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Quantum measurement of hyperfine interaction in nitrogen-vacancy center

Kilhyun Bang, Wen Yang,∗ and L. J. Sham
Center for Advanced Nanoscience, Department of Physics,

University of California San Diego, La Jolla, California 92093-0319, USA

We propose an efficient quantum measurement protocol for the hyperfine interaction between the electron
spin and the15N nuclear spin of a diamond nitrogen-vacancy center. In thisprotocol, a sequence of quantum
operations of successively increasing duration is utilized to estimate the hyperfine interaction with successively
higher precision approaching the quantum metrology limit.This protocol does not need the preparation of
the nuclear spin state. In the presence of realistic operation errors and electron spin decoherence, the overall
precision of our protocol still surpasses the standard quantum limit.

I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV) center in di-
amond is a promising solid state system for quantum compu-
tation. The electron spin in the optical ground state of the NV
center exhibits exceptionally long coherence time (> 350µs)
at room temperature.1 This feature allows coherent manipula-
tion and reliable readout of the state of the electron spin and
the neighboring nuclear spins2,3 in the NV center, a key tech-
nique of diamond-based quantum computation.1,3–5 In these
operations, the hyperfine interaction between the electronspin
and the neighboring nitrogen nuclear spin plays an important
role. To minimize the operation errors, an accurate estimate
of the hyperfine interaction is desirable.

In addition to quantum computation, the NV center is also
a candidate for the application of quantum parameter estima-
tion (also known as quantum metrology). Quantum metrol-
ogy seeks quantum measurement protocols to estimate phys-
ical parameters up to a given precision defined as 1/∆2 (with
∆ being the standard deviation) using the least amountR of
resources, which include the number of measurements, the
total duration of the measurements, and the number of par-
ticles involved in the measurements. The classical protocol
utilizes the numberR of repeated measurements as a resource
and, according to the central limit theorem, gives the classical
limit (also known as standard quantum limit or SQL)∆SQL =

O(1/
√

R). Quantum metrology aims to surpass the SQL and,
more ambitiously, reach the quantum metrology limit (QML)
∆QML = O(1/R), the upper precision bound 1/∆2

QML = O(R2)
set by quantum mechanics. The most popular quantum mea-
surement technique is interferometry, in which the parameter
to be measured is recorded as a phase in the coherence of the
system.6–9 The exceptionally long coherence time of the NV
center electron spin diminishes the detrimental effect of deco-
herence on such measurements and makes the NV center an
ideal system for quantum metrology.10 Up to date, most of the
measurement protocols utilize pure quantum states and sur-
pass the SQL by creating quantum entanglement in the sys-
tem. However, the thermal equilibrium state of the nuclear
spins is highly mixed at room temperature. To estimatereli-
ably the hyperfine interaction in the NV center by a pure-state
protocol, the nuclear spins must be prepared repeatedly into a
given pure state. Further, the number of spins as the resources
of entanglement in a single NV center is finite,5 so the advan-
tage of quantum entanglement to parameter estimation is also

limited.

Recently, Boixo and Somma11 proposed a model of mixed-
state quantum metrology by combining the mixed-state quan-
tum computation (also known as deterministic quantum com-
putation with one quantum bit12 or DQC1) with the adaptive
Bayesian inference. This DQC1 model utilizes the total du-
ration T (instead of large-scale entanglement10) of the esti-
mation process as a resource to approach the QML∆QML =

O(1/T ) without creating any entanglement.13,14 However, its
application to estimate the hyperfine interaction in the NV
center requires including the effects of noise and unintended
dynamics.

In this paper, we construct an efficient quantum measure-
ment protocol to estimate the hyperfine interaction between
the electron spin and the15N nuclear spin in the NV cen-
ter. This protocol is essentially a combination of the DQC1
model11 and the spin-echo technique,15 which decouples the
dynamics driven by the hyperfine interaction from the noise
and unintended dynamics. It does not need the preparation
of the nuclear spin state and approaches the QML∆QML =

O(1/T ) in the ideal case. By including realistic errors (such as
the nuclear spin rotation error and the electron spin decoher-
ence) in our analysis, we show that our protocol still surpasses
the SQL under typical experimental conditions.

The rest of this paper is organized as follows. In Sec. II, we
review the DQC1 model for parameter estimation and identify
the problems in applying this model to estimate the hyperfine
interaction in the NV center. In Sec. III, we give a solution
to these problems by combining the DQC1 model with the
spin-echo technique. In Sec. IV, we introduce our quantum
measurement protocol. Sec. V gives the conclusion.

II. DQC1 PARAMETER ESTIMATION IN NV CENTER

We first review the two-qubit version of the DQC1 pa-
rameter estimation model proposed by Boixo and Somma11

(Sec. II A) and then identify the robustness problems arising
from applying this model to estimate the hyperfine interaction
in the NV center (Sec. II B).

http://arxiv.org/abs/1205.5076v1
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FIG. 1. DQC1 parameter estimation with one control qubit in the
pure state|+〉 ≡ (|0〉 + |1〉)/

√
2 and one target qubit in the state ˆρtar.

A. Two-qubit DQC1 parameter estimation

The two-qubit DQC1 model consists of a control qubit
(with states{|0〉 , |1〉}) and a target qubit (with states{|↑〉 , |↓〉}).
The initial state ˆρDQC1 = |+〉 〈+| ⊗ ρ̂tar is the direct product of
the pure state|+〉 ≡ (|0〉+ |1〉)/

√
2 of the control qubit and the

unpolarized state ˆρtar = (|↑〉 〈↑| + |↓〉 〈↓|)/2 of the target qubit,
as shown in Fig. 1. The three Pauli operators of the control
qubit and of the target qubit are denoted by

X̂ ≡ |1〉 〈0| + |0〉 〈1| ,
Ŷ ≡ i(|1〉 〈0| − |0〉 〈1|),
Ẑ ≡ |0〉 〈0| − |1〉 〈1| ,

and{σ̂x, σ̂y, σ̂z}, respectively. The two qubits are coupled by
the interaction

ĤDQC1 = |1〉 〈1| ⊗ θσ̂z. (1)

This interaction makes the splitting energyωc of the control
qubit dependent on the state of the target qubit:ωc,↑ = θ for
the target qubit in the spin-up state|↑〉 andωc,↓ = −θ for the
target qubit in the spin-down state|↓〉. The DQC1 parameter
estimation11 aims to estimate the interaction strengthθ with
the standard deviation∆θ = O(1/T ) approaching the QML,
whereT is the total duration of the estimation process. The
procedures are simple: the application of the two-qubit inter-
actionĤDQC1 for a durationτ, followed by a measurement of
X̂:

• If the target qubit is in the spin-up state|↑〉, thenĤDQC1

drives the precession of the control qubit with angular
frequencyωc,↑,

|0〉 + |1〉
√

2
⊗ |↑〉 →

|0〉 + e−iωc,↑τ |1〉
√

2
⊗ |↑〉 .

Before the measurement, the interaction strengthθ is
encoded as a phasee−iωc,↑τ of the control qubit. The
repeated measurements ofX̂ estimate the average value
〈X̂〉↑ = cos(ωc,↑τ) = cos(θτ), which yields the phase.

• If the target qubit is in the spin-down state|↓〉, then
ĤDQC1 drives the precession of the control qubit with
angular frequencyωc,↓,

|0〉 + |1〉
√

2
⊗ |↓〉 →

|0〉 + e−iωc,↓τ |1〉
√

2
⊗ |↓〉 .

Before the measurement, the interaction strengthθ is
encoded as a phasee−iωc,↓τ of the control qubit. The
repeated measurements ofX̂ estimate the average value
〈X̂〉↓ = cos(ωc,↓τ) = cos(θτ), which extracts the phase.

• Now the target qubit is in the unpolarized state, i.e.,
an equal, incoherent mixture of|↑〉 and |↓〉. Then
the repeated measurements ofX̂ estimates the equally
weighted average of〈X̂〉↑ and〈X̂〉↓:

〈X̂〉 = 1
2

(〈X̂〉↑ + 〈X̂〉↓) = cos(θτ).

A distinctive feature of the above parameter estimation
process is the absence of any two-qubit entanglement.14

For a given standard deviation∆X (≪ 1 under typical situ-
ations) in estimating〈X̂〉, the DQC1 model gives an estimate
to the interaction strengthθ with a standard deviation

∆θ =
∆X

|∂〈X̂〉/∂θ|
=

∆X

τ| sin(θτ)|
≥ ∆X

τ
. (2)

By regarding the durationτ of the estimation as a resource, the
QML scaling∆θ = O(1/τ) is achieved ifτ could be chosen
such that| sin(θτ)| ≈ 1. However, due to the limited prior
knowledge aboutθ (the parameter to be estimated), we cannot
always ensure| sin(θτ)| ≈ 1, especially when a small standard
deviation∆θ → 0 (corresponding to largeτ→ ∞) is required.

To address this issue, Boixo and Somma11 quantified the
prior knowledge aboutθ by a standard deviation∆0 and uti-
lized the adaptive Bayesian inference to reduce the standard
deviation successively. The essential idea of this approach
can be understoodqualitatively as follows. In order to ensure
| sin(θτ)| ≈ 1 and hence the QML, the largestτ is roughly
1/∆0. Under this restriction, the minimal standard deviation
for the estimation ofθ is given by Eq. (2) as∼ ∆X∆0 ≪ ∆0.
Therefore, the DQC1 measurements with standard deviation
∆X refines our knowledge about the interaction strengthθ
from a large standard deviation∆0 to a much smaller one
∼ ∆X∆0. By iterating this procedure, the standard deviation∆θ
would decrease successively as∆0 → ∆X∆0 → ∆2

X∆0 → · · · .
With the aid of the adaptive Bayesian inference, Boixo and
Somma11 performed a quantitative analysis about this iter-
ation and concluded that the QML∆θ = O(1/T ) could be
achieved for an arbitrary desired standard deviation, where
T =
∑
τ is the total duration of the estimation process.

In the next subsection, we discuss the problems of DQC1
model when it is directly applied to estimate the hyperfine in-
teraction in the NV center. Before that, we mention a use-
ful extension (which can be readily verified) of this model:
the analytical expressions for the quantity estimated by the
measurement [e.g.,〈X̂〉 = cos(θτ) for the DQC1 model and
〈Ẑ〉 = cos(Aτ) for our protocol, see Eq. (5)] remains valid for a
more general initial stateρtar = 1/2+qzσz/2 of the target qubit
with an arbitrary polarizationqz. This fact is especially impor-
tant for estimating the hyperfine interaction in the NV center
since in this case, initializing the control qubit (the electron
spin in the NV center) will partially polarize the target qubit
(the15N nuclear spin in the NV center).16
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FIG. 2. Energy level diagram of the ground state of an NV center
in diamond. The hyperfine energy splitting atB = 0.2 T is sketched
within the |ms = 0〉 and |ms = −1〉 manifold. D = 2.87 GHz is the
zero field splitting of the electron spin, andA is the longitudinal hy-
perfine interaction to be estimated. The nuclear Zeeman splitting is
omitted in the diagram.

B. Direct application of DQC1 parameter estimation to NV
center

We consider a negatively charged NV center in diamond
consisting of a substitutional15N atom and a neighboring car-
bon vacancy. Its electronic ground state is a two-electron spin
triplet described by a spin-1 operatorŜ, with a zero-field split-
ting D ≈ 2.87 GHz (described by the termDŜ 2

z ) between
the |ms = 0〉 state and the|ms = ±1〉 states. Under an exter-
nal magnetic fieldB along the N-V axis (defined as thez di-
rection), the Zeeman termgeµBBŜ z with ge = 2.0023 shifts
the state|ms = +1〉 away from the other two states under a
moderate magnetic fieldB ∼ 0.2 T (see Fig. 2). Thus we
identify |0〉 ≡ |ms = 0〉 and |1〉 ≡ |ms = −1〉 as the two states
of the control qubit of the DQC1 model and useX̂, Ŷ, Ẑ as
the three Pauli matrices for this qubit. The electron spinŜ
is coupled to the neighboring15N nuclear spin-1/2 Î (with
the two-fold degeneracy lifted by the Zeeman termgNµN BÎz,
where gN = −0.566417) through the hyperfine interaction
AŜ z Îz + (A⊥/2)(Ŝ +Î− + Ŝ − Î+), where A ≈ 3.03 MHz and
A⊥ ≈ 3.65 MHz.17 We regard this nuclear spin-1/2 as the
mixed-state target qubit of the DQC1 model and use ˆσx, σ̂y, σ̂z

as the three Pauli matrices 2Îx, 2Îy, 2Îz for this qubit. The diag-
onal partAŜ z Îz of the hyperfine interaction makes the nuclear
(electron) spin splitting energy dependent on the state of the
electron (the nucleus). ThusAŜ z Îz plays the central role in
coherent control and readout of the electron and nuclear spin
states. The hyperfine interaction strengthA is the parameter
to be estimated.

In the two-qubit subspace, the HamiltonianĤ = Ĥ0 + Ĥmix

consists of the diagonal part

Ĥ0 =
1
2

gNµN Bσ̂z + |1〉 〈1| ⊗ (D′ − 1
2

Aσ̂z)

and the off-diagonal part

Ĥmix = (A⊥/
√

2)(|0, ↓〉 〈1, ↑| + |1, ↑〉 〈0, ↓|).

+ +

X̂

iH
e

τ−

neq

nρ
(a) 

(b) iH
e

τ−
e
−iHτ

( )n

y
R π

( )e

y
R π

FIG. 3. (a) Direct application of the DQC1 model to estimate the
hyperfine interaction strengthA in NV center. (b) Combination of
spin echo and the DQC1 model.

The diagonal partĤ0 accounts for the free nuclear spin pre-
cession with angular frequencygNµN B, the free electron spin
precession with angular frequencyD′ ≡ D − geµBB, and the
projection|1〉 〈1| ⊗ (−Aσ̂z/2) of the diagonal hyperfine inter-
actionAŜ z Îz in the two-qubit subspace. The off-diagonal part
Ĥmix is the projection of the off-diagonal hyperfine interaction
(A⊥/2)(Ŝ +Î− + Ŝ − Î+) in the two-qubit subspace. The diago-
nal hyperfine interaction term|1〉 〈1| ⊗ (−Aσ̂z/2) in Ĥ0 cor-
responds toĤDQC1 in Eq. (1) with θ ↔ (−A/2). It makes
the precession frequencyωe of the electron spin dependent
on the hyperfine interaction strengthA and the nuclear spin
state:ωe,↑ = D′ − A/2 for the nuclear spin state being|↑〉 and
ωe,↓ = D′ + A/2 for the nuclear spin state being|↓〉. There-
fore, following the procedure in Fig. 1, the interaction strength
A is encoded as a phase of the electron spin and subsequently
extracted by estimating〈X̂〉.

As schematically shown in Fig. 3(a), the electron spin needs
to be prepared in the superposition (|0〉 + |1〉)/

√
2. This can

be achieved by optical pumping18 followed by a coherent ro-
tation. However, this preparation process inevitably influ-
ences the nuclear spin and changes its state from the unpo-
larized thermal equilibrium state ˆρn

eq = Î/2 to a state ˆρn
neq =

Î/2+qzσ̂z/2 with a finite polarizationqz = Tr[ρ̂n
neqσ̂z].16 Then

the two qubits evolve under the HamiltonianĤ for a duration
τ, followed by a measurement of〈X̂〉. Below we calculate〈X̂〉
without Ĥmix and then taking it into account by perturbation
theory.

Without Ĥmix, the two qubits are driven bŷH0, which has
four eigenstates|0, ↑〉 , |0, ↓〉 , |1, ↑〉 , |1, ↓〉. The physics is sim-
ilar to the DQC1 model described in the previous subsection:

• If the nuclear spin is in the spin-up state|↑〉, then Ĥ0

drives the precession of the electron spin qubit with an-
gular frequencyωe,↑ and the repeated measurements of
X̂ estimate〈X̂〉↑ = cos(ωe,↑τ).

• If the nuclear spin is in the spin-down state|↓〉, then
Ĥ0 drives the precession of the electron spin qubit with
angular frequencyωe,↓ and the repeated measurements
of X̂ estimate〈X̂〉↓ = cos(ωe,↓τ).
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• Now the nuclear spin is in an incoherent mixture of|↑〉
[with weight (1+qz)/2] and|↓〉 [with weight (1−qz)/2].
Then the repeated measurements ofX̂ estimate the
weighted average of〈X̂〉↑ and〈X̂〉↓:

〈X̂〉 = 1+ qz

2
〈X̂〉↑ +

1− qz

2
〈X̂〉↓. (3)

Then we consider the complications caused by the off-
diagonal partĤmix. To reduce its detrimental effect on the
parameter estimation, we consider a suitable magnetic field
strength (e.g.,B = 0.2 T, as indicated in Fig. 2 and used in our
estimation, see Sec. IV C) so that|D′| ≫ |A⊥|. In this case, we
can use perturbation theory to treatĤmix, which modifies the
eigenstates and eigenenergies of the two-qubit Hamiltonian
Ĥ = Ĥ0 + Ĥmix:

1. Ĥmix changes the eigenstates ofĤ from [|0, ↑〉, |0, ↓〉,
|1, ↑〉, |1, ↓〉] to [|0, ↑〉, ˜|0, ↓〉, ˜|1, ↑〉, |1, ↓〉], where

˜|0, ↓〉 = [1 − O(η2)] |0, ↓〉 + O(η) |1, ↑〉 ,
˜|1, ↑〉 = [1 − O(η2)] |1, ↑〉 + O(η) |0, ↓〉 ,

andη ≡ A⊥/(D′ + gNµN B − A/2) ∼ 10−3 for B = 0.2 T.
In other words,Ĥmix introduces newO(η) components
into the eigenstates. It can be readily verified that this
changes〈X̂〉 by O(η2).

2. Ĥmix changes the eigenenergy of|0, ↓〉 (|1, ↑〉) by a small
amount−δ (+δ), whereδ = ηA⊥/2+ O(η2A⊥). This in
turn changes the precession frequencies of the electron
spin fromωe,µ to ω̃e,µ = ωe,µ + δ (µ =↑, ↓). Therefore,
the average value〈X̂〉 is obtained from Eq. (3) by renor-
malizingωe,µ with ω̃e,µ (µ =↑, ↓).

Collecting both corrections discussed above, we obtain

〈X̂〉 = cos[(D′ + δ)τ] cos(
A
2
τ) (4)

+ qz sin[(D′ + δ)τ] sin(
A
2
τ) + O(η2).

It contains not onlyA but also undesired parameters such as
D′ (free electron spin precession frequency),δ (energy shift
by Ĥmix), andqz (partial nuclear spin polarization). For an ac-
curate estimation ofA, it is desirable to eliminate these unde-
sired parameters from〈X̂〉 by modifying the DQC1 protocol.

III. ELIMINATING UNDESIRED PARAMETERS BY SPIN
ECHO

To remove the dependence on the undesired parameters in
〈X̂〉, we combine the DQC1 model with the spin-echo tech-
nique by replacing the free evolutione−iĤτ with the composite
evolution [see Fig. 3(b)]

Ûcom = e−iĤτR̂n
y(π)R̂e

y(π)e
−iĤτ = R̂e

y(π)R̂
n
y(π)
(
e−i(σ̂y ŶĤŶσ̂y)τe−iĤτ

)
,

which consists of an electron spinπ rotationR̂e
y(π) = e−iπŶ/2 =

−iŶ and a nuclear spinπ rotation R̂n
y(π) = e−iπσ̂y/2 = −iσ̂y

sandwiched by the free evolutione−iĤτ. This composite evo-
lution contains a spin echo (the part inside the parenthesis) for
the electron and the nucleus, which eliminates the free pre-
cession of the electron spin and the nuclear spin. To analyze
Ûcom in more detail, we first ignore the off-diagonal partĤmix

and then take it into account by perturbation theory.
Without Ĥmix, the HamiltonianĤ′ ≡ σ̂yŶĤŶσ̂y commutes

with Ĥ. ThusÛcom reduces to

Û (0)
com = R̂e

y(π)R̂
n
y(π)e

−i(Ĥ′+Ĥ)τ = R̂e
y(π)R̂

n
y(π)e

−iAτσ̂z/2e−iĤechoτ,

whereĤecho= |1〉 〈1|⊗(−Aσ̂z) corresponds tôHDQC1 in Eq. (1)
with θ↔ −A. The operation̂Rn

y(π)e−iAτσ̂z/2 on the nuclear spin
alone can be dropped since it does not influence our measure-
ment on the electron spin. Therefore, the composite evolution
becomesÛ (0)

com = R̂e
y(π)e

−iĤechoτ, in which all the undesired pa-
rameters have been eliminated.

In the presence of̂Hmix, Ĥ′ consists of the diagonal part

Ĥ′0 = −
1
2

gNµN Bσ̂z +
1
2

Aσ̂z − |1〉 〈1| ⊗ (D′ +
1
2

Aσ̂z)

and the off-diagonal partĤmix. Similar to the two-step anal-
ysis leading to Eq. (4),Ĥmix modifies the eigenstates and
eigenenergies of̂H = Ĥ0 + Ĥmix andĤ′ = Ĥ′0 + Ĥmix:

1. Ĥmix introduces newO(η) components into the eigen-
states ofĤ andĤ′. This changes〈X̂〉 by O(η2).

2. For the HamiltonianĤ, the presence of̂Hmix changes
the eigenenergy of|0, ↓〉 (|1, ↑〉) by −δ (+δ). For the
Hamiltonian Ĥ′, the presence ofĤmix changes the
eigenenergy of|0, ↓〉 (|1, ↑〉) by+δ (−δ). In other words,
the opposite energy shifts for̂H andĤ′ induced byĤmix

cancel each other in the evolution̂Ucom.

For〈X̂〉, the composite evolution including both corrections
discussed above is equivalent to

Ûcom = R̂e
y(π)e

−iĤechoτ + O(η2),

i.e., the spin echo eliminates all the named undesired parame-
ters and the effective evolutionÛcom for the NV center recov-
ers the DQC1 evolutione−iĤDQC1τ up to a trivial electron spinπ
rotationR̂e

y(π).

IV. QUANTUM MEASUREMENT PROTOCOL OF
HYPERFINE INTERACTION

In this section, first we give the quantum circuit for a sin-
gle estimation of the hyperfine interaction strengthA in the
NV center. Second, we describe in detail the procedure of
the entire estimation protocol: the successive adaptationof the
quantum circuit for dramatically reduced standard deviation
by combining our prior knowledge with the outcomes of the
previous measurements through adaptive Bayesian inference.
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FIG. 4. Quantum circuit for a single estimation of the hyperfine in-
teraction strengthA in the NV center.

Third, we demonstrate that this protocol approaches the QML
∆QML = O(1/T ) for the ideal case. Finally, we include the es-
sential errors (the nuclear spin rotation error and the electron
spin decoherence) and show that our protocol still exceeds the
SQL.

A. Quantum estimation circuit

Fig. 4 gives the sequence of quantum operations for a single
estimation of the hyperfine interaction strengthA in the NV
center:

1. The electron spin is prepared into the pure state|0〉 by
optical pumping.18 A subsequentπ/2 rotationR̂e

y(π/2)
initializes the electron spin into the superposition|+〉 =
(|0〉 + |1〉)/

√
2. The nuclear spin is a partially polar-

ized state ˆρn = Î/2+ qzσ̂z/2. This initial density matrix
ρ̂initial = |+〉 〈+| ⊗ ρ̂n coincides with the initial density
matrix ρ̂DQC1 = |+〉 〈+|⊗ ρ̂tar of the DQC1 model, where
the target qubit state ˆρtar also has an arbitrary polariza-
tion, as discussed at the end of Sec. II A.

2. The two qubits experience a composite evolution
(within the dashed box in Fig. 4), which consists of a
free evolutione−iĤτ, a controlled nuclear spinπ rotation
R̃n

y(π) = |1〉 〈1| ⊗ (−iσ̂y) + |0〉 〈0|, an electron spin ro-
tation R̂e

y(π), another controlled nuclear spinπ rotation

R̃n
y(π), and another free evolutione−iĤτ. The equality

R̃n
y(π)R̂

e
y(π)R̃

n
y(π) = R̂n

y(π)R̂e
y(π) shows that this compos-

ite evolution coincides witĥUcom in Sec. III.

3. A π/2 rotation R̂e
y(π/2) is applied to the electron

spin, followed by a measurement ofẐ through optical
methods.4,19 This measurement estimates

〈Ẑ〉 = Tr ẐR̂e
y(π/2)Ûcomρ̂initialÛ

†
com[R̂e

y(π/2)]†

= Tr X̂e−iĤechoτρ̂initiale
iĤechoτ + O(η2).

Since the evolutione−iĤechoτ = e−iĤDQC1τ|θ→−A has the
same form as the DQC1 model, the average value is

〈Ẑ〉 = cos(Aτ) + O(η2). (5)

The electron spin rotation̂Re
y(π/2) [R̂e

y(π)] in the circuit
is achieved by aπ/2 pulse (π pulse) with the central fre-
quency|D′| and the bandwidth≫ A/2, so that both transitions
|0, ↑〉 ↔ |1, ↑〉 and |0, ↓〉 ↔ |1, ↓〉 are equally excited. The

controlled nuclear spin rotatioñRn
y(π) is achieved by aπ pulse

centered at the resonant frequencyA−gNµN B−δ of the transi-
tion |1, ↑〉 → |1, ↓〉. The durationτ of the free evolution can be
chosen in the experiment asτ > 1/A ∼ 0.1 µs. The electron
spin rotation occurs within a few nanoseconds and hence can
be regarded as instantaneous.20,21However, the controlled nu-
clear spinπ rotation takesτn ∼ a few microseconds, compara-
ble to the free evolution timeτ. Detailed analysis in appendix
A shows that incorporation ofτn amounts to replacing the free
evolution timeτ in Eq. (5) by the sum (τ + τn). For brevity,
we useτ to denote (τ + τn) from now on.

In arriving at Eq. (5), we have assumed that all the gate op-
erations in the circuit and the measurements ofẐ are free of
errors. In a realistic experiment, the most basic errors include
the deviation of the nuclear spin rotation angle fromπ in the
controlledπ rotationR̃n

y(π) and the finite electron spin coher-
ence timeT e

2:

• Nuclear spin rotation error. The two controlled nu-
clear spinπ rotationsR̃n

y(π) in the quantum estimation
circuit (Fig. 4) are subjected to random errors, which
may come from our limited prior knowledge (which be-
comes more and more precise after each successive es-
timation step) about the interaction strength A or other
experimental sources. For the actual rotation angle
(π + 2ǫ) differing fromπ by an error 2ǫ, the actual con-
trolled rotationR̃n

y(π, ǫ) = R̃n
y(π)+ δ̃n

y(π) differs from the
ideal oneR̃n

y(π) by

δ̃n
y(π) = |1〉 〈1| ⊗ (−ǫ + i

ǫ2

2
σ̂y) + O(ǫ3).

For the first controlled rotation being̃Rn
y(π, ǫa) and the

second controlled rotation being̃Rn
y(π, ǫb), the actual

quantity estimated by the quantum circuitM(τ) is

〈Ẑǫ〉 =
1−

〈ǫ2a 〉 + 〈ǫ2b〉
2

 cos(Aτ)

+ 〈ǫaǫb〉 + 〈ǫa〉O(η) + 〈ǫb〉O(η) + O(η2),

The first source of error is our ignorance aboutA.
In the k-th estimation step, our limited prior knowl-
edge aboutA (as quantified by the standard deviation
∆k−1, see Sec. IV B) and hence the resonant frequency
A − gNµN B − δ of the transition|1, ↑〉 → |1, ↓〉 makes
it impossible to construct an exactπ pulse for this tran-
sition. The typical detuning for this transition is∆k−1.
The typical rotation angle deviates from the ideal value
π by an amountπ∆2

k−1/(2Ω
2) ∼ 10−3, the same order of

magnitude asO(η), for the Rabi frequencyΩ = 500 kHz
used in our estimation. Thus every term in the second
line of the above equation has the same order of∼ 10−6,
which allows us to replace the second line byO(η2). For
ǫa andǫb being independent, we obtain

〈Ẑǫ〉 = (1− ε2) cos(Aτ) + O(η2),

whereε2 = 〈ǫ2a 〉 = 〈ǫ2b 〉. For other experimental sources,
the errors are typically random with〈ǫa〉 = 〈ǫb〉 =
〈ǫaǫb〉 = 0, so that the above equation still holds.
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• Electron spin decoherence. The electron spin in the
NV center is subjected to decoherence by the surround-
ing 13C nuclear spin bath. The coherence time of the
electron spin in the ground state isT e

2 ∼ 350µs under
the natural abundance of the12C isotope (98.8%), and
it is extended to 1.8 ms under the ultrapure12C abun-
dance (99.7%) at room temperature.1,22 By incorpo-
rating the electron spin relaxation (with the relaxation
time23 T e

1 = 5.9 ms) and decoherence in the Lindblad
form, it is straightforward to show that the quantity es-
timated by the quantum circuit is no longer Eq. (5) but
instead

〈Ẑd〉 = e−2τ/T e
2 cos(Aτ) + O(η2).

In summary, in the presence of errors, the quantity esti-
mated by the quantum circuit in Fig. 4 is given by

〈Ẑ〉 = Q(τ) cos(Aτ) + O(η2), (6)

whereQ(τ) = 1 − ε2 for the nuclear spin rotation error of
magnitudeε andQ(τ) = e−2τ/T e

2 for a finite electron spin co-
herence timeT e

2. In our estimation, we useB = 0.2 T so that
the correction for the hyperfine interactionO(η2) ∼ 10−6.

B. Estimation procedure

We useM(τ) to denote the quantum estimation circuit in
Fig. 4, whose total duration is 2τ. A single run of the circuit
M(τ) returns two outcomes:+1 for the electron spin in the
state|0〉 or −1 for the electron spin in the state|1〉, with cor-
responding probabilitiesp±1 = [1 ± 〈Ẑ〉]/2. An estimator of
the average value〈Ẑ〉 [Eq. (6)] is obtained by averaging over
the outcomes of repeated running of the circuit. For example,
averaging overN measurements producesZ, a single estima-
tor of 〈Ẑ〉. By the central limit theorem, for relatively largeN
(e.g.,N & 100),this estimator obeys the Gaussian distribution
N(〈Ẑ〉, ζ) centered at〈Ẑ〉with a standard deviationζ = 1/

√
N.

Alternatively, we can also say thatthe average value 〈Ẑ〉 obeys
the Gaussian distribution N(Z, ζ), which actually means that
the difference〈Ẑ〉−Z obeys the Gaussian distributionN(0, ζ).

The estimation begins with a prior knowledge of the hy-
perfine interaction strengthA. It is quantified by a Gaussian
distributionN(A0,∆0) centered atA0 with a relatively large
standard deviation∆0, which quantifies our ignorance about
A. This prior knowledge tells us, with a 95% confidence, that
A lies within the interval [A0 − 1.96∆0, A0 + 1.96∆0]. From
the prior knowledgeN(A0,∆0), we construct the quantum
circuit M(τ1) for the first estimation, which provides a new
knowledge aboutA, as quantified by a Gaussian distribution
N(Ā1, ∆̄1). Through the Bayesian inference, this new knowl-
edge is combined with the prior knowledge to produce an up-
dated knowledge aboutA, quantified by a Gaussian distribu-
tion N(A1,∆1) with a smaller standard deviation∆1 < ∆0.
Therefore, the first estimation step refines our knowledge
aboutA fromN(A0,∆0) toN(A1,∆1) (with ∆1 < ∆0), which
in turn serves as the prior knowledge of the next estimation

step. By iterating this procedure, the standard deviation of
the Gaussian distribution quantifying our ignorance aboutA
would decrease successively as∆0 > ∆1 > ∆2 > · · · . The
iteration is stopped at theK-th step when the desired standard
deviation∆desireis achieved:∆K ≤ ∆desire. Below, we describe
the above estimation procedures in more detail.

1. Gaining knowledge about A from measurements

In thek-th estimation step (k = 1, 2, · · · ), the prior knowl-
edge about the hyperfine interaction strengthA is quantified
by the Gaussian distributionN(Ak−1,∆k−1). Suppose thatτk

has been properly chosen (to be discussed shortly). By run-
ning the circuitM(τk) for a relatively large numberNk (& 100)
of times, we obtain an estimatorZk of 〈Ẑ〉k ≡ Q(τk) cos(Aτk)+
O(η2) with a standard deviationζk = 1/

√
Nk. This knowledge

tells us that〈Ẑ〉k obeys the Gaussian distributionN(Zk, ζk).
We need to convert this distribution of〈Ẑ〉k to a distribution
of A. For a generalτk, the relation between〈Ẑ〉k and A is
nonlinear and the conversion from〈Ẑ〉k to A results in a non-
Gaussian distribution ofA, with a characteristic width

ζk

|∂〈Ẑ〉k/∂A|
=

ζk

Q(τk)τk | sin(Aτk)|
.

Now we determineτk according to two requirements:

1. The distribution ofA should be Gaussian (i.e., the
relation between〈Ẑ〉k and A should be linear), so
that analytical results can be obtained. Based on our
prior knowledgeN(Ak−1,∆k−1) aboutA, the conditions
Ak−1τk = π/2+ 2π × integer and∆k−1τk ≪ 1 enable the
Taylor expansion〈Ẑ〉k = (Ak−1−A)Q(τk)τk + δk +O(η2)
with δk ≈ Q(τk)(∆k−1τk)3/6. Forδk,O(η2) ≪ ζk, |〈Ẑ〉k |,
the correction termsδk + O(η2) can be safely dropped,
so that the relation between〈Ẑ〉k andA becomes linear
and the distribution ofA becomes GaussianN(Āk, ∆̄k)
with

Āk = Ak−1 −
Zk

Q(τk)τk
, (7a)

∆̄k =
ζk

Q(τk)τk
=

1

Q(τk)τk
√

Nk
. (7b)

The distributionN(Āk, ∆̄k) of A tells us, with a 95%
confidence, thatA lies in the interval [̄Ak −1.96∆̄k, Āk +

1.96∆̄k].

2. For maximal precision of the estimation, the standard
deviation∆̄k should be minimized, i.e.,Q(τk)τk should
be maximized.

Eq. (7b) shows that the standard deviation∆̄k of the mea-
surement ofA is equal to the standard deviationζk = 1/

√
Nk

of the measurement of〈Ẑ〉k divided byQ(τk)τk:

• For Q(τk) = 1 (i.e., no errors), the standard deviation
∆̄k is reduced upon the increase ofτk, which can be
interpreted as a repetition of the circuit operations (as
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enclosed in the dashed box in Fig. 4) before the mea-
surement is made. This is equivalent to a multiround
protocol suggested by Giovannettiet al.7. Therefore,
the dependencē∆k ∝ 1/τk implies the QML.

• The standard deviation̄∆k is reduced upon the increase
of Nk. The dependencē∆k ∝ 1/

√
Nk implies the SQL.

In summary, for optimal performance, we should first
chooseζk (or equivalentlyNk) subjected to the constraint

O(η2) ≪ ζk ≪ 1 (8)

and then chooseτk to maximizeQ(τk)τk, subjected to the con-
straints

Ak−1τk =
π

2
+ 2mkπ, (9a)

(∆k−1τk)3

6
≪ ζk, (9b)

Q(τk)∆k−1τk ≫ O(η2), (9c)

wheremk ∈ Z andO(η2) ∼ 10−6 for B = 0.2 T. The con-
straintζk ≪ 1 ensures the validity of our Gaussian distribu-
tion assumption for〈Ẑ〉k, while other constraints ensure the
validity of the formula〈Ẑ〉k ≈ (Ak−1 − A)Q(τk)τk. The er-
ror of the linear expansion can be dropped ifδk ≪ ζk, which
gives Eq. (9b) withQ(τk) ≤ 1. Eq. (9c) denotes the condi-
tion to dropO(η2) in 〈Ẑ〉k. Note that the constraints [Eqs. (9)]
on τk have no solution under certain conditions, e.g., when
Q(τk) . O(η2)/(ζk)1/3. Therefore, for more flexible choice
of τk, the standard deviationζk of the measurement of〈Ẑ〉k
should not be too small.

2. Combining new knowledge with prior knowledge

In the previous subsection, we have spentNk runs of the cir-
cuit M(τk) to obtain the new knowledgeN(Āk, ∆̄k) aboutA. To
make use of the resources spent in obtaining the prior knowl-
edgeN(Ak−1,∆k−1), we use the Bayesian inference, which
combines our new knowledgeN(Āk, ∆̄k) with the prior knowl-
edgeN(Ak−1,∆k−1). It gives an updated Gaussian distribution
N(Ak,∆k) centered at

Ak =
Ak−1/∆

2
k−1 + Āk/∆̄

2
k

1/∆2
k−1 + 1/∆̄2

k

(10a)

(which is a weighted average ofAk−1 with weight 1/∆2
k−1 and

Āk with weight 1/∆̄2
k) with a standard deviation∆k determined

by

1

∆2
k

=
1

∆2
k−1

+
1

∆̄2
k

. (10b)

This updated knowledgeN(Ak,∆k) tells us, with a 95% con-
fidence, thatA lies in the refined interval [Ak − 1.96∆k, Ak +

1.96∆k]. The inequalities∆k < ∆k−1 and∆k < ∆̄k reveal that
the combination ofN(Ak−1,∆k−1) andN(Āk, ∆̄k) gives us a
more precise knowledge aboutA.

For very accurate measurement compared with the prior
knowledge, i.e.,̄∆k ≪ ∆k−1, Eqs. (10a) and (10b) reduce to
Ak ≈ Āk and∆k ≈ ∆̄k, suggesting that the updated knowledge
is dominated by the measurement. By contrast, for inaccurate
measurement̄∆k ≫ ∆k−1, the updated knowledgeAk ≈ Ak−1

and∆k ≈ ∆k−1 is dominated by the prior knowledge.

C. Ideal case: approaching quantum metrology limit

In this subsection, we demonstrates the QML scaling of
our estimation protocol in the ideal case, i.e., in the absence
of any errors (e.g., operation errors, relaxation, and decoher-
ence). For simplicity, we assume that in each estimation step,
we run the quantum circuit for the same number of timesN1 =

N2 = · · · ≡ N, corresponding toζ1 = ζ2 = · · · ≡ ζ ≡ 1/
√

N.
Up to theK-th estimation step, the total duration of the our

estimation process (identified as the total amount of resources
spent) is

RK = N
K∑

k=1

2τk ≡ Nτtot
K .

To see the scaling of the precision 1/∆2
K with respect toRK ,

we take the first estimation step as a reference. Further, we
take∆0 = ∞ to exclude the contribution from the prior knowl-
edgeN(A0,∆0), so that all our knowledge aboutA comes from
the resourcesRK spent in our protocol. Then, the QML limit
∆K,QML is defined by∆K,QML/∆1 ≡ 1/(RK/R1), while the SQL
limit ∆K,SQL is defined by∆K,SQL/∆1 ≡ 1/

√
RK/R1. Using

R1 = 2Nτ1 and∆1 = 1/(τ1
√

N), we obtain

1

∆2
K,QML

= N


K∑

k=1

τk


2

, (11)

1

∆2
K,SQL

= Nτ1
K∑

k=1

τk, (12)

1

∆2
K

= N
K∑

k=1

τ2k .

First, we compare∆K with the QML limit ∆K,QML and the
SQL limit ∆K,SQL and discuss the condition for approaching
the QML:

1. The inequality∆K > ∆K,QML can be readily verified.
This manifests the QML precision 1/∆2

K,QML as the up-
per precision bound. To achieve the QML,{τk} should
satisfyτK ≫ τK−1 ≫ · · · ≫ τ1, so that the total amount
of resources is dominated by the final estimation step
and hence∆K ≈ ∆K,QML ≈ 1/(τK

√
N). This condi-

tion is equivalent to a dramatic reduction of the stan-
dard deviation of the measurement for each successive
estimation step:̄∆K ≪ ∆̄K−1 ≪ · · · ≪ ∆̄1. This ensures
that in each estimation step (say, thek-th step), the stan-
dard deviation of the estimation,∆k ≈ ∆̄k ≈ 1/(τk

√
N),

is dominated by the standard deviation∆̄k of the mea-
surement instead of the standard deviation∆k−1 ≈ ∆̄k−1
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FIG. 5. Comparision of the standard deviation∆K of our protocol
with the QML limit ∆K,QML (solid line) and the SQL limit∆K,SQL

(dashed line). How to chooseτk is explained in the main text.

of the prior knowledge [cf. Eq. (10b)]. The condition
τK ≫ τK−1 ≫ · · · ≫ τ1 is also equivalent to

∆k−1τk ≫ ζ, (13)

since∆k−1τk ≈ ∆̄k−1τk = (τk/τk−1)ζ.

2. Forτ1 = τ2 = · · · = τK , the precision 1/∆2
K = NKτ21 co-

incides with the SQL precision 1/∆2
K,SQL since in this

case our protocol reduces to simple repetition of the
same quantum circuitM(τ1).

Then we give the best choice{τideal
k } satisfying the QML

condition Eq. (13) for the ideal case according to the descrip-
tion in Sec. IV B. We choose{τideal

k } by taking the largestmk

such that∆k−1τk ≈ c at every step, wherec is a constant satis-
fying c ≫ ζ andc3 ≪ 6ζ. Then{τideal

k } automatically satisfies
the QML condition Eq. (13) and the linear expansion condi-
tion Eq. (9b). From∆k−1τk ≈ c, we have∆k ≈ ∆̄k ≈ (ζ/c)k∆0,
i.e., the standard deviation∆k ≈ ∆̄k is dramatically reduced by
each successive estimation step. We also haveτideal

k ≈ (c/ζ)kτ0
(with τ0 defined through∆0 ≡ ζ/τ0), i.e., an exponential in-
crease ofτideal

k with k. Note that, forB = 0.2 T, we have
O(η2) ∼ 10−6. Thereforeζ can be as small as∼ 10−5.

Finally we provide a numerical simulation for the estima-
tion process. The parameters for the simulation areA =
3.06 MHz, B = 0.2 T, N = 1000, corresponding toζ ≈ 0.03.
We takec = 0.2, which satisfiesc ≫ ζ andc3 ≪ 6ζ. The
prior knowledge isA0 = 3.03 MHz with a standard devia-
tion ∆0 = 0.03 MHz, which has been reported by a previous
experiment.17 Each controlled nuclear spinπ rotation uses a
1-µs square pulse with the Rabi frequencyΩ = 500 kHz. The
electron spin rotations are regarded as instantaneous, as men-
tioned at the end of Sec. IV A. In Fig. 5, the proximity of∆K

(circles) to∆K,QML (solid line) confirms the QML scaling of
the estimation.

D. Realistic case: surpassing standard quantum limit

In this subsection, we take into account the nuclear spin
rotation error and electron spin decoherence and discuss the
optimal choice of{τk} and the resulting precision

1

∆2
K

= N
K∑

k=1

[Q(τk)τk]2

of the estimation, derived from Eq. (7b) and (10b):

• Nuclear spin rotation errorQ(τ) = 1 − ε2 ≡ Q. This
error is equivalent to an increase ofζ to ζ̃ ≡ ζ/Q. Then
QML condition Eq. (13) becomes∆k−1τk ≫ ζ̃. For a
generalQ that is not too small (i.e., 1≥ Q ≫ ζ), the
conclusion in the ideal case remains valid withζ → ζ̃,
i.e., {τk} is chosen asτk ≈ (c/ζ̃)k(τ0/Q), wherec is a
constant subjected toc ≫ ∆̃Z andc3 ≪ 6∆̃Z. In the
simulation, we consider a typical errorε = 0.1 (corre-
sponding to∼ 3% error in the rotation angle). Then we
haveQ ≈ 1, and this allows us to setc = 0.2, the same
value with the ideal case. As a result, we can choose
τk ≈ τideal

k and∆K is nearly the same as the ideal case.
Therefore, the QML scaling is preserved for the realistic
nuclear spin rotation error, as confirmed by the nearly
complete coincidence between∆K (stars) and∆K,QML

(solid line) in Fig. 5.

• Electron spin decohenceQ(τ) = e−2τ/T e
2. According to

Sec. IV B, we should chooseτk to maximizeQ(τk)τk,
subjected to the constraints in Eqs. (9). We use∆k−1τk ≈
c = 0.2 in the simulation. In the presence of the electron
spin decoherence,Q(τ) decreases asτ increases. Thus
the QML conditionc ≫ ζ/Q(τk) is no longer valid at
some point. This is why∆k starts to deviate from the
QML line at k = 3 in Fig. 5. Note that the estimation of
k = 3 still surpasses the SQL. The maximum ofQ(τ)τ
occurs atτ = T e

2/2, meaning that the standard deviation
∆̄k of the quantum circuitM(τk) is the smallest when
τk ≈ T e

2/2. Further increase ofτk makes the precision
of M(τk) worse. Onceτk reachesτk ≈ T e

2/2 at k =
kc, the estimation fork > kc is performed withτk =

τkc . Therefore, forK = kc + K̃, further estimation steps
beyondkc (i.e., k = kc + 1, · · · , kc + K̃) increases the
precision 1/∆2

K by the SQL trend:

1

∆2
kc+K̃

− 1

∆2
kc

≈ NK̃(T e
2/2)2.

For T e
2 = 350µs, we havekc = 4. Fig. 5 shows that∆K

surpasses the SQL forK < 4, while it decreases parallel
to the SQL forK ≥ 4.

V. CONCLUSIONS

We have proposed an efficient quantum measurement proto-
col to estimate the hyperfine interaction between the electron
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spin and the15N nuclear spin in the NV center. The essential
idea of our protocol is the combination of the DQC1 parame-
ter estimation11 with the spin-echo technique. The spin echo
eliminates the independent dynamics of the electron spin and
the nuclear spin in the DQC1 model, but keeps the dynamics
due to their interactions, whose strength is to be estimated.
This protocol does not require the preparation of the nuclear
spin state. We quantify the resourcesR as the total duration∑
τ of the estimation process. In the absence of any errors, the

precision 1/∆2 (with ∆ being the standard deviation) of the
estimation approaches the quantum metrology limit (QML)
1/∆2

QML = O(R2). This QML scaling is robust against the typ-
ical nuclear spin rotation error in realistic experimentalcon-
ditions. In the presence of electron spin decoherence, the pre-
cision 1/∆2 keeps its QML scaling whenτ ≪ T e

2/2. Onceτ
becomes close toT e

2 further estimation steps increase the pre-
cision 1/∆2 according to the scaling 1/∆2

SQL = O(R) of the
standard quantum limit (SQL). Due to the QML scaling in
the initial stage, the overall precision still surpasses the SQL.
We expect that this method can be applied to other solid state
systems such as quantum dots or cold atoms to measure the
interaction between two spins.
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Appendix A: Accounting for finite duration of controlled
nuclear spin rotation

In this section, we assume that each of the two controlled
nuclear spinπ rotation in the quantum protocol (Fig. 4) is
driven by a squareπ pulse with a durationτn ∼ 1 µs and
prove that inclusion of this finite duration amounts to a trivial

renormalizationτ→ τ + τn in Eq. (5).
In Fig. 4, the initial state ˆρinitial = |+〉 〈+| ⊗ ρ̂n is prepared

at t = −τ − τn. The first free evolutione−iĤτ occurs during
t ∈ [−τ − τn,−τn], followed by a controlled nuclear spinπ
rotation duringt ∈ [−τn, 0]. A fast electron spinπ rotation
is applied att = 0, another controlled nuclear spinπ rotation
during t ∈ [0, τn], and another free evolutione−iĤτ during t ∈
[τn, τ + τn].

First we calculate the evolution operator driven by a square
π pulse applied duringt ∈ [t1, t2], with a central frequency
ω = A−gNµN B−δ (where+δ is the energy correction to|1, ↑〉
by the off-diagonal hyperfine interaction) resonant with the
transition|1, ↑〉 → |1, ↓〉. During this pulse, the Hamiltonian
Ĥ(t) = Ĥ + V̂(t) of the electron-nuclear spin qubits acquires
an additional term

V̂(t) =
iΩR

2
(e−iωt |1, ↓〉 〈1, ↑| − eiωt |1, ↑〉 〈1, ↓|),

with a constant Rabi frequencyΩR = π/(t2 − t1). With the
aid of the interaction picture|ΨI(t)〉 ≡ eiĤt |Ψ(t)〉, the evolu-
tion operatorÛV (t2, t1) during t ∈ [t1, t2] can be calculated
straightforwardly asÛV (t2, t1) = e−iĤt2e−iĤI (t2−t1)eiĤt1, where
ĤI(t) ≡ eiĤtV̂(t)e−iĤt. Similar to the discussions in Sec. II B,
we haveĤI(t) = (ΩR/2) |1〉 〈1| ⊗ σ̂y+O(ΩRη), whereη ∼ 10−3

for the external magnetic fieldB = 0.2 T used in our esti-
mation. Therefore, the evolutione−iĤI (t2−t1) ≈ R̃n

y(π) coincides
with the instantaneous controlled rotation and hence

ÛV (t2, t1) = e−iĤt2R̃n
y(π)eiĤt1.

With the aid of this result, it can be readily checked that the
evolution operator for the composite evolution (as enclosed by
the dashed box) in Fig. 4 is equal tôUcom|τ→(τ+τn). Therefore,
inclusion of the finite durationτn of the controlled nuclear
spin rotation amounts to replacingτ with (τ + τn) in Eq. (5).
Note that the nuclear spin relaxation time and decoherence
time& 1 ms are much longer thanτn ∼ 1 µs and hence have
negligible influence on this result.2,3
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