemistry and (non-scientific) political-
science domains used in the Voss, et al (1986) studies.
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