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Introduction

Winegrapes (Vitis vinifera) are thought to have been first 
cultivated from wild relatives in southwest Asia as early 
as 7000 BCE (Bouby et al. 2013). Winegrape cultivation 
in California began in earnest in the early 19th century 
(Anderson et al. 2003) and as of 2022, California grows 
winegrapes on more than 2,428 square kilometers, yielding 
approximately 3.4 million crushed tons (CDFA 2022; CDFA 
2023). This scale of viticulture and the accompanying wine 
production contributes > 400,000 jobs and >$70 billion to 
the state economy and makes California the fourth largest 
wine producing region globally (CWI, 2022).

California’s Mediterranean macroclimate and diverse 
mesoclimates, ranging from cool and coastal to warm and 
inland, offer a broad geography over which climate condi-
tions can be suitable for cultivating many varieties of wine-
grapes. However, in California, climate change is projected 
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Abstract
California contains a broad geography over which climate conditions can be suitable for cultivating multiple varieties 
of winegrapes. However, climate change is projected to make winegrape cultivation more challenging across many of 
California’s winegrowing regions. In order to understand the potential effects of climate change on winegrapes, this study 
models variety-specific phenology for six winegrape varieties and quantifies the change in phenology and viticulturally-
important agroclimate metrics over 12 of California’s American Viticultural Areas (AVAs) by the mid-21st century. Results 
show more rapid development for winegrapes with earlier budburst, flowering, veraison, and maturation across all variet-
ies and AVAs. Cabernet Sauvignon shows the greatest change in phenology timing, while Chardonnay shows the least 
change. Likewise, the West Sonoma Coast AVA shows the greatest average change in phenology timing across varieties 
and development stages and Lodi AVA shows the least. Projected changes in agroclimatic metrics include an additional 
month of potentially damaging heat days (above 35 °C) in some AVAs, and decreases in frost days. These results have 
implications for numerous factors related to viticultural production, including water resources management and crop yield 
and quality, and underscore the need for California winegrape growers to improve their resilience to climate change by 
adopting strategies such as increasing soil health and water use efficiency and selecting cultivars suited for future climate 
conditions. By conducting climate effects analyses at the variety-specific and AVA scale, important information is provided 
to the winegrowing industry at a resolution that can support decision-making towards resilience.

Keywords Agroclimatic metrics · California · Climate change · Phenology · Winegrapes

Received: 9 November 2023 / Revised: 15 February 2024 / Accepted: 15 April 2024 / Published online: 23 April 2024
© The Author(s) 2024

A variety-specific analysis of climate change effects on California 
winegrapes

Lauren E. Parker1,2  · Ning Zhang1,3 · John T. Abatzoglou4 · Isaya Kisekka3,5 · Andrew J. McElrone6,7 ·  
Steven M. Ostoja1,2,8

1 3

http://orcid.org/0000-0003-0731-4371
http://crossmark.crossref.org/dialog/?doi=10.1007/s00484-024-02684-8&domain=pdf&date_stamp=2024-4-22


International Journal of Biometeorology (2024) 68:1559–1571

to increase temperature, interannual precipitation variability, 
and the frequency and intensity of extreme heat events, as 
well as exacerbate drought and alter pest and disease pres-
sure (Pathak et al. 2018). Unsurprisingly, climate change is 
projected to affect winegrape yield and quality across many 
of California’s winegrowing regions (Hannah et al. 2013). 
To this point, projected increases in extreme heat exposure 
could slow grapevine development, reduce berry weight, 
negatively impact berry quality, and alter the chemical com-
position of winegrapes and subsequently the characteristics 
of wine (Parker et al. 2020a). Similarly, multiple studies 
have shown that climate change, and extreme heat in par-
ticular, may reduce yields and suitable growing regions for 
wine in California (Diffenbaugh et al. 2011; Monteverde 
and De Sales 2020; White et al. 2006).

Despite viticulture’s well-known sensitivity to climate, 
the diversity of winegrape varieties allows for grape produc-
tion across a wide range of climates around the world (Jones 
2015; Jones and Webb 2010). In fact, it has been argued 
that varietal variation could provide an adaptive opportunity 
to climate change and potentially reduce the projected con-
traction of suitable growing locations among today’s wine 
regions; this argument is predicated on the variation in phys-
iological tolerances and phenology across winegrape variet-
ies (Morales-Castilla et al. 2020; Wolkovich et al. 2017). 
Climatic tolerances vary not only across varieties but also 
throughout the growing season. For winegrapes, changes in 
the timing of phenological development can influence berry 
size, color, chemistry and wine quality; however, by match-
ing the climate conditions to variety-specific phenology 

and climatic tolerances, growers can produce characteristic 
winegrapes (Parker et al. 2020b).

Previous studies have shown that the effects of climate 
change on winegrapes and grape phenology will vary by 
location and variety (e.g., Ausseil et al. 2021; Hannah et al. 
2013; Webb et al. 2007), and understanding potential cli-
mate risks at local scales is useful for management planning 
(e.g., Babin et al., 2022). The objective of this study is to 
explore the potential effects of projected climatic change on 
winegrape production in California across multiple wine-
grape-growing regions known as American Viticultural 
Areas (AVAs) and across multiple winegrape varieties. To 
do this, we model potential shifts in variety-specific phe-
nology and quantify the change in viticulturally-important 
climate metrics at the AVA scale. Given the economic 
importance of California viticulture and the climate changes 
expected, improving the understanding of how climate 
change may affect winegrape production across growing 
regions and varieties will assist winegrape growers and the 
broader wine industry in identifying and prioritizing adapta-
tion actions to meet location- and variety-specific climate-
mediated challenges.

Data and methods

Data

Climatological data

Daily maximum and minimum temperature (Tx, Tn), pre-
cipitation (Pr), and reference evapotranspiration (ETo) for 
the contemporary (1991–2020) period were obtained from 
the 4-km gridded dataset (gridMET, https://www.climatolo-
gylab.org/gridmet.html) of Abatzoglou (2013). gridMET is 
a spatially-continuous, daily dataset of surface meteorologi-
cal conditions developed using the PRISM dataset of PRISM 
Climate Group, Oregon State University (https://prism.ore-
gonstate.edu, see also Daly et al. 1997 and Daly et al. 2008) 
and regional reanalysis data (NLDAS-2, see Xia et al. 2012) 
covering the contiguous United States from 1979 to present 
(Abatzoglou 2013). Daily Tx, Tn, Pr, and ETo were also 
acquired for 20 global climate models (GCMs, Table 1) par-
ticipating in the fifth coupled model intercomparison project 
(CMIP5) for the mid-21st century (2040–2069) period for 
representative concentration pathway (RCP) 4.5. RCP 4.5 
represents a future scenario in which greenhouse gas emis-
sions peak in the early-mid 21st century and then decline, 
resulting in moderate warming. These GCM data were 
obtained from the 4-km Multivariate Adaptive Constructed 
Analogs (MACA, https://www.climatologylab.org/maca.
html) dataset of Abatzoglou and Brown (2012). MACA is 

Table 1 Global Climate Models participating in the 5th Coupled 
Model Intercomparison Project (CMIP5) used in this study
GCM Country of Origin
bcc-csm1-1 China
bcc-csm1-1-m China
BNU-ESM China
CanESM2 Canada
CCSM4 USA
CNRM-CM5 France
CSIRO-Mk3-6-0 Australia
GFDL-ESM2M USA
GFDL-ESM2G USA
HadGEM2-CC365 United Kingdom
HadGEM2-ES365 United Kingdom
inmcm4 Russia
IPSL-CM5A-LR France
IPSL-CM5A-MR France
IPSL-CM5B-LR France
MIROC5 Japan
MIRCO-ESM Japan
MIROC-ESM-CHEM Japan
MRI-CGCM3 Japan
NorESM1-M Norway
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a statistical downscaling method that applies a constructed 
analog approach for mapping daily GCM data to observed 
data (Abatzoglou and Brown 2012). The approach further 
applies bias correction using an equidistant quantile map-
ping methodology (Li et al. 2010). Here, we use MACA 
trained using gridMET data which provides interoperability 
between the historical observed data and future projections. 
For both gridMET and MACA, ETo is calculated for a well-
watered grass surface using the Penman-Monteith method 
(Allen et al. 1998; Walter et al., 2000). These datasets were 
chosen because they provide a spatially continuous and tem-
porally complete record of climate conditions suitable for 
local and landscape-scale agricultural research. RCPs were 
used rather than the newer Shared Socioeconomic Pathways 
(SSPs) used in the current sixth coupled model intercom-
parison project (CMIP6) because downscaled SSP data are 
currently limited. Studies have generally shown similarities 
between climate models participating in the CMIP5 and 
CMIP6 over California (Krantz et al., 2021) and broadly 
similar hydroclimatic changes (Cook et al., 2021). While 
other RCP scenarios exist, we focus our results on RCP 4.5 
because it provides a more conservative measure of poten-
tial change; we also note that the variability between models 
exceeds the variability between RCPs at mid-century time 
horizons (Kharin et al. 2013). Elevation data were acquired 
from the digital elevation model (DEM) associated with the 
gridMET dataset.

Winegrape data

Six winegrape varieties – 3 red varieties and 3 white variet-
ies – were selected for analysis based on a combination of 
economic importance, acreage, and variety-specific infor-
mation available in the literature for developing phenology 
models and environmental tolerance thresholds. The red 
winegrape varieties selected include Cabernet Sauvignon, 
Pinot Noir, and Zinfandel, and the white winegrape vari-
eties selected are Chardonnay, Pinot Gris, and Sauvignon 
Blanc. As of 2022, these six varieties comprise the top three 
red and top three white winegrape varieties by dollar value, 
and collectively these six varieties comprise more than 70% 
of the total dollar value of winegrapes sold in California 
(CDFA, 2023).

American viticultural area data

Twelve American Viticultural Areas (AVAs) within Cali-
fornia were chosen as representative of a range of climate 
conditions that can characterize climate change effects 
broadly. The selected AVAs provide a range of mesocli-
mates, are similar in size, represent both heterogeneous and 
homogenous topography, and cover both coastal and inland 

locations as well as Northern and Southern California loca-
tions. The relative importance of the AVAs to statewide 
winegrape production was also considered; although pro-
duction acreage, crushed tons, and value are calculated at 
the crush district scale, which is a larger spatial scale than 
the AVA, discussion with industry experts helped to iden-
tify key AVAs. The 12 AVAs are: El Dorado, Livermore 
Valley, Lodi, Madera, Mendocino, Monterey, Napa Valley, 
Paso Robles, Russian River Valley, Santa Ynez Valley, San 
Luis Obispo (SLO) Coast, and West Sonoma Coast (Fig. 1). 
AVA shapefiles were downloaded from the U.S. Depart-
ment of Treasury Alcohol and Tobacco Tax Trade Bureau’s 
AVA Map Explorer (https://www.ttb.gov/images/AVA/). A 
grid cell was considered as part of an AVA if its center was 
located within the AVA shapefile.

Variety-specific phenology modeling

Winegrape development is a complex, multi-phasic cycle 
that has been simplified for our assessments of climate 
effects on variety-specific phenology and exposure. Follow-
ing Parker and Abatzoglou (2018), we developed models for 
each variety using published climatic thresholds (Table 2); 
models assessed cold hardiness and changes in the tim-
ing of chill completion, budburst, flowering, veraison, and 
maturity.

Chill accumulation

Sufficient time exposed to cool temperatures, known as 
“chill,” is necessary for fruit development and good yields 
in many perennial crops (Luedeling et al. 2009), including 
winegrapes. There are multiple models for calculating chill 
accumulation; here we calculate chilling degree days (DDC) 
using hourly temperature (T) and we use a base tempera-
ture (Tbase) of 10 °C for all six varieties accumulating from 
November to February, after Ferguson et al. (2014).

Budburst, flowering, and veraison

As vineyards are exposed to warmer temperatures in spring 
they begin to bloom. Budburst marks the first major stage in 
winegrape development and is reached when 50% of dor-
mant buds show green tissue (Zapata et al. 2017). Flower-
ing is the second major stage of winegrape development; it 
is reached when 50% of flower caps have dropped (Zapata 
et al. 2017). With further heat accumulation, fruit begins to 
develop and winegrapes will change color during a devel-
opment phase known as veraison. Budburst, flowering, and 
veraison occur when growing degree day (GDD) accumula-
tion reaches the defined threshold for the given stage. GDD 
are units of heat accumulation commonly used to track the 
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accumulation, prior experiments showed this approach to 
result in poor model performance over our areas of inter-
est, with particularly early development modeled at lower 
latitudes with warmer winter and spring temperatures. To 
address this, we do not begin GDD accumulation until 

development of crops during the growing season. For each 
of these stages, GDD accumulation is calculated follow-
ing Zapata et al. (2017) using variety- and stage-specific 
Tbase. Although the base temperatures provided in Zapata 
et al. (2017) are based on a January 1 start date for GDD 

Fig. 1 The 12 American Viticultural Areas (AVAs) explored in this analysis are outlined in red. Two AVAs selected to illustrate within-AVA spatial 
variability of results are shaded in pink. For reference, California counties are represented on the map by thin, grey lines
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within cropping systems. We selected 14 metrics of impor-
tance to viticulture (Table 3). For the majority of the met-
rics, we take a generalized approach to calculations and we 
do not use any variety- or stage-specific values for Tbase. 
However, for cold hardiness and frost damage, we use vari-
ety- and stage-specific thresholds, respectively.

For each metric, we calculated both the annual value and 
the 30-year average value over the contemporary period 
and the future period at the scale of the 4-km gridMET and 
MACA data. These calculations were done for each of 20 
GCMs and the 20-model mean values were computed to 
represent the average condition of the future period. The 
grid cell values were then averaged across each AVA, pro-
viding a measure of the metric at the AVA scale and at the 
annual and climatological time step. The difference between 
30-year average values for the future and contemporary 
periods were calculated (future [minus] contemporary); 
temporal trends in each metric were also assessed for each 
AVA over each 30-year period using a Theil-Sen estimator, 
and a Mann-Kendall test was applied to determine the sig-
nificance of the trend (α = 0.05) with a null hypothesis of no 
significant trend. Finally, a supplemental analysis explored 
correlations between both phenology and agroclimatic met-
rics and annual mean temperature and elevation.

Results

Across all varieties and AVAs, we show that phenology 
shifts towards later chill completion and earlier budburst, 
flowering, veraison, and maturation. While the between-
variety difference in phenology changes is not large, Cab-
ernet Sauvignon consistently shows the greatest change in 
phenology timing between the contemporary and future 
periods, while Chardonnay shows the least change. The 
between-AVA difference in phenology change is more pro-
nounced with the West Sonoma Coast showing the great-
est change in phenology timing across development stages 
and Lodi showing the least. Beyond phenology, results also 
show that climate change increases the incidence of some 

daylength > 11-hours based on the growing season index 
(Jolly et al. 2005); this modification follows latitude or day-
length adjustments in other heat summation models in viti-
culture (e.g., Gladstones 1992; Huglin 1978).

Maturity

Fruit development continues through summer, and when 
sufficient heat accumulation has occurred the winegrapes 
reach maturity. Winegrape harvest dates are influenced by 
non-climatic conditions such as grape chemistry prefer-
ences (e.g., brix and acid levels within the fruit); here we 
estimate winegrape maturity by applying a threshold for 
the biologically effective degree days (BEDD) needed to 
reach maturation (Gladstones 1992). BEDD incorporates 
two factors: one for adjusting the diurnal temperature range 
and another for correcting day length. The diurnal tempera-
ture range (DTR) is the difference between daily maximum 
and minimum temperatures, and when calculating BEDD 
the DTR factor increases when the DTR exceeds 13 °C and 
decreases when it falls below 10 °C. The day length correc-
tion factor ranges from 1.00 at 40° latitude to 1.045 at 50° 
latitude. For detailed calculations, please refer to Hall and 
Jones (2010). Here we begin BEDD accumulation on April 
1. BEDD were used to determine the timing of maturity due 
to a lack of threshold information for GDD or other indices 
for maturity (e.g., the Huglin Index) in the literature for all 
our selected varieties. Our maturity analysis is not limited 
by established minimum and maximum BEDD values for 
quality winegrape production (Jones et al. 2010) as experi-
ments showed all of our selected AVAs maintain BEDD 
within the bounds for production under both contemporary 
and future climates.

Quantifying changes in agroclimatic metrics

Quantifying agriculturally-relevant climate metrics offers a 
picture of physiologically-important environmental condi-
tions, and monitoring these metrics for changes over time 
can be useful for identifying potential adaptation needs 

Table 2 Variety-specific thresholds used to assess the changes in the timing of chill completion, budburst, flowering, veraison, and maturity. All 
DDc values are from Ferguson et al. (2014); GDD for budburst, flowering and veraison are from Zapata et al. (2017); and BEDD for maturity 
are from Gladstones (1992). For definitions of DDc and GDD, refer to Table 3; for a definition of BEDD, refer to the manuscript subsection on 
Maturity
Grape Variety Chill Budburst Flowering Veraison Maturity

DDC GDD Tbase ℃ GDD Tbase ℃ GDD Tbase ℃ BEDD
Cabernet Sauvignon 700 101 8.3 240 10.4 598 12.5 1300
Pinot Noir 300 79 8.1 256 9.7 578 12.1 1150
Zinfandel 500 132 7.2 294 9.1 639 11.2 1200
Chardonnay 600 114 6.5 354 8.2 727 9.7 1150
Pinot Gris 400 130 6.9 313 8.3 678 10.4 1100
Sauvignon Blanc 300 101 7.4 327 8.8 607 11.1 1150
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Table 3 14 Agroclimatic metrics selected for this analysis, their calculation, and their relevance to viticulture
Agroclimate 
Metric

Calculation Relevance to Viticulture

Growing 
Degree Days 
(GDD)

GDD are calculated following Zapata et al. (2017) using 
Tlower = 10 °C and Tupper = 32 °C. GDD over the growing 
season is accumulated from April to October.

GDD are used in phenology models to estimate the timing of 
crop (and/or pest) development, which can be useful for in-sea-
son planning. Increased GDD can speed up crop development.

Cold Hardiness 
(Hini)

Cold hardiness is calculated as the number of days between 
September 21 and December 21 with temperatures below 
variety-specific thresholds (Ferguson et al. 2014):
Cabernet Sauvignon: -10.3℃
Pinot Noir: -11.5℃
Zinfandel: -10.4℃
Chardonnay: -11.8℃
Pinot Gris: -12.0℃
Sauvignon Blanc: -10.6℃

Cold hardiness is the minimum overwinter temperature that 
can be tolerated without damage. As winter progresses, vines 
become increasingly cold tolerant. Here we use the cold toler-
ance thresholds associated with the fall season to provide a 
conservative view of potential exposure.

Chilling Degree 
Days (DDC)

Chill accumulation is calculated as DDC using hourly T and 
Tbase = 10 °C accumulating from November to February 
after Ferguson et al. (2014).

Chill is required in order for vines to fully break bud. Insuffi-
cient chill can lead to erratic budbreak and can impact fruit set 
and yields. Warmer winter and spring temperatures can reduce 
or delay chill accumulation.

Frost Damage 
Days (FDD)

FDD is calculated as the total number of days per year with 
Tn below the following stage-specific frost damage thresh-
olds (Jones 2003):
Sap Bleeding: -2.5 °C; Budburst: -2.2 °C;
Flowering: -0.5 °C;
Veraison and Maturation: 0 °C

Spring frost can damage buds and young shoots, resulting in 
uneven ripening and declines in yield. Fall frosts can cause 
defoliation of the vines prior to harvest, risking sun scald.

Last Spring 
Freeze (LSF)

The last day of the calendar year prior to June 30 with Tn 
≤ 0 °C.

LSF is an important consideration for early-blooming and 
frost-sensitive perennials. Earlier LSF can also increase pest 
pressure.

First Fall 
Freeze (FFF)

The first day of the calendar year commencing July 1 with 
Tn ≤ 0 °C.

FFF is important for late-maturing varieties that may suffer 
damage from a fall freeze.

Freeze-Free 
Season (FFS)

The difference – in number of days – between the LSF and 
FFF (FFF [minus] LSF).

A certain length of FFS is required for vines to complete their 
annual development cycle. The FFS can inform the geography 
of cultivation. Longer FFS can also increase pest pressure.

Hot Days (HD) The number of days with Tx >35 °C (Jones 2015) during 
the growing season (April – October).

Hot days can negatively affect grape development and yield 
(White et al. 2006). Impacts are dependent on HD timing and 
vine heat tolerance.

Heatwaves 
(HW)

Heatwave events are defined as 3 + consecutive days (Gers-
hunov et al. 2009; Sheridan and Lee 2018) with Tx > 98th 
percentile of 1991–2020 summer (June-August) Tx.

Consecutive days with high temperatures can impact grape 
yield and quality, depending on the timing and absolute temper-
atures (Martínez-Lüscher et al. 2020). Additionally, heatwaves 
have implications for vineyard worker safety and productivity.

Diurnal Tem-
perature Range 
(DTR)

DTR is the difference between daily Tx and Tn. We calculate 
DTR over August – October.

Reduced DTR can speed berry development and alter berry 
chemistry (Cohen et al. 2012a, b), though effects can vary by 
cultivar (Jones et al. 2012)

Diurnal 
Temperature 
Range > 20 °C 
(DTR20)

The number of days with DTR > 20 °C (White et al. 2006) 
over August to October.

High DTR in cool climate regions keeps malic acid and acidity 
in grapes and wine, while low DTR in warm regions makes 
grapes and wine more fruity and less acidic (Gladstones 1992).

Excess Pre-
cipitation Days 
(Prex)

The number of days with precipitation > 5 mm (Mosedale et 
al. 2015) during May to October.

Dry weather from May to October is preferred for optimum 
photosynthesis, ripening and balance. Excess precipitation dur-
ing this period can impact bloom, promote diseases, and dilute 
berries (Jones 2003).

Winter 
Accumulated 
Precipitation 
(Pracc)

Total accumulated precipitation in mm from November of 
the previous year to January of the current year.

Winter precipitation accumulation is necessary for soil mois-
ture recharge (Jones 2003).

Crop Evapo-
transpiration 
(ETc)

ETc is the adjusted reference ET (ETo) using the crop coef-
ficient (Kc) (ETc = ETo*Kc). The total ETc is accumulated 
over the growing season (April – October) with units in 
mm.

ETc is commonly used in irrigation models and decision sup-
port systems (Zhang et al. 2021). Changes in ETc can indicate 
changes in irrigation demand.

1 3

1564



International Journal of Biometeorology (2024) 68:1559–1571

Changes in phenology by variety

When exploring changes in phenology by variety (Fig. 2; 
Table 4a, Supplemental Fig. 1), which accounts for the 
phenology model output by variety across the 12 AVAs, 
those varieties with the lowest chilling degree days (DDC) 
requirement (see Table 2) complete chill accumulation ear-
liest while the highest chill variety considered here, Cab-
ernet Sauvignon, completes chill roughly one month later. 
Under future conditions, the 12 AVA average chill comple-
tion is delayed by approximately 9–13 days across the six 
varieties, with Cabernet Sauvignon showing the greatest 

potentially damaging events, such as days above 35 °C and 
heatwaves, while decreasing the incidence of others, such 
as frost days. As with phenology, geography influences the 
degree of change projected for these and other agroclimatic 
metrics. Below we detail the results of our analysis, pre-
senting relationships between phenology and variety, AVA, 
and geography, and the projected changes in viticulturally-
important agroclimatic metrics at the AVA scale.

Table 4a The 12-AVA average DOY of chill completion and the onset of four key growing stages (budbreak, flowering, veraison, and maturity) 
for six grape varieties under contemporary (1991–2020, observed) and future (2040–2069, RCP 4.5) climate conditions. The DOY is computed as 
the mean of means across 12 California AVAs
Variety CHILL (DOY) BUDBREAK (DOY) FLOWERING (DOY) VERAISON (DOY) MATURITY (DOY)

1991–
2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

Cabernet 
Sauvignon

Dec. 27 Jan. 09 Mar. 28 Mar. 21 May 22 May 08 Aug. 10 Jul. 22 Sep. 23 Sep. 13

Pinot Noir Dec. 01 Dec. 10 Mar. 22 Mar. 16 May 16 May 03 Aug. 02 Jul. 15 Sep. 07 Aug. 28
Zinfandel Dec. 14 Dec. 25 Mar. 28 Mar. 22 May 20 May 08 Aug. 03 Jul. 16 Sep. 13 Sep. 02
Chardonnay Dec. 21 Jan. 02 Mar. 22 Mar. 17 May 19 May 07 Jul. 31 Jul. 14 Sep. 07 Aug. 28
Pinot Gris Dec. 08 Dec. 18 Mar. 26 Mar. 20 May 17 May 05 Jul. 30 Jul. 13 Sep. 02 Aug. 22
Sauvignon Blanc Dec. 01 Dec. 10 Mar. 23 Mar. 18 May 20 May 07 Jul. 31 Jul. 13 Sep. 07 Aug. 28

Fig. 2 Variety-specific phenological response to climate change across 
six varieties and 12 AVAs. The left y-axis illustrates the change in tim-
ing between the RCP4.5 and the contemporary period for five signifi-
cant phenological stages (Chill, Budburst, Flowering, Veraison, and 
Maturity). The 12 American Viticultural Areas (AVAs) are shown 

along the x-axis in geographical order from north to south. The red 
lines correspond to the right y-axis and indicate the annual mean tem-
perature during the contemporary period for each AVA, with error bars 
signifying the standard deviation
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Monterey, Russian River Valley, SLO Coast) show veraison 
advancements of three weeks or greater. Advances in matu-
rity range from less than one week (Madera) to more than 
two weeks (West Sonoma Coast), with maturity occurring 
an average of 11 days earlier.

Geographic influences on phenology

At the AVA-scale, latitude is an important driver of phenol-
ogy in earlier development phases (i.e., chill completion and 
budburst), illustrated by generally earlier chill accumulation 
and later budburst at more northerly AVAs (Fig. 2, Table 4b, 
Supplemental Table 1). In later phenology phases, climate 
drivers other than latitude (e.g., ocean proximity, local 
topography) influence temperature and therefore phenol-
ogy. For example, moving from flowering to maturity, we 
observe a subtle contrast between inland and coastal regions 
with AVAs situated inland, such as El Dorado, Lodi, and 
Madera, exhibiting a smaller shift in timing compared to 
coastal AVAs during these later development stages. While 
these patterns are somewhat muted under future climate 
conditions as compared to the contemporary, they show one 
aspect of the influence of geography on phenology. Eleva-
tion can also influence temperatures and therefore phenol-
ogy. At the AVA-scale, results show a positive correlation 
between elevation and the timing of budburst, suggesting 
that locations at higher elevations tend to experience a later 
budburst day; however, this relationship was not significant 
across all phenology stages (Fig. 2, Supplemental Table 
2). Finally, although we focus on the AVA-scale, we note 
that local topography can also influence phenology. Con-
sider our complementary analysis of projected changes in 
phenology across two AVAs at comparable latitudes: the 

delay. Conversely, the 12 AVA average timing for budburst, 
flowering, veraison, and maturity advances by an average 
of 5–7 days, 12–14 days, 17–19 days, and 10–11 days, 
respectively. At budburst, Cabernet Sauvignon shows the 
greatest advancement of the red varieties and Pinot Gris 
of the white varieties. From flowering to maturity the dif-
ferences between varieties is minimal. All varieties show 
average advancements in maturity of 10 or 11 days. While 
the advancement of phenology increases between budburst 
and veraison, the break in this pattern at maturity is likely 
attributed to the use of BEDD for determining the timing of 
maturation as opposed to the accumulation of GDD used for 
budburst, flowering, veraison stages.

Changes in phenology by AVA

AVA-scale phenology analysis averages the phenology 
model output across the six varieties for each AVA, provid-
ing a view of how general winegrape phenology may shift 
under climate change at the AVA scale (Table 4b). Through 
this lens, results show that future phenology timing shifts 
towards a delay in chill accumulation and an advance in bud-
burst, flowering, veraison and maturation across all AVAs. 
AVA chill completion is delayed by an average of 5–15 
days, with SLO Coast and Santa Ynez Valley AVAs, which 
have the lowest winter DDc under contemporary conditions, 
showing the greatest delay. Budburst advances by a week or 
more in 8 of the 12 AVAs analyzed, with only Madera, Paso 
Robles, SLO Coast, and Santa Ynez Valley AVAs showing 
less than seven days of advancement at this stage. Flower-
ing advancements are two weeks or greater in 4 of 12 AVAs 
(West Sonoma Coast, Livermore Valley, Monterey, Russian 
River Valley), and four of the AVAs (West Sonoma Coast, 

Table 4b The 6-variety average DOY of chill completion and the onset of four key growing stages (budbreak, flowering, veraison, and maturity) 
for 12 California AVAs under contemporary (1991–2020, observed) and future (2040–2069, RCP 4.5) climate conditions. The DOY is computed 
as the mean of means across varieties
AVA CHILL (DOY) BUDBREAK (DOY) FLOWERING (DOY) VERAISON (DOY) MATURITY 

(DOY)
1991–
2020 Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–2020 
Obs.

2040–
2069 
RCP4.5

1991–
2020 Obs.

2040–
2069 
RCP4.5

El Dorado Dec. 05 Dec. 10 Apr. 04 Mar. 26 May 27 May 14 Jul. 24 Jul. 10 Sep. 12 Aug. 31
Livermore Valley Dec. 15 Dec. 27 Mar. 24 Mar. 17 May 19 May 05 Jul. 29 Jul. 12 Sep. 11 Aug. 30
Lodi Dec. 12 Dec. 22 Mar. 21 Mar. 14 May 07 Apr. 25 Jul. 07 Jun. 23 Aug. 26 Aug. 19
Madera Dec. 11 Dec. 19 Mar. 20 Mar. 15 May 03 Apr. 23 Jun. 29 Jun. 18 Aug. 23 Aug. 17
Mendocino Dec. 04 Dec. 12 Apr. 03 Mar. 25 May 30 May 18 Aug. 06 Jul. 21 Sep. 15 Sep. 05
Monterey Dec. 14 Dec. 26 Mar. 22 Mar. 15 May 19 May 04 Aug. 18 Jul. 25 Sep. 17 Sep. 06
Napa Valley Dec. 11 Dec. 20 Mar. 26 Mar. 19 May 17 May 05 Jul. 24 Jul. 08 Sep. 05 Aug. 27
Paso Robles Dec. 07 Dec. 14 Mar. 24 Mar. 22 May 17 May 08 Jul. 24 Jul. 10 Sep. 01 Aug. 25
Russian River Valley Dec. 10 Dec. 20 Mar. 25 Mar. 18 May 21 May 06 Aug. 10 Jul. 18 Sep. 09 Aug. 27
Santa Ynez Valley Dec. 22 Jan. 06 Mar. 17 Mar. 17 May 09 Apr. 30 Jul. 31 Jul. 14 Sep. 06 Aug. 27
SLO Coast Dec. 22 Jan. 06 Mar. 20 Mar. 20 May 23 May 11 Sep. 04 Aug. 10 Sep. 27 Sep. 13
West Sonoma Coast Dec. 11 Dec. 24 Mar. 30 Mar. 20 Jun. 06 May 18 Sep. 09 Aug. 13 Sep. 29 Sep. 13
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increased exposure to days below the threshold for cold har-
diness (Hini) (Supplemental Table 2).

In regions with greater relative frost risk, such as El 
Dorado, Mendocino, and Paso Robles, the number of frost 
damage days (FFD) is projected to decline by approximately 
1 to 2 days between the contemporary and future periods. 
Additionally, we anticipate higher GDD, HD35, and Evapo-
transpiration (ETc) in warmer locations, while lower values 
of Prex and Pracc are expected in these areas. Analysis shows 
a positive correlation between annual mean temperature and 
the change in HD35 (△HD35), suggesting that warmer 
places are anticipated to experience a higher increase in the 
number of hot days. Moreover, elevation exhibits a positive 
correlation with the change in Diurnal Temperature Range 
(△DTR) and △DTR20, indicating that areas with higher 
elevations are expected to experience a more pronounced 
increase in Diurnal Temperature Range and a greater reduc-
tion in FDD (Supplemental Table 2). Finally, we note that 
as with projected phenology changes, projected changes in 
agroclimatic metrics can be influenced by complex topogra-
phy within AVAs (Supplemental Fig. 2).

topographically complex Napa Valley AVA and the more 
homogeneous Lodi AVA (Supplemental Fig. 1). There is 
greater spatial variation in phenology timing over Napa, 
where across-AVA variations in phenology shifts can be 
as large as 31 days, as compared to Lodi where phenology 
shifts are more uniform across stages and varieties, further 
highlighting the importance of AVA geography on wine-
grape phenology.

Changes in agroclimatic metrics

Analysis of agroclimatic metrics across the 12 AVAs of 
interest reveal some notable changes between current and 
future climates (Fig. 3, Supplemental Tables 2 and 3). 
Under current climate conditions, expected geographic pat-
terns appear across a number of agroclimatic metrics. For 
example, inland AVAs (e.g., El Dorado, Lodi, and Madera) 
exhibit higher Growing Degree Days (GDD) and a greater 
number of Hot Days above 35 °C (HD35) when compared to 
their coastal counterparts. Furthermore, metrics like Chill-
ing Degree Days (DDc), excess precipitation days (Prex), 
and winter accumulated precipitation (Pracc) exhibit a north-
to-south gradient, with the northernmost AVA (Mendocino) 
and the highest elevation region (El Dorado) experiencing 
the greatest amount of winter chill and excess precipita-
tion days. We also note that higher elevations correlate with 

Fig. 3 The mean value of 14 general agroclimatic metrics over 12 
AVAs for the contemporary period (blue bar) and the future (2040–
2069) period under RCP 4.5 (yellow bar). The 12 AVAs are arranged 
from north to south. The full name of each metric is listed here: Grow-
ing Degree Days (GDD), Cold Hardiness (Hini), Chilling Degree Days 

(DDc), Frost Damage Days (FDD), Last Spring Freeze (LSF), First 
Fall Freeze (FFF), Freeze-Free Season (FFS), Hot Days (HD), Heat-
waves (HW), Diurnal Temperature Range (DTR), Diurnal Tempera-
ture Range > 20 °C (DTR20), Excess Precipitation Days (Prex), Winter 
Accumulated Precipitation (Pracc), Crop Evapotranspiration (ETc).
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highlight the role of modeling approach in understanding 
phenology changes, our overall findings align with these 
prior studies and add to the body of literature underscoring 
the importance of geography and variety in climate-driven 
phenological shifts.

Although these results capture the overarching effects of 
climate change on winegrape production in California, there 
are some limitations to our study. The thresholds used in our 
phenology models come from trials conducted under differ-
ent environmental conditions and outside of California and 
as such may not be precise relative to the thresholds (gen-
eral or variety specific) that may emerge were these trials 
replicated in our AVAs of interest. For some metrics, there 
is a lack of variety-specific threshold data in the literature 
which limits our results. For example, while it has been sug-
gested that cooler-climate winegrape varieties benefit from 
larger DTR than warmer-climate varieties (Jones 2015), 
variety-specific optimal DTR for our varieties is lacking. 
For metrics like BEDD, the limitations lie in their design; 
BEDD is not designed to model maturation as defined by a 
specific level of ripening (e.g., 24 °Brix). BEDD may limit 
the ability to capture warming-driven shifts in the timing 
of generalized maturity due to the Tupper placing a cap on 
heat accumulation, suggesting that BEDD may not be ide-
ally suited for climate change modeling applications (Hall 
and Jones 2010). Even using an ideal metric for modeling 
thermally-driven development may still produce imprecise 
magnitudes of phenological change (e.g. Sadras and Moran 
2013; Wolkovich et al. 2012). Beyond these thresholds and 
metrics limitations, it is important to acknowledge the spa-
tial limitations of the climate data relative to the microcli-
matic factors that can influence winegrape phenology and 
alter climate exposure at the vineyard scale. It is also criti-
cal to acknowledge that these results do not account for the 
myriad farm management actions that growers can imple-
ment to mitigate exposure to or impacts of undesirable 
conditions.

The adoption of climate-smart adaptation practices can 
improve growers’ resilience to climate change and help 
ameliorate the negative impacts of a warming world. For 
California winegrape growers faced with greater water 
demands by way of higher crop evapotranspiration and a 
need to alleviate the impacts of increasing exposure to heat 
extremes, climate-smart adaptation practices may include 
improving soil structure and incorporating soil amendments 
to increase soil water holding capacity; improving irriga-
tion management to increase infiltration and improve water 
use efficiency; adopting minimum tillage or cover cropping 
practices to reduce soil water evaporation; planting new 
drought- and heat-tolerant rootstocks and varieties; and 
managing the vineyard for heat exposure through canopy-
management practices or the installation of heat-reducing 

Discussion

This study offers an analysis that reinforces the existing 
body of literature on climate effects on agricultural produc-
tion. Our results corroborate other studies showing that agri-
culture in California will face the effects of warmer winters 
and subsequent reduced chill accumulation, longer frost-
free seasons, increased evapotranspiration, and more heat 
extremes (e.g., Cayan et al. 2008; Gershunov and Guirguis 
2012; Luedeling et al. 2009; Pathak et al. 2018). Moreover, 
our results are in line with recent observations of growing 
season shifts in Napa Valley vineyards (Cayan et al. 2023). 
Climate extremes have been associated with notable dam-
ages to California agriculture (Lobell et al. 2011), and our 
results show increased exposure to extreme heat under future 
climate. Heat extremes are a known problem for winegrape 
cultivation, decreasing berry size and influencing berry 
chemistry (Greer and Weston 2010; Parker et al. 2020a). 
In 2021 alone heat was cited as the cause of loss for more 
than $25 M in crop indemnity claims in Napa and Sonoma 
counties, two of California’s top wine-producing counties 
(AgRisk Viewer; Reyes and Elias 2019). Conversely, while 
other California crops may have to contend with increas-
ingly warm winter temperatures in the form of lower chill 
accumulation (Luedeling et al. 2009), our results show that 
due to the low chilling requirements of winegrapes, warmer 
winters will not see similarly direct negative effects on 
winegrape cultivation. However, warmer winters – along 
with reduced frost exposure and longer growing seasons 
– have the potential to increase pest and disease pressure 
(Gross, 2021; Pathak et al. 2018).

Just as with non-cultivated plants (e.g., Gordo and Sanz 
2010; Polgar and Primack 2011), shifts in crop phenology 
under climate change have been consistently reported in lit-
erature (e.g., Pathak and Stoddard 2018; Pope et al. 2013). 
In winegrapes, prior studies have shown that future warming 
will result in earlier development, but the degree of change 
varies by phenology phase, location, and variety (e.g., Aus-
seil et al. 2021; Fraga et al. 2016; Webb et al. 2007). While 
our results align with these studies broadly, there are some 
distinctions. For example, Fraga et al. (2016) showed that 
across Europe Pinot Noir harvest timing showed the great-
est advancement under projected mid-century conditions, 
while the changes in timing of flowering were more mod-
est. In contrast, our results show flowering and veraison to 
have greater advancements, though this is likely due to our 
use of BEDD to define maturity as compared to the use of a 
model-simulated estimation of alcohol content by Fraga et 
al. (2016). Similarly, Webb et al. (2007), investigating cli-
mate influence on the phenology of Cabernet Sauvignon and 
Chardonnay in Australia, suggested greater advancements in 
maturity than our results show. Although these distinctions 
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meaningful scales has been identified as a key component to 
encouraging the adoption of adaptation practices (Johnson 
et al. 2023). In earlier work, Babin et al. (2022) showed that 
the presentation of climate change projections at the local 
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AVA-scale climate projections and projected phenology, 
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Conclusions

Through quantifying these projected changes in phenology 
and agroclimatic metrics at the variety-specific and AVA 
scale, we offer information at a resolution that can support 
grower and industry decision-making. While the method-
ological approach employed here can be applied to other 
varieties and regions within and beyond California’s bor-
ders, we recommend continued field trials to not only ensure 
accurate variety-specific bioclimate information, but also to 
attempt to elucidate the complex relationships between cli-
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the vineyard system (e.g., soils), and adaptive water and 
nutrient management practices. Ultimately, model outputs 
are only as good as their inputs and better understanding 
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modeling for decision support and the long-term resilience 
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