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Abstract 
Wetland water depth influences microbial and plant communities, which can alter the above- and 

below-ground carbon cycling of a wetland. Wetland water depths are likely to change due to shifting 

precipitation patterns, which will affect projections of greenhouse gas emissions; however, these effects 

are rarely incorporated into wetland greenhouse gas models. Seeking to address this gap, we used a 

mechanistic model, ecosys, to simulate a range of water depth scenarios in a temperate wetland, and 

analyzed simulated predictions of carbon dioxide (CO2) and methane (CH4) fluxes over the 21st century. 

We tested our model using eddy covariance measurements of CO2 and CH4 fluxes collected at the Old 

Woman Creek National Estuarine Research Reserve (OWC) during 2015 and 2016. OWC is a lacustrine, 

estuarine, freshwater, mineral-soil marsh. An empirical model found that the wetland water depth is 

highly dependent on the water depth of the nearby Lake Erie. Future wetland surface water depths were 

modeled based on projection of Lake Erie’s water depth using four separate NOAA projections, resulting 

in four wetland water-depth scenarios. Two of the four 21st century projections for Lake Erie water depths 

used in this study indicated that the water depth of the wetland would remain nearly steady; however, the 

other two indicated decreases in the wetland water depth. In our scenario where the wetland dries out, we 

project the wetland’s climatological warming effect will decrease due to smaller CH4 fluxes to the 

atmosphere and larger CO2 uptake by the wetland. We also found that increased water level can lower 

emissions by shifting the site towards more open water areas, which have lower CH4 emissions. We found 

that decreased water depths would cause more widespread colonization of the wetland by macrophyte 

vegetation. Using an empirical relationship, we also found that further drying could result in other, non-

wetland vegetation to emerge, dramatically altering soil carbon cycling. In three of our four projections, 

we found that in general the magnitude of CO2 and CH4 fluxes steadily increase over the next 100 years in 

response to higher temperatures. However, in our driest simulations, we projected a different response 

due to increased oxidation of soil carbon, with CH4 emissions decreasing substantially from an annual 

cumulative peak of 224.6 to a minimum of 104.7 gC m-2 year-1. In that same simulation, net cumulative 

flux of CO2 changed from being a sink of 56.5 gC m-2 year-1 to a source of 369.6 gC m-2 year-1
 over the 

same period, despite a temperature increase from 13.7°C to 14.2°C. This temperature shift in our other 

three cases with greater water depths increased the source strength of CH4 and the sink strength of CO2. 

We conclude that the magnitude of wetland greenhouse-gas fluxes depended on the water depth 

primarily as it affected the areal percentage of the wetland available for plant colonization, but dramatic 

decreases in water depths could cause significant reductions in the wetland CH4 fluxes, while 

simultaneously altering the wetland vegetation.  
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1. Introduction 
Wetlands occupy a unique niche in the global carbon cycle: they can serve as important CO2 sinks 

through carbon fixation and important CO2 sources via microbial respiration, they are one of the largest 

terrestrial reservoirs of organic carbon, and they are major sources of methane (CH4), a powerful 

greenhouse gas (GHG). Wetland CO2 and CH4 vertical fluxes result from a complex set of interdependent 

carbon, nutrient, water, and energy flux dynamics, making current forecasting efforts rather uncertain 

(Melton et al., 2013; Poulter et al., 2017; Saunois et al., 2019). Ecological variables, such as wetland 

surface-water depths, affect many underlying carbon cycling processes, often in opposing ways. 

Wetland water depths affect a myriad of important biogeochemical and plant processes that, in turn, 

affect GHG fluxes. Primarily, water depth affects wetland GHG fluxes through effects on plants, effects 

on microbes, and changes to turbulent transport of compounds. 

Water depth’s effects on plants are significant for wetland carbon cycling since plants are typically a 

major source of organic carbon for most wetlands (Nowak et al., 2015). Both the type and abundance of 

wetland plants are strongly affected by the depth of standing water (Colmer, 2003; Strand, 2002). Many 

wetland plants have adaptations for anoxic (oxygen limited) conditions in the root zone (e.g., via larger 

aerenchyma, Armstrong, 1980; Laan et al., 1989), thus water depths can stimulate or suppress plant 

growth (Armstrong, 1980; Colmer, 2003; Justin and Armstrong, 1987; Sorrell et al., 2000; Strand, 2002). 

Changing the vegetation structure also directly affects CH4 flux by affecting gas transport rates. 

Aerenchyma provide a substantial pathway of CH4 transport to the atmosphere (Garnet et al., 2005; 

Jeffrey et al., 2019; Kao-Kniffin et al., 2010; Sutton-Grier and Megonigal, 2011; Villa et al., 2020). 

Beyond these effects, water depth changes can also drive shifts in abundance and diversity of wetland 

plants over a longer time span, affecting CH4 fluxes (Lenssen et al., 1999; Seabloom et al., 2001; Keddy 

and Ellis, 1985; Seabloom et al., 1998). 

Microbial communities are similarly affected by water depth, which can drive changes in ecosystem 

carbon cycling (Elberling et al., 2011). Water depth alters electron acceptor availability in the soil, 

particularly oxygen, by creating a barrier for vertical transport of oxygen into the soil (Elberling et al., 

2011). Changes in vegetation community structures also have major effects on rates of oxygen transport 

to the soil as they can move large quantities of oxygen through their lacunar root system (Colmer, 2003). 

As water depths are likely to change in many wetlands, it is important to have modeling tools that can 

estimate the likely effects that this change will have, but few models explicitly account for each of these 

processes, leaving our predictions in this regard speculative and poorly constrained. Lacustrine temperate 

wetlands, particularly in the Great Lakes region, have highly uncertain forecasts for water depths, which, 
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combined with the relative complexity of the underlying carbon processes and their interactions, have 

resulted in relatively poor capability to predict these wetlands’ carbon budget. 

Here we sought to address this gap by using the mechanistic, process-based model ecosys (Grant et al., 

1997), in which the biogeochemical processes controlling methanogenesis and methanotrophy are 

explicitly represented, to develop an understanding of how water depth affects CH4 fluxes from a 

temperate freshwater estuarine wetland in northern Ohio, and applied the model to predict 21st century 

fluxes. Although ecosys has been used for a wide range of purposes, the work here builds upon its use for 

wetland CH4 fluxes.  

We evaluated the model performance by comparing its predictions to eddy covariance CO2 and CH4 

flux data gathered under known water depths at the wetland from 2015 to 2016 at Old Woman Creek 

(OWC). Using observations from the site, we developed empirical models to predict the water depth and 

plant community structure of the wetland from regional meteorological conditions and water depths at 

Lake Erie, which is partially hydrologically linked to the wetland. We then used ecosys with water depths 

predicted from the empirical relationships between lake and wetland water depths, and climatologic 

projections of Lake Erie water depths to investigate wetland plant-community dynamics, CO2 and CH4 

fluxes, and carbon storage over the 21st century.  

2. Methods 

2.1 Site description 

Old Woman Creek (OWC) National Estuarine Research Reserve (NERR) (Figure 1), located at Lake 

Erie's southern shore (41.378° N latitude, 277.489° E longitude), is operated jointly between the National 

Oceanic and Atmospheric Administration (NOAA) and the Ohio Department of Natural Resources 

(ODNR). The site’s land cover can be roughly classified into four types: open water, mud flats, patches of 

emergent cattail vegetation (Typha spp.), and patches of floating-leaved vegetation (co-dominated by 

Nelumbo spp. and Nymphaea spp.). During 2015 and 2016 the dominant plant species of the wetland was 

Typha spp, which occupied 78% of the vegetated area in 2015. 
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Figure 1. The Old Woman Creek National Estuarine Research Reserve, which served as the model 

training site for this analysis. Colors on the map are vegetation cover in 2015, when data for the site were 

first collected. Each color represents a different species of wetland vegetation, with yellow representing 

stalk bearing emergent macrophytes (mostly Typha spp. and some Phragmites Australis), blue 

representing Nelumbo spp., and green representing other floating-leaved macrophyte vegetation (e.g. 

Nymphaea spp.). Area of open water was digitized for analysis but is not shown here for clarity. Red dot 

on map indicates the eddy-covariance tower location. Orange dot indicates location of a meteorological 

station. 

OWC is a natural freshwater, temperate, mineral-soil, estuarine marsh, fed by the tributary Old 

Woman Creek. Through much of the year, a sand barrier separates Lake Erie from Old Woman Creek. 

The barrier breaches and reforms on a roughly semi-annual basis. When the barrier breaches, OWC and 

Lake Erie are hydrologically linked. The breaches often happen when the water depth in the wetland and 

the water depth in Lake Erie are disparate, which drives water movement through the sand barrier and 

thereby bank erosion. The result is a rapid equilibration of Old Woman Creek with Lake Erie’s water 

depth, and a rapid shift in the wetland water depth. The barrier reforms over time (typically within 3-5 

weeks after the barrier break, but some times faster) as waves deposit sand and sediment from the lake at 

the river mouth. 
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2.2 Meteorological, hydrological, and eddy covariance measurements 

The OWC eddy-covariance (EC) tower has been in operation since May 2015 and is registered with 

the Ameriflux network (Site-ID: US-OWC (Bohrer et al., 2015)) (Figure 1). The site is equipped with 

open-path IRGAs for CO2/H2O and CH4 (LI-7500 and LI-7700, LI-COR Biosciences, Lincoln, NE) and 

an ultrasonic anemometer (CSAT3, Campbell Sci.), installed roughly 3 m above the ground (which could 

be flooded, roughness length and footprint calculations include a half hourly update of the surface 

elevation based on the water depth). The tower also measures air temperature and humidity (HMP155, 

Vaisala, Helsinki, Finland), incoming and outgoing radiation (NR01, HuskeFlux, Delft, The Netherlands) 

and has a network of soil temperature probes (107L, Campbell Scientific, Logan, UT) to provide the soil 

temperature gradients at three locations in the wetland. Chamber measurements were conducted monthly 

in multiple locations of different patch types throughout the wetland. The chamber measurement data and 

the patch type maps for the site at different years are available through ESS-DiVE (Bohrer et al., 2019). 

The flux calculation approach for this tower has been previously described by Rey-Sanchez et al (2018) 

and is based on the formulation used at another wetland site by Morin et al (2014a, b). In brief, we 

applied a 3-D wind rotation to force the average vertical and cross wind components for each half hour to 

be zero (Lee et al., 2004). We allowed for slight time lags between our two data series (vertical wind 

perturbations and solute concentration), performing a constrained time-lag technique based on the 

maximal covariance approach (Detto et al., 2011). All fast data time series were despiked by looking for 

extreme outliers (i.e. greater than 6 standard deviations away from a local temporal neighborhood of 

points). We applied standard WPL and frequency response corrections to fluxes (Webb et al., 1980; 

Massman, 2000). We applied an empirical seasonal threshold u* value that filtered data out when flux 

data were significantly correlated to u* (Reichstein et al., 2005), and set a minimum value for u* at 0.2 

m/s. We assumed the same u* threshold was sufficient for CO2 and CH4 and based our filter on the CO2 

fluxes for both. Finally, we utilized a footprint model to quantify the relative contribution of each land-

cover type to the site-level flux observation during a particular half hour. We used a multi-patch 

expansion of the 2-D footprint model developed by Detto et al (2006), which is an expansion of the 1-D 

model developed by (2000). 

A nearby meteorological station and several water quality and level gauges are run at by the OWC 

NERR staff  (NOAA, ODNR). These provided additional hydrological and water quality data. 

Particularly, we used the wetland water depth and dissolved oxygen concentration (DO). Data are 

publicly available through NOAA’s NERR website at http://cdmo.baruch.sc.edu/). We obtained 12 years 

(2005-2016) of data and performed gap-filling using a bi-linear periodic function as described in Morin et 

al (2014a). We obtained Lake Erie water depth data from 2000-2016 using NOAA data gathered at the 
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Marblehead station (publicly available through NOAA Tides and Currents, ‘Marblehead, OH’ station, 

Station Code: 9063079, https://tidesandcurrents.noaa.gov/). 

2.3 Model Description 

We parameterized and evaluated the model ecosys (Grant et al., 2017b, a; Grant, 1997) for the OWC 

site. Ecosys is an hourly time-step model that mechanistically tracks the thermodynamics, hydrology, and 

nutrient cycling of an ecosystem in up to 3 dimensions using linked grid-cells and discretized soil and 

canopy layers. Ecosys is widely used (approximately 100 peer-reviewed studies), and performs well in 

model inter-comparison studies (Amthor et al., 2001; Dietze et al., 2011; Hanson et al., 2004; Matheny et 

al., 2014). It has been used in a wide range of terrestrial ecosystems (Grant, 2013; Grant et al., 1999; 

Grant and Roulet, 2002), including wetlands (Dimitrov et al., 2014b, a; Grant et al., 2012; Mezbahuddin 

et al., 2014). Ecosys is built around a coupled thermodynamic and hydrologic scheme with a simultaneous 

solution for soil temperature and soil moisture. The model uses energy budget closure to iterate for latent 

heat fluxes consistent with canopy water potential and overall system energy and water budgets. Sub-

hourly sub-surface hydrology is simulated using a discretized mixed case of Richard’s equation for 

unsaturated flow, Darcy and Green-Ampt equations for saturated flow with infiltration and ponding, and a 

Poiseuille equation for macropore flow. 

Ecosys features detailed vegetation and biogeochemistry representations that are relevant to this study. 

For vegetation, ecosys uses interacting multi-layer plant-canopy and root system profiles that represent 

plant growth, competition, and succession. Each plant functional type (PFT) is described through a suite 

of PFT properties including photosynthetic pathway (C3, C4), annual or perennial, evergreen or 

deciduous, vascular or nonvascular, and N2 fixing or non-N2 fixing.  

Its biogeochemistry module is a multi-phase model that explicitly resolves biomasses of diverse 

microbial functional types (MFT) subject to stoichiometric and bioenergetic constraints. The 

biogeochemistry of ecosys is particularly appropriate for modeling CH4 since it explicitly represents: (1) 

oxidation-reduction reactions driven by microbial communities composed of relevant microbial guilds 

with transient population sizes; (2) thermodynamic, substrate, and inhibition constraints on microbial 

respiration and growth by which these reactions are driven; and (3) aqueous and gaseous phase processes 

and transport in soil and roots. CH4 generation and consumption are described in Grant and Roulet (2002) 

and in Grant et al. (2012). Biological CH4 processes are included in ecosys to simulate the interrelated 

activities of MFTs for anaerobic fermenters, which produce hydrogen and acetate, acetotrophic 

methanogens, and hydrogenotrophic methanogens. The basis of the microbial simulation is a 

stoichiometric mass conservation and the energetics of the oxidation-reduction transformations mediated 

by each MFT. Ecosys couples soil biogeochemistry and vegetation dynamics driven by competition (e.g., 
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plant roots and microbes using a limited soil O2 and nutrient supplies) and symbiosis (e.g., mychorrhizal 

fungi) for soil nutrients. Aerenchyma in modeled vegetation also serves as a transmission pathway for 

oxygen into the soil and for greenhouse gases to escape from the soil, providing an important 

biogeochemical interaction between the two modules. In this study, all model parameters remained the 

same as those in studies cited earlier (e.g. (Grant et al., 2012; Grant and Roulet, 2002; Chang et al., 2020, 

2019)). 

2.3.1 Soil parameters 
Ecosys requires a detailed description of the soil physical and chemical properties as domain 

descriptors and initial conditions for the model. Appendices A1-3 tabulates all soil parameters and initial 

values used in this study and details the sources. Here we itemize some of the most critical sources for the 

model soil inputs. Bulk density values were obtained from Bernal and Mitsch (2008). These observations 

extended 60 cm into the soil, and we assumed them constant for deeper layers. Initial concentration 

profiles for SO4, Fe, NO3, and pH were measured from soil core samples using a modified mooring-

system soil corer. Fe (II) was measured by mixing 1 g of soil with added to 5 mL 0.5N HCl in a 15 mL 

disposable centrifuge tube and vortexed. We allowed samples to sit overnight for dissociation. 20µl of the 

soil/HCL mix was then placed into a 15 mL disposable centrifuge tube containing 4.8 mL of dionized 

water. One Hach FerroVer Iron Reagent for 5 mL sample packet was added to each tube and the tube was 

vortexed for 2 minutes, and then run on a spectrophotometer at 510 nm for absorbance. Ion 

chromatography was used to determine [NO3] and [SO4] in the geochemistry soil cores at various depths. 

5 g of soil was added to 5 mL of deionized water in a 15 mL falcon tube and vortexed to create a soil 

slurry. An pH/mV meter (AB150 , Accumet, Westford, MA, USA) was used to measure pH of the soil 

slurry. The soil slurry was then passed through a 0.2 um filter. The filtered liquid was stored in 2 ml 

microcentrifuge tubes at -20°C until analysis on an Ion Chromatography System (ICS-2100, Dionex, 

Sunnyvale, CA) with an AS18 column.  

Sand, silt, and clay percentages, hydraulic conductivity, cation and anion exchange capacities, organic 

nitrogen, organic phosphorus, aluminum, calcium, magnesium, sodium, and potassium concentrations 

were determined at multiple depths by extracted cores, which were segregated into 5 cm depths down to 

30 cm. The Colorado State University Soil, Water, and Plant Testing Lab analyzed the cored soil samples.  

Volumetric water content at field capacity, and at wilting point were estimated using the Soil-Plant-

Atmosphere-Water (SPAW) model (Rawls et al., 1982; Saxton and Rawls, 2006). We used the SPAW 

soil water characteristics tool for this purpose and provided it with the soil texture (i.e. sand, silt, clay) and 

the organic content of the soil. All other ecosys inputs were taken from previously validated ecosys runs 
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of a generalized 0.25×0.25 km2 grid cell representing northern Ohio within a full-scale North America run 

(Mekonnen et al., 2016). 

2.3.2 Model forcing for historical period: meteorological conditions and water depth 
We used air temperature, wind speed, relative humidity, precipitation, and incoming short wave 

radiation data from the OWC meteorological station to create the model’s weather forcing files for 1956 – 

2019 based on data from 2006-2016. Ecosys uses an external water table with a prescribed depth to drive 

discharge and recharge across lateral boundaries within which internal water tables are modeled 

(Mezbahuddin et al., 2014). The depth of this external water table can be allowed to change during model 

runs. We chose to directly drive ecosys with the measured ecosystem surface water depth as a prescribed 

hourly variable because the hydrologic behavior of Old Woman Creek depends on the breaching and 

reformation of a sand barrier at the point where the wetland meets Lake Erie. We accomplished this by 

setting the external water table to a negative (i.e. aboveground) value equal to the measured standing 

water depth at each hourly time step. We obtained the hourly water depth data from gauges at OWC, 

adjusted to correspond to the water depth around the eddy covariance tower’s footprint area. We adjusted 

the model inputs that controlled the lateral equilibration of surface water with the external water table to 

regulate the grid-cell water depth within each time step. We also disabled sediment flow simulated with 

the surface-water flow. There is uncertainty associated with this approach, since some sediment mass is 

likely lost to Lake Erie when the lake and the wetland are connected. However, we believe this loss to 

have relatively small implications for the wetland mass budgets of greenhouse gasses at annual 

timescales, compared to other potential sources of error. We used data from Lake Erie water depths to 

drive an empirical model for the wetland water depth for 21st century projections (see section 2.3.5.2 21st 

century water depth forcing).  

We spun-up the model using 10 years (2005-2014) of meteorological data, looped five times to 

simulate a period of 50 years (from 1956 to 2005), initializing all PFTs in 1956. We used additional 11 

years of data as part of the explicit simulation period (2006-2016), and actual data for 2015 and 2016 

instead of looped data values. We determined that 40 years was an adequate spin-up period by confirming 

that at the end of the spin-up period the divergence of decadal carbon uptake from the previous decade 

was less than 1%. 

2.3.3 Patch-level simulations of OWC 
In most wetland models, the wetland is considered a single tile supporting a single set of forcing and 

land-cover characteristics. However, in wetlands there are distinct differences between areas within the 

wetland that are covered with different land cover types, such as open water and macrophyte vegetation. 

These patches have very different carbon and methane fluxes (Rey-Sanchez et al., 2018; Villa et al., 2020, 

2019), as well as different characteristic biogeochemical variables. To handle these different patches, we 
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set a simulation featuring two interacting grid cells that shared common meteorological forcing for the 

purpose of calculating the total site-level fluxes. The only difference between the grid cells was that we 

initialized Typha and a sub-aquatic plant species as the active PFTs in 1956 in the vegetated grid cell and 

only initialized the sub-aquatic species in the open water grid cell. Although ecosys can represent several 

interacting PFTs, we lumped the observed macrophyte PFTs into the single Typha PFT for computational 

efficiency, effectively treating the Typha PFT as a stand-in for all possible vegetated cover types at the 

OWC site. This assumed lack of higher PFT resolution is probably associated with some uncertainty. 

There are datasets for flux rates and conductivity of methane transport through different vegetation PFTs 

throughout OWC (see Villa et al (2020) and Bohrer et al (2019). However, due to the relative lack of 

representation of PFTs other than Typha and open water in the EC-tower observation footprint, including 

other PFTs would have resulted in a largely unconstrained contribution to the model. Though the PFTs in 

each grid cell were prescribed, PFT productivity within each cell was allowed to vary as predicted by the 

conditions in the cell, resulting in cases where the conditions in the patch were not suitable for the 

prescribed vegetation and thus times where the patch was far less productive. 

The full model domain encompassed 10 × 10 m2, and the two grid cells shared a 10 m long border, 

which ran North to South through the model domain. We gave each grid cell a width proportional to its 

relative contribution to the total area during all times where we could quantify the area of each cover type 

(i.e., the vegetated and open water grid cells were 6.6 × 10 m2 and 3.4 × 10 m2, respectively). Both grid 

cells shared the same surface air temperature, humidity, wind, and incoming radiation forcing. They also 

shared the same water depth fluctuations, though the water depth in the open water patch was set 0.3 m 

deeper than in the vegetated patch. 

We compared ecosys flux outputs to those observed by the EC-tower by scaling the two grid cells’ 

(one vegetated, one open water) fluxes to the site level proportional to their relative representation in the 

EC-tower’s observation footprint area at each half hour.We combined the resulting fluxes of each grid 

cell off-line for predictions of the site-level fluxes using an area-weighted average, from the relative area 

covered by each patch type. Two types of site-level predictions were made: one based on the whole site 

area, the other on the relative area of each patch type within the half-hourly flux tower observation 

footprint area. Whole-site fluxes were used to discuss the model results and predictions. Footprint area 

predictions were used to compare model and EC-flux observations. 

2.3.4 Characteristic of Plant Functional Types in the vegetated patch 
During the period where EC data were available for model evaluation, i.e., growing seasons of 2015-

2016, the dominant PFT in the site was Typha spp. (Figure 1). Floating leaved plants (such as the ones 

most common in OWC: Nelumbo lutea and Nymphaea odorata) formed the second most common plant 

PFT, but the lotus patches had sparse vegetation and we assumed that their ecosystem function was 
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similar to Typha spp. as both are stalk bearing emergent macrophytes with similar gas transport 

structures. Parameters for Typha spp. were taken from a PFT for sedges as developed for ecosys 

(Mekonnen et al., 2016). We adjusted the leaf inclination angles and the leaf length to width ratio to 

match physical observations in the OWC site. We based the root porosity on similar observed porosities 

for other wetland plants (i.e. sedges in the range of 33-50% of the root tissue). We then made slight 

adjustments to the root porosity of Typha as a fitting parameter, aiming to match CO2 and CH4 flux 

observations from the eddy covariance tower, when the open water and vegetated grid cells were 

aggregated to the tower footprint level. We tuned this variable (within reasonable ranges compared to 

observed values) since the modeled fluxes were quite sensitive to the root porosity and a broad range of 

values exists for this plant property in the literature. We also initialized sub-aquatic vegetation in both 

grid-cells. We used a plant functional type for lichens for this purpose. Although we expect that lichens 

have considerably different functional behavior than sub-aquatic vegetation would in reality, our primary 

aim with the sub-aquatic vegetation here was to provide a marginal carbon input to both grid cells, 

preventing the open water cell from depleting its carbon reserves causing a decline of the MFT biomasses 

that would be modelled in the prolonged absence of any C inputs. The overall contribution of the sub-

aquatic vegetation to the site level integrated CO2 fluxes is small, and so we anticipate only a small 

amount of error associated with this assumption. Lateral redistribution of dissolved organic carbon (DOC) 

from the vegetated cell also served as a carbon supply to the open water cell. 

2.3.5 21st century model projections  

2.3.5.1 21st century climate forcing 
We used climatological and hydrological forecasts to create simulated 21st century scenarios based on 

the Intergovernmental Panel on Climate Change (IPCC) RCP8.5 synthesis (Pachauri et al., 2014), which 

appears to be a likely climatological forecast scenario. We also selected this climate change scenario 

because it most closely matched foundational assumptions involved with the Lake Erie water depth 

models that we used for predictions (Lofgren et al., 2011). We used RCP8.5 air temperature, relative 

humidity, and precipitation projections (Eyring et al., 2016; Meehl et al., 2000) downscaled to the OWC 

site location to derive seasonal changes for every year from 2000 to 2100, and then imposed  the 

anomalies on the observed 2005-2014 meteorological record (with CO2 increasing from 399 ppm in 2014 

to 936 ppm in 2100 and temperature increasing 6.44 °C by 2100). In this way, we maintain observed 

high-frequency climate variability and projected long-term climate changes. Lake Erie water-level 

projections were taken from Lofgren et al. (2011) using four scenarios based on different projections that 

differed with regard to the assumptions around the potential evapotranspiration (i.e. whether using 

temperature or energy budget closure as a proxy for potential evapotranspiration) and the climate model 

used to drive the Great Lakes model resulting in four water depth cases: (1) Canadian Global Circulation 
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Model using an Alternative Energy Adjustment Formulation (referred to here as Lake Erie Water depth 

model 1 or LEWL1 for short) that attempts to close the modeled energy budget. (2) CGCM using the 

Delta method, which uses temperature as a proxy for potential evapotranspiration (LEWL2). (3) 

Geophysical Fluid Dynamics Laboratory model using the Alternative Energy Adjustment Formulation 

(LEWL3). (4) GFDL using the Delta method (LEWL4). 

2.3.5.2 21st century water depth forcing 
In reality, many factors drive the OWC water depth: precipitation, transpiration, river inflow, shifting 

wetland bathymetry, the depth of Lake Erie, and the status of the sand barrier between the wetland and the 

lake. Daily data of sand barrier presence had been collected by a site manager using visual inspection 

since 1981. Barrier formation and breach are stochastic events that govern much of the water depth 

dynamics at OWC and add a major hurdle to accurate prediction of water depths at OWC, and similar 

estuarine wetlands. We used observed water-level data from the NOAA-NERR-operated Lower Estuary 

(Station code OWCOLWQ), Darrow Road (OWCDRWQ), and the State Route 6 (code OWCWMWQ) 

gauges at OWC. Water-level data was subject to quality control by removing all data point that were 

flagged by NOAA diagnostic, and all points that exceeded 6 standard deviations above the mean of a 100-

observations moving average. Data were reported at 15-minute intervals, which we averaged to hourly 

data for use with ecosys. The Lower Estuary was used as the ‘true’ water depth since it is the closest to 

the eddy covariance station, but data from the other two were used to gap-fill the Lower Estuary data 

where it was missing and any of the other two were available. This was done by fitting a linear regression 

between each pair of gauge stations, then using the resulting equation to predict the water depth at the 

Lower Estuary based on data from any of the other two stations. 

We fitted a stepwise multiple linear regression model to predict the observed water depth as a function 

of water temperature, hourly precipitation rate, relative humidity, PAR, and Lake Erie water depth. We 

also included a variable that tracked the amount of precipitation accumulation since the barrier last re-

formed as a positive value, and the amount of rain that had occurred since it last breached as a negative 

value. We did the same for the cumulative time before or after a breach. Finally, we added the interaction 

term between Lake Erie level and the time since barrier breach or formation. For future projections, we 

assumed breaches would occur at the same times of year as had been previously observed. The resulting 

empirical model was then used to simulate the wetland water depths during future climate scenarios. 

2.3.5.3 Empirical vegetation-cover model 
Temperate-wetland plant communities typically senesce in autumn and regrow from rhizomes and 

seedbanks in spring, causing the plant-community structure to shift in both distribution and abundance 

each year. We estimated the spatial distribution of wetland plant-communities during future scenarios 

using an empirical model, which we fitted to the wetland covered by macrophyte vegetation in each year 
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as a function of water and soil conditions in the spring, when the vegetation established for the year. We 

treated this as the area in the wetland that macrophytes could grow in each year, and we used ecosys to 

predict the vigor and abundance of the plants within that area. Therefore, from year to year, the percent of 

the wetland surface area that was available to macrophyes shifted in response to water depth and the 

density of plants within that area shifted in response to the full range of plant stressors incorporated in 

ecosys. These stressors included those for oxygen, temperature, water, nitrogen, and phosphorus. 

We observed the vegetation structure at the wetland in 2015 using a manual ground-based survey. We 

manually classified site level aerial imagery from the National Agriculture Imagery Program (NAIP, 

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-

imagery/) using ArcGIS to delineate vegetation from open water in 2011, 2013, 2015, and 2017. We 

created a false-color composite using the near-infrared band combined with the true red band to do the 

supervised classification, using 2015 as the training basis.  

To parameterize the vegetation cover model, we fitted a stepwise linear regression model relating the 

percentage of the site surface area covered by plants (from classified NAIP images, 2011-2017) to DO, 

soil temperature, and wetland water depth between April and June. These variables were available from 

the nearby NOAA-NERR water quality stations that include the water depth gauges. We used the result of 

the vegetation cover model to do off-line scaling of the vegetated and open-water grid cells into a single, 

more accurate, whole-site prediction of fluxes. 

2.3.5.4 Successional shifts of the wetland vegetation 
In low water depth scenarios, surrounding woody vegetation may be able to colonize the wetland. To 

account for this possibility, whenever the predicted water depth dropped below the surface for more than 

30 days, ecosys seeded the wetland with 0.001 virtual plants per m2 of broadleaf seedlings. Ecosys 

automatically reseeds a plant that fails during a model run due to adverse conditions. We first confirmed 

that, with no standing water, ecosys projected the plant functional type of broadleaf trees would be able to 

grow at the site across the 21st century. For three of the four 21st-century water depth scenarios the 

standing water depth remained high enough to prevent broadleaf trees plant functional types from 

growing in the wetland since it remained flooded throughout the simulation. However, in the lowest water 

depth simulation, broadleaf trees did establish in year 2044. 

2.4 Model evaluation 
All model evaluations were performed in Matlab (Mathworks, Natick, MA). We evaluated the model 

against the eddy covariance measurements by determining the model R2, slope, bias, and root mean 

squared error. In all cases, we evaluated the model by weighting each of the two grid cells within the 

effective hourly eddy covariance measurement footprint, which we aggregated from the two measured 

half hourly footprints. In addition to these standard model evaluation metrics, we performed a Morley 
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wavelet analysis (Hatala et al., 2012) to evaluate the dependence of observed and modeled CH4 fluxes on 

water depth at different periodicities and times. For this analysis, which requires continuous data, we used 

the gap-filled data from the 2016 growing season and disregarded 2015 due to the frequent gap-filling 

needed in that year. 

In all cases, we use ‘flux’ as a net vertical exchange with the atmosphere, adopting the atmospheric 

science sign convention of a positive flux being towards the atmosphere and a negative flux indicating 

uptake by the ecosystem. 

3. Results and Discussion 
Empirical water depth model: Figure 2 shows the results of the empirical stepwise linear regression 

model that predicts the water depth of OWC based on a collection of predictor variables. Overall, our 

empirical model predicted water depth observations well (r2 = 0.48, bias <0.001 cm, root mean squared 

error of 17.32 cm, Figure 2a). In recent years (2017-2020), OWC levels were exceptionally high. The 

reason for these recently high-water depths is not clear, and our stepwise linear model underestimated 

OWC levels in these extreme years. During the calibration and validation period (2015-2016), ecosys 

simulations used the observed water depths (with rare gaps filled using the model); therefore, the model 

under-prediction of extreme water did not affect the boundary conditions of ecosys. 
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Figure 2. (a) Empirical water depth model for Old Woman Creek (red), generated from the stepwise 

linear model given in Table A3.1, and gap-filled observations (blue). Gap-filled points were not included 

in the model’s goodness of fit evaluation. Since summer 2015 water depths were anomalously high, which 

led to underestimation of water depths in that period, especially in the summers. (b) OWC water depth 

scenarios used for the model simulations. Only scenario LEWL4 had water depths reduced sufficiently to 

allow broadleaf tree establishment. Water depths have been smoothed here for clarity. 

The four scenarios of Lake Eric water depth (LEWL) resulted in an ensemble of possible 21st century 

water depth scenarios at Old Woman Creek that we used to drive our projections (Figure 2b). Three of 

these scenarios have the wetland remaining flooded to varying degrees: scenario LEWL1 has an increase 

in water depth of approximately half a meter, LEWL2 has a nearly stationary water depth, and LEWL3 

has a decrease in water depth of ~0.5 m. The fourth water-level scenario (LEWL4) projected that Lake 

Erie, and correspondingly, OWC water depths will decrease enough to begin drying out the wetland soil. 

The drawdown to a state of ‘no standing water’ affected the site as it led ecosys to allow establishment of 

the broadleaf tree PFT, which colonized the formerly flooded area of the wetland. 
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3.3 Wetland vegetation cover model 

The empirical vegetation cover model was used to predict the percentage of the wetland area covered 

by macrophyte vegetation during each growing season, assuming the reminder of the wetland area is open 

water. The final empirical model used only water depth as an explanatory variable for observed 

vegetation cover, with r2 = 0.49. Table A3.By combining the water depth model with the vegetation cover 

model, we created a model that simulates the hydro-ecological conditions in OWC. While the water depth 

prediction was used directly as forcing for the model, vegetation areal coverage (which is calculated from 

water depth) was used to scale the contributions of each of the virtually linked ecosys simulated grid cells 

(open water grid cell, and vegetated grid cell) into the combined site-level fluxes. 

Our estimate of the percentage of the OWC wetland occupied by macrophyte vegetation and open 

water resulted in a decrease in area available for plant colonization as water depth increases. A drawdown 

in water depth resulted in a larger area available for plant colonization (Figure 3). This relationship 

caused macrophyte vegetation to increase in LEWL3 and LEWL4. Conversely, LEWL1 saw a reduction 

in wetland surface area available for macrophyte colonization (bottoming out at nearly 40% of the 

wetland available for colonization) as its water depths increased with time. 

  

 

Figure 3. Percentage of the wetland available to be colonized by macrophyte vegetation under the four 

water depth scenarios. Predicted seed establishment at the wetland is inversely related to the water depth, 

consistent with increased oxygen availability during the early growing season. 

 

3.4 Evaluating ecosys CH4 and CO2 vertical flux estimates 

Eddy covariance measurements of CH4 and CO2 fluxes in OWC during 2015-2016 have been 

previously reported (Angle et al., 2017; Bohrer et al., 2015; Rey-Sanchez et al., 2018; Villa et al., 2019). 

OWC is characterized by high magnitude and high variability of CH4 fluxes (Figure 4). Half hourly CH4 
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fluxes ranged from -0.24 μmol m-2 s-1 to 3.39 μmol m-2 s-1 in 2015 and 0.03 μmol m-2 s-1 to 2.11 μmol m-2 

s-1 in 2016. Within the growing season, fluxes displayed an intra-seasonal pattern, peaking in August each 

year, roughly concomitant with vegetation leaf area at the site. 

 

Figure 4. Observed CH4 fluxes at OWC for 2015 and 2016 growing seasons. Flux rates were high 

compared to other contemporary mid-latitude, freshwater, marsh sites (Knox et al., 2019). 
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Figure 5. Modeled (red lines) and observed (black dots) CO2 fluxes for four arbitrary weeklong periods 

in (a) August of 2015 (1.33 m water depth), (b) September of 2015 (1.40 m water depth), (c) August of 

2016 (1.34 m water depth), (d) September of 2016 (1.36 m water depth). 

 

Table 1. Goodness-of-fit metrics for modeled hourly CO2 and CH4 fluxes during the combined 2015 and 

2016 growing seasons. All models were significant at p < 0.0001. Uncertainty estimated according to 

Hollinger and Richardson (2005). 

Variable 
 Period 

r2 
Observation 
Uncertainty 

RMSD 
Bias Slope 

  -- μmol m-2 s-1 μmol m-2 s-1 μmol m-2 s-1 -- 

CO2 

Flux 

 All 0.54 3.35 7.30 -0.32 1.06 
 2015 0.51 3.31 8.57 -1.46 1.16 
 2016 0.56 3.36 6.67 0.08 1.01 

CH4 

Flux 

 All 0.24 0.32 0.45 0.04 0.51 
 2015 0.22 0.36 0.44 0.01 0.35 
 2016 0.45 0.29 0.45 0.05 0.65 

 

Ecosys simulations matched the observed hourly CO2 fluxes well (Table 1; Figure 5). In general, the 

modeled CO2 fluxes tended to underestimate early colder season fluxes but was closer to reality during 

the summer months. The ecosys modeled hourly CH4 fluxes are considerably less variable than our 

observations (Figure 6), indicating uncertainties in model prediction methodologies. The disparities 

between the modeled and observed hourly CH4 fluxes could be for many possible reasons due to the 

complexity of processes responsible for creating and transporting CH4. If the highly variable eddy 

covariance methane fluxes are taken to be true data and not data noise, in principle the disparity must be 

attributable to differences in microbiological activity rates or due to transport processes. Biological 

activity, though, responds slowly to changes in soil and meteorological conditions, and so this seems an 

unlikely reason for highly variable hourly fluxes. On the other hand, transport processes can be quite 

variable in wetlands with standing water due to bubble emissions or turbulent transport of dissolved gases 

through the water column, both of which are fluxes that can respond quickly to changes in conditions. 

Although a bubble formulation is included in ecosys, the effect of water turbulence on increasing solute 

diffusion in the standing surface water is not explicitly modeled in ecosys (or any other major model) at 

present. The representation of water eddies in the model would hasten surface degassing when eddies are 

rising, and suppress it when they are descending, increasing temporal variation. This is potentially a very 

important pathway to model in order to describe marsh wetland surface-fluxes of methane since water 

turbulence leads to increased O2 uptake and will facilitate CO2 and CH4 effluxes by reducing the diffusive 

resistance in the water column. Beyond these two mechanistic reasons why a disparity may exist, a third 

potential reason for disparities between observed and modeled CH4 fluxes is that measured CH4 fluxes 
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may have high error at present, and so it’s not clear what level of variability is due to true ecosystem 

dynamics and how much is due to sensor noise. 

 
Figure 6.Modeled (red lines) and observed (black dots) CH4 fluxes for four arbitrary weeklong periods in 

(a) August of 2015 (1.33 m water depth), (b) September of 2015 (1.40 m water depth), (c) August of 2016 

(1.34 m water depth), (d) September of 2016 (1.36 m water depth). While CH4 fluxes match the general 

trend, modeled CH4 fluxes are far less variable than the half hour measurements of CH4 observed by the 

EC tower. 

 

For all these reasons, at present it makes a great deal of sense to compare CH4 surface-fluxes on a 

daily scale over a season that to look at hourly fluxes. The model was able to reproduce the seasonal 

trends (Figure 7) (Table 2), similar to other process based model studies which were able to reproduce the 

seasonal trend of methane fluxes but not the daily or intra-daily fluctuations (Van Huissteden et al., 

2008). While this method dampens our ability to predict the hour to hour flux, the annual budget is 

determined more by the day-to-day trend, which is considerably less random. Aggregating half hourly 

CH4 fluxes to the daily scale, we can demonstrate that our model can properly predict the order of 

magnitude of the fluxes (Figure 7), which follow a predictable seasonal pattern. Modeled early season 

fluxes remain low because methanogenic biomass was small and aqueous CH4 accumulates with greater 

solubility in the cooler soil water. Modelled fluxes then increase with seasonal warming as methanogenic 
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biomass grows and warmer soil water lowers CH4 solubility, leading to aqueous CH4 concentrations 

reaching saturationand causing bubbling. 

 Table 2. Goodness-of-fit metrics for modeled daily CH4 fluxes during the combined 2015 and 2016 

growing seasons. All models were significant at p < 0.0001. 

Variable Period r2 RMSD Bias Slope 
 -- μmol m-2 s-1 μmol m-2 s-1 -- 

CH4 

Flux 

All 0.27 0.43 0.13 0.67 
2015 0.43 0.4 0.01 0.70 
2016 0.19 0.45 0.26 0.72 

 

 

 

 

 

Figure 7. Observed and modeled daily averaged CH4 flux. Grey dotted line indicates 1:1 line. Ecosys 

tended to overestimate CH4 fluxes at the site, but maintained slopes near 1. Uncertainties are the average 

observation and gap-filling uncertainties for from hourly CH4 flux uncertainties at the hourly level. Since 

the hourly flux uncertainty is so high, CH4 fluxes are better compared at the daily level, where the 

aggregated uncertainties may cancel out to a degree. 
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Both the eddy covariance and model show high wavelet coherence at the seasonal time scales (2048 to 

4096 hour periodicity, ~2.5-5 months), indicating that the model captures the CH4 flux dynamics at the 

seasonal level quite well (Figure 8). However, the model and observations disagree on the phase angle 

between the two at nearly all lower periodicities by nearly 90°. This means that the model and observed 

values agree with one another regarding the relevant time spans that the two data signals agree, but they 

disagree on any kind of phase lag between them by approximately a quarter of a period. Although ecosys 

captures some coherence at lower periodicities (daily-weekly), the coherence is not as strong as was 

observed, indicating that events at those periodicities are not well represented by the model at this site. 

 

Figure 8. Wavelet coherence between water depth and CH4 fluxes at OWC. Magnitude-squared 

coherence indicates strength of frequency co-spectral agreement, with values close to one being the 

strongest agreement and those near zero being the weakest. Arrow direction indicates the lag of 

agreement, where arrows pointed directly right are have aligned periodicity. Arrows pointed left have 

periods opposite one another (e.g. peaks in one variable align to troughs in the other). Both observations 

and the model show strong coherence at seasonal scale periodicities (higher than 2048 h), especially in 

2015, but the phase angle between the two are off by nearly 90° at all periodicities, indicating that the 

phase lag is off by approximately a quarter of a period. Shorter time scales show weaker agreement. 
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3.5 Projections of wetland CO2 fluxes 

 The four modeled 21st century OWC water-level scenarios had moderate effects on model 

projected CO2 fluxes as long as the site remained flooded (Figure 9 a and b). In general, macrophyte 

vegetation in the model responded to rising temperatures by increasing productivity and increased soil 

nutrient availability, making the vegetated patch, and the wetland overall, an increasing sink for carbon in 

all other scenarios (Figure 9 a and b). However, most water level scenarios had only small effects on the 

CO2 uptake strength of the wetland. 

When aggregated to the site level (Figure 9b), the CO2 fluxes from the LEWL1, LEWL2, and LEWL3 

scenarios are similar but differ from the LEWL4 scenario. A greater portion of the wetland was available 

for plant colonization in the low water-level runs (Figure 3), slightly increasing the strength of the carbon 

uptake of the wetland under decreasing water depth scenarios (with the exception of LEWL4, which had a 

more complex response). High water-level conditions caused a smaller portion of the wetland to be 

available for plant colonization, but the plants were better adapted to the flooded conditions and thrived 

under the wetter conditions. In general, lower water depths increased wetland carbon uptake until the 

wetland dried out, which caused a substantial loss in the stored ecosystem carbon to the atmosphere. 

LEWL4, the lowest water-level scenario, showed the greatest inter-annual variability in CO2 fluxes. 

The LEWL4 scenario, where standing water had diminished by the last decade of the simulation, showed 

a sudden and sustained transition to a net ecosystem source of carbon as the water dried out. The modeled 

open-water grid cell was almost always a modest carbon source, indicating that uptake by submerged 

aquatic vegetation was more than offset by respiration, where the additional substrate carbon necessary to 

retain this source behavior was laterally transported from the vegetated grid cell.  

In the LEWL4 scenario, broadleaf trees were established in year 2044, when the wetland water depth 

was at its lowest. In that model run, the trees became the dominant vegetation type after the wetland had 

lost its standing water. Trees were able to grow in the vegetated grid cell, but they only slowly colonized 

the deeper open water grid cell. The forested former wetland fluctuated shifted towards becoming a 

carbon source as the vegetation regime switched dominance and greater amounts of soil carbon were 

oxidized. Given a sustained runtime in this state, the former wetland likely would have become an even 

greater carbon sink due to wood C accumulation, however, it would have lost a great deal of carbon from 

its organic layers while stabilizing to that functionality. 



23 
 

 
Figure 9. (a) CO2 fluxes from vegetated (solid lines) and open water (dashed lines) grid cells for the 

model (negative values indicate net ecosystem uptake). In three of the four scenarios the open water CO2 

fluxes are small and slightly negative (those three scenarios are indistinguishable below the green dashed 

line). (b) Those same fluxes aggregated to the site footprint level using the projected footprint. (c) CH4 

fluxes from vegetated (solid lines) and the open water (dashed lines) grid cells for the model. In three of 

the four scenarios (LEWL 1-3) the open water fluxes are projected to remain positive to the atmosphere. 

The final scenario (LEWL4 based on a large drawdown of Lake Erie and a subsequently large drawdown 

of OWC) indicates a shift towards higher inter-annually variability, and lower decadal average, CH4 

fluxes. (d) Those same fluxes scaled to the site level using expected footprint distribution. In general, 

lower water depths slightly increased CH4 fluxes, primarily by shifting terrain towards vegetated cover. 
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Both the lowest water depth scenario (LEWL4) and the highest water depth scenario (LEWL1) results in 

considerably lower CH4 fluxes to the atmosphere due to lower emissions from the vegetated cell (LEWL4) 

or a higher areal cover of the open water cell (LEWL1). (e) Global warming potential of OWC projected 

over the 21st century. The OWC site remains a net GHG source under all projections. CH4 fluxes can 

affect the overall GWP of the site, suggesting that a rapid drying of the wetland can result in large 

decreases in this source behavior (illustrated by LEWL4)). Increased water depth moderates source 

behavior by limiting the areal percent of the wetland that can support vegetation which can lower CH4 

emissions and bring down the overall site level CH4 fluxes (illustrated by LEWL1). 

3.6 Sensitivity of CH4 fluxes to predicted future lake water depths 

We found that CH4 fluxes also showed relatively low sensitivity to water depth in three of the four 

scenarios (Figure 9 c and d), with the three wettest scenarios showing close agreement in projected CH4 

fluxes in most years. This result agrees well with Figure 8, which indicates a linkage between fluxes and 

water depth fluctuations, but with the strongest linkages are at multi-daily time scales. However, we 

found the relationship between the modeled water depth and the modeled CH4 fluxes was significant on 

an annual basis (Figure 10 d), but with a negative slope. The negative slope indicates that as water depth 

increases the CH4 fluxes generally decrease due to the reduction of primary productivity, and thus 

litterfall from which the model drives the heterotrophic fermentation rates that produces methanogenic 

substrates. The relationship between these two variables is non-linear though, where very low water levels 

can exhibit a wide range of CH4 fluxes while deeper water exhibits a much more linear control on the 

emissions. Similar to the results in the open water and vegetated grid cells, the aggregated site-level CH4 

fluxes in the three wet runs remain close in magnitude (Figure 9 c). We also found that drying events, as 

presented in one of our water depth scenarios, can cause both decreases in CH4 fluxes and a switch from a 

CO2 sink to a CO2 source as oxygen infiltrates the soil. In LEWL4, for instance, when the surface 

vegetation changed dramatically, both CO2 and CH4 fluxes responded accordingly. We projected a 

decrease in cumulative CH4 fluxes from a peak of 224.6 in 2067 to 104.7 gC m-2 year-1 2083. In that same 

time period, we projected CO2 flux changed from -56.5 gC m-2 year-1 to 396.6 gC m-2 year-1
. It should be 

noted that the fluxes at OWC are large compared to similar systems and have been cited as an outlier in 

FLUXNET synthesis studies such as in (2019), where OWC is cited as the highest magnitude fluxes. 

Although freshwater marshes were cited as having the largest fluxes of any wetland ecotype with a 

median flux of 43.2 gC m-2 y-1, OWC was cited as having fluxes of ~115 gC m-2 year-1. 

However, when accounting for the variability of the site plant community structure the scenarios more 

starkly diverge (Figure 9d), due to the greater difference between CH4 fluxes from the open water and 

vegetated grid-cells. The fluxes rapidly decreased when surface water drained with declining water depth. 

This decrease is also indicated in the regression between CH4 fluxes and water depths which is apparent 

when water depths are very low (primarily associated with LEWL4). This variability at low water levels 

is counter to the relationship between water depth and CH4 fluxes when the water is deeper, but is 
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explained by the introduction of oxygen and hence methanotrophy into the near-surface soil. Our model 

predictions are generally in line with observational studies that suggest that the presence of surface water 

strongly regulates CH4 fluxes (Grünfeld and Brix, 1999; Meijide et al., 2011; Pypker et al., 2013; 

Sturtevant et al., 2011; Zona et al., 2009). When sufficiently wet, the soil supports methanogenic activity 

due to the low soil oxygen levels and when soil dries out, methanogenesis decreases and methanotrophy 

increases.  

We also found that the integrated leaf area index (i.e. the footprint weighted LAI between the two 

cells) was significantly related to CH4 fluxes (Figure 10c), indicating that the plant productivity is a 

strong driver of CH4 fluxes. Our findings are also consistent with Turetsky et al. (2014), who found that 

CH4 fluxes from rich fens respond dramatically to changes in surface vegetation. Our combined models 

suggest that one of the primary ways in which water level can affect site level methane emissions is by 

controlling the surface vegetation community. 

Our projections of wetland CH4 fluxes are generally consistent with those in other modeling studies 

which suggest that wetland CH4 fluxes will increase in a warming climate (Cao et al., 1998; Gedney et al., 

2004). Measured CH4 emissions have been found to have a large apparent Q10, and those models 

simulate this response through a combination of physical and biological processes. Those same models 

indicate that drying soils can potentially lower methane emissions due to increased methanotrophy. 

Gedney et al. (2004) forecasted that wetlands would experience a GWP increase of 5-10% by 2100 due to 

increased temperatures alone, for instance. Our model suggests a greater increase: closer to 50% by 2100 

for the LEWL scenarios that projected water levels closest to present day (i.e. LEWL2 and LEWL3). A 

very large percent of that increase is due to the increase in methane emissions, which are already quite 

high for OWC.  
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Figure 10. Annual modeled fluxes of CO2 and CH4 fluxes vs peak annual LAI and mean annual water 

depth. Lack of water in LEWL4 causes highly non-linear effects and so was disregarded for the 

regressions shown here to emphasize influence of water level variations when flooded. All four 

relationships were significant (p<0.05). Substantial drained time with belowground water tables (i.e. 

even longer than we simulated here in LEWL4) may alter this relationship as methanotrophy increases 

and new PFTs take hold. 

4. Conclusions 
Shifts in the water depths of the Great Lakes may have major implications for carbon cycling of 

neighboring lacustrine wetlands, especially since the range of water depth scenarios includes situations 

that could result in moderate drying of these wetlands. Shifts in vegetation composition from long-term 

water depth changes may affect wetland function and greenhouse gas budgets. We found that the relative 

areas of the vegetated and non-vegetated grid-cells played important roles in determining the wetland CO2 

and CH4 fluxes, and correspondingly the total global-warming potential of the site (Figure 9 e). The 

vegetated grid-cell maintains higher magnitudes of both CO2 and CH4 fluxes than non-vegetated grid-

cells. We found that reduction in water depths sufficient to dry portions of the wetland resulted in woody 
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vegetation colonizing the former wetland area, which fundamentally altered ecosystem nutrient and 

carbon cycling. 

In all scenarios, warming climate leads to increased plant productivity and greater CH4 fluxes. Under 

three of the four projections of Lake Erie water depths, CO2 and CH4 fluxes increase steadily over the 21st 

century in response primarily to the increasing temperatures. However, in situations where the standing 

water recedes and the soil becomes more aerobic the soil conditions become less suitable for 

methanogenesis and more suitable for microbial and root respiration. Our model therefore predicts that 

areas that were previously strong CH4 sources will have decreased CH4 fluxes and increased CO2 fluxes 

(both respiration and uptake) as non-wetland plant functional types colonize the wetland. However, the 

majority of predicted water-level scenarios resulted in maintaining or increasing current net carbon 

sequestration levels, with the wetlands continuing to serve as atmospheric CO2 sinks and CH4 sources. 

5. Code availability 
The exact version of the model used to produce the results in this paper is archived on a Dataverse 

repository, as are input data for all the simulations presented in this paper. 

6. Data availability 
The data that the model was validated against were obtained from Ameriflux,(site code US-OWC). They 

are archived with the model run on a Dataverse repository. 
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9. Appendices 

Appendix A.1 – Parameters 

 
Table A1- 1. Soil related model drivers, by layers. References listed at end of Appendix.  

Depth 
Bulk 
Densit
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Water 
content 
at FC 

Water 
content 
at WP 

Vert. sat. 
hyd. 
Cond. 

Horiz. 
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Cond. 

Sand 
conten
t 

Silt 
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Vol of 
macropore
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Vol of 
coarse 
frags 

pH 
Cat. 
Exch. 

meter
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Mg/m3 m3/m3 m3/m3 Mm h-1 Mm h-1 g kg-1 g kg-1 % % -- -- 

Ref. 1 2 2 3 3 3 3 4 4 3 3 

0.01 0.75 0.398 0.106 6919.32 6919.3 286.67 210 0 0 7.2 16.5 

0.02 0.75 0.398 0.106 6919.32 6919.3 286.67 210 0 0 7.2 16.5 

0.04 0.75 0.398 0.106 6851.29 6851.3 281.33 212 0 0 
7.1

5 
16.3 

0.05 0.75 0.398 0.106 6749.25 6749.3 273.33 215 0 0 
7.0

7 
15.9 

0.07 0.76 0.398 0.106 6613.2 6613.2 262.67 219 0 0 
6.9

7 
15.3 

0.1 0.75 0.398 0.106 8925.92 8925.9 201.67 293.33 0 0 
6.8

6 
14.8 

0.14 0.7 0.398 0.106 10278.01 10278 153.33 354.67 0 0 
6.7

9 
13.7 

0.2 0.69 0.398 0.106 8662.09 8662.1 220 245 0 0 
6.7

2 
11.7 

0.29 0.67 0.398 0.106 6986.7 6986.7 173.33 290 0 0 6.8 12.9 

0.43 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 

0.63 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 

0.93 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 

1.33 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 
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1.93 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 

2.83 0.57 0.398 0.106 6986.7 6986.7 173.33 290 0 0 
6.8

1 
12.9 
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Table A1- 2. Soil related model drivers, by layers. References listed at end of Appendix.  

Dept
h 

An. 
Exc
h. 

Aluminu
m 

Iron 
Calciu
m 

Magnesiu
m. 

Sodiu
m 

Potassiu
m 

Sulfa
te 

Chlori
de 

Varisci
te 

Strengi
te 

Moneti
te 

mete
rs 

-- gAl/Mg 
gFe/
Mg 

gCa/M
g 

gMg/Mg 
gNa/
Mg 

gK/Mg 
gS/M
g 

gCl/M
g 

gP/Mg gP/Mg gP/Mg 

Ref. 4 3 3 3 3 3 3 3 4 4 4 4 

0.01 3 0.7 602.4 0.5 94.5 46.7 66.9 1.8 7.91 50 50 200 

0.02 3 0.7 602.4 0.5 94.5 46.7 66.9 1.8 7.91 50 50 200 

0.04 3 0.7 604.6 0.5 91.7 44 65.3 1.8 7.91 50 50 200 

0.05 3 0.7 607.8 0.4 87.5 39.9 63 1.8 7.91 50 50 200 

0.07 3 0.8 612.2 0.4 81.8 34.4 60 1.7 7.9 46.4 46.4 185.7 

0.1 3 0.9 623.9 0.4 87 33.8 60 1.6 7.5 25 25 100 

0.14 3 1 646.5 0.4 89.6 31.6 57 1.5 7.1 4.2 0 0 

0.2 3 1 707.6 0.4 90 25.1 50.8 1.3 7.1 54.3 0 0 

0.29 3 1.2 921.3 0.5 103.3 27.7 59.3 1.1 7.1 117.8 0 0 

0.43 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 172.1 0 0 

0.63 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 177.6 0 0 

0.93 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 107 0 0 

1.33 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 90.9 0 0 

1.93 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 109.5 0 0 

2.83 3 1.2 945 0.5 103.3 27.7 59.3 1 7.1 121 0 0 
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Table A1- 3. Soil related model drivers, by layers. References listed at end of Appendix.  

 

Depth 
Hydroxyapatit
e 

Al. 
Hydroxid
e 

Iron 
Hydro
x 

Calcite 
Gypsu
m 

Gapon 
activit
y 
coeff. 
Ca--
NH4 

Gapon 
activit
y 
coeff. 
Ca--H 

Gapon 
activit
y 
coeff. 
Ca--Al 

Gapon 
activit
y 
coeff. 
Ca-Mg 

Gapon 
activit
y 
coeff. 
Ca--
Na 

Gapon 
activit
y 
coeff. 
Ca--K 

meter
s 

gP/Mg gAl/Mg 
gFe/M
g 

gCa/M
g 

gCa/M
g 

-- -- -- -- -- -- 

Ref. 4 4 4 4 4 4 4 4 4 4 4 

0.01 350 1000 2000 0 0 0.01 0.25 0.25 0.6 0.16 3 

0.02 350 1000 2000 0 0 0.01 0.25 0.25 0.6 0.16 3 

0.04 350 1000 2000 0 0 0.01 0.25 0.25 0.6 0.16 3 

0.05 350 1000 2000 0 0 0.01 0.25 0.25 0.6 0.16 3 

0.07 325 928.6 1857.1 0 0 0.011 0.25 0.25 0.6 0.16 3 

0.1 175 500 1000 0 0 0.0175 0.25 0.25 0.6 0.16 3 

0.14 0 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

0.2 0 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

0.29 0 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

0.43 0 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

0.63 0 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

0.93 10.4 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

1.33 40.6 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

1.93 52.6 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 

2.83 60 0 0 0 0 0.025 0.25 0.25 0.6 0.16 3 
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Table A1- 4. Typha parameters. 

Name Unit Value 

Rubisco carboxylization activity μmol g-1 s-1 30 

Rubisco oxygenation activity μmol g-1 s-1 10 

PEP carboxylation activity μmol g- s-1 0 

Km for rubisco carboxylation μM 12.5 

Km for rubisco oxygenation μM 500 

Km for PEP Caroxylation μM 0 

Leaf protein in rubisco % 12.5 

Leaf protein in PEP carboxylase % 0 

Chlorophyll activity μmol g-1 s-1 450 

Leaf protein in mesophyll chlorophyll % 2.5 

Leaf protein in bundle sheath chlorophyll % 0 

Ci:Ca ratio % 70 

Primorida initiation rate hour-1 0.015 

Leaf appearance rate hour-1 0.009 

Chilling temperature °C -5 

Leafout requirement hour 120 

Leafoff requirement Hour 240 

Leaf length:width ratio Ratio 15 

Branching habit g g-1 0.33 

Plant maturity group - Late 

Number of primordia in seed - 2.5 

Critical photoperiod nodes h-1 8 

Leaf area:mass - 0.00417 

Petiole length:mass Ratio 0.5 

Leaf area inclined 0°-22.5° % 0 

Leaf area inclined 22.5°-45° % 0 

Leaf area inclined 45°-67.5° % 50 

Leaf area inclined 67.5°-90° % 50 

Clumping factor - 1 

Angle of tillers/branches ° 90 

Angles of sheaths/petioles ° 90 

Maximum number of fruiting sites per reproductive node - 3 

Maximum number of grain kernel per fruiting site - 6 

Maximum grain kernel mass gC 0.01 

Mass of Carbon storage at planting gC 1 

Maximum rate of kernel filling gC kernel h-1 0.00002 

Initial standing dead biomass gC m-2 100 

Radius of primary roots m 0.0005 

Radius of secondary roots m 0.0002 

Root porosity m3 m-3 0.49 
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Name Unit Value 

Branching habit g g-1 0.05 

Root radial resistivity Mpa h m-2 10000 

Root axial resistivity Mpa h m-4 400000000 

Branching frequency primary m-1 250 

Branching frequency secondary m-1 250 

Maximum NH4-N uptake rate g m-2 h-1 5000 

Km for NH4-N uptake g m-3 0.5 

Minimum NH4-N concentration for uptake g m-3 0.0125 

Maximum NO3-N uptake rate g m-2 h-1 0.005 

Km for NO3-N uptake g m-3 0.35 

Minimum NO3-N concentration for uptake g m-3 0.03 

Maximum PO4-P uptake rate g m-2 h-1 0.001 

Km for PO4-P uptake g m-3 0.075 

Minimum PO4-P concentration for uptake g m-3 0.002 

Maximum osmotic potential Mpa -1 

Shape parameters for stomatal resistance - -4 

Leaf cuticular resistance s m-1 2000 
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Table A1- 5. Sub-aquatic vegetation parameters. 

Name Unit Value 

Rubisco carboxylization activity μmol g-1 s-1 45 

Rubisco oxygenation activity μmol g-1 s-1 9.5 

PEP carboxylation activity μmol g- s-1 0 

Km for rubisco carboxylation μM 12.5 

Km for rubisco oxygenation μM 500 

Km for PEP Caroxylation μM 0 

Leaf protein in rubisco % 12.5 

Leaf protein in PEP carboxylase % 0 

Chlorophyll activity μmol g-1 s-1 405 

Leaf protein in mesophyll chlorophyll % 2.5 

Leaf protein in bundle sheath chlorophyll % 0 

Ci:Ca ratio % 70 

Primorida initiation rate hour-1 0.015 

Leaf appearance rate hour-1 0.009 

Chilling temperature °C -10 

Leafout requirement hour 24 
Leafoff requirement Hour 840 

Leaf length:width ratio Ratio 1 

Branching habit g g-1 1 

Plant maturity group - Early 
Number of primordia in seed - 2.5 

Critical photoperiod nodes h-1 
Summer 
solstice 

Leaf area:mass - 0.00167 

Petiole length:mass Ratio 0.0125 

Leaf area inclined 0°-22.5° % 0.25 
Leaf area inclined 22.5°-45° % 0.25 

Leaf area inclined 45°-67.5° % 0.25 

Leaf area inclined 67.5°-90° % 0.25 
Clumping factor - 1 

Angle of tillers/branches ° 90 

Angles of sheaths/petioles ° 0 
Maximum number of fruiting sites per reproductive 
node 

- 
10 

Maximum number of grain kernel per fruiting site - 10 

Maximum grain kernel mass gC 0.001 

Mass of Carbon storage at planting gC 0.001 

Maximum rate of kernel filling 
gC kernel 
h-1 0.0000025 
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Name Unit Value 

Initial standing dead biomass gC m-2 0 

Radius of primary roots m 0.0001 

Radius of secondary roots m 0.00005 

Root porosity m3 m-3 0 

Branching habit g g-1 0.1 

Root radial resistivity Mpa h m-2 10000 

Root axial resistivity Mpa h m-4 4000000000 

Branching frequency primary m-1 250 

Branching frequency secondary m-1 250 

Maximum NH4-N uptake rate g m-2 h-1 0 

Km for NH4-N uptake g m-3 0.4 

Minimum NH4-N concentration for uptake g m-3 0.0125 

Maximum NO3-N uptake rate g m-2 h-1 0 

Km for NO3-N uptake g m-3 0.35 

Minimum NO3-N concentration for uptake g m-3 0.03 

Maximum PO4-P uptake rate g m-2 h-1 0.001 

Km for PO4-P uptake g m-3 0.075 

Minimum PO4-P concentration for uptake g m-3 0.002 
Maximum osmotic potential Mpa -1.25 

Shape parameters for stomatal resistance - 0 

Leaf cuticular resistance s m-1 500 
 

  



42 
 

Table A1- 6. Broadleaf tree parameters. 

Name Unit Value 

Rubisco carboxylization activity μmol g-1 s-1 45.0 

Rubisco oxygenation activity μmol g-1 s-1 9.5 

PEP carboxylation activity μmol g- s-1 0 

Km for rubisco carboxylation μM 12.5 

Km for rubisco oxygenation μM 500 

Km for PEP Caroxylation μM 0 

Leaf protein in rubisco % 0.125 

Leaf protein in PEP carboxylase % 0 

Chlorophyll activity μmol g-1 s-1 405 

Leaf protein in mesophyll chlorophyll % 0.025 

Leaf protein in bundle sheath chlorophyll % 0 

Ci:Ca ratio % 0.7 

Primorida initiation rate hour-1 0.015 

Leaf appearance rate hour-1 0.009 

Chilling temperature °C -5.0 

Leafout requirement hour 240 

Leafoff requirement Hour 240 

Leaf length:width ratio Ratio 4 

Branching habit g g-1 1 

Plant maturity group - 8 

Number of primordia in seed - 2.5 

Critical photoperiod nodes h-1 -1.0 

Leaf area:mass - 0.009 

Petiole length:mass Ratio 0.015 

Leaf area inclined 0°-22.5° % 0.25 

Leaf area inclined 22.5°-45° % 0.25 

Leaf area inclined 45°-67.5° % 0.25 

Leaf area inclined 67.5°-90° % 0.25 

Clumping factor - 0.65 

Angle of tillers/branches ° 90 

Angles of sheaths/petioles ° 0 

Maximum number of fruiting sites per reproductive node - 0.5 

Maximum number of grain kernel per fruiting site - 1 

Maximum grain kernel mass gC 0.10 

Mass of Carbon storage at planting gC 10.0 

Maximum rate of kernel filling gC kernel h-1 0.0002 

Initial standing dead biomass gC m-2 5000 

Radius of primary roots m 0.0010 

Radius of secondary roots m 0.0002 

Root porosity m3 m-3 0 
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Name Unit Value 

Branching habit g g-1 0.1 

Root radial resistivity Mpa h m-2 10000 

Root axial resistivity Mpa h m-4 4×109 

Branching frequency primary m-1 250 

Branching frequency secondary m-1 250 

Maximum NH4-N uptake rate g m-2 h-1 0.005 

Km for NH4-N uptake g m-3 0.4 

Minimum NH4-N concentration for uptake g m-3 0.0125 

Maximum NO3-N uptake rate g m-2 h-1 0.005 

Km for NO3-N uptake g m-3 0.35 

Minimum NO3-N concentration for uptake g m-3 0.03 

Maximum PO4-P uptake rate g m-2 h-1 0.001 

Km for PO4-P uptake g m-3 0.075 

Minimum PO4-P concentration for uptake g m-3 0.002 

Maximum osmotic potential Mpa -1.25 

Shape parameters for stomatal resistance - -5.0 

Leaf cuticular resistance s m-1 2000 
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Table A1- 7. Typha organ characteristics parameters. 

  Unit Leaf 
Sheath
/ 
petiole 

Stalk 
Reserv
e 

Husk
/ pod 

Ear Grain Root 
Nodul
e 

Growth 
yield 

gC 
gC-1 

0.72 0.76 0.8 0.88 0.76 0.76 0.88 0.76 0.72 

N:C ratio 
gN 
gC-1 

0.1 0.02 0.01 0.025 0.02 0.02 0.033 0.02 0.1 

P:C ratio 
gP gC-

1 
0.01 0.002 0.001 0.0025 0.002 

0.00
2 

0.003
3 

0.002 0.01 

 
*Reference key for Appendix tables 
1 – (Bernal and Mitsch, 2008) 
2 – SPAW model (Saxton and Rawls, 2006) 
3 –Soil cores drawn for this study 
4 – (Mekonnen et al., 2016) 
5 – Assumed based on site conditions 
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Appendix A.2 – Climate forcing 

 

Figure A2- 1. Meteorological data used to drive ecosys through the full simulation. 
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Appendix A.3 – Empirical model selection 

Wetland water depth model 
Our empirical model for wetland water depth indicated that the interaction of Lake Erie’s water depth 

with the cumulative time since a breach or fill event (tbreach) gave the highest explanatory power to the 

empirical model, consistent with the hydrological link when the sand barrier is breached. The second 

most effective variable was the Lake Erie water depth, which likely resulted from groundwater linkages 

that affected OWC water depths at all times. Air temperature had the third highest explanatory power, 

likely as a proxy for seasonality, and the fourth highest explanatory power was from cumulative 

precipitation since the breach. Interestingly, instantaneous precipitation did not have a significant effect, 

as indicated by an increase in the AIC value when this variable is included. We hypothesize that the 

predictive power that precipitation would have given is conflated with the time since breach, since 

precipitation can affect whether the sand barrier breaches or reforms. Humidity and PAR were considered 

as proxy variables for transpiration, but neither increased the model’s forecasting ability, and thus were 

rejected by our selection criteria. 

 
Table A3.1. Goodness of fit for a stepwise linear model for predicting OWC water depth organized by 

explanatory power using half-hourly predictor variables. Here Erie Level means Lake Erie water depth, 

tbreach is the time since the last breach formation or fill, Temperature is the water temperature at 10 cm, 

Rain accumulation is the accumulated precipitation since the last breach formation or fill, RH is the 

relative humidity, and PAR is the photosynthetically available radiation. Bold red values were rejected as 

they failed the AIC metric of the whole model. 

Number of 

variables Variable added r2 AIC 

1 Erie Level × tbreach 0.11 -723.91 

2 Erie Level 0.28 -1330.71 

3 tbreach 0.32 -1494.90 

4 Water temperature 0.35 -1551.90 

5 
Rain accumulation 
since tbreach 0.36 -1557.28 

6 Precipitation rate 0.36 -1554.16 

6 RH 0.36 -1556.68 

6 PAR 0.36 -1415.74 
 
 

Wetland vegetation cover empirical model 
Our empirical model for wetland vegetation only selected water depth as a predictor variable. 

Including either DO or temperature as a predictor variable would have improved r2 (to 0.69 or 0.50, 

respectively), but in both cases the AIC indicated that the inclusion of the new variable into the empirical 

model was not justified, and therefore, we excluded both from the final model (Table 2). Our finding that 

water depth controls plant community structure is consistent with other studies (Casanova and Brock, 
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2000; Poiani and Johnson, 1993). Although water depth itself is only an indirect controlling variable, it 

has been shown to affect reemergence and shoot density of emergent plants (Valk et al., 1994). Increased 

water depth increases light extinction through the water column, resulting in less incoming solar radiation 

to the soil, and provides a thermal barrier, both of which may inhibit plant growth. Therefore, water depth 

is an indirect proxy for several variables that may influence wetland plant-community composition. 

 
Table A3.2. Empirical model for plant community structure of the wetland. Bold red values were not 

accepted into the final model since the AIC score increased as those variables were added, indicating that 

the additional explanatory power of those variables was outweighed by the cost of including another 

variable in the empirical model. 

Number of 

variables Variable name r2 AIC 

1 Depth 0.49 -10.70 

2 Temperature 0.50 -8.74 

2 
Dissolved 
Oxygen 

0.69 -9.51 
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Appendix A.4 – Model validation 

 

Figure A4.1 - Growing season modeled (red) and observed (black) daily average (a) CO2 fluxes for 2015 

and (b) 2016 and CH4 fluxes during (c) 2015 and (d) 2016 growing seasons. Shaded areas show the 

standard deviation of hourly fluxes within each day. Modeled CO2 fluxes closely match observations 

while the model overestimated observed methane fluxes, but reproduced the seasonal trend. 

Comparisons of modeled and observed fluxes at daily time scales are useful to determine the seasonal 

fit of data, particularly when hourly data are highly variable, as is the case with CH4 flux observations 

here. When comparing ecosys to daily fluxes, we filtered to only days with greater than 50% of data 

available and gap-filled through the nighttime periods using a neural network to avoid biasing towards 

high daytime measurements. Eddy covariance gap-filling methodologies have far higher uncertainties 

associated with them than observations, and so comparing to the daily flux measurements should be done 

in conjunction with examining hourly measurements (e.g. Figure 5). 

After adjusting the modeled fluxes for the footprint mixing of disparate terrain types observed at the 

eddy covariance tower, modeled CH4 fluxes generally agreed with observations, though biased upwards 

(Figure A4.1 panels c and d). Although both modeled CO2 and CH4 fluxes had bias from the observations, 

the biases were in opposite direction and changing uncertain model drivers to adjust for one bias 

necessarily meant increasing the bias in the other. Adjusting model files by altering the soil carbon to 

nitrogen ratio, for example, would create larger CO2 fluxes resulting in increased organic carbon 

availability for methanogens and therefore larger methane fluxes. Similarly, reducing CH4 fluxes closer to 

reality effectively forced us to further underestimate the footprint weighted mixture of CO2 fluxes. 

Because of this, we adjusted model drivers such as soil C:N ratio such that we would strike a balance 
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between CO2 fluxes and CH4 flux accuracy. Beyond these biases, our observed CH4 fluxes also showed 

far more variability than CO2 fluxes, with large standard deviations at short (e.g., hourly) time spans. 

We also validated our model by comparing our thermodynamic simulations of soil temperatures to 

those observed in the vicinity of the eddy covariance tower (Figure A4.2). Measured and modeled soil 

temperatures matched well, especially for 2016. Simulated soil temperatures varied slightly depending on 

the vegetation cover of the model patch. 

 

Figure A4.2. Modeled (blue for vegetated grid cell, red for open water grid cell) and observed (black) 10 

cm depth soil temperature. Since there was no soil layer centered on 10 cm, we interpolated the modeled 

temperature from neighboring soil layers.  Fit showed high agreement, suggesting thermodynamics of the 

model are well represented at the site. 

 






