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Abstract

Skein algebras and quantum groups

by

Vijay Bryan Higgins

Skein modules of 3-manifolds are situated at the intersection of low-dimensional topol-

ogy and representation theory. The skein module of a thickened surface has a natural

algebra structure induced by the superposition of skeins. In this thesis, we study con-

nections between quantum groups and these skein algebras by focusing on the SL3 skein

algebra of an oriented punctured surface Σ, which may have punctured boundary com-

ponents. Generalizing a construction of Lê, we associate an SL3 stated skein algebra to

any such Σ. These algebras admit natural algebra morphisms, called splitting maps, as-

sociated to the splitting of surfaces along ideal arcs. We give an explicit basis for the SL3

stated skein algebra, which is an extension of the Sikora-Westbury basis for the ordinary

SL3 skein algebra. Using this basis, we show that the splitting maps are injective and

describe their images. Applying the splitting maps to a triangulable surface, we obtain a

triangular decomposition in which we embed the skein algebra in a domain that has an

explicit presentation described in terms of the quantum group Oq(SL3). The ingredients

we collect along the way allow for a skein-theoretic method of recovering the fact that

Kuperberg’s webs describe a full subcategory of the representation category of Uq(sl3).
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Chapter 1

Introduction

1.1 Background

A skein is a low-dimensional topological object like a knot or a ribbon graph, which

can have decorations encoding some representation theoretic data. Skein theory origi-

nated as a diagrammatic way of computing knot polynomials by using a rule, known as

a skein relation, to relate the polynomial of one knot to the polynomial of other knots

which differ only locally. Conway helped to popularize skein theory when he showed how

to compute the Alexander polynomial of a knot by recursively writing a knot diagram as

a formal linear combination of diagrams of simpler knots [Con70]. Although the method

of skein relations was known to Alexander, the conventional ways to define and study

the Alexander polynomial had used the more sophisticated tools of algebraic topology.

Shortly after the discovery of the Jones polynomial, which arose from Jones’s work on

von Neumann algebras [Jon85], the Kauffman bracket provided a definition of the Jones

polynomial from two simple skein relations [Kau87]. The Jones polynomial gave rise to

the research area now known as quantum topology, in which skein theory plays a central

role.

1



Introduction Chapter 1

After it was observed that the Jones polynomial arises from skein relations, and that

these skein relations arise from the representation theory of a quantum group, Uq(sl2),

a research program was set in motion to study the connections between link invariants

and quantum groups. An early success in this program was the work of Reshetikhin and

Turaev [RT90] in which it was shown that any quantum group Uq(g), and any labeling

of strands by irreducible representations, gives rise to an invariant of framed tangles

and ribbon graphs. When this invariant is restricted to link diagrams and one uses

the simplest quantum group Uq(sl2) and its 2-dimensional irreducible representation, the

invariant recovers the Kauffman bracket and the Jones polynomial. Shortly after the

work of Reshetikhin and Turaev, Kuperberg set in motion a related research program

concerned with using categories defined purely in terms of skein relations to describe the

representation categories of quantum groups [Kup96].

Since skein theory had been successful in describing already known topological invari-

ants and algebraic objects, it is natural to try to construct new algebraic objects by using

skeins. Przytycki and Turaev independently introduced the notion of the skein module of

a 3-manifold, which is built from linear combinations of skeins in the 3-manifold, subject

to local skein relations [Prz91, Tur88].

In this thesis we are focused on the special case of the skein module of a thickened

surface. In the case of a thickened surface Σ×(−1, 1), there is a natural product of skeins

given by stacking skeins in the interval direction, giving the skein module the structure of

an algebra, called the skein algebra of the surface. A second advantage to using thickened

surfaces is that skeins can be represented as diagrams on the surface, and skein diagrams

are susceptible to tools such as confluence theory, the notion using skein relations to

“simplify” a diagram, for finding bases of the skein algebras.

Although the skein algebra of a surface has a natural algebra structure, this structure

is difficult to study explicitly since the skein algebra of a surface is not naturally endowed

2



Introduction Chapter 1

with a presentation by generators and relations. An important breakthrough in the study

of the Kauffman bracket skein algebras was the quantum trace map of Bonahon and

Wong [BW11], which provided a deep connection between skein theory and the geometry

of surfaces. Given a punctured surface with an ideal triangulation, the quantum trace

map embeds the Kauffman bracket skein algebra of the surface into a quantum torus,

which is a much simpler algebra defined by generators and relations expressed in terms

of the data of the triangulation. The definition of the quantum trace map is inspired by

geometric ideas and, consequently, one of the difficult steps in its construction is checking

that its definition respects the skein relations. In an effort to simplify this step, Lê defined

a finer version of the skein algebra, which he called the Kauffman bracket stated skein

algebra in [Lê18]. The stated skein algebras allow for skeins to have endpoints, labeled

by states, on the boundaries of the surfaces so that these algebras admit algebra maps,

called splitting maps, associated with splitting the surfaces along ideal arcs.

A followup work by Costantino-Lê [CL19] on Kauffman bracket stated skein alge-

bras suggest that, just as linear skein relations arise from quantum groups, the algebraic

structure of skein algebras of surfaces can also be studied via quantum groups. Con-

versely, the skein algebras can be used to give diagrammatic definitions of quantum

groups themselves, complementing Kuperberg’s diagrammatic descriptions of the repre-

sentation categories of quantum groups.

The quantum groups studied in [CL19] are Uq(sl2) and its restricted Hopf dual

Oq(SL2). The Kauffman bracket skein algebra can also be referred to as the SL2 skein

algebra. Replacing SL2 by another Lie group G yields analogous quantum groups Uq(g)

and Oq(G), whose presentations by generators and relations can be extracted from the

Dynkin diagram corresponding to G. Similarly, there is a notion of a G skein algebra

for other Lie groups. Due to a construction of Walker [Wal06] and of Johnson-Freyd

[JF19], these skein algebras can be abstractly constructed by imposing local skein re-

3



Introduction Chapter 1

lations corresponding to elements in the kernel of the Reshetikhin-Turaev functor and

have been studied from this perspective in [BZBJ18, Coo19, GJS19]. However, it is an

open question in general to find explicit diagrammatic descriptions of this kernel. This

question has been answered for the case of rank 2 Lie groups, or types A1, A2, B2/C2, and

G2 by Kuperberg in [Kup96] and in the case of SLn, or type An, by Cautis-Kamnitzer-

Morrison and Sikora in [CKM14, Sik05]. Very recently the question has been answered

in the case of Sp2n, or type Cn, by Bodish-Elias-Rose-Tatham in [BERT21]. Histori-

cally, the geometry and combinatorics of these explicit diagrammatic descriptions have

been a source of interesting constructions, such as Khovanov homology in the SL2 case

and foams more generally. Consequently, we are motivated to study skein algebras by

studying the combinatorics of explicit skein relations.

1.2 Main results

In this thesis we are interested in studying the SL3 skein algebra of a punctured

surface and the SL3 stated skein algebra of a punctured bordered surface. Although the

theory of SL3 skein algebras is expected to parallel the theory of SL2 skein algebras,

many of the techniques in the SL2 case rely on the geometry and combinatorics of curves

on surfaces. In the SL3 case, skeins are oriented trivalent ribbon graphs, called webs,

subject to skein relations which are more complicated than in the SL2 case. In pioneering

work of Jaeger and Kuperberg [Jae92, Kup94, Kup96], webs were first studied in the plane

and then their natural extension to thickened surfaces were investigated by Sikora and

Westbury [SW07]. Recently, SL3 webs on surfaces have been studied in further detail in

[FS20, Hig20, DS20a, DS20b, IY21, Kim21].

Our definition of the SL3 skein algebra is built from a version of Kuperberg’s webs,

and we allow our coefficients to come from any commutative ring R containing an invert-

4



Introduction Chapter 1

ible element q1/3. We introduce a definition of the SL3 stated skein algebra of a punctured

bordered surface Σ, denoted SSL3
q (Σ), by allowing webs to have endpoints on the bound-

ary of Σ labeled by states from the set {−, 0,+} and introducing skein relations along

the boundary. These extra skein relations make it so that we can define a splitting map

∆c, which is an algebra map associated to splitting the surface along an ideal arc c on Σ.

The splitting map has a simple diagrammatic definition given by a state-sum, analogous

to the splitting map in [Lê18].

The most powerful feature of our presentation of SSL3
q (Σ) by explicit skein relations

is that the skein relations are confluent, meaning that each relation can be interpreted

as a reduction rule allowing us to replace a single diagram by a linear combination of

simpler diagrams such that all possible reductions of a web to an irreducible form agree

up to isotopy of the web diagram on the surface. After this observation, we apply the

Diamond Lemma for graphs on surfaces as developed in [SW07] to extract a basis for

SSL3
q (Σ) consisting of isotopy classes of irreducible diagrams on Σ. In [SW07], Sikora and

Westbury describe a basis for the ordinary SL3 skein algebra consisting of irreducible

diagrams on the surface, and our notion of the complexity of a diagram is compatible

with theirs.

Theorem 1.1 For any surface Σ, the SL3 stated skein algebra SSL3
q (Σ) is a freeR-module

with a canonical basis which is an extension of the Sikora-Westbury canonical basis of

the SL3 ordinary skein algebra. Furthermore, any element of the stated skein algebra can

be written in the basis by repeatedly applying reduction rules.

We use our basis of SSL3
q (Σ) to examine the kernel and image of the splitting map

∆c and obtain the following.

Theorem 1.2 Suppose that Σ̄ = Σ/(a = b), where a and b are boundary arcs of Σ and

5
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their common image under the gluing map is an ideal arc c on Σ̄. Then we have the

following exact sequence of R-modules.

0→ SSL3
q (Σ̄)

∆c→ SSL3
q (Σ)

∆a−τ◦b∆→ SSL3
q (Σ)⊗ SSL3

q (B),

where ∆a and τ◦b∆ are certain coactions of the stated skein algebra of the bigon, SSL3
q (B),

on SSL3
q (Σ).

Our proof requires the basis of the stated skein algebra only in the case that the

boundary of Σ̄ is empty. In the case that this boundary is nonempty, the theorem can

be proven using diagrammatic operations associated to the Hopf algebra structure of

SSL3
q (B), which appear to generalize easily to other skein algebras.

The exact sequence in Thereom 1.2 corresponds to the splitting map ∆c associated to

a single ideal arc c. Given an ideal triangulation of a surface, we can apply splitting maps

along all of the edges of the triangulation, yielding an exact sequence which is called the

triangular decomposition of the skein algebra.

Corollary 1.3 Suppose Σ has an ideal triangulation consisting of a set of interior edges

E , which separates Σ into n triangular faces. Denote by B and T the ideal bigon and the

ideal triangle, respectively. Then we have the following exact sequence of R-modules

0→ SSL3
q (Σ)

∆→
n⊗
i=1

SSL3
q (Ti)

∆R−τ◦L∆→ (
n⊗
i=1

SSL3
q (Ti))⊗ (

⊗
e∈E

SSL3
q (B)).

This triangular decomposition tells us that the skein algebra of the surface embeds

into a tensor product of stated skein algebras of triangles. The exactness of the sequence

can be used to prove results on triangles and then extend them globally. We can study

the skein algebra by studying the stated skein algebras of the building block surfaces:

the monogon, the bigon, and the triangle.

6
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Theorem 1.4 The stated skein algebras of the monogon M, bigon B, and triangle T are

the following.

i) SSL3
q (M) ∼= R.

ii) SSL3
q (B) ∼= Oq(SL3) as Hopf algebras.

iii) SSL3
q (T) ∼= Oq(SL3)⊗

−
Oq(SL3), the braided tensor square of Oq(SL3).

Thus, we obtain a skein-theoretic definition of the quantum group Oq(SL3) along with

diagrammatic definitions of its structure maps: the counit, coproduct, and antipode. Our

bialgebra structure of SSL3
q (B) was recently used by Kim in [Kim21] to help construct

an SL3 quantum trace map, carrying out a strategy proposed by Douglas in [Dou21] to

use the well-defined counit of the bigon to check that the quantum trace map respects

the web relations.

By using our skein-theoretic definition of Oq(SL3) we obtain a skein-theoretic proof

of the following fact. Suppose that C is the full subcategory of Oq(SL3)-comodules

monoidally generated by the standard Oq(SL3)-comodule V and its dual. Denote by

WebSL3 the category of Kuperberg’s webs, which we view as unstated webs in the bigon

B modulo Kuperberg’s web relations.

Theorem 1.5 The Reshetikhin-Turaev functor WebSL3 → C is an equivalence of braided

monoidal categories. Furthermore, its inverse can be described by a diagrammatic algo-

rithm using the basis for the stated skein algebra.

Our proof holds over any commutative ring R with any choice of invertible element

q1/3 ∈ R. Whenever the pairing between Uq(sl3) and Oq(SL3) is nondegenerate, we

can replace Oq(SL3)-comodules in Theorem 1.5 with Uq(sl3)-modules and recover the

theorem first proven by Kuperberg in [Kup96] for the case R = C(q), and then proven

more generally by Elias in [Eli15].

7



Introduction Chapter 1

We also use the embedding afforded to us by the triangular decomposition to prove

the following fact about both ordinary and stated SL3 skein algebras of surfaces with at

least one puncture.

Theorem 1.6 Suppose that Σ is a surface with at least one puncture and that R has no

zero divisors. Then SSL3
q (Σ) has no zero divisors.

When q is a root of unity of odd order N, there is a well-known Hopf algebra embed-

ding O1(SL3) ↪→ Z(Oq(SL3)) defined on standard generators by Xij 7→ XN
ij . This map is

dual to Lusztig’s Frobenius map. Using the fact that SSL3
q (B) ∼= Oq(SL3) and applying

our triangular decomposition, we obtain the following.

Theorem 1.7 Suppose that R has no zero divisors and q1/3 is a root of unity of order

N coprime to 6. If Σ has at least one puncture, there exists an embedding

SSL3
1 (Σ) ↪→ Z(SSL3

q (Σ)),

commuting with the splitting maps. In the case Σ = B this map agrees with the dual of

Lusztig’s Frobenius map.

For the case of SL2, the corresponding embedding can be described topologically

in terms of threading links through Chebyshev polynomials. That map was first con-

structed by Bonahon and Wong in [BW16], where it was called the Chebyshev-Frobenius

homomorphism. We prove the existence of our embedding by using the triangular de-

composition, which was a technique developed by Korinman and Quesney in [KQ19] in

the SL2 case. The map has also recently been extended to the case of ordinary and

stated SL2 skein modules for general 3-manifolds in [Lê15, LP19, BL20].

8



Chapter 2

Preliminaries

The goal of this preliminary chapter is to introduce the reader to skein theory, quantum

groups, and SL2 skein algebras of surfaces. We collect definitions and some main theo-

rems about SL2 skein algebras of surfaces in Section 2.8. The first part of this chapter is

dedicated to motivating these definitions by investigating the relationship between basic

representation theory and invariants of tangle diagrams.

The only original result in this preliminary chapter might be in Section 2.7, where

we give a topological definition of the Hopf pairing between Oq(SL2) and Uq(sl2). This

definition is inspired by Bigelow’s diagrammatic construction of Uq(sl2) in [Big14] and

Korinman’s observation in [Kor19] that the construction fits into the framework of Lê’s

stated skein algebras [Lê18].

2.1 Quantum groups

As mentioned in the introduction, the authors of [RT90] show that algebras which

admit certain extra structures allow us to construct isotopy invariants of framed links,

tangles, graphs, and braids with ingredients coming from the representation categories

9
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of the algebras. These algebras are referred to as ribbon Hopf algebras, and they are

important examples of algebras known as quantum groups.

Suppose H is an R-algebra for some commutative unital ring R of coefficients. By

virtue of H being an algebra, it already admits a certain amount of structure. We can

take tensor products of H to obtain algebras H ⊗ H and H ⊗ H ⊗ H. The product

structure in H can be viewed as a multiplication map

m : H ⊗H → H.

The associativity of m tells us that

m ◦ (m⊗ idH) = m ◦ (idH ⊗m)

on H ⊗H ⊗H. The unit element 1 ∈ H can be viewed as the image of 1 ∈ R under the

unit map

η : R → H.

The property that 1h = h = h1 for all h ∈ H can be expressed by saying that

m ◦ (η ⊗ idH) = idH = m ◦ (idH ⊗ η)

when R⊗H and H ⊗R are both naturally identified with H.

The algebra H has an associated category of representations, H-mod, whose structure

is related to the structure of H. The objects of this category are representations.

Definition 2.1 A representation of H, or a (left) H-module, is a free R-module V of

finite rank equipped with an R-algebra map ρV : H → End(V). We say that an element

10
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h of H acts on an element v of V by

h.v = ρV (h)(v).

The morphisms in the representation category H-mod are maps between representa-

tions commuting with the action of H.

Definition 2.2 If V and W are H-modules, then an R-linear map f : V → W is a

homomorphism of H-modules, also called an intertwiner, if it satisfies

f(ρV (h)v) = ρW (h)f(v).

We now motivate the extra structure that we would like H to admit by describing

the flavor of the Reshetikhin-Turaev operator invariant of a framed link. We consider an

oriented link diagram in the plane, isotoped so that it is made up of elementary tangles

which can be stacked both horizontally or vertically.

In addition to vertical strands, the elementary tangles are called cups, caps, and

crossings. We label each component of the link by some H-module and imagine assigning

an element of R to the link by assigning H-module homomorphisms to the elementary

tangles which make up the link.

We identify the empty space of the link diagram with the label of the ground ring R.

In order to view R as an H-module, we need a way for H to act on R. This motivates

the requirement that H admits a counit ε : H → R so that h.1R = ε(h).

11
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In order to identify a sequence of endpoints of parallel strands labeled by H-modules

with a single H-module, we ask that the category of H-modules admits a tensor structure.

This motivates the requirement that H admits a comultiplication ∆ : H → H ⊗ H so

that H acts on a tensor product V ⊗W by h.(v ⊗ w) = ∆(h)(v ⊗ w).

Motivated both by the fact that parallel strands can have opposite orientations and

that we need to associate H-module homomorphisms to cups and caps, we ask that the

category of H-modules be closed under taking duals of modules. For this, we ask that

H admits an antipode S : H → H.

Definition 2.3 An algebra H with algebra structure maps η,m is a Hopf algebra if it

admits R-algebra maps ∆ : H → H ⊗H and ε : H → R satisfying

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆,

and if it admits an R-linear map S : H → H satisfying

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆.

For computations, there is a convenient notation for the map ∆, called Sweedler’s

sigma notation. We write

∆(h) =
∑
(h)

h′ ⊗ h′′.

Using this notation, the left side of the antipode axiom can be written

∑
(h)

S(h′)h′′ = ε(h)1H .

12



Preliminaries Chapter 2

The axioms for ∆ and ε are the axioms for a bialgebra structure, and are dual to the

axioms for an algebra structure. We actually have that a map S satisfying the above is

an R-algebra antihomomorphism, meaning that it satisfies S(h1h2) = S(h2)S(h1) for all

h1, h2 ∈ H. Furthermore, the existence of S guarantees that we can define an action of

H on the dual of a module V ∗ by

(h.f)(v) = f(S(h).v)

for v ∈ V and f ∈ V ∗.

We next briefly discuss how H-module homomorphisms are assigned to elementary

tangles. Vertical strands labeled by V are assigned idV and idV ∗ , depending on the orien-

tation of the strands. The crossings of strands labeled by V and by W are assigned maps

cV,W : V ⊗W → W ⊗ V satisfying some compatibility so that the braid relations hold.

For some Hopf algebras, the flip maps τV,W defined by v⊗w → w⊗v are homomorphisms

of H-modules, and others Hopf algebras only admit more complicated maps. However,

some Hopf algebras might not even admit such H-module maps cV,W .

In order to guarantee that such maps cV,W exist, we are interested in braided Hopf

algebras (sometimes called quasi-triangular Hopf algebras). The maps cV,W actually arise

from the action of a special element called a universal R-matrix, R ∈ H ⊗ H (or in a

topological completion of this tensor product), on V ⊗W composed with the flip map

τV,W . In the case that cV,W = τV,W , then R = 1⊗ 1.

If a link component is labeled by V, then one of the oriented cap diagrams should

be associated to a map V ∗ ⊗ V → R. It is an easy exercise to compute with Sweedler’s

notation using the Hopf algebra axioms to show that the standard evaluation map

f ⊗ v 7→ f(v)
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defines an H-module homomorphism. However, the axioms do not imply that the map

V ⊗ V ∗ → R given by evaluation is an H-module homomorphism, and so we will have

to require some extra structure.

Similarly, if {vi} and {f j} denote dual bases for V and V ∗, the standard coevaluation

map R → V ⊗ V ∗ defined by

1 7→
∑
i

vi ⊗ f i

is a H-module homomorphism for any Hopf algebra H while the coevaluation map R →

V ∗⊗V is not guaranteed to be. Thus, we have a candidate for one of our cup morphisms,

but require extra structure for the other.

A ribbon Hopf algebra is a braided Hopf algebra which has further structure which

guarantees that morphisms V ⊗ V ∗ → R and R → V ∗ ⊗ V exist, and that the braiding

and duality structures are compatible so as to give rise to an isotopy invariant. This

added ribbon structure arises from a ribbon element v ∈ H whose action on a module

W is diagrammatically depicted by a full twist of a ribbon.

If H is a ribbon Hopf algebra, then [RT90] gives the details for how to assign mor-

phisms to all of the elementary tangles. Assigning a link to the composition of such

morphisms produces an H-module map R → R assigned to the link, which can be

identified with an element of R. This element is invariant under framed isotopies of the

link.

Now that we are interested in ribbon Hopf algebras, we should take a moment to

observe that there do exist examples of algebras which admit ribbon Hopf algebra struc-
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tures. Among these algebras are the universal enveloping algebras U(g) of Lie algebras

g (and dual to these algebras are so-called co-ribbon Hopf algebras, like the rings of

coordinate functions O(G) on Lie groups G). These algebras are attractive to us because

of the rich combinatorics of their well-studied representation categories. However, their

ribbon Hopf algebra structures are unfortunately too symmetric, meaning that we do not

obtain interesting link invariants from these particular algebras.

The issue with U(g) is that the coproduct ∆(x) = 1⊗ x + x⊗ 1 is co-commutative,

which causes the braiding maps to just be the flip maps (and on the dual side, O(G) is a

commutative algebra, causing the same issue). Our desire to have algebras which behave

like U(g) and O(G) but which yield nontrivial link invariants motivates 1-parameter

quantizations of these algebras which we denote by Uq(g) and Oq(G), whose study are

central to the theory of quantum groups.

2.2 Examples from classical Lie theory: U(sl2) and

O(SL2)

In classical Lie theory, the easiest non trivial Lie group is the Lie group SL2, which

is the group of 2-by-2 matrices over C with determinant 1 and is a 3-dimensional mani-

fold. A study of its representation theory might take place in the following three steps.

In studying the representation theory of SL2, a first realization is that group theory is

harder than linear algebra, which motivates a focus on the representation theory of its

corresponding Lie algebra sl2, which is a 3-dimensional vector space over C equipped

with a non-associative Lie bracket. A second realization is that non-associative algebras

are annoying to work with, which motivates the introduction and study of the universal

enveloping algebra U(sl2), which is an associative algebra over C but is infinite dimen-
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sional. The final realization is that the representation theory of U(sl2) is pretty easy.

Then one works to prove that the representation theories of the three objects SL2, sl2,

and U(sl2) are in correspondence with one another.

There is a second story coming from the theory of algebraic groups. The alge-

braic group SL2 is the group of 2-by-2 matrices over C with determinant 1 and is a

3-dimensional variety. In this setting, the natural replacement for the group SL2 by an

algebra is the algebra of coordinate functions on SL2, which is denoted O(SL2). If we

let X(O(SL2)) denote the set of algebra homomorphisms O(SL2) → C, we recover the

algebraic group SL2
∼= X(O(SL2)).

Since both of the algebras U(sl2) and O(SL2) encode essential information about the

group SL2, it is natural to ask how these two algebras are related. Before addressing this

question, we recall the definitions of these algebras.

Here, we define the algebras U(sl2) and O(SL2) by generators and relations.

2.2.1 U(sl2)

Definition 2.4 The universal enveloping algebra U(sl2) is the quotient of the free algebra

generated by x, y, h subject to the following relations:

[h, x] = 2x

[h, y] = −2y

[x, y] = h,

where [−,−] denotes the commutator bracket.

The Hopf algebra structure maps are given as follows.
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∆(a) = a⊗ 1 + 1⊗ a

ε(a) = 0

S(a) = −a

for all generators a in {x, y, h}.

The standard 2-dimensional representation ρV : U(sl2)→ End(V ) is given by

ρV (h) =

1 0

0 −1

 ρV (x) =

0 1

0 0

 ρV (y) =

0 0

1 0

 .

2.2.2 O(SL2)

Definition 2.5 The algebra of coordinate functions O(SL2) is the quotient of the free

algebra generated by X11, X12, X21, X22 subject to the following relations

XijXkl = XklXij

for all 1 ≤ i, j, k, l ≤ 2, and the relation

X11X22 −X12X21 = 1.

In other words, O(SL2) is the commutative algebra of 2-by-2 matrix coordinates subject

to the relation that the determinant is equal to 1.

The Hopf algebra structure maps are given as follows.
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∆(Xij) =
2∑
r=1

Xir ⊗Xrj

ε(Xij) = δij

S(

X11 X12

X21 X22

) =

 X22 −X12

−X21 X11

 .

The matrix notation for the definition of the antipode S represents four separate

equations giving the values of S(Xij). It is easy to remember the definitions of ε, ∆, and

S by comparing ε with the 2-by-2 identity matrix, ∆ with the matrix product formula,

and S with the matrix inverse formula for SL2.

O(SL2) has a standard 2-dimensional comodule, or corepresentation, with basis

{v1, v2}. The coaction is a linear map ∆V : V → V ⊗O(SL2) defined by

vi 7→ v1 ⊗X1i + v2 ⊗X2i.

It is easy to check that this V satisfies the following general definition of a comodule.

Definition 2.6 If H has a coalgebra strcuture ∆, ε then a (right) comodule of H is a free

R-module of finite rank W equipped with an R-linear map ∆W : W → W ⊗H satisfying

the following:

(idW ⊗ ε) ◦∆W = idW

(idW ⊗∆) ◦∆W = (∆W ⊗ idH) ◦∆W .

We now give an answer to the question about the relationship between U(sl2) and

O(SL2). There is a Hopf pairing between U(sl2) and O(SL2) in the form of a bilinear
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map

〈−,−〉 : O(SL2)⊗ U(sl2)→ C

defined on generators by

〈Xij, x〉 = (ρV (x))ij,

the i, j entry of the image of x under the standard representation. The extension of the

definition from pairs of generators to pairs of arbitrary elements can be computed using

the following defining properties of a Hopf pairing.

〈XY, x〉 =
∑
(x)

〈X, x′〉〈Y, x′′〉

〈X, xy〉 =
∑
(X)

〈X ′, x〉〈X ′′, y〉

〈S(X), x〉 = 〈X,S(x)〉

〈1, x〉 = ε(x)

〈X, 1〉 = ε(X).

The Hopf pairing relates the left action of U(sl2) on the standard representation to

the right coaction of O(SL2) by the following

x.v = (id⊗ 〈−, x〉)∆V (v).

An analogous formula defines a left action of U(sl2) on any right comodule of O(SL2).

The Hopf pairing is nondegenerate, meaning that for any nonzero X in O(SL2) and

for any nonzero x in U(sl2), both of the maps 〈X,−〉 and 〈−, x〉 are not identically zero.
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For any U(sl2)-modules V and W, the tensor flip map τ : V ⊗W → W ⊗ V defined

by τ(v⊗w) = w⊗ v is a map which commutes with the action of U(sl2). The analogous

fact is true if V and W are O(SL2)-comodules. Consequently, there is a natural action

of the symmetric group Sn on a tensor power V ⊗n of modules or comodules V.

2.3 The quantum groups Uq(sl2) and Oq(SL2)

The Hopf algebras U(sl2) and O(SL2) admit q-deformations Uq(sl2) and Oq(SL2).

These quantized Hopf algebras have essentially the same representation theory as their

classical counterparts, but with the symmetric group action replaced by a nontrivial braid

group action. We give their presentations here, and the rest of the preliminary chapter

is concerned with obtaining skein theoretic definitions of these quantum groups.

2.3.1 Uq(sl2)

Definition 2.7 The quantized universal enveloping algebra Uq(sl2) is the quotient of the

free algebra generated by E,F,K,K−1 subject to the following relations:

KE = q2EK KK−1 =1 = K−1K

KF = q−2FK EF − FE =
K −K−1

q − q−1
.

The Hopf algebra structure maps are defined on generators as follows:
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∆(K) = K ⊗K ε(K) = 1 S(K) = K−1

∆(K−1) = K−1 ⊗K−1 ε(K−1) = 1 S(K−1) = K

∆(E) = E ⊗ 1 +K ⊗ E ε(E) = 0 S(E) = −K−1E

∆(F ) = F ⊗K−1 + 1⊗ F ε(F ) = 0 S(F ) = −FK.

There is a standard 2-dimensional representation V with ρV : Uq(sl2) → End(V )

given by

ρV (K) =

q 0

0 q−1

 ρV (E) =

0 1

0 0

 ρV (F ) =

0 0

1 0

 .

We have chosen the definition of Uq(sl2) as presented in [BG02], but there are several

other conventions common on the literature, usually only involving different conventions

for the coproduct and antipode. Our choice of convention for Uq(sl2) also fixes a conven-

tion for the definition of Oq(SL2) as follows.

2.3.2 Oq(SL2)

Definition 2.8 The quantized coordinate ring of regular functions on SL2, denoted Oq(SL2),

is the quotient of the free algebra generated by X11, X12, X21, X22 subject to the following

relations:
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X11X12 = qX12X11 X12X21 = X21X12

X21X22 = qX22X21 X11X22 − qX12X21 = 1

X11X21 = qX21X11 X22X11 − q−1X21X12 = 1

X12X22 = qX22X12

The Hopf algebra structure maps are given as follows:

∆(Xij) =
2∑
r=1

Xir ⊗Xrj

ε(Xij) = δij

S(

X11 X12

X21 X22

) =

 X22 −q−1X12

−qX21 X11

 .

The element X11X22 − qX12X21 = X22X11 − q−1X21X12 is called the quantum deter-

minant and we will sometimes denote it by detq .

As in the classical case, Oq(SL2) has a standard 2-dimensional comodule, or corep-

resentation, with basis {v1, v2}. The coaction is a linear map ∆V : V → V ⊗ Oq(SL2)

defined by

vi 7→ v1 ⊗X1i + v2 ⊗X2i.

We have a Hopf pairing between Uq(sl2) and Oq(SL2)

〈−,−〉 : Oq(SL2)⊗ Uq(sl2)→ C
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defined on generators by

〈Xij, x〉 = (ρV (x))ij,

the i, j entry of the image of x under the standard representation.

For the standard Uq(sl2)-module and Oq(SL2)-comodule V, there is a map

R : V ⊗ V → V ⊗ V

commuting with the action and coaction, defined by

v1 ⊗ v1 7→ q1/2v1 ⊗ v1

v1 ⊗ v2 7→ q−1/2(q − q−1)v1 ⊗ v2 + q−1/2v2 ⊗ v1

v2 ⊗ v1 7→ q−1/2v1 ⊗ v2

v2 ⊗ v2 7→ q1/2v2 ⊗ v2.

The map R is called an R-matrix and encodes essential data of the quantum groups.

For example, the first five defining relations ofOq(SL2) can be obtained from the following

equations, involving matrix entries of R:

∑
1≤k,l≤2

Rkl
ijXkmXln =

∑
1≤k,l≤2

Rmn
kl XikXjl,

which hold for all 1 ≤ i, j,m, n ≤ 2.

It is easy to check that R satisfies the braid equation, or Yang Baxter equation on

V ⊗ V ⊗ V :
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(R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R).

Consequently, there is an action of the n-strand braid group, Bn, on the tensor power

V ⊗n of the standard Uq(sl2)-module and standard Oq(SL2)-comodule.

The Hopf pairing between Uq(sl2) and Oq(SL2) can also be defined using matrix

entries of R and R−1, and we illustrate this with a diagrammatic construction of the

pairing later in this chapter, in Section 2.7.

2.4 Skein theory for U(sl2) intertwiners

Rumer-Teller-Weyl may have been the first in the literature [WRT32] to use planar

diagrams to describe the representation category of U(sl2). These diagrams were again

used by Temperley and Lieb in [TL71] and came into prominence after the discovery of

the Jones polynomial and Kauffman’s skein-theoretic definition of it.

Given a diagram of a framed link, we would like to draw the link as a composition

of tangles. By assigning each endpoint of each tangle the standard representation V

of U(sl2) we can hope to assign each tangle an interwiner between tensor powers of V.

A successful assignment will yield a functor from the category of ribbon tangles to the

representation category of U(sl2). When the functor is restricted to a framed link, it will

assign an intertwiner from the trivial representation to the trivial representation, which

can be identified with a number. This number will be a link invariant.

The standard representation V of U(sl2) is a self dual representation, and so the

diagrammatics in this section are simplified by allowing us to use unoriented framed

tangles.

In this section we will see that the representation category of U(sl2) has the necessary
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structure to yield such a link invariant, but this invariant will be quite weak in its ability

to distinguish links. However, the desire for link invariants of this same flavor, but which

are nontrivial, will motivate the appearance of diagrammatic definitions of the quantum

groups Uq(sl2) and Oq(SL2) later on in this prelimary chapter.

We will read our link diagrams from right to left and make use of some 1-dimensional

Morse theory in the plane. We can isotope any diagram in the plane so that it is a

composition of cups, caps, crossings, and horizontal strands. We will call an elementary

diagram a vertical strip that contains only horizontal strands and possibly one of: a

single cup, a single cap, or a single crossing. We will use an experimental approach to

decide what intertwiner to assign to each elementary diagram. We will assume such

an assignment exists and then use its desired properties to find a candidate for the

assignment.

A horizontal strand is clearly an identity elementary tangle, so we must assign the

identity intertwiner V → V, and by consideration of the monoidal structure, we must

assign the identity map V ⊗k → V ⊗k to k parallel horizontal strands. To a cap we must

assign an intertwiner

cap : V ⊗ V → C.

A weight basis of a representation is a basis consisting of eigenvectors for the action

of the element h ∈ U(sl2). An eigenvalue for h is referred to as a weight. We will define

our cap map on a weight basis of V ⊗ V induced by our weight basis of V. We rename

the basis {v1, v2} of V to {v+, v−}, for the purpose of incorporating the indices into our

diagrams without confusing them with other notation. This notation is also convenient

since we can think of + and − as representing the fact that our weight basis satisfies

h.v+ = v+ and h.v− = −v−.

In order for cap : V ⊗ V → C to commute with the action of U(sl2) it suffices to

25



Preliminaries Chapter 2

require it to commute with the action of the generators h, e, and f.

Recall that h acts on V ⊗V by h⊗1+1⊗h. Thus, {v+⊗v+, v+⊗v−, v−⊗v+, v−⊗v−}

is a weight basis of V ⊗ V, with corresponding weights 2, 0, 0, and -2. Also recall that h

acts on C trivially by h.1 = ε(h)1 = 0.

Since an intertwiner must send a weight vector to a weight vector of the same weight

or to the zero vector, we can deduce that cap(v+ ⊗ v+) and cap(v− ⊗ v−) must both be

zero.

Next, we consider the action of the generator e. Recall that e acts on v− ⊗ v− by

e.(v− ⊗ v−) = e.v− ⊗ v− + v− ⊗ e.v− = v+ ⊗ v− + v− ⊗ v+. So from the requirement that

cap must commute with the action of e, we see that

0 = e.cap(v− ⊗ v−)

= cap(e.(v− ⊗ v−))

= cap(v+ ⊗ v− + v− ⊗ v+).

Thus, we must have that cap(v+⊗v−) = −cap(v−⊗v+). We then set cap(v+⊗v−) = a,

for an unknown complex number a. The reader can verify that the assignment

v+ ⊗ v+ 7→ 0 v− ⊗ v+ 7→ −a

v− ⊗ v− 7→ 0 v+ ⊗ v− 7→ a

defines an U(sl2)-intertwiner cap : V ⊗ V → C for any choice of a ∈ C. Thus, there is
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a 1-dimensional space of such intertwiners. Further skein-theoretic considerations will

motivate a particular choice of a later on.

The matrix entries of the cap map can be represented diagrammatically by using

stated diagrams, which are diagrams that have endpoints on a boundary interval labeled

by states that represent weight vectors. At first, we will consider our boundary interval

as just a vertical line on the right side of our diagram. In later sections we will consider

multiple boundary intervals and make use of orientations on these intervals.

Whereas a skein relation involving unstated diagrams encodes a relationship between

the intertwiners the diagrams represent, a skein relation involving stated diagrams en-

codes a relationship between the matrix entries of the intertwiners. We represent the

matrix entries of our cap map diagrammatically by the following

+

+
= 0

+

−
= −a

−

−
= 0

−

+
= a

Note that the endpoints along the boundary are read from top to bottom. This con-

vention is chosen to agree with an algebra structure introduced in the following sections.

Using similar considerations, we can compute that our cup map

cup : C→ V ⊗ V

must be of the form

1 7→ bv+ ⊗ v− − bv− ⊗ v+.
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We represent the definition of our cup map diagrammatically by

= b

−

+
− b

+

−
.

By planar isotopy considerations, and using our diagrammatic definitions of the cup

and cap maps, we can compute that

+ =

+

= b

+
−
+
− b

+
+
−

= −ba + .

Thus, we are forced to set b = −a−1, and in particular a must be chosen so that it is

invertible.

We can now compute the value of the unknot

= −a−1

−

+
+ a−1

+

−

= −a−1a+ a−1(−a)

= −2.

We note that, in our setting, we have observed that the value of the unknot must be
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−2, regardless of the choice of the value of a.

Now that we know the definition of cups and caps, we wish to find the definition of

a crossing. We are looking for an intertwiner which is an endomorphism of V ⊗2 which

satisfies the braid relations. In the literature, such a map is called an R-matrix and we

will denote our map

R : V ⊗ V → V ⊗ V.

Diagrammatically, we will draw R as a crossing . From the representation theory

of U(sl2), we know that the dimension of the space of intertwiners HomU(sl2)(V ⊗V, V ⊗V )

is equal to 2. One way to see this is to recall that V ⊗V decomposes as a direct sum of two

irreducible representations: one with basis {v+⊗v−−v−⊗v+} ( called the exterior power∧2(V )), and one with basis {v+⊗ v+, v+⊗ v−+ v−⊗ v+, v−⊗ v−}, (called the symmetric

power Sym2(V )). After this observation, we can apply Schur’s lemma. Furthermore, we

can compute that the intertwiners that we assign to the two diagrams and

are linearly independent. These intertwiners thus span this space and so we expect to be

able to write our diagram for R as some linear combination of these diagrams:

= A +B .

(Even if we didn’t know these representation theoretic facts, we could still attempt

to write R as such a linear combination.)

Since the inverse of our crossing is a rotation of R, we have also the relation

= B + A .
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Now since R must satisfy the second Reidemeister move, we can compute that

= BA + (A2 +B2) + AB

= BA + (A2 +B2 − 2AB)

and then deduce that AB = 1 and A2 + B2 − 2AB = 0. Substituting B = A−1 into the

second equation yields A2 +A−2−2 = 0 which has only A = ±1 as solutions. We observe

that setting A = 1 yields the definition of R : V ⊗ V → V ⊗ V by

R(v ⊗ w) = w ⊗ v,

which is the same as the standard tensor flip map τ : V ⊗ V → V ⊗ V. It is easy to see

algebraically that this definition of R satisfies Reidemeister III:

(R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R).

The equation above is called the Yang-Baxter equation.

It is also a diagrammatic observation, due to Kauffman, that Reidemeister II implies

Reidemeister III when the skein relations are of the particular form that we have been

working with. Diagrammatically, Reidemeister III tells us that we can pass a strand over

or under a crossing while Reidemeister II tells us that we can pass portions of strands

over or under each other. Since our crossing skein relation locally rewrites a crossing as

a linear combination of diagrams without crossings, Reidemeister II implies that we can

pass a strand over or under this linear combination.

We note that both possible choices of A yield the relation R = R−1, which will cause

our U(sl2) link invariant to fail to distinguish overcrossings from undercrossings, making
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it quite weak. This failure will be remedied in the next sections. Since our classical skein

theory does not distinguish between an overcrossing and an undercrossing, we can draw

our crossing as an intersection of strands. We record our skein relations here.

= +

= −2.

A consequence of these relations are the relations

= − = ,

so ribbon Reidemeister I

=

holds.

We have thus found skein relations that give us invariants of framed links and also de-

scribe relations among intertwiners when the diagrams are viewed as their images under a

functor from the category of unoriented ribbons to the category of U(sl2) representations.

We stress that we did not carefully check in this section that the functor is actually

well-defined. We merely supposed such a functor exists and have found what it should

look like. That the functor is well-defined can be seen from the fact that the counit for

the algebra SSL2(B) defined later in this section is well-defined. The reader can consult
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[RT90] and [CL19] for more details and discussion.

The functor is actually an isomorphism from the category of framed unoriented tangles

modulo the skein relations to the full subcategory of U(sl2) having as objects tensor

powers of V. The reader can consult [Kup96] for a proof of this fact. The proof there

uses Schur-Weyl duality to prove the surjectivity of the functor and a dimension counting

argument to prove the injectivity. We will provide a new proof of a similar fact for the

case of SL3 in this thesis.

2.5 Skein theoretic definition of O(SL2)

In the previous section, we obtained skein-theoretic ways to represent U(sl2) inter-

twiners. In this section, we aim to obtain skein-theoretic ways to represent elements of

O(SL2). We first give some motivation and explain why we expect the skein theory from

the previous section should serve us well in this section.

Elements of O(SL2) represent elements of the dual space U(sl2)∗ by way of the Hopf

pairing. Suppose that x is an element of U(sl2) and Xi1j1 · · ·Xikjk is a monomial in

generators of O(SL2). Then 〈Xi1j1 · · ·Xikjk , x〉 ∈ C can be computed from the action of

x on V ⊗k by taking the coefficient of vi1 ⊗ · · · ⊗ vik when x.(vj1 ⊗ · · · ⊗ vjk) is written in

the standard tensor basis.

Similarly, given an intertwiner f : V ⊗k → V ⊗l, a basis element v = vi1 ⊗ · · · ⊗ vik

of the domain and a basis element w = vj1 ⊗ · · · ⊗ vjl of the codomain, the triple wfv

represents an element of U(sl2)∗ by defining wfv(x) to be the coefficient of w in f(x.v).

In the special case that f = id⊗k : V ⊗k → V ⊗k, then wfv and Xi1j1 · · ·Xikjk represent the

same elements of U(sl2)∗. Thus, we expect to be able to represent O(SL2) from the skein

theory of U(sl2) intertwiners and we expect that the skein relations among intertwiners

yield relations in O(SL2). The reader might see section I.7 of [BG02] for a discussion of
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algebraically constructing O(SL2) from U(sl2) intertwiners.

In this section we will use diagrams that incorporate two boundary arcs instead

of one. The rightmost boundary arc will have states representing basis vectors of the

domain while the left boundary arc represents the codomain. As we have just discussed,

we expect to be able to represent the monomial Xi1j1 · · ·Xikjk by a diagram consisting of

k parallel horizontal strands with k endpoints on the right boundary arc, labeled by states

associated to the indices j1, . . . , jk, and k endpoints on the left boundary arc, labeled by

states associated to the indices i1, . . . , ik. It will be advantageous for us to represent this

diagram by drawing it in a bigon B which is a disc with two points removed from its

boundary, and which carries a distinguished right boundary arc and left boundary arc.

i1i2

ik

j1j2

jk

←→
i1i2

ik

j1j2

jk

As a reminder, we identify the indices 1 and 2 of Xij with the states + and −. For

example, the monomial X11X12 is represented diagrammatically by

+
+

+
−
.

We will take the module spanned by planar isotopy classes of stated diagrams in the

bigon modulo the classical SL2 skein relations along with relations along the boundary

called stated skein relations, which at the moment still depend on the parameter a that

we will soon fix. We give this module a natural product structure given by stacking

diagrams vertically in the bigon. So this algebra is an associative unital C-algebra with
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unit the empty diagram. We will denote this algebra by SSL2(B). Our aim is to show

that this algebra is isomorphic to O(SL2) as a Hopf algebra.

We begin by finding skein theoretic definitions of the Hopf algebra structure maps so

that they line up with the algebraically defined ones associated with O(SL2). We begin

with the coproduct.

The coproduct ∆ : O(SL2)→ O(SL2)⊗O(SL2) defined on generators by ∆(Xij) =∑
kXik ⊗ Xkj motivates us to find a skein theoretic map ∆ : SSL2(B) → SSL2(B) ⊗

SSL2(B) which restricts to the assignment

i j 7→
∑

k∈{−,+}
i k k j .

2.5.1 The coproduct

We define our skein theoretic definition of the coproduct on a spanning set consisting

of isotopy classes of stated diagrams. Given a stated diagram, we pick an embedded

arc from the bottom puncture to the top puncture so that it intersects the strands in

the diagram transversely and does not intersect a crossing. We split the bigon into two

bigons as above, with the diagram being split as well. The ideal arc becomes two new

boundary arcs and we sum over states, so that states on both new endpoints of the same

strand match.

In order for this diagrammatic map to be well defined, we must be sure that it respects

isotopies of the diagram, isotopies of the ideal arc, and the skein relations. It suffices to

check that a cup and cap can slide past the ideal arc
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=

and also its mirror reflection.

So we need the following local relations to be satisfied, and also their mirror reflections:

(
+
+

+
+

)
+

(
+
−

+
−

)
+

(
−
+
−
+

)
+

(
−
−
−
−

)
= .

Using the cap relations, this simplifies to

−a +
−

+ a −
+

= .

By comparing to our previously deduced cup relation, we see that we must have

a = a−1 and so a = ±1 are the only two solutions. The mirror reflection gives the same

solution. We will set a = 1. The other choice of a would be equivalent to swapping the

states − and +. Now that we have fixed a, we record the definition of SSL2(B).

Definition 2.9 The classical stated skein algebra of the bigon, SSL2(B), is the module

spanned by planar isotopy classes of stated diagrams in B modulo the following skein

relations:

Interior relations:

= +

= −2
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Boundary relations:

+

+
= 0

+

−
= −1

−

−
= 0

−

+
= 1 .

The product structure is given by stacking diagrams vertically.

Now that we have checked that ∆ is well-defined, we observe that it is an algebra map.

It sends the empty diagram of SSL2(B) to the empty diagram of SSL2(B) ⊗ SSL2(B)

and it is easy to see that it commutes with the product structure. The coassociativity of

∆ is also clear from the diagrammatic definition.

2.5.2 The counit

We next will consider the stated skein algebra of the monogon, SSL2(M), and show

that it is 1-dimensional. The motivation for looking at the monogon is that the counit

ε : SSL2(B) → SSL2(M) will be realized as the composition of a state inversion map

inver and filling in the top puncture.

The monogon is the closed disk with one puncture removed from its boundary circle.

It is important that our monogon has a puncture on its boundary. If we considered a

disk with no punctures on its boundary the relations will be inconsistent as we could

slide an endpoint all the way around the boundary.

Definition 2.10 The stated skein algebra of the monogon SSL2(M) is the module spanned

by planar isotopy classes of stated diagrams in M subject to the same local skein relations

we used for SSL2(B).
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The product is given by stacking along the boundary as follows.

m( A ⊗ B ) = B

A

,

where the strands drawn here can represent any number of strands.

To show that the stated skein algebra of the monogon is 1-dimensional we give an

evaluation algorithm, like the one used by Khovanov and Frenkel in [FK97].

Given a linear combinations of diagrams in the monogon, our algorithm is as follows.

We use the crossing relation to write this linear combination as a linear combination of

diagrams without crossings. Next, we evaluate each diagram according to the following

rules. If the diagram contains an arc with the same state on each endpoint, the diagram

evaluates to zero. Otherwise, the diagram evaluates to (−2)#closed curves(−1)#negative arcs

where a negative arc is an arc of the form

+ −
= −1.

We can check that this algorithm respects the defining relations and thus defines a

well-defined linear map from the skein algebra of the monogon to C, which is nonzero

since it sends the empty diagram to 1. In the stated skein algebra of the monogon, any

diagram is equivalent to a scalar times the empty diagram, and this scalar is unique.

Thus, each diagram may be identified with a scalar and we have SSL2(M) ∼= C.

To define the counit, we need a map from the bigon to the monogon. The most

natural starting point is to fill in one of the punctures. We decide to fill in the top

puncture. This would give us a well-defined algebra map from SSL2(B) to SSL2(M), but
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we also need the map to satisfy the counit axiom. For example, we will want the counit

to satisfy

ε( i j ) = δij.

After filling in the top puncture and comparing to our boundary skein relations, we

are motivated to flip the states along one of the edges, say the right edge er and also

multiply by a correction factor.

So we introduce a linear map inver : SSL2(B) → SSL2(B) defined on a diagram

by multiplying the diagram by (−1) raised to the number of negative states on er and

changing the signs of all states on er to their opposites. We can check that inver respects

the skein relations and so can be extended linearly to a well defined map.

We define the counit ε : SSL2(B) → SSL2(M) on diagrams as the composition of

inver followed by filling in the top puncture. The counit ε is an algebra map since it

respects the product of diagrams.

To see that the counit satisfies the properties (ε⊗id)∆ = id = (id⊗ε)∆, we can check

this property on diagrams by using the isotopy invariance of the splitting map ∆ as well

as the fact that we know that ε(αij) = δij. For example, to check that (ε⊗ id)∆(D) = D

for a stated diagram D, we choose to split the bigon along an ideal arc close to the

left boundary arc of the bigon. In the following computation, we denote sequences of

states by vectors like ~s and ~t and any strand drawn can represent any number of parallel

strands.
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D~s ~t
∆7→
∑
~u

~s ~u ⊗ D~u ~t

ε⊗id7→ D~s ~t .

The other counit identity can be checked by choosing to split the bigon along an ideal

arc close to the right boundary arc of the bigon.

When diagrams are viewed as intertwiners, then we can view the coproduct as the

matrix product formula and we can view the counit as extracting the matrix entry of the

intertwiner. Thus, we are able to show that the U(sl2) tangle invariant and Reshetikhin-

Turaev functor are well defined.

2.5.3 A presentation for SSL2(B)

The bialgebra structure for SSL2(B) allows us to easily extract some generators and

relations, which will allow us to see that it has the same presentation as O(SL2). We first

see that the set of stated horizontal strands {αij}i,j∈{+,−} is a generating set by splitting

any stated diagram D near its right boundary arc using ∆ and then applying (ε⊗ id) to

the resulting sum.

αij = i j

We will observe that these generators commute with each other. First, we observe

that the following relations hold along the boundary
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s

t
= t

s

These hold essentially by construction, since we have chosen the crossing to represent

the tensor flip map τ : V ⊗ V → V ⊗ V, but it is also easy to use the skein relations to

see that they hold.

We then observe, using Reidemester II the following computation, showing that the

generators αab and αcd commute with each other for any a, b, c, d in {+,−}.

a
c

b
d

= c
a

d
b

= c
a

d
b

Next, we use our cap and cup relations to observe that

1 = +
−

= +
−

+
−
− −

+
+
−
,

and so α++α−− − α+−α−+ = 1.

We thus have a well-defined surjective algebra map T : O(SL2) → SSL2(B) defined

on generators by T (X11) = α++, T (X12) = α+−, T (X21) = α+−, and T (X22) = α−−.

One way to see that T is injective is to see that it takes a basis of O(SL2) into a

basis for SSL2(B), as in [Lê18, CL19]. Although bases for stated skein algebras will play

important roles in this thesis, here we construct an inverse of T without appealing to

bases.
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We will construct a candidate for T−1 and denote it as T ′ for now. We will define T ′

on diagrams and check that T ′ respects the skein relations. In the last section we defined

an evaluation algorithm for stated diagrams in the monogon, which assigned an element

of C to each diagram. Here, we will use an algorithm to assign an element of O(SL2) to

each stated diagram in the bigon.

Let D be a stated diagram in the bigon. We give an algorithm to write D as a linear

combination of monomials in the elements αij as follows. We use ∆ to split D close to

its right boundary er and then apply (ε⊗ id)∆(D). Once we have written D as a linear

combination of monomials in the αij we obtain T ′(D) by defining T ′(αij) = Xij.

Next we check that T ′ respects the skein relations. If a skein relation is applied in the

interior of the bigon or along the left boundary el, then its application commutes with

the application of the splitting map ∆ along the right boundary arc of the bigon. Since

the counit is well-defined with respect to all skein relations, we see that T ′ respects these

relations. If a skein relation is applied along the right boundary er, we are required to

check that the algorithm produces equivalent elements of O(SL2).

It suffices to check this locally, so we just have to check the following scenarios.

To check one of the cap relations we check that if we apply the algorithm to both

sides of the relation,

+
−

=

we obtain equivalent elements in O(SL2).

The algorithm will send the right side to the unit 1 ∈ O(SL2). Applying the algorithm

to the left side of the equation yields
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∑
a,b

ε

(
a

b

)
a

b

+
−

= X11X22 −X21X12,

which is equal to 1 in O(SL2), as required. The other computations involving the cap

relations are similar.

For the cup relation, it suffices to check that the algorithm yields equivalent elements

for both sides of the following relation for any states a, b.

a

b
= a

b +
− a

b

+
−
.

In the case when a = + and b = + we have that applying T ′ to the left side yields

0 ∈ O(SL2) while applying T ′ to the right side yields X12X11 −X11X12, which is equal

to 0 since these generators commute. The other cases are similar. Thus, T ′ respects

the skein relations and is a well-defined algebra map. Since it satisfies T ′(T (Xij)) = Xij

and T (T ′(αij)) = αij for generating sets, we have that T ′ = T−1 and have proved the

following.

Theorem 2.11 The map T defines a bialgebra isomorphism SSL2(B) ∼= O(SL2).

We remark that these cup and cap relations describe the antipode equations ηε =

m(S⊗ id)∆ = m(id⊗S)∆ applied to the generators αij. We next describe this antipode.

2.5.4 The antipode

Thus far, we have seen that SSL2(B) is isomorphic to O(SL2) as bialgebras. Since

O(SL2) is a Hopf algebra, a standard exercise shows that our bialgebra isomorphism
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must be a Hopf algebra isomorphism as well. So SSL2(B) is a Hopf algebra and we

can deduce that the antipode S takes values on the generator αij from the values of the

antipode of O(SL2) on the generators Xij. So we have

S(α++) = α−− S(α+−) = −α+−

S(α−+) = −α−+ S(α−−) = α++.

We do not have to appeal to the algebra presentation of SSL2(B) by generators and

relations in order to define the antipode. Instead, we can give a diagrammatic definition

by defining S on an arbitrary diagram.

Suppose D is a stated diagram in the bigon B. We define

S(D) = (
√
−1)T (D)D′,

where T (D) is the sum of states on the right boundary er minus the sum of states on

the left boundary el of D. Here, D′ is the diagram obtained by flipping every state to its

negative and reflecting the diagram across the line between the bigon’s bottom and top

puncture.

We can check that this diagrammatic definition of S respects the interior skein re-

lations and the boundary skein relations and thus defines a well-defined linear map

S : SSL2(B) → SSL2(B). We can also observe that S respects the product of diagrams

and so is an algebra homomorphism. Recall that the antipode is in general an algebra

anti-homomorphism, but since SSL2(B) is a commutative algebra our antipode is also an

algebra homomorphism. Since this diagrammatic definition of S agrees on the generators
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αij with the algebraic definition of S given previously, we see that these are the same

maps.

2.6 Skein theoretic definition of Oq(SL2)

We previously remarked that the skein theory for classical U(sl2) is unable to distin-

guish overcrossings from undercrossings. We can fix that by finding a deformation of the

crossing relation so that it is no longer symmetric. This is how the Kauffman bracket is

constructed. We expect that deforming the skein relations will deform the skein algebra

as well, so that we expect to find Oq(SL2) as the skein algebra of the bigon when we use

the q-deformed skein relations.

We set our skein relations equal to

= A +B

= C

for unknown A, B, C. The following is a standard construction of the Kauffman bracket.

We first assume that the crossing relation is preserved by rotation, meaning that we have

= B + A .

By imposing the Reidemeister II equation, we deduce that B = A−1, and C =

−A2 − A−2 are the unique solutions for B and C. As a consequence Reidemeister III is
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preserved and so is ribbon Reidemeister I since the following relations hold

−A−3 = = −A3 .

Thus, our skein relations are consistent with isotopies of framed strands. In this

section, we set A = q1/2 in anticipation of lining up our skein theory with one of the

standard definitions of the quantum groups Uq(sl2) and Oq(SL2) found in the literature,

such as in [BG02].

2.6.1 Boundary arcs require orientations

In this section we find boundary relations involving fractional powers of q which are

consistent with the skein relations. We find that we must use more of a 3-dimensional

perspective when viewing our diagrams, and this motivates the extra notation of arrows

along our boundary arcs.

We would like our deformation to break the symmetry of the crossing relation but

keep the other features of our skein algebra largely intact. One property we would like to

preserve is that our new intertwiners should still be weight preserving (even though we

haven’t fixed the meaning of intertwiners and weights in our quantized setting). Diagram-

matically, this means that we should still use − and + as states, and our boundary stated

skein relations should preserve the sums of the states. Thus, in finding our new boundary

relations a consideration of weights suggests we should start off with the following cap

relations
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+

+
= 0

+

−
= b

−

−
= 0

−

+
= a .

A consideration of planar isotopy suggests our cup relation would need to take the

form

= b−1

−

+
+ a−1

+

−
. (2.1)

Another property that we would like to preserve from the classical setting is that our

coproduct should represent the matrix product formula. So we would like the definition of

our coproduct to be unchanged from the classical setting. We now impose the restriction

that the coproduct be well-defined. If we want our map to respect the following isotopy

= ,

we see we must have the following relation hold:

b +
−

+ a −
+

= . (2.2)

Comparing (2.2) to (2.1), we see that it is impossible to assign values to a and b
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unless a, b ∈ {−1, 1} and consequently q = 1, which corresponds to our classical skein

theory.

To remedy this issue, we take a more 3-dimensional perspective. Just as the quan-

tization of the crossing relation requires our diagrams to keep track of the heights of

strands at a double-point of a crossing, we will also need to keep track of the heights of

our endpoints along the boundary. We will now consider a diagram in the bigon as a

generic projection of a skein living in B× (−1, 1) such that for each boundary arc e, the

endpoints of the skein in e× (−1, 1) are attached at distinct heights in (−1, 1).

The idea to consider states at different heights seems to first appear in [BW11] and

was introduced as a necessary step in defining the quantum trace map by way of an

intermediate state-sum. In [Lê18], the state-sum is called the splitting map and its

definition motivates the stated skein relations that we will recover in this section.

Diagrammatically, we will record the height order of strands along a boundary arc by

giving the arc an orientation so that endpoints are arranged in order of increasing height.

In the classical case, we defined the product D1 ·D2 of two stated diagrams by stacking

D1 above D2 in the bigon and this definition extends the the quantized case as well, if

we choose our boundary arcs to be oriented from bottom to top. So the endpoints of D1

are placed at higher heights than the endpoints of D2 in D1 ·D2.

D2

D1

We impose extra skein relations along the boundary representing a 3-dimensional

isotopy that slides endpoints of strands horizontally without changing the height order.
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a b

=

b a

To define the coproduct on a diagram D in the bigon B, we choose an ideal arc

traveling from the bottom puncture of B to the top puncture of B and split the diagram

along this arc and sum over admissible states, analogous to the definition of the coproduct

for SSL2(B).

We now search for boundary skein relations which make the coproduct well-defined.

Using our new notation involving oriented boundaries, if we temporarily set our cap

relations to

+

+
= 0

+

−
= b

−

−
= 0

−

+
= a

for unknown a and b, then we consequently must have

+

+
= 0

+

−
= −q3/2a

−

−
= 0

−

+
= −q3/2b .
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By consideration of planar isotopy, our cup relation is of the form

= b−1

−

+
+ a−1

+

−
.

By using the definition of our coproduct, we also can compute a second expression

for our cup relation:

=

(
+
−

+
−

)
+

(
−
+
−
+

)
= −q3/2a +

−
− q3/2b −

+
.

The algebraic assumption that v− ⊗ v+ and v+ ⊗ v− are linearly independent allows

us to equate coefficients in both expressions of the cup relation to see that we must have

ab = −q−3/2. (2.3)

Next, consider a diagram consisting of just a circle bounding a disk inside the bigon.

Consider the application of the coproduct by splitting along an arc that cuts through the

circle. On the one hand, we could use the circle relation before applying the coproduct,

and end up with −q− q−1 times the empty diagram. On the other hand, we could apply

the coproduct first and obtain the following:
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7→
(

+
−

+
−

)
+

(
−
+
−
+

)
= −q3/2(a2 + b2) ⊗

Thus, we obtain a second constraint on a, b of the form

a2 + b2 = q−1/2 + q−5/2. (2.4)

Solving the two equations (2.3) and (2.4), we have narrowed down our search for a

and b to just four possibilities: (a, b) = (±q−5/4,∓q−1/4) or (a, b) = (±q−1/4,∓q−5/4). The

fact that there are just four solutions and that each of the solutions yield a well-defined

splitting map was originally noted in [Lê18]. Here, we make the choice a = q−5/4 and

b = −q−1/4.

2.6.2 Skein relations for SSL2
q (B)

We fix a nonzero element q1/4 in C.

Definition 2.12 The stated skein algebra of the bigon SSL2
q (B) is the quotient of the

free module spanned by isotopy classes of stated skein diagrams in the bigon subject to

the following set of skein relations.

Interior relations:
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= q1/2 + q−1/2

= −q − q−1

Boundary relations:

+

+
= 0

+

−
= −q−1/4

−

−
= 0

−

+
= q−5/4

= q5/4

+

−
− q1/4

−

+
.

a b

=

b a

We note that by using the skein relations on a diagram, we can get rid of cross-

ings, circles, and arcs which return to the same boundary component, showing that

any diagram can be rewritten as a linear combination of polynomials in the generators
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αij = i j as in the classical case.

2.6.3 The coproduct for SSL2
q (B)

The coproduct ∆ : SSL2
q (B) → SSL2

q (B) ⊗ SSL2
q (B) has the same definition as for

SSL2(B), defined on a diagram by splitting the diagram down the middle and summing

over admissible states. In particular, the coproduct satisfies

∆(αij) = αi1 ⊗ α1j + αi2 ⊗ α2j.

2.6.4 The counit for SSL2
q (B)

As in the classical case, we define the counit ε : SSL2
q (B) → SSL2

q (M) diagrammati-

cally by defining it as the composition of an edge inversion map inver applied to the right

edge of B followed by the map associated with filling in the top puncture.

We will describe the definition of the edge inversion map inver in the quantized case.

In the classical case, the analogue of this map only involved multiplying a diagram by a

factor determined by the states on er. In the quantized case, we will also need to reverse

the height order on er. Let D be a stated diagram in B so that the right boundary edge

of B, er, has height order given by orienting the edge from the bottom to the top. Let

p(er) be the number of positive states of D on er and let n(er) be the number of negative

states of D on er. We define

inv(er)(D) = (q−5/4)p(er)(−q−1/4)n(er)D′′,

where D′′ is the diagram obtained by switching all states on er to their opposite signs and

reversing the height order on er. This map respects the skein relations and so extends to a
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C-linear map SSL2
q (B)→ SSL2

q (B), although inver does not respect the algebra structure

by itself.

To finish the definition of ε, after applying inver to D we fill in the top puncture of

B so that the two boundary edges el and er become the single boundary edge of M such

that each endpoint coming from el appears lower than the lowest endpoint coming from

er. This composition does respect the algebra structure and so we obtain an algebra map

ε : SSL2
q (B)→ SSL2

q (M).

We next observe that SSL2
q (M) ∼= C. Analogous to the classical case, this fact can

be proven by using an evaluation algorithm which respects the skein relations. Suppose

D is a stated diagram in the monogon. We first slide the endpoints of D so that the

boundary edge is oriented counterclockwise. We then use the crossing relation to write

the diagram as a linear combination of diagrams with no crossings. Next, we evaluate

each diagram in the linear combination according to the following rules. If the diagram

contains an arc with the same state on each endpoint, the diagram evaluates to zero.

Otherwise, the diagram evaluates to

(−q − q−1) # closed curves(q−5/4)# positive arcs(−q−1/4)# negative arcs.

We note that this evaluation algorithm recovers the analogous one from the classical

case when q1/4 is set to q1/4 = 1.

Our counit satisfies ε(αij) = δij, which can be verified by direct computation. Thus,

we have described the bialgebra structure for SSL2
q (B).

2.6.5 The antipode for SSL2
q (B)

We next describe the antipode S : SSL2
q (B)→ SSL2

q (B). Suppose that D is a diagram

in the bigon B so that both el and er carry orientations traveling from bottom to top.
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We define

S(D) = (
√
−q)T (D)D′,

where T (D) is the sum of states on the right boundary er minus the sum of states on

the left boundary el of D. Here, D′ is the diagram obtained by the following process. We

take a representative of D in B× (−1, 1), we rotate the representative 180 degrees about

the axis traveling through the two punctures of B, change the framing of the skein to its

negative, and then we take a generic projection back onto B.

We note that if we set q = 1, then this definition agrees with the diagrammatic

definition of the antipode given for SSL2(B), but here we have been forced to take more

of a 3-dimensional perspective.

Since we can check that our definition of S respects the skein relations, we have

that it extends to a C-linear map on SSL2
q (B). Since the rotation involved in the def-

inition reverses the height order on the boundary edges, S extends to an algebra anti-

homomorphism on SSL2
q (B).

We observe that S satisfies

S(α++) = α−− S(α+−) = −q−1α+−

S(α−+) = −qα−+ S(α−−) = α++,

and so it can be checked on generators that S satisfies the definition of the antipode. The

diagrammatic definition of the antipode presented here was also given in [CL19] and it

is very similar to the definition of a diagrammatic antipode given in [Big14], which will

be relevant to our skein theoretic treatment of Uq(sl2).
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2.6.6 SSL2
q (B) ∼= Oq(SL2)

So far we have defined a Hopf algebra structure on SSL2
q (B) and now we observe that

SSL2
q (B) ∼= Oq(SL2) as Hopf algebras. This is done analogously to the classical case

where we define a map T : Oq(SL3)→ SSL3
q (B) defined on generators by T (X11) = α++,

T (X12) = α+−, T (X21) = α+−, and T (X22) = α−−.

We observed earlier that the set {αij}i,j∈(−,+) is a generating set for the algebra

SSL2
q (B). So if T is well-defined, then it is a surjective algebra homomorphism. We also

observe that the values of ∆, ε, and S on the generators αij are compatible with the

corresponding Hopf algebra structure of Oq(SL2). Thus, T is a Hopf algebra map by

construction.

To check that T is well-defined, it suffices to check that T respects the defining

relations of Oq(SL2), which is an easy exercise.

To see that T is an isomorphism we provide the definition of its inverse T−1, which is

defined on diagrams as in the classical case. Let D be a stated diagram in the bigon. We

give an algorithm to write D as a linear combination of monomials in the elements αij as

follows. We use ∆ to split D close to its right boundary er and then apply (ε⊗ id)∆(D)

to write D as a linear combination of monomials in the generators αij. We obtain T−1(D)

by defining T−1(αij) = Xij. By checking that T−1 satisfies the skein relations, we have

found an inverse for T. We leave this as an exercise, but a similar computation is carried

out in the SL3 case later on.

The fact that SSL2
q (B) ∼= Oq(SL2) as algebras was first proven in [Lê18] and the

fact that this isomorphism respected the Hopf algebra structure was shown in both

[CL19, Kor19].
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2.7 Hopf pairing and skein theoretic realization of

Uq(sl2)

Now that we have a skein theoretic definition of Oq(SL2), we turn our attention to

Uq(sl2). A diagrammatic definition of Uq(sl2) was already constructed in [Big14], built

out of an algebra of strands which pass in front of or behind a vertical pole. In [Kor19],

it is shown that this algebra aligns with the stated skein algebra of B1, a bigon with one

puncture in its interior playing the role of the pole. In both [Big14, Kor19], the Uq(sl2)

relations are found in the diagrammatic algebra after taking a quotient by a kernel of

diagrammatic maps. In [Big14], the kernel is an intersection of kernels of maps called

ρ⊗n given by threading n strands in replacement of the pole. In [Kor19], the kernel of

interest is the kernel of the quantum trace map.

In this section, we see that Uq(sl2) embeds in a quotient of SSL2
q (B1) by the kernel

of a diagrammatic map, lining up with the constructions of Bigelow and Korinman.

Our construction here will use a diagrammatic definition of the Hopf pairing 〈−,−〉 :

Oq(SL2) ⊗ Uq(sl2) → C. This construction of Uq(sl2) also lines up algebraically with

a construction of Uq(sl2) from matrix coordinates called l-functionals as introduced in

[RTF89]; see also [KS97, Section 9.4].

We will define a Hopf pairing 〈−,−〉 : SSL2
q (B) ⊗ SSL2

q (B1) → C on diagrams and

we will observe that the pairing between Oq(SL2) and Uq(sl2) essentially factors through

this pairing. We previously described the Hopf algebra structure of SSL2
q (B) and we will

now briefly describe how to adapt this structure to describe SSL2
q (B1) as a Hopf algebra.

The surface B1 is the once punctured bigon and we think of it as a planar surface

isotopic to the unit disk in the plane R2 with the points (0, 1) and (0,−1) removed from its

boundary (called the top and bottom punctures, respectively) and (0, 0) removed from its

interior. The stated skein algebra SSL2
q (B1) is the quotient of the module freely spanned
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by isotopy classes of stated skeins in B1 × (−1, 1) by the same local skein relations from

SSL2
q (B). The product of skeins is again given by stacking one skein on top of the other

and so that its endpoints appear higher in the height order.

The coproduct ∆ : SSL2
q (B1)→ SSL2

q (B1)⊗SSL2
q (B1) is defined on diagrams by first

introducing a second puncture in a small neighborhood of the first interior puncture and

then using the splitting map to split the diagram along an ideal arc that travels from the

bottom puncture, between the two interior punctures, and to the top puncture.

The counit ε : SSL2
q (B1) → C is defined by first filling in the interior puncture and

then applying the counit of SSL2
q (B).

The antipode S : SSL2
q (B1)→ SSL2

q (B1) is defined geometrically in the same way as

the antipode for SSL2
q (B).

The reader can check that these maps satisfy the Hopf algebra axioms and is invited

to compare them to the diagrammatic Hopf algebra defined in [Big14]. A presentation

for SSL2
q (B1) can be obtained from either [Kor19, CL19], but we won’t need an explicit

presentation by generators and relations in this section.

We next define the value of the pairing 〈D,E〉 when D is a stated skein in the

thickened bigon B × (−1, 1) and E is a stated skein in the thickened punctured bigon

B1 × (−1, 1). The value of the pairing is essentially obtained by threading D through E

in place of the puncture and then taking the counit. We describe the map explictly here.

Step 1: We start with D ∈ (B× (−1, 1)). Let P ⊂ B be the unit circle of radius 1/2,

centered at the origin (0, 0) in B. We isotope the skein D so that it is contained in the

following region of B× (−1, 1) :

[
(B ∩ {x < 0})× (1/2, 1)

]
∪
[
(B ∩ {x > 0})× (−1,−1/2)

]
∪
[
P × (−1, 1)

]
.

After this isotopy, we rotate D by 180 degrees about the z-axis to obtain a skein D′ in
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B× (−1, 1).

Step 2: We next take E ∈ B1 × (−1, 1). We isotope E so that it is contained in

(B \ P )× (−1/2, 1/2)

and denote it by E ′.

Step 3: We take the union of the skeins D′ and E ′ in B× (−1, 1) and take the counit

to obtain 〈D,E〉.

We illustrate the definition of 〈−,−〉 : SSL2
q (B)⊗ SSL2

q (B1)→ C by showing it on a

pair of diagrams here.

a
c

b
d
⊗ e

g
f

h
7→ ε

( e
g

b
d

a
c
f

h

)

Since this definition is easily seen to respect the skein relations, we have defined a

C-linear map SSL2
q (B) ⊗ SSL2

q (B1) → C. To check that this defines a pairing of Hopf

algebras, it suffices to check the compatibility on pairs of diagrams. This can be checked

diagrammatically. For example, the axiom

〈AB, x〉 =
∑
(x)

〈A, x′〉〈B, x′′〉

follows from splitting the following diagram along the indicated ideal arc and then using

the identity (ε⊗ ε)∆ = ε.
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e
g

b
d

a
c
f

h

We will use a set of eight generators for SSL2
q (B1), each consists of a single horizontal

strand passing above or below the puncture, with all possible states. We call the four

generators which pass above the puncture f, f0, l, l
′ and the four generators which pass

below the puncture e, e0, k, k
′.

e =
+ −

e0 =
− +

k =
+ +

k′ =
− −

f = − + f0 = + −

l = − − l′ = + +

To compute the values of the pairing, it will be helpful to perform the following

computations

ε

(
a

b

c

d

)
= Rcd

ab = Rab
cd

ε

(
a

b

c

d

)
= (R−1)cdab = (R−1)abcd,
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where Rcd
ab represent the matrix entries of the co-R-matrix for Oq(SL2) having values

R++
++ = q1/2 R−−−− = q1/2

R+−
−+ = q−1/2 R+−

+− = q−1/2(q − q−1)

R−+
+− = q−1/2 Rcd

ab = 0 if not listed above.

Using the matrix entries for R and for R−1 we can compute the pairings

〈αij, e0〉 = 0 = 〈αij, f0〉

for all states i, j.

We also use the diagrammatic definition of ∆ to compute that ∆(e0) = e0⊗k+k′⊗e0

and ∆(f0) = l′⊗ f0 + f0⊗ l. Thus, the defining properties of the Hopf pairing imply that

〈−, e0〉 = 0 = 〈−, f0〉.

Similarly, the following hold:

〈−, k〉 = 〈−, l〉

〈−, k′〉 = 〈−, l′〉.

Recall that the pairing 〈−,−〉 : SSL2
q (B) ⊗ SSL2

q (B1) → C defines a Hopf algebra
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map

pr : SSL2
q (B1)→ SSL2

q (B)◦

x 7→ 〈−, x〉,

where SSL2
q (B)◦ is the finite Hopf dual of SSL2

q (B).

Proposition 2.13 Suppose q is not a root of unity and let K = ker pr. Then there is a

Hopf algebra embedding

i : Uq(sl2) ↪→ SSL2
q (B1)/ ker pr

given by

E 7→ q

q − q−1
ek

F 7→ −q−1

q − q−1
k′f

K 7→ k2

K−1 7→ (k′)2.

Proof: We first argue that the above assignments define a well-defined Hopf algebra

map. To see that it is an algebra map, we can check that the Uq(sl2) relations are

respected. This computation will follow after first observing that the relations
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ke = qek

lf = q−1f

ef − fe = (q − q−1)(l′k′ − lk)

kk′ − qee0 = 1

l′l − qf0f = 1

hold inside of SSL2
q (B1) and then using the facts that e0, f0, k − k′, l − l′ are all in

ker pr.

To see that the map i is a Hopf algebra map, we first observe that since ker pr is the

kernel of a Hopf algebra map, the quotient SSL2
q (B1)/ ker pr has the induced Hopf algebra

structure. The fact that i respects the Hopf algebra structure is an easy computation on

generators.

To see that our assignment defines an embedding, we appeal to the fact that the

non-degenerate Hopf pairing Oq(SL2)⊗ Uq(sl2)→ C defines an embedding

qr : Uq(sl2)→ Oq(SL2)◦

x 7→ 〈−, x〉

which satisfies

qr = p̄r ◦ i,
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where p̄r is the map induced by pr on SSL2
q (B1)/ ker pr. This equality can be checked just

by computing 〈αij,−〉 on the images of each of the generators i(E), i(F ), i(K), i(K−1)

and seeing that they agree with 〈Xij,−〉 on each of E,F,K,K−1. We conclude that i

must be injective.

We have previously shown that Oq(SL2) ∼= SSL2
q (B) for all q. Now for q not a root

of unity we have shown that Uq(sl2) is contained in the Hopf algebra SSL2
q (B1)/ ker pr.

The reader might wonder if there is a skein theoretic construction of classical U(sl2) in

the same way that there is a skein theoretic construction of O(SL2). However, we have

observed that skein algebras at q = 1 are commutative algebras, so it might be impossible

to obtain the noncommutative algebra U(sl2) in this way.

2.8 SL2 skein algebras of surfaces

Previously in this chapter, we have described skein algebras built from a few specific

surfaces, like M,B, and B1. Of course, their definitions easily generalize to skein algebras

associated to other surfaces. Historically, skein algebras for general surfaces, and skein

modules for 3-manifolds, were defined first and then it was later observed that skein

algebras of punctured surfaces can be decomposed by studying small surfaces like B. We

give the definition of ordinary and stated SL2 skein algebras here, which are also referred

to in the literature as the Kauffman bracket (stated) skein algebras.

Definition 2.14 A punctured bordered surface is a pair (Σ′,P), where Σ′ is a smooth

compact oriented surface, possibly with boundary, and P is a collection of finitely many

points of Σ′. We require that each boundary component of Σ′ contains at least one point

of P . We do not require Σ′ to be connected. We let Σ = Σ′ \ P . To simplify notation, we

also refer to the pair (Σ′,P) simply by Σ. A boundary arc of Σ is a connected component

of ∂Σ.
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For a punctured bordered surface Σ, an (SL2) skein in Σ× (−1, 1) is an embedding

of a framed unoriented tangle Γ. We allow Γ to have univalent vertices, called endpoints,

which must be contained in ∂Σ × (−1, 1) such that for each boundary arc b of Σ the

vertices contained in b × (−1, 1) have distinct heights. We require the skein to have a

vertical framing with respect to the (−1, 1) component and we require that strands that

terminate in a univalent vertex are transverse to ∂Σ.

For a skein, Γ a state is a function s : ∂Γ→ {−,+}. A stated skein is a skein together

with a state.

Definition 2.15 A skein Γ in Σ × (−1, 1) is in generic position if the projection π :

Σ × (−1, 1) → Σ restricts to an embedding of Γ except for the possibility of transverse

double points in the interior of Σ. Each skein is isotopic to a skein in generic position.

A stated diagram D of a generic stated skein Γ is the projection π(Γ) along with the

over/undercrossing information at each double point and the height orders and states of

the boundary points of Γ. Skein diagrams are isotopic if they are isotopic through an

isotopy of the surface.

As we have already been doing, we record the local height order of the boundary

points of a skein diagram by drawing an arrow along a portion of the boundary arc of Σ.

Earlier in this chapter we had been using C as a coefficient ring, but we do not lose

anything by taking a coefficient ring R be any commutative ring containing an invertible

element q1/4.

Definition 2.16 The SL2 stated skein algebra SSL2
q (Σ) is the R-module freely spanned

by isotopy classes of skeins in Σ× (−1, 1) modulo the following relations.

Interior relations:
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= q1/2 + q−1/2

= −q − q−1

Boundary relations:

+

+
= 0

+

−
= −q−1/4

−

−
= 0

−

+
= q−5/4

= q5/4

+

−
− q1/4

−

+
.

Definition 2.17 The ordinary SL2 skein algebra S̊SL2
q (Σ) is the R-module freely spanned

by isotopy classes of framed links in
◦
Σ× (−1, 1) modulo only the interior relations.

For both the ordinary and stated skein algebras, the product on skeins is given as

follows. The product Γ1Γ2 of two stated skeins Γ1,Γ2 in Σ× (−1, 1) is given by isotoping

Γ1 so that it is contained in Σ× (0, 1), isotoping Γ2 so that it is contained in Σ× (−1, 0),

and then taking the union of these two stated skeins in Σ × (−1, 1). This gives both
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S̊SL2
q (Σ) and SSL2

q (Σ) associative, unital R-algebra structures.

When Σ has empty boundary, it follows from the definitions that we have an equality

S̊SL2
q (Σ) and SSL2

q (Σ). When Σ has nonempty boundary then there is still an embedding

S̊SL2
q (Σ) ↪→ SSL2

q (Σ) as can be seen from the following characterization of bases of the

skein algebras.

Theorem 2.18 ([SW07]) The ordinary skein algebra S̊SL2
q (Σ) is a free R-module. A ba-

sis for S̊SL2
q (Σ) consists of isotopy classes of skein diagrams on Σ containing no crossings

and no null-homotopic loops.

Suppose our surface Σ is given the standard counterclockwise orientation. We then

call a boundary arc of Σ whose height order agrees with the orientation a positively

oriented boundary arc. We call a stated skein diagram on Σ increasingly stated if, on each

boundary arc, endpoints labeled by + appear at greater heights than endpoints labeled

by −. Assume we have chosen all of our boundary arcs to have positive orientations.

Theorem 2.19 ([Lê18]) The stated skein algebra SSL2
q (Σ) is a free R-module. A basis

for SSL2
q (Σ) consists of isotopy classes of stated skein diagrams on Σ which are increas-

ingly stated and contain no crossings, no null-homotopic loops, and no arcs which are

homotopic to the boundary.

That these skein modules are free modules with bases that can be uniformly described

for all surfaces does not carry over to the case of skein modules for general 3-manifolds,

which can have torsion if the manifold contains non-separating spheres or tori [Prz97].

The advantage to studying stated skein algebras is that they admit natural algebra

maps, called splitting morphisms, associated to splitting the surface along an ideal arc.

If Σ is a punctured bordered surface and a and b are two boundary arcs of Σ, we

can obtain a new punctured bordered surface Σ̄ = Σ/(a = b) by gluing the arcs a and b
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together in the way compatible with the orientation of Σ. It is the reverse of this process

that gives us an algebra morphism from SSL2
q (Σ̄) to SSL2

q (Σ) associated with splitting

the surface Σ̄ along an ideal arc c.

Definition 2.20 If Σ is a punctured bordered surface, an ideal arc in Σ is a proper

embedding c : (−1, 1)→ Σ̊ such that its endpoints are (not necessarily distinct) points in

the set of punctures, P .

Let p : Σ → Σ/(a = b) =: Σ̄ be the projection map associated to the gluing. Then

c := p(a) = p(b) is an ideal arc. The splitting morphism

∆c : SSL2
q (Σ̄)→ SSL2

q (Σ)

is defined on skeins in Σ̄× (−1, 1) in the following way.

For a stated skein (Γ, s) in Σ̄×(−1, 1) we first isotope it so that Γ intersects c×(−1, 1)

transversely in points of distinct heights. By defining p to act trivially on the (−1, 1)

factor, we can extend it to a map p : Σ×(−1, 1)→ Σ̄×(−1, 1). We then consider p−1(Γ),

which is a skein in Σ× (−1, 1). Except for the points of p−1(c∩ Γ), each boundary point

of p−1(Γ) inherits a state from Γ.

We will say that s′ is an admissible state for p−1(Γ) if s′(p−1(x)) = s(x) for all x ∈ ∂Γ

and if y, z ∈ p−1(Γ ∩ c) then s′(y) = s′(z).

We define the splitting morphism on a stated skein (Γ, s) in Σ̄× (−1, 1) by

∆c(Γ, s) =
∑

admissible s′

[p−1(Γ), s′].

When c happens to be the core of the bigon B, then ∆c is the same map that we

used for the coproduct of SSL2
q (B).

Theorem 2.21 ([Lê18, CL19, KQ19])
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(a) The map ∆c described above extends linearly to a well-defined algebra morphism

∆c : SSL2
q (Σ̄)→ SSL2

q (Σ).

(b) If a and b are two ideal arcs with disjoint interiors, then we have

∆a ◦∆b = ∆b ◦∆a.

(c) The splitting morphism is injective and its image can be characterized according to

the following exact sequence

0→ SSL2
q (Σ̄)

∆c→ SSL2
q (Σ)

∆a−τ◦b∆→ SSL2
q (Σ)⊗ SSL2

q (B).

As was the case over C, we also have over R that SSL2
q (M) ∼= R and SSL2

q (B) ∼=

Oq(SL2). The stated skein algebra of the ideal triangle T is isomorphic to the braided

tensor square of Oq(SL2), denoted by

SSL2
q (T) ∼= Oq(SL2)⊗

−
Oq(SL2).

The algebra SSL2
q (T) has an explicit presentation built from the presentation of

Oq(SL2). It has 8 generators, with 4 generators being the generators X11, X12, X21, X22, of

one copy of Oq(SL2) as well as 4 generators Y11, Y12, Y21, Y22 of a second copy of Oq(SL2).

A complete set of relation is given by imposing the Oq(SL2) relations among the gener-

ators Xij, imposing the Oq(SL2) relations among the Yij, and then imposing the extra

mixed relations

YijXkl =
∑
m,n

Rmn
ik XmlYnj,

where Rmn
ik are the matrix entries of our R-matrix, whose only nonzero entries are Raa

aa =
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q1/2, Rba
ab = q−1/2, and R12

12 = q−1/2(q − q−1).

The splitting maps allow us to decompose a skein algebra of a surface built from

simpler surfaces. In the case that Σ has an ideal triangulation, meaning that Σ can be

constructed from a set of n disjoint ideal triangles by identifying some pairs of edges, the

composition of splitting maps along the edges of the ideal triangulation gives an algebra

embedding

SSL2
q (Σ) ↪→

n⊗
i=1

SSL2
q (Ti).

An important breakthrough in the theory of the ordinary skein algebra was a construc-

tion of Bonahon and Wong in which they embedded the skein algebra of a triangulable

surface in a quantum torus, which is an algebra that is much easier to study.

Theorem 2.22 ([BW11]) For a punctured surface Σ with no boundary and an ideal

triangulation E , there is an embedding, called the quantum trace map

trq : SSL2
q (Σ) ↪→ Yq(E),

from the skein algebra into a quantum torus.

The definition of the quantum trace map is inspired by Checkov and Fock’s notion

of quantum Teichmüller space [FC99]. The original proof that trq respects the skein

relations was quite involved. To simplify this construction, Lê defined the stated skein

algebra as an intermediate step in the construction of trq which made it easier to see that

the map was well-defined.

Theorem 2.23 ([Lê18]) The quantum trace map trq of Bonahon and Wong factors

through the triangular decomposition. So trq can be realized as a composition of maps

SSL2
q (Σ) ↪→

n⊗
i=1

SSL2
q (Ti)→ Yq(E).
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The idea is that the first map is a composition of splitting maps, which are well defined

by construction of the stated skein algebra. Then the second map in the composition

can be defined on triangles SSL2
q (Ti) which have explicit presentations.

Although the original motivation for the stated skein algebra was to simplify the

construction of trq, the stated skein algebra is interesting in its own right and has helped to

describe connections between skein algebras and quantum groups. We can view the skein

algebra SSL2
q (Σ) of a surface as an algebra which is a generalization of Oq(SL2). Splitting

maps can be thought of as generalizations of the coproduct of SSL2
q (B) = Oq(SL2). It is

an easy exercise to use the axioms for the coproduct ∆ and counit ε in any coalgebra C

to see that the exact sequence

0→ C
∆→ C ⊗ C ∆⊗id−id⊗∆→ C ⊗ C ⊗ C

holds. We can view the exact sequence in Theorem 2.21 as a generalization of this exact

sequence.

2.9 Uq(sl3) and Oq(SL3)

In the next chapter we transition to the theory of SL3 skein algebras. In this section

we fix notation and record our definitions of the quantum groups Uq(sl3) and Oq(SL3),

which agree with those in [BG02].

Definition 2.24 The quantized universal enveloping algebra Uq(sl3) is the quotient of

the free algebra generated by E1, E2, F1, F2, K
±1
1 , K±1

2 subject to the following relations:
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KiEi = q2EiKi KiFi = q−2FiKi

KiEj = q−1EjKi KiFj = qFjKi (i 6= j)

KiKj = KjKi EiFj − FjEi = δij
Ki −K−1

i

q − q−1

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 (i 6= j)

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0 (i 6= j).

The Hopf algebra structure maps are defined on generators by

∆(Ki) = Ki ⊗Ki ε(Ki) = 1 S(Ki) = K−1
i

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei ε(Ei) = 0 S(Ei) = −K−1
i Ei

∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi ε(Fi) = 0 S(Fi) = −FiKi

The standard 3-dimensional representation ρV : Uq(sl3)→ End(V ) is given by
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ρV (K1) =


q 0 0

0 q−1 0

0 0 1

 ρV (E1) =


0 1 0

0 0 0

0 0 0

 ρV (F1) =


0 0 0

1 0 0

0 0 0



ρV (K2) =


1 0 0

0 q 0

0 0 q−1

 ρV (E2) =


0 0 0

0 0 1

0 0 0

 ρV (F2) =


0 0 0

0 0 0

0 1 0

 .

Definition 2.25 The quantized coordinate ring of regular functions on SL3, denoted

Oq(SL3), is the quotient of the free algebra generated by {Xij}1≤i,j≤3 subject to the fol-

lowing relations:

XijXlm =



qXlmXij (i < l, j = m)

qXlmXij (i = l, j < m)

XlmXij (i < l, j > m)

XlmXij + (q − q−1)XimXlj (i < l, j < m).

∑
σ∈S3

(−q)l(σ)Xσ(1)1Xσ(2)2Xσ(3)3 = 1,

where l(σ) denotes the length of the permutation, which is the length of the shortest word

expressing σ in simple transpositions (i, i+ 1).

The Hopf algebra structure maps are given as follows:
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∆(Xij) =
3∑
r=1

Xir ⊗Xrj ε(Xij) = δij S(Xij) = (−q)i−jA[j|i],

where A[j|i] denotes the quantum minor of the matrix (A)ij = Xij after deleting row j

and column i.

The standard 3-dimensional comodule V is defined by

vi 7→
3∑
j=1

vj ⊗Xji.

There is a Hopf pairing Oq(SL3)⊗ Uq(sl3)→ C defined on generators by

〈Xij, x〉 = (ρV (x))ij.
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SL3 skein algebras of surfaces

We now turn towards the study of SL3 skein algebras, which are built from Kuperberg’s

webs. The relations given by Kuperberg in [Kup96] supply us with the set of skein rela-

tions we will impose in the interior of our surface. We introduce stated skein relations

along the boundary, which are compatible with Kuperberg’s skein relations. The most

powerful feature of these stated skein relations is that, together with Kuperberg’s rela-

tions, they form a confluent set of relations. This makes it possible to apply the methods

of [SW07] to construct a basis for our stated skein algebra which extends the basis of the

ordinary skein algebra.

Definition 3.1 A punctured bordered surface is a pair (Σ′,P), where Σ′ is a smooth

compact oriented surface, possibly with boundary, and P is a collection of finitely many

points of Σ′. We require that each boundary component of Σ′ contains at least one point

of P . We do not require Σ′ to be connected. We let Σ = Σ′ \ P . To simplify notation, we

also refer to the pair (Σ′,P) simply by Σ. A boundary arc of Σ is a connected component

of ∂Σ.

For a punctured bordered surface Σ, a web in Σ×(−1, 1) is an embedding of a directed
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ribbon graph Γ such that each interior vertex of Γ in Σ̊ × (−1, 1) is a trivalent sink or

a trivalent source. We allow Γ to have univalent vertices, called endpoints, contained in

∂Σ× (−1, 1) such that for each boundary arc b of Σ the vertices contained in b× (−1, 1)

have distinct heights. We require the web to have a vertical framing with respect to the

(−1, 1) component and we require that strands that terminate in a univalent vertex are

transverse to ∂Σ.

We consider isotopies of webs in the class of webs. In particular, our isotopies must

preserve the height orders of boundary points of webs for each boundary arc of Σ.

For a web Γ a state is a function s : ∂Γ→ {−, 0,+}. A stated web is a web together

with a state. We will make use of the order − < 0 < + on the set {−, 0,+}. For nota-

tional purposes, it will be convenient to sometimes add states together. By identifying

the state − with the integer −1 and the state + with the integer 1, we partially define

an addition on the set {−, 0,+} whenever the answer is contained in the set as well.

Definition 3.2 A web Γ in Σ × (−1, 1) is in generic position if the projection π :

Σ × (−1, 1) → Σ restricts to an embedding of Γ except for the possibility of transverse

double points in the interior of Σ. Each web is isotopic to a web in generic position.

A stated diagram D of a generic stated web Γ is the projection π(Γ) along with the

over/undercrossing information at each double point and the height orders and states

of the boundary points of Γ. Web diagrams are isotopic if they are isotopic through an

isotopy of the surface.

As in [Lê18] it will be convenient for us to record the local height order of the boundary

points of a web diagram by drawing an arrow along a portion of the boundary arc of Σ.

Let R be a unital commutative ring containing an invertible element q1/3. The quan-

tum integer [n] denotes the Laurent polynomial defined by [n] = qn−q−n

q−q−1 .
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3.1 The skein relations

Definition 3.3 The SL3 stated skein algebra SSL3
q (Σ) is the R-module freely spanned by

isotopy classes of webs in Σ× (−1, 1) modulo the following relations.

Interior relations:

= q2/3 + q−3−1/3 (I1a)

= q−2/3 + q−3+1/3 (I1b)

= q6( + ) (I2)

= −q3[2] (I3)

= [3] (I4a)

= [3] (I4b)

Boundary relations:

a+ b

= (−1)a+bq−1/3−(a+b)

a b

(for b > a) (B1)

b a
= q−1

a b

+ q−3

a b

(for b > a) (B2)
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a a
= 0 (for any a ∈ {−, 0,+}) (B3)

−0+
= q−2 (B4)

The interior relations above hold for local diagrams contained in an embedded disk

in Σ. The boundary relations hold for local diagrams in a neighborhood of a point of ∂Σ.

The thicker line denotes a portion of a boundary arc while the thin lines belong to a web.

The arrow along the boundary arc indicates the height order of that boundary arc. For

example, in the diagram on the right side of relation (B1), the endpoint with the state b

has a greater height than the endpoint with the state a.

The module defined above admits a natural multiplication where the product Γ1Γ2

of two stated webs Γ1,Γ2 in Σ × (−1, 1) is given by isotoping Γ1 so that it is contained

in Σ × (0, 1), isotoping Γ2 so that it is contained in Σ × (−1, 0), and then taking the

union of these two stated webs in Σ× (−1, 1). This gives SSL3
q (Σ) an associative, unital

R-algebra structure.

3.2 Consequences of the defining relations

Proposition 3.4 The following relations are consequences of the defining relations.

q−8/3 = = q8/3 (a)

−q−4 = = −q4 (b)
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a b

= −q−4/3δa+b,0 (c)

= −q−4/3
∑
a+b=0 b a

(d)

a b

= −q−4/3q2aδa+b,0 (e)

= −q−4/3
∑
a+b=0

q2a

b a
(f)

a b

= −q4/3δa+b,0 (g)

= −q4/3
∑
a+b=0 b a

(h)

a b

= −q4/3q2bδa+b,0 (i)

= −q4/3
∑
a+b=0

q2b

b a
(j)

σ1 σ2 σ3

=


q−2(−q)l(σ) if σ = (σ1, σ2, σ3) ∈ S3

0 if (σ1, σ2, σ3) /∈ S3

(same for sinks) (k)

= q−2
∑
σ∈S3

(−q)l(σ)

σ3 σ2 σ1

(same for sinks) (l)
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σ3 σ2 σ1

=


−q2(−q)l(σ) if σ = (σ1, σ2, σ3) ∈ S3

0 if (σ1, σ2, σ3) /∈ S3

(same for sinks) (m)

= −q2
∑
σ∈S3

(−q)l(σ)

σ1 σ2 σ3

(same for sinks) (n)

In the notation above, we consider the permutation (−, 0,+) to be the identity per-

mutation and l(σ) denotes the length of the permutation σ.

Proof: Relations (a) and (b) follow from the defining interior relations.

The relations involving boundary orientations pointing to the right can be checked by

reducing both sides according to the algorithm given by the Diamond Lemma described

in Theorem 3.9.

The relations involving boundary orientations pointing to the left can be derived

from those involving orientations pointing to the right by sliding the boundary points

horizontally to reverse the height order and using the twisting relations (a) and (b).

3.3 The splitting map

As in [Lê18], our stated skein algebras of punctured bordered surfaces satisfy a com-

patibility with the gluing and splitting of surfaces. If Σ is a punctured bordered surface

and a and b are two boundary arcs of Σ, we can obtain a new punctured bordered sur-

face Σ̄ = Σ/(a = b) by gluing the arcs a and b together in the way compatible with the

orientation of Σ. It is the reverse of this process that gives us an algebra morphism from

SSL3
q (Σ̄) to SSL3

q (Σ) associated with splitting the surface Σ̄ along an ideal arc c.

Definition 3.5 If Σ is a punctured bordered surface, an ideal arc in Σ is a proper em-

bedding c : (0, 1) → Σ̊ such that its endpoints are (not necessarily distinct) points in the
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set of punctures, P .

Let p : Σ → Σ/(a = b) =: Σ̄ be the projection map associated to the gluing. Then

c := p(a) = p(b) is an ideal arc. We will define a splitting morphism

∆c : SSL3
q (Σ̄)→ SSL3

q (Σ)

by defining it on stated webs in Σ̄× (−1, 1) and then checking that it is well-defined on

SSL3
q (Σ̄).

For a stated web (Γ, s) in Σ̄×(−1, 1) we first isotope it so that Γ intersects c×(−1, 1)

transversely in points of distinct heights. By defining p to act trivially on the (−1, 1)

factor, we can extend it to a map p : Σ×(−1, 1)→ Σ̄×(−1, 1). We then consider p−1(Γ),

which is a web in Σ× (−1, 1). Except for the points of p−1(c ∩ Γ), each boundary point

of p−1(Γ) inherits a state from Γ.

We will say that s′ is an admissible state for p−1(Γ) if s′(p−1(x)) = s(x) for all x ∈ ∂Γ

and if y, z ∈ p−1(Γ ∩ c) then s′(y) = s′(z).

We define the splitting morphism on a stated web (Γ, s) in Σ̄× (−1, 1) by

∆c(Γ, s) =
∑

admissible s′

[p−1(Γ), s′].

Theorem 3.6 (a) The map ∆c described above extends linearly to a well-defined alge-

bra morphism ∆c : SSL3
q (Σ̄)→ SSL3

q (Σ).

(b) If a and b are two ideal arcs with disjoint interiors, then we have

∆a ◦∆b = ∆b ◦∆a.

As in [Lê18], the map ∆c is injective, but we will postpone a discussion of this fact
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until Theorem 4.8.

Proof: If ∆c is well-defined, then the fact that it is an algebra morphism and that

it satisfies the property given in part (b) of the Theorem 3.6 follows from the definition

of the splitting morphism.

To check that it is well-defined, we first check that the effect of passing cups, caps,

vertices, and crossings past the ideal arc c commutes with the application of ∆c. This will

tell us that the splitting morphism is well-defined with respect to isotopies of diagrams.

Cups and caps can slide past the arc because of relations (c)-(j) from above. To slide a

vertex past the arc, we can first rotate the vertex, using the fact that cups and caps can

slide past the arc, until it appears as in relations (k)-(n). Since crossings can be rewritten

as a linear combination of cups, caps and vertices, this allows us to pass a crossing past

the arc.

If strands intersecting c × (−1, 1) are isotoped vertically so as to alter their height

order, then on a diagram this has the effect of a Reidemeister 2 move. Since crossings can

slide past c, we can isotope the disk containing the Reidemeister 2 move on the diagram

past c and then perform the move. This tells us that the splitting map is well-defined on

isotopy classes of webs.

To check that the splitting morphism respects the defining relations of SSL3
q (Σ) we

observe that if c cuts through a disk or half disk appearing in one of the defining relations,

we can isotope the diagram away from c first and then apply the relation.

3.4 A basis for the stated skein algebra

If a module is defined as a quotient of a free module by a list of relations, and if

each relation can be interpreted as a reduction rule that permits the replacement of one

element by a linear combination of simpler elements, then the module is a good candidate
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for an attempted application of the Diamond Lemma to produce a basis. As explained

in [SW07], the Diamond Lemma can accommodate modules built out of diagrams on

surfaces and it has been successful in producing bases for webs on surfaces for the cases

of Kuperberg’s webs of type A1, A2, B2, and G2. In [Lê18], Le organized the new boundary

relations into reduction rules that are compatible with the reduction rules coming from

the Kauffman bracket skein algebra and then applied the Diamond Lemma to find a

basis. In this section, we will do the same for the SL3 case.

We first summarize our goal. To apply the Diamond Lemma, we need to realize our

skein module as a quotient of a free module by reduction rules that are terminal and

locally confluent. The defining relations from Section 3.1 provide a starting point for a

list of reduction rules. We will introduce a measure of complexity that allows us to say

that the diagrams in the right side of each defining relation are simpler than the diagram

on the left side. Using a reduction rule on a diagram D replaces that diagram with a linear

combination of simpler diagrams. We call any linear combination of diagrams obtained by

applying a sequence of reduction rules to D a descendant of D, and we call the diagrams

appearing in the linear combination descendant diagrams of D. If there exists no infinite

chain of descendant diagrams for D, then D can be written as a linear combination of

irreducible diagrams by repeatedly applying reduction rules to the diagram and to its

descendants. If no diagram admits an infinite chain of descendant diagrams, then the

reduction rules are called terminal and this property implies that irreducible diagrams

span our module. Sometimes more than one reduction rule will apply to a diagram. If

there is always a common descendant for any two ways of reducing a diagram, then the

reduction rules are called locally confluent. If the set of reduction rules are terminal and

locally confluent, then the set of irreducible diagrams forms a basis for our module, by

[SW07, Theorem 2.3].

In anticipation of issues regarding local confluence, we need to introduce the following
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redundant relations:

= (S)

− 0 0 0 0 +

k

= q3k−2

0 0

k

(Ck)

Relation (S) allows one to switch two circles of opposite orientations whenever the

two circles bound an annulus. We see from [SW07] that relation (S) will be necessary for

our list of reduction rules to be confluent, as none of the left sides of the defining relations

are applicable to the diagrams in (S) unless they happen to bound a disk. We borrow

notation from [FS20] to say that two circles that bound an annulus on the surface and

are oriented inconsistently with the boundary of the annulus form a British highway. For

example, the two circles on the left side of the relation (S) form a British highway. The

fact that we are using oriented surfaces allows us to declare the right side of (S) to be the

more reduced side. The relation (S) will serve as a reduction rule that will decrease the

number of British highways on any connected component that is not a torus. The torus

provides an exception since parallel nontrivial circles will bound two distinct annuli. See

the remark after Theorem 2 regarding this exception.

Proposition 3.7 i) The relations (S) hold in SSL3
q (Σ) for any annulus embedded in Σ.

ii) The relations (Ck) hold in SSL3
q (Σ) for all k ≥ 0.

Proof: i) (S) represents an isotopy of webs in the thickened surface Σ × (0, 1), so

the relation holds in SSL3
q (Σ).

ii) We will proceed by induction on k. (C0) is the same as (B4), so the statement is

true for k = 0.
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If k > 0 we can apply the relation (j) to the horizontal bar to the right of the top left

strand to yield

−q4/3
∑

b∈{−,0,+}

q−2b

b 0 0 0 0 +

k − 1

− 0 −b

When b = 0 the right connected component of the diagram is zero by relation (B3).

When b = + we compute that the left portion of the diagram reduces to

− 0 −
= −q−1/3+1

− 0 − 0

= −q−1/3+1(q−1

− − 0 0
+ q−3

− − 0 0
)

Both of the last terms reduce to 0 using (B3) after applying (I2) to the second diagram.

When b = − we are interested in computing

−q4/3q2

− 0 0 0 0 +

k − 1

− 0 +

The right part of the diagram can be reduced by induction now while the left part of

the diagram can be computed in the following manner:
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− 0 +

(B1)
= −q1/3−1

− +

(h)
= −q1/3−1(−q4/3)

∑
a∈{−,0,+} −aa − +

(k)
= −q1/3−1(−q4/3)q−2(−q)

0

This all reduces to

−q1/3−1(−q4/3)q−2(−q)(−q4/3q2)q3(k−1)−2

0 0

k

= q3k−2

0 0

k

which concludes the proof by induction.

For the rest of this section, we will assume any boundary arcs in our diagram have

an orientation that matches the one appearing in the pictures of the defining boundary

relations and that this orientation dictates the height order.

A univalent endpoint of a web diagram is a bad endpoint if the strand attached to

the endpoint is oriented out of the boundary. For example, the endpoint in the picture

on the left of relation (B1) is a bad endpoint while the two endpoints on the right of the

relation are good. We say that a pair of two good endpoints on the same boundary arc

with states b and a are a bad pair if b > a but the endpoint with state b is lower in the

height order than the endpoint with state a. For example, the two endpoints on the left
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of (B2) form a bad pair, while the two endpoints in each diagram of the right side of the

relation form a good pair. In the following, by the term vertices we mean only trivalent

vertices of the web.

Definition 3.8 We define the complexity of a stated web diagram to be the tuple (#crossings,

#bad endpoints, #bad pairs, #vertices, #connected components, #British highways) in

Z6
≥0.

We use the lexigocraphic ordering on Z6
≥0 and note that each defining relation, each

relation (Ck), and each relation (S) involve a single diagram on the left side of the equation

while the right side of the equation contains only diagrams of strictly lower complexity

than the one on the left side of the equation.

We say that a diagram contains a reducible feature if the left side of one of the relations

(I1a)-(I4b), (B1)-(B4), (Ck), or (S) applies. If a diagram contains no reducible feature,

we call such a diagram an irreducible diagram.

Theorem 3.9 The set of isotopy classes of irreducible diagrams on Σ forms a basis for

SSL3
q (Σ).

Remark 3.10 If Σ has a connected component that is a torus, we modify our notion of

an irreducible diagram. By omitting the reduction rule (S) on any torus, the proof below

can be modified to show that the remaining reduction rules will produce a basis consisting

of the set of irreducible diagrams up to isotopy and circle flip moves (S) on any torus.

Proof: We will apply the Diamond Lemma in much the same setup as [Lê18]. First,

we claim that module freely spanned by isotopy classes of web diagrams with our chosen

boundary orientations modulo the defining relations along with (Ck) and (S) yields a

module isomorphic to SSL3
q (Σ). To do this, one observes that ribbon Reidemeister moves
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RI, RII, and RIII and the fact that a strand can pass over or under a vertex all follow

from the defining interior relations, as shown in [Kup94]. The fact that (Ck) and (S) are

redundant relations completes this part of the argument.

Next, we must verify that given a diagram D, the process of iteratively applying

the left sides of our relations to D and to its descendants always terminates in a linear

combination of irreducible diagrams. This is guaranteed by the fact that our reduction

rules involve replacing a diagram by a linear combination of diagrams of strictly lower

complexity in our lexicographic ordering, as in Theorem 2.2 of [SW07]. Thus, the set of

isotopy classes of irreducible diagrams span SSL3
q (Σ).

To show that each diagram can be uniquely written as a linear combination of irre-

ducible diagrams, we must show the local confluence of our relations. This is the reason

that we had to include the redundant relations (Ck) and (S). We must check that if more

than one relation is applicable to a diagram then we can reach a common descendant

regardless of which relation we choose to apply. We use the same notion of the support

of a relation as [Lê18]. If two relations are applicable to a diagram, but their support

is disjoint, then the applications of these relations commute with each other, and thus

immediately reach a common descendant.

We must find local confluence for relations whose supports overlap nontrivially. If

the two relations are both interior relations or (S), then we see by [SW07] that they are

locally confluent.

There is one possible way for a the support of an interior relation to intersect the

support of a boundary relation: a square could be connected to the top of the relations

(Ck) for some k ≥ 2. The following diagram shows an example of an overlap of (C4) and

(I2).
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− 0 0 0 0 0 +

Such a situation will terminate at 0 no matter which relation (Ck) or (I2) is applied

first, as each resulting diagram will provide an opportunity to apply (B3).

Finally, we consider the cases of overlapping supports of the defining boundary rela-

tions and the additional relations (Ck). A first easy case is an overlap of (B3) with (B3),

which must be of the following form:

aaa
(a ∈ {−, 0,+})

Applying (B3) to either the left triangle or the right triangle in the above diagram

yields zero.

We see that the only other supports that can overlap are those of (B2) with any of

(B2), (B3), (B4), and (Ck).

(B2) and (B2):

If (B2) overlaps with (B2): the overlap must be of the following form.

+0−

If we first apply (B2) to the right two endpoints, and then we continue to apply (B2)

until there are no longer any bad pairs we obtain:
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q−3

−0+
+ 2q−5

−0+
+ q−5

−0+
+ q−7

−0+

+q−7

−0+
+ q−7

+0−
+ q−9

−0+

(I3),(I2),(B4)
= q−3

−0+
+ q−5

−0+
+ q−5

−0+
+ q−7

−0+

+q−7

+0−
+ q−5 .

If, instead, we first apply (B2) to the left two endpoints, and then we continue to apply

(B2) until there are no longer any bad pairs, we obtain the same linear combination but

with the diagrams reflected in a vertical line (but with the state locations and boundary

orientation remaining the same). By noting the coefficients in our last equation are

symmetric with respect to this reflection, we see that we obtain the same answer in both

cases.

(B2) and (B3):

If (B2) overlaps with (B3): the overlap must take one of the following forms.

baa
or

abb

(b > a)
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Both cases are handled symmetrically, so we will focus on the left case. If we apply

(B3) first, we obtain zero. So we must show that if we instead apply (B2) first we

eventually obtain zero. We do this by computing:

baa

(B2)
= q−1

aba
+ q−3

aba

(B2)
= q−2

aab

+ q−4

aab

+ q−4

aab

+ q−6

aab

(I2),(I3),(B3)
= (q−2 − q−4q3[2] + 1)

aab

= 0,

resolving this case.

Since (B4) is the same as (C0) the last overlap we need to check is an overlap between

(B2) and (Ck) for any k ≥ 0.

(B2) and (Ck):

There are four cases for such an overlap. Consider first the following two cases:

0 − 0 0 0 0 +

k

or
− 0 0 0 0 + 0

k

These two cases are handled symmetrically, so we will focus on the left case. If we
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apply (Ck) first, we obtain

q3k−2

0 0

k + 1

If we apply (B2) first, we obtain

q−1

− 0 0 0 0 0 +

k

+ q−3

− 0 0 0 0 0 +

k

The first term in this linear combination becomes zero after applying (B3). The

diagram in the second term is isotopic to the diagram appearing on the left side of

(Ck+1). After application of (Ck+1) we obtain confluence in this case.

The other two possible overlaps between (B2) and (Ck) are of the following forms:

+ − 0 0 0 0 +

k

or
− 0 0 0 0 + −

k

Since these two cases are handled symmetrically, we will focus on the left case.

We introduce some notation to simplify this computation. We will use symbols placed

next to each other to represent certain diagrams appearing next to each other. We

represent the diagrams in the left case above by ↓+ ·Ck. We denote by 0i the diagram

involving i parallel strands that terminate in good endpoints with states labeled 0. We

also denote by Xi the diagram

Xi =
0 0 0 0 0 +

i

By applying the relation (Ck) to ↓+ ·Ck we obtain q3k−2 ↓+ ·0k. Consider the effect of
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using relation (B2) on q3k−2 ↓+ ·0k to get rid of bad pairs, using (B3) at each opportunity.

The reduced result is of the form

q3k−2

k∑
l=0

q−lq−3(k−l)0l ·Xk−l =
k∑
l=0

q2l−20l ·Xk−l.

We now check that we reach the same reduced result if we instead apply (B2) first to

↓+ ·Ck. We introduce another piece of notation. The diagram Ai,j has i 0-states on the

left of the +-state and j 0-states on the right.

Ai,j =
− 0 0 0 + 0 0 +

i j

We also note that diagrams of the following form

0 + 0 0 0 0 0 +
= 0

are zero, as can be shown by induction on the number of zero states appearing between

the two + states. The inductive hypothesis can be applied after applying (B2) once to

improve the order of the states and then applying (I2) to remove the square that forms.

If we apply relation (B2) to ↓+ ·Ck then one of the resulting terms will become zero

as it is of the form above. We are then left with

↓+ ·Ck = q−3A0,k+1.

Now consider the diagram Al,m for some l,m ≥ 0. We have Al,0 = 0 by relation (B3).

For m > 0 we can apply relation (B2) followed by (I2) and, ignoring the term with the
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zero diagram as above, we see that

Al,m = q−1Al+1,m−1 + q3Cl ·Xm−1.

A repeated application of this equation yields

q−3A0,k+1 = q−3q3

k∑
i=0

q−iCi ·Xk−i

(Ci)
=

k∑
i=0

q−iq3i−20i ·Xk−i

=
k∑
i=0

q2i−20i ·Xk−i.

Thus, we have reached local confluence in this last case. The Diamond Lemma now

gives us the result.

3.5 The ordinary skein algebra embeds in the stated

skein algebra

We define the ordinary skein algebra S̊SL3
q (Σ) as the module freely spanned by closed

webs contained in the interior of Σ modulo the interior relations (I1a)-(I4b) only.

Corollary 3.11 There is an algebra embedding

S̊SL3
q (Σ)→ SSL3

q (Σ)

induced by the inclusion map on diagrams.

Proof: Using the reduction rules (I1a)-(I4b) and (S), the Diamond Lemma applies
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to give a basis for S̊SL3
q (Σ). This set of basis diagrams is a subset of basis diagrams of

SSL3
q (Σ), thus the inclusion induces an injective map.
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Chapter 4

Triangular decomposition of SL3

skein algebras

In this chapter we study the building block surfaces M,B, and T, and use the splitting

map to decompose the the skein algebra in terms of these blocks.

4.1 Bialgebra and comodule structure associated to

the bigon

The surface made by removing one point from the boundary of a closed disk is called

the monogon and will be denoted M. The surface obtained by removing two points from

the boundary of a closed disk is called the bigon and will be denoted B.

Figure 4.1: Bigon B on left and monogon M on right.
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Proposition 4.1 We have that

SSL3
q (M) ∼= R.

Proof: We show that SSL3
q (M) is spanned by the empty diagram. The fact that

the empty diagram is nonzero follows from the fact that it is irreducible and is thus a

basis element.

Consider a web diagram W in SSL3
q (M). We can use relations (I1a) and (I1b) to

inductively writeW as a linear combination of crossingless diagrams. We can use relations

(l) or (m) to get rid of vertices near the boundary. If there are strands between a vertex

and the boundary we can apply relations (d) or (f) to create room for the vertex to slide

over to the boundary without introducing crossings.

So by induction we can write W as a linear combination of diagrams with no crossings

and no vertices. After applying relations (I4a) and (I4b) to get rid of circles, these

diagrams only have arcs connected to the single boundary arc. By applying relations (g)

and (i), these diagrams become scalar multiples of the empty diagram.

We recall that in [Kup94], Kuperberg used an Euler characteristic argument to show

that the module spanned by closed webs in the plane is 1-dimensional. We remark

that by Proposition 4.1 along with Corollary 3.11, we obtain an alternate proof that

Kuperberg’s relations are enough to reduce any closed web in the plane to a scalar

multiple of the empty web, and that this reduction can be performed algorithmically

by iteratively applying the left sides of the interior relations. We also observe that

Proposition 4.1 and the algorithm produced by the Diamond Lemma imply that any

stated web in M can be reduced to a scalar multiple of the empty diagram by iteratively

applying just the left sides of the defining relations and (Ck).

We next describe the bialgebra structure of SSL3
q (B). For a counit, we will construct
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an algebra morphism ε : SSL3
q (B) → SSL3

q (M) ∼= R. As in [Lê18] we will use an edge

inversion map.

Definition 4.2 If b is a boundary arc of Σ with the orientation given in the defining

relations of SSL3
q (Σ) we define the inversion along b, invb : SSL3

q (Σ) → SSL3
q (Σ) to be

the R-module homomorphism defined on web diagrams by reversing the height order of

b, switching the states to their negatives, and multiplying by scalars C↑s and C↓s for each

endpoint on b. Here, we use C↓s = −q−4/3 for each good endpoint on b with any state s

and we use C↑t = −q−4/3q−2t for each bad endpoint on b with a state t ∈ {−, 0,+}.

Proposition 4.3 The map invb defined above is a well-defined R-module automorphism.

Proof: We must check that the map respects the defining boundary relations. To

do so, we apply the map to both sides of a boundary relation and then reduce the results

using the Diamond Lemma algorithm to see that we obtain the same answers in each

case. Thus, the map is well-defined. Alternatively, it is easier to use the relations in

3.2 to check that invb respects the relations (c),(e),(h),(j),(k), and (n). We then observe

that these relations imply relations (B1)-(B4). To check that it is an automorphism, one

needs to check that the obvious candidate for its inverse is well-defined in the same way.

We define ε : SSL3
q (B)→ SSL3

q (M) to be the map given by the result of inverting the

the right boundary arc er of the bigon with inver and then filling in the puncture. The

map is well-defined since it is a composition of well-defined maps. The fact that it is an

algebra morphism is an easy diagrammatic observation, and can be seen in the same way

as in [CL19].

The comultiplication ∆ : SSL3
q (B) → SSL3

q (B) ⊗ SSL3
q (B) is given by the splitting

morphism ∆c for an ideal arc c that travels from the bottom puncture to the top puncture.

By Theorem 3.6, ∆ is an algebra morphism and satisfies the coassociativity property.
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s t s t

Figure 4.2: Generator αst on left and generator βst on right.

To check that ε satisfies the counit property, we only need to check on generators.

To find a nice set of generators, we use the method in the proof of Proposition 4.1 to see

that any web in the bigon can be written as a linear combination of webs which have

no crossing, no vertex, and no circle. Any trivial arcs that start and end on the same

boundary arc can be replaced by scalars, and we are left with a linear combination of webs

containing only parallel and antiparallel strands with one endpoint on each boundary arc.

Thus, SSL3
q (B) has a generating set consisting of diagrams, each of which contain a single

strand traveling from one boundary arc of the diagram to the other. We denote such

diagrams αst and βst depending on the strand orientation and states.

We use our diagrammatic definition of ε to compute that

ε(αst) = ε( s t )

= −q−4/3q−2t( s −t )

(i)
= −q−4/3q−2t(−q4/3q2tδs−t,0)

= δst

We similarly compute that ε(βst) = δst.

By the definition of ∆, we compute that

∆(αst) =
∑

l∈{−,0,+}

αsl ⊗ αlt.
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Similarly,

∆(βst) =
∑

l∈{−,0,+}

βsl ⊗ βlt.

These equations allow us to verify that

(ε⊗ id) ◦∆(αst) = αst = (id⊗ ε) ◦∆(αst).

The same equations hold for βst and we have proven the following proposition.

Proposition 4.4 The algebra SSL3
q (B) has a natural biaglebra structure given by the

maps ∆ and ε defined above.

The ingredients here are now the same as in [CL19] and so we obtain an analogue of

their Proposition 4.1

Proposition 4.5 Suppose b is a boundary arc of Σ. The map defined by splitting Σ

along an ideal arc isotopic to b so as to split off a bigon B whose right edge is b gives an

R-algebra homomorphism

∆b : SSL3
q (Σ)→ SSL3

q (Σ)⊗ SSL3
q (B).

This endows SSL3
q (Σ) with a right comodule-algebra structure over SSL3

q (B). Similarly, the

map b∆ defined by splitting off from Σ a bigon B whose left edge is b gives an R-algebra

homomorphism

b∆ : SSL3
q (Σ)→ SSL3

q (B)⊗ SSL3
q (Σ).

This endows SSL3
q (Σ) with a left comodule-algebra structure over SSL3

q (B).
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4.2 Gluing or cutting along a triangle

Consider a punctured bordered surface Σ with two distinct boundary arcs a and b.

Also consider an ideal triangle T, which is a disk with three points removed from its

boundary. We will denote the punctured bordered surface Σ#T obtained by gluing Σ to

T along a and b. We label the edges of T as in the following diagram.

a’ b’

c

There is a well-defined R-module homomorphism:

glueT : SSL3
q (Σ)→ SSL3

q (Σ#T)

defined on diagrams by continuing the strands with endpoints on a or b until they reach

c. The map is depicted in the following diagram.

a’ b’

c

a
s1

sk
btl

t1
glueT7→

s1 sk t1 tlc

The map glueT was introduced in [CL19] for the SL2 case. In general, glueT does

not respect the algebra structure, but it gives rise to an algebra structure that is called

a self braided tensor product in [CL19]. In Section 4.5, we describe a special case of

this structure, called the braided tensor product. In this section, we are interested in

glueT because it is an R-linear isomorphism. We will show this by constructing a natural

inverse.
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The triangle T admits an analogue of the bigon’s counit. We define

εT : SSL3
q (T)→ SSL3

q (M)

as the map obtained by applying invb′ ◦ inva′ and then filling in the punctures between c

and a′ and between a′ and b′ as in the following figure.

a’ b’

c

invb′◦inva′7→ a’ b’

c

fill7→

Since εT is defined as a composition of well-defined R-linear maps it is an R-linear

map. What makes εT an analogue of ε is that if εT is applied to a diagram W of the

following form (with any choice of strand orientations):

W =

s1 sn x1xm

t1

tn y1

ym

the result is

εT(W ) = (
n∏
i=1

δsi,ti)(
m∏
j=1

δxj ,yj).

We next define an R-linear map

cutT : SSL3
q (Σ#T)→ SSL3

q (Σ).

Recall the notation of the projection p : Σ t T → Σ#T associated to gluing Σ to the

triangle along a and b. If a′′ = p(a′) = p(a) and b′′ = p(b′) = p(b), we define cutT by

cutT = (εT ⊗ id) ◦ (∆b′′ ◦∆a′′).
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Since (∆b′′ ◦ ∆a′′) cuts out a triangle, we view it as a linear map SSL3
q (Σ#T) →

SSL3
q (T)⊗ SSL3

q (Σ), so the composition above makes sense.

Proposition 4.6 The R-linear maps glueT and cutT satisfy

cutT ◦ glueT = idSSL3
q (Σ)

and

glueT ◦ cutT = idSSL3
q (Σ#T)

.

Proof: We will check each equality on a spanning set for the skein algebra involved.

For the case of SSL3
q (Σ) we consider the spanning set consisting of all stated web diagrams.

Suppose D is a stated web diagram on Σ. If we examine the diagrams that appear in

the triangle cut out by (∆b′′ ◦ ∆a′′) ◦ glueT(D), we see that they are all of the form W

above. Thus, the computation for εT(W ) above shows that

(εT ⊗ id)(∆b′′ ◦∆a′′) ◦ glueT(D) = D.

This proves the first equality of Proposition 4.6.

For the second equality, we wish to use a smaller spanning set of SSL3
q (Σ#T). Consider

a stated web diagram D on (Σ#T) and examine it in a neighborhood of p(T). By applying

an isotopy we can guarantee that p(T) contains only arcs, and that any arc that enters

the triangle through one of the sides either leaves through the other side or terminates

at an endpoint on c. After such an isotopy, we obtain a diagram of the following form

(for some choice of strand orientations):

c
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Using relations (f) and (j) we can break up the strands that pass through both a′′ and

b′′ and thus write our diagram D as a linear combination of diagrams of the following

form:

c

So a spanning set consists of diagrams on Σ#T that are of the above form in a

neighborhood of p(T). Let E be such a diagram. We see that the triangles that appear

in the terms of (∆b′′ ◦∆a′′)(E) are all of the form W above. Again the computation of

εT(W ) above allows us to see that

glueT ◦ (εT ⊗ id) ◦ (∆b′′ ◦∆a′′)(E) = E.

This proves the second equality of Proposition 4.6.

Corollary 4.7 Suppose c is a boundary arc of a punctured bordered surface Σ̄ and that

a′′ and b′′ are ideal arcs with disjoint interiors such that a′′∪b′′∪c bound an ideal triangle.

Then both ∆a′′ and ∆b′′ are injective.

Proof: Let T be the ideal triangle that is split off from Σ̄ if ∆b′′ ◦ ∆a′′ is applied.

Then Σ̄ = Σ#T for the punctured bordered surface Σ containing two distinct boundary

arcs a and b resulting from the splitting maps. Proposition 4.6 tells us that cutT is

injective. By the definition of cutT we see that ∆b′′ ◦ ∆a′′ is injective. Thus, ∆a′′ is

injective. By Theorem 3.6, we see that ∆b′′ ◦∆a′′ = ∆a′′ ◦∆b′′ . Thus, ∆b′′ is injective as

well.
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4.3 The triangular decomposition

We are now able to prove the following addendum to Theorem 3.6.

Theorem 4.8 Suppose Σ̄ is a punctured bordered surface and a′′ is an ideal arc on Σ̄.

Then the map ∆a′′ is injective.

Proof: Let b′′ be an ideal arc isotopic to a′′ so that the ideal arcs have disjoint

interiors and bound a bigon. Let c′′ be an ideal arc that bounds a monogon whose ideal

vertex is an endpoint of a′′, and such that a′′, b′′, c′′ have disjoint interiors and a′′∪ b′′∪ c′′

bounds an ideal triangle. The following diagram depicts the map ∆c′′ .

c′′
a′′ b′′

∆c′′7→ a′′ b′′

c

c′

Consider the application of ∆c′′ to the set of basis diagrams described in Theorem 3.9.

Each irreducible diagram D can be isotoped so that it does not intersect the monogon

bounded by c′′. This allows us to observe that ∆c′′(D) is an irreducible diagram on its

surface as well, and that the isotopy class of D can be completely determined by the

isotopy class of this irreducible representative of ∆c′′(D). Thus, ∆c′′ maps a basis to a

linearly independent set and we conclude that ∆c′′ is injective.

After splitting off the monogon bounded by c′′ we are left with a surface Σ that

contains a boundary arc c such that p(c) = c′′. Now the ideal arcs a′′, b′′ and the boundary

arc c satisfy the hypothesis of 4.7. By the corollary, ∆a′′ is injective on the image of ∆c′′

and thus ∆a′′ ◦∆c′′ is an injective map. The fact that these maps commute implies that

∆a′′ is injective on SSL3
q (Σ̄) as well.

Now that we have determined the splitting morphisms have trivial kernels, we discuss
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their images.

Suppose Σ is a punctured bordered surface with distinct boundary arcs a and b.

Let Σ̄ = Σ/(a = b) and denote by c the common image of a and b under the gluing

map. Recall the comodule structure maps associated to the boundary arcs a, and b.

We will be interested in ∆a : SSL3
q (Σ) → SSL3

q (Σ) ⊗ SSL3
q (B) and τ ◦b ∆ : SSL3

q (Σ) →

SSL3
q (Σ)⊗SSL3

q (B), where τ only transposes the tensor factors. We are interested in the

following result.

Theorem 4.9 Let Σ̄ = Σ/(a = b) and denote by c the common image of a and b under

the gluing map. Then we have

im(∆c) = ker(∆a − τ ◦b ∆).

Proof: The inclusion im(∆c) ⊆ ker(∆a−τ◦b∆) follows by coassociativity of splitting

Σ̄ along c and an ideal arc isotopic to c.

To prove the other inclusion, we assume that y ∈ SSL3
q (Σ) satisfies ∆a(y) = τ ◦b∆(y).

Our goal is to find some x ∈ SSL3
q (Σ̄) such that y = ∆c(x). The element y is represented

by a linear combination of stated web diagrams on Σ. We will find a candidate for x by

trying to weld the strands with endpoints on a or on b to each other. This process uses a

map similar to the edge inversion maps inv before, but this time with a different choice

of scalars associated to the endpoints.

For a boundary arc e with positive orientation, we define the edge reversal map reve

to be the R-linear automorphism of the stated skein module that reverses the height

order on e, flips the states to their negatives and multiplies by the following scalars for

each endpoint on e: ↓sC = −q−4/3q2s for good endpoints with a state s and ↑sC = −q−4/3

for bad endpoints with a state s. We can check that this map is well-defined and an

automorphism in the same way that we checked this for inve.

105



Triangular decomposition of SL3 skein algebras Chapter 4

Let z = ∆a(y) = τ ◦b ∆(y). Denote the left boundary arc of the bigon of Σ tB by

el and the right arc by er. Let T1 and T2 be two triangles. We will use the gluing maps

glueT defined in Section 4.2. Denote the left, right, and bottom edges of the triangles t1l,

t2l, t1r, t2r, and t1b, t2b, respectively. We will consider the result of reversing the arc a,

reversing the arc er, then gluing to the triangles. To glue to T2 we glue b to t2r and glue

er to t2l. To glue to T1, we glue el to t1r and glue a to t1l.

We can write the new element as glueT1
◦glueT2

◦rever ◦reva(z). This gluing is depicted

in the following diagram.

el era b

t1b

t1l
t1r

t2b

t2l
t2r

glueT1
◦glueT2

◦rever◦reva

7→

t1b t2b

First, we view z as z = τ ◦b∆(y). Write y as a linear combination of diagrams Di. For

each i, τ ◦b ∆(Di) is a linear combination of diagrams Dij. Each Dij has ki endpoints on

er, ki endpoints on b, and the states of corresponding endpoints match. After applying

rever to Dij and then gluing to T2, we see that there are 2ki endpoints on t2b, and that

the endpoints which are ki-th and ki + 1-st in the height order have opposite states and

opposite orientations. The scalars associated with the application of rever guarantee

that relations (d) or (f) are applicable and allow us to reduce the number of endpoints

on t2b. After applying these relations ki times for each Di, we see that we can write

glueT1
◦glueT2

◦ rever ◦ reva(z) as a linear combination of diagrams, where no diagram has

an endpoint on t2b. As no reduction rule from our Diamond Lemma algorithm can result

in an endpoint appearing on a boundary arc that previously contained no endpoints, we

see that when we write glueT1
◦glueT2

◦ rever ◦ reva(z) as a linear combination of our basis

diagrams, each basis diagram that appears in the linear combination has no endpoints
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on t2b.

Next, we view z as z = ∆a(y). In a similar way as the last paragraph, we see that

after applying reva and gluing to T1, we can apply relations (d) and (f) to write glueT1
◦

glueT2
◦ rever ◦ reva(z) as a linear combination of basis diagrams such that no diagram

has an endpoint on t1b. By the uniqueness of this linear combination we see that we can

write it as a linear combination of basis diagrams so that no diagram appearing in the

linear combination has an endpoint on t1b or on t2b.

Now, glueT1
◦ glueT2

◦ rever ◦ reva(z) is a linear combination of basis diagrams on

(ΣtB)#T1#T2. Consider the surface (ΣtB)#T1#T2\(t1b∪t2b). This is not a punctured

bordered surface, but depending on whether the appropriate endpoint of c was a boundary

puncture or was an interior puncture, this surface is either a punctured bordered surface

missing an interval on its boundary or it is a punctured bordered surface missing a

boundary circle. In either case, it is naturally diffeomorphic to the original punctured

bordered surface Σ̄ by replacing this missing boundary interval or boundary circle with a

single puncture. There is a linear map defined on the submodule of SSL3
q ((ΣtB)#T1#T2)

spanned by basis diagrams that have no endpoints on t1b or t2b that takes such a basis

diagram and embeds it in (Σ t B)#T1#T2 \ (t1b ∪ t2b). After applying this map to

glueT1
◦ glueT2

◦ rever ◦ reva(z) and composing with our diffeomorphism, we obtain our

candidate x ∈ SSL3
q (Σ̄).

To see that x is the correct choice, we consider ∆c(x) and then apply the same process

to it as we did to y and observe that

glueT1
◦ glueT2

◦ rever ◦ reva ◦∆a(y) = glueT1
◦ glueT2

◦ rever ◦ reva ◦∆a(∆c(x)).

The injectivity of the maps involved allow us to conclude that ∆c(x) = y.

We say that a punctured bordered surface is ideal triangulable if it can be obtained
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from a finite collection of disjoint triangles by gluing some pairs of edges together. It

is known that a punctured bordered surface is ideal triangulable if it has no connected

component that is one of the following: a closed surface, a sphere with fewer than three

punctures, a bigon, or a monogon.

If Σ is an ideal triangulable punctured bordered surface, then the images of the glued

edges are ideal arcs on Σ with disjoint interiors. These form the set of interior edges E

for the ideal triangulation of Σ. Let p : tni=1Ti → Σ be the gluing map. If e ∈ E , then

its preimage p−1(e) = {e′, e′′} consists of two triangle edges. The composition ∆ of the

splitting maps ∆e for e ∈ E gives an algebra embedding

∆ : SSL3
q (Σ)→

n⊗
i=1

SSL3
q (Ti).

The composition L∆ of all left comodule maps e′′∆ gives a map

L∆ :
n⊗
i=1

SSL3
q (Ti)→ (

⊗
e∈E

SSL3
q (B))⊗ (

n⊗
i=1

SSL3
q (Ti)).

The composition ∆R of all right comodule maps ∆e′ gives a map

∆R :
n⊗
i=1

SSL3
q (Ti)→ (

n⊗
i=1

SSL3
q (Ti))⊗ (

⊗
e∈E

SSL3
q (B)).

Then Theorem 4.8 and Theorem 4.9 allow us to observe the following corollary.

Corollary 4.10 If Σ admits an ideal triangulation with a set of interior edges E , then

the following sequence is exact:

0→ SSL3
q (Σ)

∆→
n⊗
i=1

SSL3
q (Ti)

∆R−τ◦L∆→ (
n⊗
i=1

SSL3
q (Ti))⊗ (

⊗
e∈E

SSL3
q (B)).
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4.4 The stated skein algebra of the bigon is Oq(SL3)

In [CL19], it was shown that the Kauffman bracket stated skein algebra of the bigon

is isomorphic to Oq(SL2) as a Hopf algebra (with a suitable renormalization of q). They

showed this by defining a bialgebra map between Oq(SL2) and the Kauffman bracket

stated skein algebra of the bigon. The fact that this map is an isomorphism follows

because it maps the canonical basis of the stated skein algebra to a well known basis of

Oq(SL2). There is an analogous isomorphism between our SL3 stated skein algebra of

the bigon and Oq(SL3). However, the proof here will require us to define maps in both

directions since it is not otherwise clear that the canonical basis of the SL3 stated skein

algebra of the bigon matches up with a basis of Oq(SL3).

We first recall the R-matrix definition of Oq(SL3). Consider the free R-module V

with basis {x1, x2, x3}. The standard R-matrix for SL3 is a linear map

R : V ⊗ V → V ⊗ V

defined by

R(xi ⊗ xj) = q−1/3


qxi ⊗ xj (if i = j)

xj ⊗ xi (if i > j)

xj ⊗ xi + (q − q−1)xi ⊗ xj (if i < j).

We develop some notation for the matrix entries Rkl
ij of R. We have that R(xi ⊗ xj)

is uniquely written as

R(xi ⊗ xj) =
∑

1≤k,l≤3

Rkl
ijxk ⊗ xl.

We define Oq(SL3) as the free R-algebra generated by elements {Xij}1≤i,j≤3 modulo
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the following relations


∑

1≤k,l≤3

Rkl
ijXkmXln =

∑
1≤k,l≤3

Rmn
kl XikXjl (for 1 ≤ i, j,m, n ≤ 3)

∑
σ∈S3

(−q)l(σ)Xσ11Xσ22Xσ33 = 1.

Here, we consider (σ1, σ2, σ3) = (1, 2, 3) the identity permutation.

The left side of the second equation is called the quantum determinant, detq, of the

matrix of generators (A)ij = Xij. We will also make use of notation A[i|j] to mean the

quantum minor of A after deleting row i and column j.

Oq(SL3) has a Hopf algebra structure with structure maps given by

ε(Xij) = δij

and

∆(Xij) =
3∑

k=1

Xik ⊗Xkj.

The antipode S : Oq(SL3)→ Oq(SL3) is defined by

S(Xij) = (−q)i−jA[j|i].

For the purpose of notation to match up our stated skein algebra with the standard

definition of Oq(SL3), we define a bijection t : {1, 2, 3} → {−, 0,+} given by t(1) = +,

t(2) = 0, t(3) = −. Since t reverses the order we’ve placed on the sets {1, 2, 3} and

{−, 0,+} we will have to take care when we apply relations (k)-(n) to diagrams.

Proposition 4.11 There is a unique bialgebra morphism φ : Oq(SL3) → SSL3
q (B) de-
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fined by

φ(Xij) = t(i) t(j)

Proof: Since the elements Xij generate Oq(SL3), the morphism will be unique if it

exists. By construction, such a morphism will preserve the bialgebra structure. To prove

that φ gives a well-defined algebra morphism we must check that it respects the defining

relations of Oq(SL3). We must show that the relations

∑
1≤k,l≤3

Rkl
ijφ(Xkm)φ(Xln) =

∑
1≤k,l≤3

Rmn
kl φ(Xik)φ(Xjl)

and ∑
σ∈S3

(−q)l(σ)φ(Xσ11)φ(Xσ22)φ(Xσ33) = 1

hold in SSL3
q (B). For this, we recall the bialgebra structure of the bigon given in Section

4.1. We consider the result of applying (ε ⊗ id) ◦ ∆ to the following diagram in two

different ways.

t(i)
t(j)

t(m)
t(n)

For the first way, we split the bigon along an ideal arc that stays to the right of the

crossing and obtain

∑
1≤k,l≤3

ε

(
t(i)
t(j)

t(k)
t(l)

)
t(k)
t(l)

t(m)
t(n)

For the second way, we split the bigon along an ideal arc that stays to the left of the

crossing and then apply id⊗ ε.

∑
1≤k,l≤3

t(i)
t(j)

t(k)
t(l)

ε

(
t(k)
t(l)

t(m)
t(n)

)
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The bialgebra axiom (ε⊗ id)∆ = (id⊗ ε)∆ along with the isotopy invariance of the

splitting map guarantees that both answers must be the same.

We can use the defining relations to compute that

ε

(
t(a)
t(b)

t(c)
t(d)

)
= Rcd

ab

Equating our two answers shows that the relations

∑
1≤k,l≤3

Rkl
ijφ(Xkm)φ(Xln) =

∑
1≤k,l≤3

Rmn
kl φ(Xik)φ(Xjl)

hold in SSL3
q (B).

Next, we consider the following diagram

t(1)
t(2)
t(3)

On one hand, we can evaluate this diagram using relation (k) from Section 3.2 along

the right edge of the bigon. On the other hand, we could use relation (l) along the left

edge of the bigon.

This gives us the relation

q−2 = q−2
∑
σ∈S3

(−q)l(σ) t(1)
t(2)
t(3)

t(σ1)
t(σ2)
t(σ3)

Thus, the relation

∑
σ∈S3

(−q)l(σ)φ(Xσ11)φ(Xσ22)φ(Xσ33) = 1

holds in SSL3
q (B). Thus, φ is well-defined.
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To prove that φ is an isomorphism, we will construct an inverse function. We will

define an algebra morphism ψ : SSL3
q (B)→ Oq(SL3) by defining it on diagrams and then

checking that it is well-defined.

In order for ψ to be the inverse of φ we are forced to define it on the diagrams αt(i)t(j)

and βt(i)t(j) from Section 4.1 as

ψ(βt(i)t(j)) = Xij

and

ψ(αt(i)t(j)) = (−q)j−iA[4− i|4− j].

As was noted in Section 4.1, the diagrams αt(i)t(j) and βt(i)t(j) generate SSL3
q (B). So

the values of ψ on these diagrams would determine ψ on SSL3
q (B). However, as we do

not a priori have a definition of SSL3
q (B) as a quotient of a free algebra by relators, it will

be tricky to check that the map is well-defined. Instead, we have a definition of SSL3
q (B)

as a quotient of a free module and so we will define ψ on any diagram by giving specific

directions on how to write the diagram in terms of the diagrams αt(i)t(j) and βt(i)t(j) and

then check that this process leads to a well-defined map.

Given a diagram D, we obtain ψ(D) by performing the following algorithm:

• Apply ∆ by splitting D near the right boundary arc of B so that ∆(D) is written

as

∆(D) =
∑

Di ⊗ Ei,

where the diagrams Ei each contain only parallel and antiparallel strands.

• Apply (ε⊗ id) to ∆(D) to write

(ε⊗ id)∆(D) =
∑

ε(Di)Ei.

113



Triangular decomposition of SL3 skein algebras Chapter 4

• Obtain

ψ(D) =
∑

ε(Di)ψ(Ei) ∈ Oq(SL3),

where ψ(Ei) is determined by the values of ψ(αt(i)t(j)) and ψ(βt(i)t(j)) given above.

Proposition 4.12 The map ψ : SSL3
q (B) → Oq(SL3) described above is a well-defined

algebra homomorphsim.

Proof: We observe that if ψ is well-defined, then it does respect the natural multi-

plication of diagrams in SSL3
q (B).

We must check that the process outlined in the bulletpoints above respects the defin-

ing relations of the stated skein algebra. We split the relations into three cases: interior

relations, boundary relations along the left boundary arc of B, boundary relations along

the right boundary arc of B.

Consider a relation falling under the first two cases. Such a relation only affects the

diagrams Di during the process. Since ε is well-defined, application of such relations will

result in identical representatives in Oq(SL3), and so the process respects these relations.

The case of a relation along the right boundary arc of B is more difficult since it

will change the diagrams Ei and will thus ultimately produce different representatives

in Oq(SL3). It is our task to show that these representatives are equivalent. We handle

each relation separately.

Relation (B1):

To prove that ψ respects relation (B1) it will suffice to check that

ψ

(
e a+ b

)
= (−1)a+bq−1/3−(a+b)ψ

(
e b

a

)
for any states e, a, b ∈ {−, 0,+} with a < b.
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Fix such e, a, b and let i = t−1(e) and j = t−1(a+ b) be the corresponding integers in

{1, 2, 3}. Then by the definition of ψ, the left side of our relation is (−q)j−iA[4− i|4− j].

We now compute the right side of the equation. It will be convenient to let c, d be

the unique states in {−, 0,+} such that c < d and c+ d = e.

By the definition of ψ, we compute that

ψ

(
c+ d

b
a

)
=
∑
x,y

ε

(
c+ d

x
y

)
ψ

(
x
y

b
a

)
We will denote the values of the counit appearing in the above equation as εc+d,x,y.

We use (B3) and (B1) to compute that εc+d,x,y = 0 unless {x, y} = {c, d} and we

use (B2) to see that εc+d,c,d = −qεc+d,d,c. We also use (B1) to compute that εc+d,d,c =

(−1)c+dq1/3+(c+d).

The right side of our relation becomes

= (−1)a+bq−1/3−(a+b)(−1)c+dq1/3+(c+d)

(
ψ

(
d
c

b
a

)
− qψ

(
c

d
b
a

))
= (−q)(c+d)−(a+b)

(
ψ

(
d
c

b
a

)
− qψ

(
c

d
b
a

))

We check that this formula agrees with

(−q)t−1(a+b)−t−1(c+d)(Xt−1(d)t−1(b)Xt−1(c)t−1(a) − qXt−1(c)t−1(b)Xt−1(d)t−1(a))

which is

(−q)(j−i)A[4− i|4− j],

as required.

Relation (B2):
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To show that ψ respects relation (B2) it suffices to check that the following relation

holds in Oq(SL3).

ψ

(
t(i)
t(j)

t(m)
t(n)

)
= q−1ψ

(
t(i)
t(j)

t(n)
t(m)

)
+ q−3ψ

(
t(i)
t(j)

t(n)
t(m)

)

for i, j,m, n ∈ {1, 2, 3} such that n < m. So we must show that

ψ

(
t(i)
t(j)

t(n)
t(m)

)
= q3XimXjn − q2XinXjm.

From relation (I1a) and the computations of ε(βst) from Section 4.1, we compute that

ε

(
t(i)
t(j)

t(n)
t(m)

)
= q3+1/3Rkl

ij − q4δikδjl.

Thus, we must show that

(
∑
k,l

q3+1/3Rkl
ijXknXlm)− q4XinXjm = q3XimXjn − q2XinXjm.

We apply the identity

∑
k,l

Rkl
ijXknXlm =

∑
k,l

Rnm
kl XikXjl.

Since n < m, we have that Rnm
nm = q−1/3(q − q−1) and Rnm

mn = q−1/3 are the only nonzero

values of Rnm
kl as k and l vary.
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The left side of our equation now becomes

(
∑
k,l

q3+1/3Rkl
ijXknXlm)− q4XinXjm

= (
∑
k,l

q3+1/3Rnm
kl XikXjl)− q4XinXjm

= q3(q − q−1)XinXjm + q3XimXjn − q4XinXjm

= q3XimXjn − q2XinXjm,

as required. So ψ respects (B2).

Relation (B3):

To show that ψ respects (B3) we need to show that

ψ

(
t(i)

t(j)
t(j)

)
= 0

for any i, j ∈ {1, 2, 3}.

By the definition of ψ, we have

ψ

(
t(i)

t(j)
t(j)

)
=
∑
k,l

ε

(
t(i)

t(k)
t(l)

)
XkjXlj.

We compute that

ε

(
t(i)

t(k)
t(l)

)
= 0

if 4− i is in {k, l} or if k = l.

If l < k we have εikl = −qεilk. This can be computed by using relations (B2) and (I3).
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Thus,

ψ

(
t(i)

t(j)
t(j)

)
= εilk(XljXkj − qXkjXlj)

for the unique suitable pair l, k for which εilk is nonzero. The result follows from the

identity

XljXkj = qXkjXlj

which holds in Oq(SL3) for l < k.

Relation (B4):

To check that ψ respects relation (B4) it suffices to check

ψ

(
t(1)
t(2)
t(3)

)
= q−2.

By the definition of ψ, we compute

ψ

(
t(1)
t(2)
t(3)

)
=
∑
σ∈S3

ε

(
t(σ1)
t(σ2)
t(σ3)

)
Xσ11Xσ22Xσ33.

We see that this is equal to

q−2
∑
σ∈S3

(−q)l(σ)Xσ11Xσ22Xσ33 = q−2detq

= q−2.

So we see that ψ respects (B4) and, thus, ψ is well-defined.

Our previous two propositions allow us to state the following theorem.

Theorem 4.13 We have that

SSL3
q (B) ∼= Oq(SL3)
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as Hopf algebras.

Proof: In Proposition 4.11 we showed that φ is a well-defined map of bialgebras.

To show that φ is an isomorphism, it suffices to show that φ is invertible as a map of

R-modules. We claim that ψ is its inverse.

We observe that ψ ◦ φ(Xij) = Xij for all generators Xij of Oq(SL3). Since ψ and φ

are both algebra maps, this implies that

ψ ◦ φ = idOq(SL3).

Similarly, φ ◦ ψ agrees with idSSL3
q (B)

for all generating diagrams αst and βst. Thus,

φ ◦ ψ = idSSL3
q (B)

.

Thus, Oq(SL3) and SSL3
q (B) are isomorphic as bialgebras. Since Oq(SL3) is a Hopf

algebra, then Oq(SL3) and SSL3
q (B) are isomorphic as Hopf algebras.

4.5 The stated skein algebra of the triangle is a braided

tensor square of Oq(SL3)

The Hopf algebraOq(SL3) is equipped with a cobraiding ρ : Oq(SL3)⊗Oq(SL3)→ R.

In [CL19] the cobraiding for the SL2 case was shown to have a simple diagrammatic

definition, and an analogous definition will work here as well. This cobraiding will allow

us to describe the SL3 stated skein algebra of the triangle, T.

We define the cobraiding ρ : SSL3
q (B)⊗ SSL3

q (B)→ R on diagrams by
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ρ

(
A

⊗
B

)
= ε

(
A

B

)
.

In the diagrams above, the strands depict a bundle of parallel or antiparallel strands.

The diagrammatic definition of the map makes it easy to see that it respects the defining

relations of the stated skein algebra, so it is well-defined. The argument that this satisfies

the cobraiding axioms is identical to the one in [CL19, Section 3.7], but we do not need

to use it in this section.

We recall that a cobraiding is determined by its values on a set of generators and so

we see that the map ρ that we have defined diagrammatically satisfies

ρ(Xij ⊗Xkl) = Rjl
ki,

and thus matches up with the standard co-R-matrix.

In the situation that we have two algebras M and N which are both left comodule-

algebras over Oq(SL3) we can endow the vector space M ⊗ N with a left comodule-

algebra structure using the cobraiding ρ. We will denote this algebra by M ⊗
−
N and call

it the braided tensor product of the algebras M and N . Using Sweedler’s notation, its

multiplication is defined as follows:

(x⊗ y) ? (z ⊗ t) = (x⊗ 1)(
∑
(z)(y)

ρ(z′ ⊗ y′)(z′′ ⊗ y′′))(1⊗ t)

Equivalently, if we identify M with M ⊗ {1} and N with {1} ⊗N, then our product

structure is given by
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xy =



xy if x, y both in M or both in N

x⊗ y if x in M and y in M∑
(x)(y)

ρ(y′ ⊗ x′)(y′′ ⊗ x′′) if x in N and y in M

Le and Costantino showed in [CL19] that gluing disjoint surfaces along a triangle

yields a braided tensor product of stated skein algebras for the SL2 case. The same is

true for the SL3 case and our Proposition 4.6 takes care of most of the work we need to

do to show it.

Theorem 4.14 Let Σ1 and Σ2 be disjoint punctured bordered surfaces. If a is a boundary

arc of Σ1 and b is a boundary arc of Σ2, then we have an algebra isomorphism

SSL3
q (Σ1)⊗

−
SSL3
q (Σ2) ∼= SSL3

q ((Σ1 t Σ2)#T)

given by the map glueT defined in Section 4.2.

Proof: By Proposition 4.6, the map

glueT : SSL3
q (Σ1 t Σ2)→ SSL3

q ((Σ1 t Σ2)#T)

is an R-module isomorphism. Since SSL3
q (Σ1tΣ2) is naturally isomorphic to SSL3

q (Σ1)⊗

SSL3
q (Σ2), we see that the isomorphism claimed in Theorem 4.14 holds on the level of

R-modules. To see that it holds on the level of R-algebras we must show that glueT

respects the algebra structure.

For this fact, the same diagrammatic proof in [CL19] works here. In each of the

following cases:

• x, y are both in SSL3
q (Σ1),
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• x, y are both in SSL3
q (Σ2),

• or x is in SSL3
q (Σ1) while y is in SSL3

q (Σ2),

it is clear that glueT(x)glueT(y) = glueT(xy).

In the remaining case, we have that x is in SSL3
q (Σ2) and y is in SSL3

q (Σ1). We

diagrammatically compute that

glueT(x)glueT(y) = xy

=
∑

(x)(y)

ε

(
x′y′

)
x′′y′′

=
∑

(x)(y)

ρ(y′ ⊗ x′)glueT(y′′ ⊗ x′′)

= glueT

( ∑
(x)(y)

ρ(y′ ⊗ x′)(y′′ ⊗ x′′)
)

= glueT(xy).

This shows that glueT respects the multiplication of SSL3
q (Σ1) ⊗

−
SSL3
q (Σ2) and com-

pletes our proof.

By applying Theorem 4.14 in the special case where Σ1 and Σ2 are both bigons B we

obtain the following corollary.
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Corollary 4.15 We have that

SSL3
q (T) ∼= Oq(SL3)⊗

−
Oq(SL3).
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Chapter 5

Consequences

In the previous chapters, we established two important relationships between skein al-

gebras and quantum groups. The first is the triangular decomposition of SSL3
q (Σ) for a

punctured surface Σ, which allows us to study SSL3
q (Σ) by using the well-studied quan-

tum group Oq(SL3). In this chapter, we will use the triangular decomposition to observe

that SSL3
q (Σ) is a domain and also to construct a Frobenius map FΣ which embeds the

classical skein algebra SSL3
1 (Σ) in the center of the skein algebra SSL3

q (Σ) when q is root

of unity of order N coprime to 6. The fact that the skein algebra is a domain will follow

for essentially the same reason that Oq(SL3) is a domain. Similarly, the existence of the

Frobenius map will follow essentially from a well-known Frobenius map for Oq(SL3).

The second important observation we made was the isomorphism SSL3
q (B) ∼= Oq(SL3),

providing a skein-theoretic definition of the quantum group Oq(SL3). This observation al-

lows us to use skein theory to study the comodules of the quantum group Oq(SL3) (which

are Uq(sl3)-modules). In this chapter, we use properties of our splitting map to show that

Kuperberg’s SL3 web category describes a full subcategory of Oq(SL3)-comodules (or of

Uq(sl3)-modules). The properties of our splitting map were proven directly from the skein

relations, using the confluence of the stated skein relations. Thus, by extending Kuper-
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berg’s original skein relations to a confluent set of stated skein relations, we have obtained

a self-contained skein-theoretic proof of the existence, injectivity, and surjectivity of the

Reshetikhin-Turaev functor for Kuperberg’s web category.

5.1 The SL3 skein algebra of a punctured surface is

a domain

Suppose that our ground ring R is a domain, which means that if xy = 0 for elements

x, y ∈ R, then we must have that x = 0 or y = 0. Our goal in this section is to show that

whenever R is a domain, SSL3
q (Σ) is a domain as well. We are able to prove this fact as

long as Σ has at least one puncture. We state our main theorem here and then prove it

in the rest of the section.

Theorem 5.1 If R is a domain and Σ has at least one puncture, then SSL3
q (Σ) is a

domain as well.

We remark that this theorem also implies that the ordinary skein algebra is a domain

since it embeds in the stated skein algebra.

We first prove the theorem for the cases when Σ has no ideal triangulation. A punc-

tured bordered surface Σ is called a small surface if it is one of the following: a bigon, a

monogon, a sphere with two punctures or a sphere with one puncture.

Proposition 5.2 If R is a domain and Σ is a small surface, then SSL3
q (Σ) is a domain.

Proof: If Σ is a monogon or a sphere with one puncture, then SSL3
q (Σ) ∼= R and is

a domain.

If Σ is a bigon, then SSL3
q (Σ) ∼= Oq(SL3), which is a domain by [BG02, Theorem

I.2.10]. The proof there is stated for R = k, a field but their proof works for any domain

R.
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Finally, if Σ is a sphere with two punctures, then by applying the splitting map asso-

ciated to an ideal arc traveling from one puncture to the other, we obtain an embedding

SSL3
q (Σ) ↪→ SSL3

q (B) and so our skein algebra is a domain in this case as well.

If Σ is a punctured surface that is not a small surface, then Σ has an ideal triangulation

and we can apply our triangular decomposition to obtain an embedding

SSL3
q (Σ) ↪→

⊗
i

SSL3
q (Ti),

where for each triangle Ti, we have SSL3
q (Ti) ∼= Oq(SL3)⊗

−
Oq(SL3).

So it will suffice to show that
⊗

i(Oq(SL3) ⊗
−
Oq(SL3)) is a domain. Since domains

are not necessarily well behaved under tensor products or braided tensor products (recall

that C⊗R C is not a domain), our result does not follow immediately from the fact that

Oq(SL3) is a domain. However, we will still model our proof on the proof in [BG02] by

first using properties of Oq(M3) and then using a localization.

Recall that the bialgebra Oq(M3) has a similar presentation as Oq(SL3), generated

by elements Xij with the only difference being that the presentation of Oq(M3) does not

include the relation detq = 1. We first prove the following.

Proposition 5.3 If R is a domain then

⊗
i

(Oq(M3)⊗
−
Oq(M3))

is a domain.

Proof: We use a compatibly ordered basis of Oq(M3) and build it up to a compatibly

ordered basis of
⊗

i(Oq(M3)⊗
−
Oq(M3)).

We define an order on our generators Xij using the lexicographic ordering, meaning

Xij < Xkl if i < k or if both i = k and j < l. Using the defining relations of Oq(M3) as
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reduction rules and a standard Diamond Lemma argument, we have a basis for Oq(M3)

consisting of monomials of generators appearing in increasing order.

To each basis monomial, we associate a degree d ∈ Z9
≥0 by

d(Xm11
11 Xm12

12 · · ·Xm33
33 ) = (m33,m32, . . . ,m11),

the list of exponents of the generators, listed in reverse order. A basis element is de-

termined uniquely by its degree, and so we have an indexing of our basis by the totally

ordered monoid Z9
≥0.

To an arbitary nonzero element x ∈ Oq(M3) we can associate a degree d(x) by writing

x in the basis and defining d(x) to be the maximum degree among all basis elements

appearing with nonzero coefficients.

Suppose m1 and m2 are two monomial basis elements. The reduction rules imply

that generators q-commute up to terms of smaller degree and so

d(m1m2) = d(m1) + d(m2).

From this we can deduce that d(xy) = d(x) + d(y) for arbitrary nonzero elements x and

y and so Oq(M3) is a domain.

We next upgrade our compatibly ordered basis of Oq(M3) to a compatibly ordered

basis of Oq(M3)⊗
−
Oq(M3). We will continue to use Xij to refer to the generators in the

first factor and use Yij to refer to the generators in the second factor. Recall that the

algebra Oq(M3)⊗
−
Oq(M3) is isomorphic as a module to Oq(M3)⊗Oq(M3) and thus has

a basis {mXmY } where mX is a monomial of generators Xij in increasing order and mY

is a monomial of generators Yij appearing in increasing order. We claim that this basis

is compatibly ordered as well.
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For a basis element mXmY we define its degree d(mXmY ) ∈ Z18
≥0 to be the concate-

nation (d(mX), d(mY )) where d(mX) was defined earlier in this proof and d(mY ) is the

corresponding definition using the generators Yij. We recall that in the braided tensor

product Oq(M3)⊗
−
Oq(M3) we have that

YijXkl = q−1/3


qXklYij (i = k)

XklYij + (q − q−1)XilYkj (i < k)

XklYij (i > k).

We note that if i < k then Xil < Xkl. Thus, the generators Yij and Xkl q-commute

up to lower order terms. From this we deduce that

d(mX1mY1mX2mY2) = d(mX1mY1) + d(mX2mY2)

and consequently Oq(M3)⊗
−
Oq(M3) is a domain.

We then use the tensor product of these bases to get a compatibly ordered basis of⊗
i(Oq(M3)⊗

−
Oq(M3)) and see that it is a domain.

We would like to take the Ore localization of
⊗

i(Oq(M3)⊗
−
Oq(M3)) with respect to

the multiplicative set generated by the elements detXi
and detYi . This will be easy to

do if we can show that these determinant elements are central. It suffices to show the

following.

Proposition 5.4 The quantum determinant elements detX and detY are central ele-

ments of Oq(M3)⊗
−
Oq(M3).

Proof: We will prove that detX is central. The argument that detY is central is

similar.
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It is well known that detX commutes with the generators Xij so we need to check

that it commutes with the generators Ykl. Recall from the previous proof that the com-

mutativity relations involving Ykl and Xij only depend on the row indices k and i.

We must check that

Ykl(
∑
σ

(−q)l(σ)X1σ(1)X2σ(2)X3σ(3)) = (
∑
σ

(−q)l(σ)X1σ(1)X2σ(2)X3σ(3))Ykl.

If k = 3 then the row index of Y is not smaller than any row indices of the generators Xij

and so Y3l can slide past the determinant, picking up one factor of q2/3 and two factors

of q−1/3 along the way. Thus, the relation holds if k = 3.

If k = 2, then we use the relations to slide Y2l past the generators Xiσ(i) to get

Y2l(
∑
σ

(−q)l(σ)X1σ(1)X2σ(2)X3σ(3)) =
∑
σ

(−q)l(σ)q2/3q−1/3X1σ(1)X2σ(2)Y2lX3σ(3)

= (
∑
σ

(−q)l(σ)X1σ(1)X2σ(2)X3σ(3))Y2l

+
∑
σ

(−q)l(σ)(q − q−1)X1σ(1)X2σ(2)X2σ(3)Y3l

This last term is zero since
∑

σ(−q)l(σ)X1σ(1)X2σ(2)X2σ(3) has a repeated row index and

so is zero by properties of quantum determinants. Thus, Y2l commutes with detX .

When k = 1 a similar computation shows that Y1l commutes with detX .

We can then take an Ore localization of
⊗

i(Oq(M3)⊗
−
Oq(M3)) to obtain the algebra⊗

i(Oq(GL3) ⊗
−
Oq(GL3)), where Oq(GL3) = Oq(M3)[det−1

q ]. Since the localization of a

domain is a domain, we have that
⊗

i(Oq(GL3)⊗
−
Oq(GL3)) is a domain.

The proof of Theorem 5.1 then follows from the following.
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Proposition 5.5 The algebra
⊗

i(Oq(SL3)⊗
−
Oq(SL3)) embeds in

⊗
i(Oq(GL3)⊗

−
Oq(GL3)).

Proof: Producing an embedding Oq(SL3) ⊗
−
Oq(SL3) ↪→ Oq(GL3) ⊗

−
Oq(GL3) will

induce the desired embedding since these algebras are free R-modules and so the tensor

product of injective maps will be an injective map.

To produce this embedding we follow the construction of an the embeddingOq(SL3) ↪→

Oq(GL3) from [BG02].

We show that

(Oq(SL3)⊗
−
Oq(SL3))[z±1

X , z±1
Y ] ∼= Oq(GL3)⊗

−
Oq(GL3).

For notation we will denote by Xij and Yij the generators of Oq(SL3)⊗
−
Oq(SL3) and by

xij and yij the generators of Oq(GL3)⊗
−
Oq(GL3). Define

F : (Oq(SL3)⊗
−
Oq(SL3))[z±1

X , z±1
Y ]→ Oq(GL3)⊗

−
Oq(GL3)

on generators by

Xi1 7→ xi1det−1
x

Xij 7→ xij (j 6= 1)

Yi1 7→ yi1det−1
y

Yij 7→ yij (j 6= 1)

zX 7→ detx

zY 7→ dety
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Since detx and dety are central, we can see that F respects the standard Oq(M3)

relations. By construction, it satisfies F (detX) = 1 = F (detY ). It also satisfies the mixed

relations involving Yij and Xkl. Thus F is a well-defined algebra map.

We define

G : Oq(GL3)⊗
−
Oq(GL3)→ (Oq(SL3)⊗

−
Oq(SL3))[z±1

X , z±1
Y ]

on generators by

xi1 7→ Xi1zX

xij 7→ Xij (j 6= 1)

yi1 7→ Yi1zY

yij 7→ Yij (j 6= 1)

det−1
x 7→ z−1

X

det−1
y 7→ z−1

Y .

G respects the relations and so is a well-defined algebra map. We can see on generators

that FG = id and GF = id and so we have an isomorphism. Restricting F to Oq(SL3)⊗
−

Oq(SL3) produces the desired embedding.

5.2 SL3 analogue of the Chebyshev-Frobenius map

In [BW16], an algebra map called the Chebyshev-Frobenius homomorphism was con-

structed, which embedded the classical skein algebra SSL2
1 (Σ) into the center of the skein
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algebra SSL2
q (Σ) at a root of unity q of odd order. The map is interesting from a topo-

logical viewpoint since it has a definition in terms of threading links through Chebyshev

polynomials and the fact that it is well-defined follows from “miraculous cancellations”

in skein theoretic computations when q is a root of unity. From an algebraic viewpoint,

the map is important because it provides a source of central elements which can be used

to study the representation theory of SSL2
q (Σ) at roots of unity. We are interested in

finding an analogous map for the case of SL3.

Throughout this section we assume that R is a domain and q1/3 is a root of unity

of order N coprime to 6. We are interested in the relationship between SSL3
1 (Σ) and

SSL3
q (Σ), where the skein algebra SSL3

1 (Σ) is obtained from the definition of SSL3
q (Σ) by

replacing q1/3 by 1 in all of the defining skein relations. Our goal in this section is to

prove the following.

Theorem 5.6 Suppose that R is a domain and q1/3 is a root of unity of order N coprime

to 6. Then for a punctured bordered surface Σ with at least one puncture per connected

component, there exists an embedding

FΣ : SSL3
1 (Σ) ↪→ Z(SSL3

q (Σ)).

The Frobenius map FΣ will be constructed by starting with the Hopf algebra embed-

ding O1(SL3) ↪→ Oq(SL3) constructed in [PW91] and then, in some sense, extending the

map to Σ. We follow the strategy of [KQ19] from the SL2 case.

When we say that q1/3 has order N, we mean that (q1/3)N = 1 and (q1/3)k 6= 1 for

0 < k < N. Our assumption that N is coprime to 6 guarantees that q and q2 are also

roots of unity of the same order N, which is a hypothesis used in [PW91].

Proposition 5.7 ([PW91]) There is a Hopf algebra map FB : O1(SL3) → Oq(SL3)
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defined on generators by FB(Xij) = (Xij)
N . Furthermore, the image of FB is contained

in the center of Oq(SL3).

We observe the following.

Lemma 5.8 The Hopf algebra map FB is an embedding.

Proof: The set of monomials

{Xm11
11 Xm12

12 · · ·Xm33
33 | m11m22m33 = 0}

forms a basis for both O1(SL3) and Oq(SL3). Since

FB(Xm11
11 Xm12

12 · · ·Xm33
33 ) = XNm11

11 XNm12
12 · · ·XNm33

33 ,

we see that FB maps the basis of O1(SL3) injectively into the basis of Oq(SL3).

We next extend this map to the case of the braided tensor square. Recall that when

q = 1, the braided tensor square of O1(SL3) is just the ordinary tensor square.

Proposition 5.9 There is an algebra embedding

FT : O1(SL3)⊗
−
O1(SL3) ↪→ Z(Oq(SL3)⊗

−
Oq(SL3))

defined by FT = FB ⊗ FB.

Proof: Since O1(SL3) is a free R-module, by setting FT = FB ⊗ FB we obtain an

embedding of R-modules O1(SL3)⊗
−
O1(SL3) ↪→ Oq(SL3)⊗

−
Oq(SL3). We need to check

that this map respects the algebra structure.

Recall the notation XijYkl for generators of Oq(SL3) ⊗
−
Oq(SL3). To see that FT

respects the algebra structure of the braided tensor product, it will suffice to observe that
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the images of generators FT(Ykl) = Y N
kl commute with the generators Xij in Oq(SL3) ⊗

−

Oq(SL3). A symmetric argument shows the same is true for FT(Xij) and Ykl.

If k = i, we have the relation YklXij = q2/3XijYkl and so

Y N
kl Xij = (q2/3)NXijY

N
kl

= XijY
N
kl ,

since (q1/3)N = 1.

Similarly, if k > i, we have the relation YklXij = q−1/3XijYkl and so Y N
kl Xij = XijY

N
kl

in this case as well.

If k < i, then we will use the relation YklXij = q−1/3XijYkl + q−1/3(q− q−1)XkjYil. We

will prove the following for m ≥ 1 by induction:

Y m
kl Xij = (q−1/3)mXijY

m
kl + (q−1/3)m(q − q−1)

m−1∑
n=0

q−2nXkjYilY
m−1
kl .

We are given the base case. Now assume the inductive hypothesis. We have

Y m
kl Xij = Ykl(q

−1/3)m−1XijY
m−1
kl + (q−1/3)m−1(q − q−1)

m−2∑
n=0

q−2nYklXkjYilY
m−2
kl

= (q−1/3)mXijY
m
kl + (q−1/3)m(q − q−1)XkjYilY

m−1
kl

+ (q−1/3)m−1(q − q−1)
m−2∑
n=0

q−1/3q−2n+2XkjYilY
m−1
kl

= (q−1/3)mXijY
m
kl + (q−1/3)m(q − q−1)

m−1∑
n=0

q−2nXkjYilY
m−1
kl ,

as claimed.
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When we specialize this formula to the case m = N we obtain

Y N
kl Xij = XijY

N
kl

as required since (q−1/3)N = 1 and (q − q−1)
N−1∑
n=0

q−2n = q(1− q−2N) = 0.

We next investigate the diagrammatic properties of our maps FB and FT when we

view them as maps on the skein algebras of the bigon B and triangle T.

Proposition 5.10 When SSL2
q (B) is identified with Oq(SL3), FB is defined on generat-

ing strands by FB(αt(i)t(j)) = αNt(i)t(j) and FB(βt(i)t(j)) = βNt(i)t(j) for all i, j ∈ {1, 2, 3}.

Proof: Our isomorphism SSL3
q (B)→ Oq(SL3) sends βt(i)t(j) to Xij and so we already

know that FB(βt(i)(j)) = βNt(i)t(j).

For the strands αt(i)t(j) we will use the antipodes S and the fact that FB commutes

with the antipodes. For our strands αt(i)t(j), we use the fact αt(i)t(j) = q2j−2iS(βt(j̄)t(̄i)),

where ī = 4− i.

We then compute

FB(αt(i)t(j)) = FB(S(βt(j̄)t(̄i))

= S(FB(βt(j̄)t(̄i)))

= S((βt(j̄)t(̄i))
N)

= S(βt(j̄)t(̄i))
N

= (q2i−2j)NαNt(i)t(j)

= αNt(i)t(j),
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as claimed.

Thus, even though our isomorphism SSL3
q (B) ∼= Oq(SL3) depends on a choice of right

and left boundary arcs of B, the definition of FB is invariant under this choice.

Similarly, even though our isomorphism SSL3
q (T) ∼= SSL3

q (B)⊗
−
SSL3
q (B) depended on

a choice of bottom edge of the triangle, we aim to show that the map FT : SSL3
1 (T) →

SSL3
q (T) is invariant under this choice.

We call a stated arc in the the triangle T a corner arc if it admits a crossingless

diagram and it is not homotopic to a boundary arc. The following illustrates examples

of top, left, and right corner arcs.

Proposition 5.11 The map FT sends a stated corner arc to its N th power.

Proof: If the arc is a left or right corner arc, then by the definition of FT = FB⊗FB

and our diagrammatic interpretation of FB, we already know that FT sends the arc to

its Nth power. So we just have to show the same is true for a top corner arc. We will

compute this for a top corner arc with one orientation. A similar computation works for

the opposite orientation.

We compute the value of FT on our arc by first writing it in terms of left and right

corner arcs and then applying FT.
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i j
=
∑
a

−
a −a

i j

FT
7→

∑
a

−
a −a

i j

=
∑
a

−
a −a

i j
,

where the thick strands denote N parallel strands. The orientation reversal of the

left edge in the last equality is possible since it comes at the expense of a factor of

(q2/3)N(N−1)/2 = 1.

We claim the last expression in our computation is the same as the Nth power of our

top corner arc. To show this, we will make use of the fact that FB is a bialgebra map.

Let er denote the right boundary arc of the left bigon in a disjoint union B t B and

denote by el the left boundary arc of the right bigon. Recall the maps rever and glueT.

We have that the Nth power of our top corner arc is the same as

glueTrever∆(FB(βij)) = glueTrever(FB ⊗ FB)∆(βij),

which is our last expression in our computation above. This part uses the fact that rever

multiplies each diagram by (−1)N = −1, since N is odd.

Now that we have established diagrammatic interpretations of our maps FB and FT,

we can observe that they satisfy a compatibility with our splitting maps. Suppose that

a is a boundary arc of a triangle T.
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Lemma 5.12 Our Frobenius maps F commute with ∆a and a∆ in the sense that

(FT ⊗ FB)∆a = ∆aFT

and

(FT ⊗ FB)a∆ = a∆FT.

Proof: This follows from the fact that ∆ ◦ FB = (FB ⊗ FB) ◦ ∆ and from an

embedding B tB ↪→ B t T.

We can now construct a Frobenius map FΣ for any ideal triangulable Σ.

Proposition 5.13 Suppose Σ has an ideal triangulation with a set of interior edges E .

There exists an algebra embedding FΣ,E of SSL3
1 (Σ) into the center Z(SSL3

q (Σ)) defined

as the unique algebra map making the left square in the following diagram commute:

0 SSL3
1 (Σ)

n⊗
i

SSL3
1 (Ti) (

n⊗
i=1

SSL3
1 (Ti))⊗ (

⊗
e∈E

SSL3
1 (B))

0 SSL3
q (Σ)

n⊗
i

SSL3
q (Ti) (

n⊗
i=1

SSL3
q (Ti))⊗ (

⊗
e∈E

SSL3
q (B)).

∆

FΣ,E

∆R−τ◦L∆

⊗iFTi ⊗iFTi
⊗eFB

∆ ∆R−τ◦L∆

Proof: The horizontal rows are exact, by our triangular decomposition theorem.

The right square commutes by Lemma 5.12. Thus, there exists a unique map of modules

FΣ,E as claimed. The map is an injective algebra map because ∆ and FTi
are injective

algebra maps. By the centrality of FTi
and the injectivity of ∆, we see that FΣ,E is

central.

So far we have defined FΣ,E in terms of the ideal triangulation E . We next aim to show

that if E and E ′ are two ideal triangulations of Σ, then FΣ,E = FΣ,E ′ . As shown in [KQ19]

for the SL2 case, this will follow from showing that Σ = Q is an ideal square, then FQ
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is the same map for both triangulations of Q. We illustrate the two triangulations of Q

here. One triangulation is E = {e} and the other is E ′ = {e′}.

e e′

The skein algebra SSL3
q (Q) has a nice generating set consisting of single corner arcs,

single horizontal arcs, single vertical arcs, with all possible strand orientations and state

labels.

Proposition 5.14 Suppose that γ is a stated arc in our generating set for SSL3
q (Q).

Then both FQ,E and FQ,E ′ send γ to γN . Thus, the map FQ is invariant under change of

triangulation of Q.

Proof: We must check that for the generator γ ∈ SSL3
1 (Q), we have the equalities

∆e(γ
N) = (FT ⊗ FT)∆e

and

∆e′(γ
N) = (FT ⊗ FT)∆e′ .

If γ can be isotoped so that it does not intersect e then the first equation is obvious.

Otherwise, it can be isotoped so that it intersects e exactly once and then the first equality

follows from the fact that FB is a bialgebra map and from an embedding BtB ↪→ TtT.

An analogous argument works for the second equality.

Next we record a compatibility of FΣ,E with a partial splitting of the triangulation.

Suppose a and b are two boundary arcs of a punctured bordered surface Σ and let
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Σ̄ = Σ/(a = b). Then the common image of a and b on Σ̄ is an ideal arc we will denote

e. Suppose Σ̄ has an ideal triangulation with set of interior edges E with e ∈ E . Then Σ

naturally inherits an ideal triangulation with edge set E \ {e}. We are interested in the

relationship between FΣ̄,E and FΣ,E\{e}.

Proposition 5.15 We have that FΣ̄,E is equal to the unique algebra map making the

following diagram commute:

SSL3
1 (Σ̄) SSL3

1 (Σ)

SSL3
q (Σ̄) SSL3

q (Σ).

∆e

FΣ̄,E FΣ,E\{e}

∆e

Proof:

We examine the following diagram:

SSL3
1 (Σ̄) SSL3

1 (Σ)
⊗n

i Ti

SSL3
q (Σ̄) SSL3

q (Σ)
⊗n

i Ti.

∆e

FΣ̄,E FΣ,E\{e}

∆E\{e}

⊗iFTi

∆e
∆E\{e}

The outer rectangle and the right square both commute by the definitions of FΣ̄,E

and FΣ,E\{e}. Thus, the left square commutes. The injectivity of ∆e and FΣ,E\{e} imply

the uniqueness of FΣ̄,E .

Corollary 5.16 Suppose that Σ is a punctured bordered surface with an ideal triangula-

tion with a set of internal edges E . The map FΣ,E does not depend on the triangulation

E .

Proof: Suppose that Σ has a second ideal triangulation E ′. Then E ′ may be obtained

from E by a finite sequences of edge flips involving an internal edge that borders two
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distinct faces. Thus, without loss of generality, we can assume that E and E ′ are identical

except for a single edge flip in a square Q :

e ←→ e′ .

Let ∆Q : SSL3
q (Σ)→ SSL3

q (Σ \Q) be the composition of splitting maps associated to

cutting the square Q out of Σ.

By Proposition 5.14, FQ does not depend on its triangulation. A repeated application

of Proposition 5.15 implies that since both FΣ,E and FΣ,E ′ make the following diagram

commute:

SSL3
1 (Σ) SSL3

1 (Σ \Q)⊗ SSL3
1 (Q)

SSL3
q (Σ) SSL3

q (Σ \Q)⊗ SSL3
q (Q),

∆Q

FΣ\Q⊗FQ

∆Q

we have the equality FΣ,E = FΣ,E ′ .

So far we have shown that Theorem 5.6 is true for any ideal triangulable surface Σ

and that the definition of FΣ in these cases does not depend on the triangulation. We

now briefly comment on the surfaces with at least one puncture which do not admit an

ideal triangulation.

Proposition 5.17 The four punctured bordered surfaces which do not admit a triangu-

lation admit a Frobenius map.

Proof: The four surfaces are the monogon M, the bigon B, and the sphere with 2

or 1 punctures. If the surface Σ is the monogon or the sphere with one puncture, then
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SSL3
q (Σ) ∼= R, which is commutative. So in these cases, FΣ is determined by the fact

that it sends the empty diagram to the empty diagram.

If Σ = B, we have already constructed FB as the map from [PW91] from O1(SL3)

to Oq(SL3).

If Σ is the sphere with 2 punctures, then we let c be an ideal arc connecting the

two punctures and we define FΣ to be the unique map making the following diagram

commute:

SSL3
1 (Σ) SSL3

1 (B)

SSL3
q (Σ) SSL3

q (B).

∆c

FΣ FB

∆c

In this section, we have defined our Frobenius morphism FΣ locally, in mostly an

algebraic manner, and extended it to the whole surface. We have shown that for a

triangulable surface Σ, the map FΣ does not depend on the triangulation, and so is

canonical in some sense. However, there should be a nice global definition of FΣ that can

be given without reference to a triangulation, and one which will generalize to the case

of skein algebras of closed surfaces and skein modules of 3-manifolds. We would hope

for a description of the image of an arbitrary web with a single connected component.

For example, it is certain that a stated arc α should be sent to its Nth framed power.

A knot should be threaded through an SL3 analogue of the Nth Chebyshev polynomial

analogous to the SL2 constructions in [BW16, Lê15, BL20, KQ19]. It is unclear what

should be the image of a more complicated web, so it would be interesting to find a nice

description for it. These questions are beyond the scope of the current thesis but deserve

to be explored in the future.
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5.3 Reshetikhin-Turaev functor for Kuperberg’s SL3

web category

Our goal in this section is to prove the following.

Theorem 5.18 The Reshetikhin-Turaev functor RT : WebSL3 → Oq(SL3)-comod〈V 〉 is

an isomorphism of braided monoidal categories.

The theorem will follow from an interpretation of the exact sequence associated to

our splitting map.

To define relevant categories and functors, it will be convenient to introduce modified

versions of SSL3
q (B) in which we allow for one or both boundary arcs of B to be designated

to contain endpoints of webs without states and in which we do not impose any boundary

skein relations along the designated boundary arcs. We can call such a boundary arc an

inactive boundary arc. In our notation, we will use “ ” on the right or left of B to

indicate an inactive boundary arc, which is one designated to have endpoints which are

not labeled by states. For example, SSL3
q ( B ) denotes the skein algebra of webs in the

bigon with endpoints unlabeled by states and subject to only the interior skein relations.

The notation SSL3
q ( B) denotes the skein algebra of webs in the bigon such that any

endpoints on the left boundary arc of B are unlabeled by states (but endpoints on the

right boundary arc are labeled by states), and which is subject to only the interior skein

relations and stated skein relations along the right boundary arc. Similarly, the skein

algebra SSL3
q (B ) denotes the skein algebra of webs in the bigon such that any endpoints

on the right boundary arc of B are unlabeled by states, and which is subject to only the

interior skein relations and the stated skein relations along the left boundary arc.

Our theorems involving bases and splitting maps carry over to the situation of inac-

tive boundary arcs. We use these modified versions of skein algebras to define certain
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categories and functors. First we observe that these new versions of our skein algebras

admit a module decomposition in terms of boundary data of webs. Let ~a be a sequence

of left and right arrows ~a = (a1, ..., ak) for some k ≥ 0 with each ai ∈ {←,→}.

In this section, we will identify the state + with the integer 1, the state 0 with the

integer 2 and the state − with the integer 3.

Definition 5.19 For an arrow sequence ~a we define SSL3
q (~aB) to be the submodule of

SSL3
q ( B) spanned by webs whose left boundary data, read from top to bottom, agrees with

the arrow sequence ~a. Similarly, we define SSL3
q (B~a) to be the submodule of SSL3

q (B )

spanned by webs whose left boundary data, read from top to bottom, agrees with the arrow

sequence ~a. Finally, for two arrow sequences ~a,~b we define SSL3
q (~bB~a) to be the submodule

of SSL3
q ( B ) spanned by webs whose right boundary data agrees with ~b and whose right

boundary data agrees with ~a.

Proposition 5.20 Our algebras are graded with respect to the following decompositions

as R-modules :

i)

SSL3
q ( B) =

⊕
~a

SSL3
q (~aB),

where the direct sum is over all possible arrow sequences ~a.

ii)

SSL3
q (B ) =

⊕
~a

SSL3
q (B~a),

where the direct sum is over all possible arrow sequences ~a.

iii)

SSL3
q ( B ) =

⊕
~a,~b

SSL3
q (~bB~a),

where the direct sum is over all possible arrow sequences ~a,~b.
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Proof: The proposition follows from the fact that none of our reduction rules coming

from our Diamond Lemma algorithm will change the boundary data of a web along an

inactive boundary arc, and so the algebras are graded with respect to this data.

5.3.1 The category WebSL3

The first category we will define is Kuperberg’s SL3 web category, modified to our set-

ting. The category WebSL3 is the monoidal R-linear category consisting of the following

data:

• An object ~a of WebSL3 is a sequence of arrows ~a = (a1, a2, ..., ak) for some k ≥ 0

where ai ∈ {←,→}.

• Hom(~a,~b) is the module SSL3
q (~bB~a).

• The composition of morphisms is defined on diagrams D ∈ SSL3
q (~bB~a) and E ∈

SSL3
q (~cB~b) by horizontally gluing E on the left of D to obtain a diagram E ◦D in

SSL3
q (~cB~a).

• The tensor product ~a⊗~b of objects ~a and ~b is the concatenation (~a,~b). The tensor

product of morphisms is then given by the product operation in SSL3
q ( B ).

5.3.2 The category Oq(SL3)-comod〈V 〉

We next give the definition of our category Oq(SL3)-comod〈V 〉 and then give it a

diagrammatic interpretation. The category Oq(SL3)-comod〈V 〉 is the full subcategory

of right Oq(SL3) comodules tensor-generated by the standard rank 3 comodule V→ and

its dual V←.

Before giving a precise definition of our category, we fix conventions for the standard

comodule V→ and its dual V←. We let V→ be the free R-module with basis v1, v2, v3 with
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coaction V→ → V→ ⊗Oq(SL3) given by

vi 7→
3∑
j=1

vj ⊗Xji.

Due to conventions associated to our definition of the stated skein relations and the

splitting map, we will use a non-standard weight basis of V←, meaning that our basis will

not be the dual basis of our basis for V→. We let V← be the free R-module with basis

w1, w2, w3 with coaction V← → V← ⊗Oq(SL3) given by

wi 7→
3∑
j=1

wj ⊗ q2i−2jS(Xīj̄),

where we use the notation k̄ = 4− k.

Given a sequence of arrows ~a = (a1, . . . , ak), we denote by V~a the tensor product

V~a = Va1 ⊗ Va2 ⊗ · · · ⊗ Vak .

The category Oq(SL3)-comod〈V 〉 consists of the following data:

• Objects are the modules V~a, which are finite tensor products of copies of V→ and

V←.

• Morphisms are R-linear maps between objects which commute with the right coac-

tion of Oq(SL3). We call the set of morphisms HomOq(SL3)(V~a, V~b).

Recall that the splitting map ∆ : SSL3
q (~aB) → SSL3

q (~aB) ⊗ SSL3
q (B) gives SSL3

q (~aB)

the structure of a right SSL3
q (B) comodule, which is a right Oq(SL3) comodule structure

when we use the identification SSL3
q (B) ∼= Oq(SL3). We find the following diagrammatic

interpretation of the objects of our category.
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Proposition 5.21 Given a sequence of arrows ~a, we have that SSL3
q (~aB) ∼= V~a as

Oq(SL3) comodules.

Proof: We first look at the generating cases. If ~a happens to be the empty sequence,

then both SSL3
q (~aB) and V~a are isomorphic to R with the trivial comodule structure.

If ~a = (→), then SSL3
q (~aB) has a basis

{
i

}3

i=1

and the image of this basis

under the splitting map agrees with the coaction on the basis {vi}3
i=1 of V→.

Similarly, if ~a = (←) then SSL3
q (~aB) has a basis

{
i

}3

i=1

and the image of this

basis under the splitting map agrees with the coaction on the basis {wi}3
i=1 of V←.

If ~a is an arbitrary sequence of arrows, then a basis of SSL3
q (~aB) consists of a product

of basis elements of SSL3
q (←B) and SSL3

q (→B). Since the splitting map is an algebra map,

we have that the image of this basis under the splitting map agrees with the coaction on

the standard tensor basis of V~a.

Next, we provide a diagrammatic interpretation of some of the morphisms of our

category.

Proposition 5.22 Given a diagram E in SSL3
q (~bB~a) and a diagram D in SSL3

q (~aB), we

obtain a diagram E ◦D in SSL3
q (~bB) by gluing horizontally. This gluing defines a linear

map E : SSL3
q (~aB)→ SSL3

q (~bB). The linear map commutes with the coaction.

Proof: The equation (E ⊗ id)∆(D) = ∆(E ◦D) can be seen diagrammatically, so

E commutes with the coaction.

We now have the ingredients to define our Reshetikhin-Turaev functor.

Proposition 5.23 We produce a functor RT : WebSL3 → Oq(SL3)-comod〈V 〉 in the

following manner. On objects, we define RT (~a) = V~a, which we have identified with

SSL3
q (~aB). On morphisms, RT is the identity on the module SSL3

q (~bB~a), which we have

previously identified as a submodule of HomOq(SL3)(V~a, V~b).
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We will eventually show that RT is an isomorphism of categories. First, we will need

a diagrammatic interpretation of HomR(V~a, V~b).

5.3.3 The category split(WebSL3)

The category split(WebSL3) is the monoidal R-linear category consisting of the fol-

lowing data:

• An object ~a of split(WebSL3) is a sequence of arrows.

• Hom(~a,~b) is the module SSL3
q (~bB)⊗ SSL3

q (B~a).

• The composition of morphisms is defined on diagrams D1 ⊗ D2 ∈ SSL3
q (~bB) ⊗

SSL3
q (B~a) and E1 ⊗ E2 ∈ SSL3

q (~cB) ⊗ SSL3
q (B~b) by gluing E2 on the left of D1,

taking the counit, and obtaining ε(E2 ◦D1)E1 ⊗D2 ∈ SSL3
q (~cB)⊗ SSL3

q (B~a).

• The tensor product ~a ⊗~b of objects ~a and ~b is the concatenation (~a,~b). The ten-

sor product of morphisms is then given by the product operation in SSL3
q ( B) ⊗

SSL3
q (B ).

5.3.4 The category R-comod〈V 〉

We now give the definition of the category R-comod〈V 〉 and then give it a dia-

grammatic interpretation. The category R-comod〈V 〉 is the full subcategory of right

R-comodules tensor generated by the standard rank 3 comodule V→ and its dual V←.

The coaction of R is the trivial coaction V~a → V~a ⊗ R. So it does no harm to think of

this category as the full subcategory of R-modules tensor generated by V→ and V←.

We record the data of our category R-comod〈V 〉:

• Objects are the modules V~a, which are finite tensor products of copies of V→ and

V←.
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• Morphisms are R-linear maps between objects which commute with the (trivial)

right coaction of R. We call the set of morphisms HomR(V~a, V~b).

Proposition 5.24 We have the following:

(i) V~b
∼= SSL3

q (~bB) as R-comodules.

(ii) (V~a)
∗ ∼= SSL3

q (B~a) as R-comodules, with evaluation of E ∈ SSL3
q (B~a) and D ∈

SSL3
q (~aB) given by gluing horizontally and taking the counit to obtain ε(E ◦D).

(iii) HomR(V~a, V~b)
∼= SSL3

q (~bB)⊗ SSL3
q (B~a).

Proof: We already proved (i) holds forOq(SL3)-comodules, so it holds forR-comodules

as well.

Under the pairing described in (ii), we have that the basis

{
i

}3

i=1

of SSL3
q (B→)

and the basis

{
i

}3

i=1

of SSL3
q (→B) are dual bases. Similarly, the bases

{
i

}3

i=1

and

{
i

}3

i=1

are dual to each other. Thus, for an arbitrary arrow sequence ~a, the

standard basis of the tensor product SSL3
q (B~a) is dual to the standard basis of the tensor

product SSL3
q (~aB).

The statement (iii) follows from the property HomR(V~a, V~b)
∼= V~b ⊗ (V~a)

∗.

We now have the ingredients to prove a category isomorphism.

Proposition 5.25 The following functor split(RT) : split(WebSL3) → R-comod〈V 〉 de-

fines an isomorphism of categories.

• On objects, split(RT)(~a) = V~a, which is identified with SSL3
q (~aB).

• On morphisms, split(RT) is the identity on SSL3
q (~bB)⊗ SSL3

q (B~a).
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5.3.5 Relating the categories

So far we have discussed four R-linear monoidal categories. We next observe that

they fit into a commutative diagram of categories.

Proposition 5.26 The following diagram of categories is commutative:

WebSL3 split(WebSL3)

OSL3
q -comod〈V 〉 R-comod〈V 〉,

∆

RT split(RT)

incl

where the functor ∆ is defined as

• On objects, ∆(~a) = ~a.

• On morphisms, ∆ : SSL3
q (~bB~a)→ SSL3

q (~bB)⊗ SSL3
q (B~a) is the splitting map.

Proof: We first address the functoriality of ∆. It respects the monoidal structure

since ∆ is an algebra map. We need to check that it respects compositions of diagrams.

Suppose that D ∈ SSL3
q (~bB~a) and E ∈ SSL3

q (~cB~b) are diagrams. We need to check that

∆(E ◦D) = ∆(E) ◦∆(D).

Before we check this with a computation, we introduce some notation. Given an arrow

sequence ~b = (b1, ..., bk) we let St(~b) = {1, 2, 3}k denote the set of sequences of states of

the same length as~b. To verify that our equality holds, we choose to cut E very close to its

right boundary so that ∆(E) =
∑
v∈St(~b)

Ev⊗vE ′′ such that each diagram vE
′′ consist of only

parallel strands whose left endpoints are labeled with a sequence of states corresponding

to the standard basis vector v ∈ V~b and each diagram Ev is the same underlying diagram
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as E but with its right endpoints labeled with states corresponding to v. Similarly, we

choose to cut D very close to its left boundary so that ∆(D) =
∑

w∈St(~b)

D′w⊗wD such that

each diagram D′w consist of only parallel strands whose right endpoints are labeled with

a sequence of states corresponding to the standard basis vector w ∈ V~b. This allows us

to compute that

∆(E) ◦∆(D) =
∑

v,w∈St(V~b)

ε(vE
′′ ◦D′w)Ev ⊗ wD

=
∑

v,w∈St(V~b)

δvwEv ⊗ wD

=
∑

v∈St(V~b)

Ev ⊗ vD

= ∆(E ◦D),

as required.

Next, we check that the diagram commutes. We see that it commutes for objects, so

we need to check that it commutes for morphisms. We can check this on a diagram. Let

E ∈ SSL3
q (~bB~a) be a diagram. Then incl(RT (E)) : SSL3

q (~aB) → SSL3
q (~bB) is defined on

a diagram D ∈ SSL3
q (~aB) by gluing to obtain the diagram

E ◦D ∈ SSL3
q (~bB).

On the other hand, split(RT)∆(E) =
∑

(E) E
′ ⊗ E ′′ is a morphism SSL3

q (~aB) →

SSL3
q (~bB) which sends a diagram D ∈ SSL3

q (~aB) to
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∑
(E)

E ′ε(E ′′ ◦D) =
∑

(E◦D)

(E ◦D)′ ⊗ ε((E ◦D)′′)

= E ◦D,

by the counit axiom. So the diagram commutes.

5.3.6 Proof that RT is an isomorphism

We now will observe that RT is an isomorphism on Hom modules. The following

proposition is a consequence of the identifications we have established in this section.

Proposition 5.27 The following diagram of R-modules commutes

SSL3
q (~bB)⊗ SSL3

q (B~a) SSL3
q (~bB)⊗ SSL3

q (B)⊗ SSL3
q (B~a)

HomR(V~a, V~b) HomR(V~a, V~b ⊗Oq(SL3)),

∆
~b
B−∆B~a

id⊗id id⊗ψ⊗id
∆V~b
◦(−)−((−)⊗id)◦∆V~a

where ψ : SSL3
q (B)→ Oq(SL3) is our isomorphism from before and we have used identi-

fications in the bottom row of the form HomR(X, Y ) = Y ⊗X∗, so that the vertical maps

make sense.

Corollary 5.28 The RT functor is an isomorphism of R-linear braided monoidal cate-

gories WebSL3 → Oq(SL3)-comod〈V 〉.

Proof: The functor RT is bijective on objects, so we just need to show that it induces

isomorphisms on Hom sets. For that we observe the following commutative diagram:
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0 SSL3
q (~bB~a) SSL3

q (~bB)⊗ SSL3
q (B~a) SSL3

q (~bB)⊗ SSL3
q (B)⊗ SSL3

q (B~a)

0 HomOq(SL3)(V~a, V~b) HomR(V~a, V~b) HomR(V~a, V~b ⊗Oq(SL3)).

∆

RT

∆
~b
B−∆B~a

id⊗id id⊗ψ⊗id

incl
∆V~b
◦(−)−((−)⊗id)◦∆V~a

The top row is exact by the splitting theorem and the bottom row is exact by the

definition of a morphism of Oq(SL3)-comod〈V 〉. The vertical maps in the middle and the

right are isomorphisms. Thus, RT is an isomorphism as well, by a special case of the five

lemma.

Finally, we will observe that since the pairing 〈−,−〉 : Oq(SL3)⊗ Uq(sl3) turns right

Oq(SL3)-comodules into left Uq(sl3)-modules, we obtain an embedding of categories

WebSL3
∼=→ Oq(SL3)-comod〈V 〉 ↪→ Uq(sl3)-mod〈V 〉.

If the pairing is nondegenerate, then the embedding will be an isomorphism. We can

see this after observing the following.

Lemma 5.29 Suppose the pairing 〈−,−〉 : Oq(SL3) ⊗ Uq(sl3) → R is nondegenerate.

If U and W are right Oq(SL3)-comodules and T : U → W is an R-linear map which

commutes with the induced left Uq(sl3) action on U and W, then T commutes with the

Oq(SL3) coaction as well.

Proof: Fix an arbitrary u ∈ U. By assumption, we have that for any x ∈ Uq(sl3),

x.T (u) = T (x.u).

We expand both sides of this equation by the definitions of the actions in terms of the
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pairing.

The left side is

x.T (u) = (id⊗ 〈−, x〉)∆W (T (u)).

The right side is

T (x.u) = T ((id⊗ 〈−, x〉)∆U(U))

= (id⊗ 〈−, x〉)(T ⊗ id)∆U(u).

These equations hold for all x ∈ Uq(sl3) and so by considering bases of V and W, we

are able to use the fact that the pairing is nondegenerate to conclude that

(T ⊗ id)∆U(u) = ∆WT (u),

and T commutes with the coaction.

Corollary 5.30 Whenever the pairing 〈−,−〉 : Oq(SL3) ⊗ Uq(sl3) → R is nondegener-

ate, our Reshetikhin-Turaev functor gives an equivalence of braided monoidal categories

WebSL3 → Uq(sl3)-mod〈V 〉.

Remark 5.31 When R = C and q is not a root of unity, then the pairing 〈−,−〉 is

nondegenerate, as discussed in [Tak02]. To work at a root of unity, one can replace

Uq(sl3) with a form of Lusztig’s divided powers algebra studied in [DCL94].

Using a similar method as in the proof of Theorem 4.9, we can use the reduction

rules from Theorem 3.9 to define an explicit algorithm which takes as input a morphism
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in split(WebSL3) which commutes with the coaction and gives as output a morphism

in WebSL3 . The algorithm gives us a diagrammatic description of the inverse of the

Reshetikhin-Turaev functor.
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