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Abstract. Historical time series of surface temperature and ocean heat content changes are commonly used
metrics to diagnose climate change and estimate properties of the climate system. We show that recent trends,
namely the slowing of surface temperature rise at the beginning of the 21st century and the acceleration of
heat stored in the deep ocean, have a substantial impact on these estimates. Using the Massachusetts Institute
of Technology Earth System Model (MESM), we vary three model parameters that influence the behavior of
the climate system: effective climate sensitivity (ECS), the effective ocean diffusivity of heat anomalies by all
mixing processes (Kv), and the net anthropogenic aerosol forcing scaling factor. Each model run is compared to
observed changes in decadal mean surface temperature anomalies and the trend in global mean ocean heat content
change to derive a joint probability distribution function for the model parameters. Marginal distributions for
individual parameters are found by integrating over the other two parameters. To investigate how the inclusion of
recent temperature changes affects our estimates, we systematically include additional data by choosing periods
that end in 1990, 2000, and 2010. We find that estimates of ECS increase in response to rising global surface
temperatures when data beyond 1990 are included, but due to the slowdown of surface temperature rise in the
early 21st century, estimates when using data up to 2000 are greater than when data up to 2010 are used. We
also show that estimates ofKv increase in response to the acceleration of heat stored in the ocean as data beyond
1990 are included. Further, we highlight how including spatial patterns of surface temperature change modifies
the estimates. We show that including latitudinal structure in the climate change signal impacts properties with
spatial dependence, namely the aerosol forcing pattern, more than properties defined for the global mean, climate
sensitivity, and ocean diffusivity.
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1 Introduction

Scientists, policy makers, and the general public are con-
cerned with how surface temperature will change in the com-
ing decades and further into the future. These changes de-
pend on many aspects of the climate system. Among them
are climate sensitivity and the rate at which heat is mixed
into the deep ocean. Equilibrium climate sensitivity (ECS)
represents the global mean surface temperature change that
would be realized due to a doubling of CO2 concentrations
after equilibrium is reached. A shorter-term measure of cli-
mate sensitivity to greenhouse gas forcing is transient climate
response (TCR), defined as the global mean surface temper-
ature change at the time of CO2 doubling in response to CO2
concentrations increasing at a rate of 1 % per year (Bindoff
et al., 2013). Due to the climate system not being in equilib-
rium, interactions between the surface and the ocean lead to
an exchange of energy. In such a scenario, TCR is a func-
tion of both the climate sensitivity and ocean circulation and
mixing (Sokolov et al., 2003; Andrews and Allen, 2008).

The value of climate sensitivity is uncertain but the pro-
cesses and feedbacks which set it must be accurately mod-
eled to reliably predict the future. To this end, a number
of studies have used Earth System Models of Intermedi-
ate Complexity (EMICs) to estimate probability distribution
functions (PDFs) for the values of these climate system prop-
erties, in particular ECS, ocean diffusivity, and an estimate of
the anthropogenic aerosol forcing (Forest et al., 2002, 2008;
Knutti et al., 2003; Tomassini et al., 2007; Olson et al., 2012;
Aldrin et al., 2012; Libardoni and Forest, 2013, and oth-
ers). In these studies, EMICs are run for many combinations
of the model parameters that set the climate system proper-
ties. Model output is then compared to historical temperature
change to determine which model states best match the past.

Time series of surface temperature and ocean heat content
are commonly used temperature diagnostics in the evaluation
of model performance because they rule out different combi-
nations of the parameters for being inconsistent with the ob-
served climate record (Urban and Keller, 2009). This helps
to narrow the estimates of the parameters because only cer-
tain combinations lead to accurate representations of the past.
Observations in the early 21st century showed that the rate of
increase in global mean surface temperature slowed despite
the continued rise of global CO2 concentrations (Trenberth
and Fasullo, 2013). This slowdown was the source of debate
as to whether climate change was a significant threat and led
scientists to search for the reasons why temperatures did not
rise as much as expected. Cowtan and Way (2014) and Karl
et al. (2015) argue that the slowdown was merely an artifact
of the global observing system and the result of incomplete
coverage in the polar regions where temperatures increase
most rapidly. The slowdown was also attributed to changes in
the radiative forcing. In particular, it is argued that the forc-
ing due to the Sun, anthropogenic aerosols, and volcanoes all
contributed to reduce global mean temperature in the 2000s

(Huber and Knutti, 2014; Schmidt et al., 2014). Natural vari-
ability in the ocean has also been noted as a potential cause of
the slowdown (Meehl et al., 2011; Huber and Knutti, 2014;
Schmidt et al., 2014). In particular, Meehl et al. (2011) show
that in a fully coupled, three-dimensional climate model, pe-
riods of little to no rise in surface temperatures are associ-
ated with enhanced mixing of heat below 300 m in the ocean.
This finding is supported by recent observations showing that
heat is accumulating more rapidly in the deep ocean (Levitus
et al., 2012; Gleckler et al., 2016). Any good model simula-
tion should be able to capture these features of the past.

In this study, we first seek to improve the methods used
in previous work (Forest et al., 2008; Libardoni and For-
est, 2013; Libardoni et al., 2018a). Until now, ensembles
from different versions of the MIT Integrated Global Sys-
tems Model (IGSM, Sokolov et al., 2005) have been used
to vary model parameters for ECS, ocean diffusivity, and
the net anthropogenic aerosol scaling factor using a gridded
sampling strategy. To derive PDFs for the model parame-
ters, metrics of model performance at parameter settings in
between those where the model was run are estimated us-
ing two-dimensional interpolation algorithms. These algo-
rithms are restricted to gridded samples and at times have
led to PDFs that are not smooth. We propose and imple-
ment a new method where spline interpolations are replaced
with a radial basis function interpolation algorithm. We show
that the new method leads to PDFs that are both true to the
data and smooth by using the 1800-member ensemble of the
MIT Earth System Model (MESM, Sokolov et al., 2018) de-
scribed in Libardoni et al. (2018a) to derive PDFs for the
three model parameters.

Using the updated methodology and the 1800 MESM runs,
we answer the following questions: (1) how does the inclu-
sion of more recent data change the PDFs of model parame-
ters? And (2) what do we learn by including spatial informa-
tion in the surface diagnostic? The inclusion of recent tem-
perature trends can have a significant impact on the estimates
of climate system properties (Urban et al., 2014; Johansson
et al., 2015). The temperature pattern that the model output
is compared against becomes more detailed as data are added
and leads to the rejection of more model runs as being incon-
sistent with the observed records. This generally leads to both
a shift in the estimation of a given property and a reduction
in the uncertainty in the estimate. Urban et al. (2014) also
showed that the ability to distinguish between different states
of the climate increases as the length of the model diagnos-
tic increases. Similar to Johansson et al. (2015), we identify
the influence of including more recent data by systematically
adding data to the time series.

Second, we show how including spatial variability in the
surface temperature diagnostic can influence the parame-
ter distributions. In almost all parameter estimation studies,
global mean ocean heat content is used as one metric to eval-
uate model performance and is paired with a surface tem-
perature diagnostic to further test the model runs. Typically,
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groups use time series of either global mean surface temper-
ature (Knutti et al., 2002; Tomassini et al., 2007; Knutti and
Tomassini, 2008; Urban and Keller, 2009; Olson et al., 2012)
or hemispheric mean surface temperatures (Andronova and
Schlesinger, 2001; Meinshausen et al., 2009; Aldrin et al.,
2012; Skeie et al., 2014) as the surface diagnostic. Given the
latitudinal resolution of MESM, we can estimate zonal tem-
perature patterns beyond global and hemispheric means. In
particular, we use a surface temperature diagnostic that con-
sists of four equal-area zonal bands, allowing the observed
amplification of polar warming to be included in the evalua-
tion of model performance. We show the impact of the spatial
structure of the surface diagnostic by deriving PDFs using
global mean, hemispheric mean, and four zonal mean tem-
perature diagnostics.

In Sect. 2, we introduce the general method for estimat-
ing the probability distributions for the model parameters,
describe the temperature diagnostics, and introduce an inter-
polation method for the likelihood function using radial basis
functions. We present our main findings in Sect. 3 and finish
with a summary and conclusions in Sect. 4.

2 Methods

As outlined in Sect. 1, we propose and implement a num-
ber of methodological changes designed to improve our es-
timates of the probability distributions of the model parame-
ters. Here, we first provide a general overview of our method
for deriving the distributions, including a description of the
model diagnostics and their derivation. We follow with a dis-
cussion of the new methods used in this study and how they
are applied to deriving the new distributions.

Following a standard methodology (Forest et al., 2006,
2008; Libardoni and Forest, 2011; Olson et al., 2012), we
derive probability distributions for the model parameters. In
this method, EMICs are used to run simulations of histori-
cal climate change. By comparing model output to observa-
tions, the likelihood that a run with a given set of parameters
represents the climate system is determined by how well it
simulates the past climate. In this study, we use the MESM,
which includes three adjustable parameters that set proper-
ties that strongly influence the behavior of the climate sys-
tem. These model parameters are the cloud feedback param-
eter, which sets the effective climate sensitivity (ECS), the
effective ocean diffusivity of heat anomalies by all mixing
processes (Kv), and the net anthropogenic aerosol forcing
scaling factor (Faer). We identify each run by a unique com-
bination of the model parameters, θ , where θ = (ECS, Kv ,
Faer). In this study, we take the 1800-member ensemble de-
scribed in Libardoni et al. (2018a), spanning a wide range of
θs, as our model output.

We evaluate model performance by comparing each model
run to two temperature diagnostics. The first diagnostic is the
time series of decadal mean surface temperature anomalies

in four equal-area zonal bands spanning 0–30 and 30–90 ◦

latitude in each hemisphere. Temperature anomalies are cal-
culated with respect to a chosen base period. The second di-
agnostic is the linear trend in global mean ocean heat content
in the 0–2000 m layer. For each diagnostic, we now describe
the data used for observations and the methods to derive the
diagnostics from the observations.

For surface observations, we use datasets from four differ-
ent research centers. The datasets we use include the median
of the 100-member HadCRUT4 ensemble from the Hadley
Centre Climatic Research Unit (Morice et al., 2012), the
Merged Land-Ocean Temperature (MLOST) dataset from
NOAA (Vose et al., 2012), the Berkeley Earth Surface Tem-
perature (BEST) dataset (Rohde et al., 2013), and the GIS-
TEMP dataset with 250 km smoothing (GISTEMP250) from
the NASA Goddard Institute for Space Studies (Hansen et al.,
2010). All datasets are given as monthly temperature anoma-
lies on a 5×5 ◦ latitude–longitude grid. The datasets use sim-
ilar station data over land but differ on which sea surface tem-
perature (SST) dataset is used for the ocean. In particular, the
HadCRUT4 and BEST datasets use the Hadley Centre SST
(HadSST) dataset (Kennedy et al., 2011a, b) and the MLOST
and GISTEMP250 datasets use the Extended Reconstruc-
tion Sea Surface Temperature (ERSST) dataset (Huang et al.,
2015). Furthermore, the base period used to calculate tem-
perature anomalies differs among the datasets. A 1951–1980
base period is used for BEST and GISTEMP250, a 1961–
1990 base period is used for HadCRUT4, and a 1971–2000
base period is used for MLOST. Lastly, the research centers
differ in how they fill in sparse data regions.

We derive the surface temperature diagnostic by tempo-
rally and spatially averaging the gridded data. In the follow-
ing calculation, we assume uncertainty in the observations is
zero, relying on using multiple datasets to account for uncer-
tainty in the observed record. Due to data scarcity and miss-
ing values in some regions, we set threshold criteria for each
spatial and temporal average in the derivation. First, the an-
nual mean for each 5× 5 ◦ grid box is calculated, provided
that at least 8 months of the year have non-missing data.
From these annual averages, decadal mean time series are
calculated for both the period being used in the diagnostic
and the chosen climatological base period. For these calcula-
tions, we require at least 8 years of defined data for a decadal
mean to be defined. We also extract from the annual mean
time series a data mask indicating where observations are
present or missing. We use this mask on the model output
to match the coverage of the observations.

Once the data mask and decadal mean time series are cal-
culated, each time series is zonally averaged on the 5 ◦ grid.
The zonal mean is marked as undefined if there is less than
20 % longitudinal coverage in a given latitude band. We cal-
culate temperature anomalies for each zonal band by sub-
tracting the mean of the climatological time series for the
given band from each decade of the comparison period time
series. The resulting time series of decadal mean, 5 ◦ reso-
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lution temperature anomalies are then averaged into the four
equal-area zones. When aggregating to larger areas, the mean
is calculated as the area-weighted average of the zonal bands
contained within the larger zone.

For ocean heat content observations, we use the estimated
global mean ocean heat content in the 0–2000 m layer from
Levitus et al. (2012). This dataset replaces the Levitus et al.
(2005) 0–3000 m global mean dataset because the latter ends
in 1998 and we aim to extend the diagnostic into the 21st
century. Data are presented as heat content anomalies in 5-
year running means, starting with the 1955–1959 pentad and
ending in the 2011–2015 pentad. Also included in the Lev-
itus et al. (2012) data is a time series of the standard error
of the pentadal mean estimate for the global mean heat con-
tent. The procedure for deriving the standard error estimates
is described in the study’s Supplement and is based on the
observational error estimates of the 1 ◦ gridded data.

For a given diagnostic period, we calculate the linear trend
in the global mean ocean heat content as the slope of the best-
fit linear regression line. In the calculation of the regression
line, all deviations from the mean are assigned a weight in-
versely proportional to the square of the standard error from
the Levitus et al. (2012) data at that point in the time series.
For example, the standard deviation of y from the mean,

σy =

√∑
i(yi − y)2

n− 1
, (1)

is modified by multiplying each term in the summation by its
weight, giving the weighted standard deviation of y from the
mean of

σy,w =

√∑
iwi · (yi − y)2

n− 1
, (2)

where wi is the weight assigned to each point yi based off of
the observational error estimate. All summation terms in the
regression are replaced by the corresponding weighted ver-
sion. By doing so, the regression is weighed more towards
portions of the time series for which the standard error of the
observations is small. Because observational errors decrease
in latter years, more recent observations have a stronger in-
fluence on the trend estimate.

Each model run is compared to the model diagnostics and
evaluated through the use of a goodness-of-fit statistic,

r2
= (x(θ )− y)TC−1

N (x(θ )− y), (3)

where x(θ ) and y are vectors of model output for a given
set of model parameters and observed data, respectively, and
C−1

N is the inverse of the noise-covariance matrix. The noise-
covariance matrix is an estimate of the internal variability of
the climate system and represents the temperature patterns
we would expect in the absence of external forcings. We esti-
mate the noise-covariance matrix by drawing samples of the

temperature diagnostics from the control run of fully cou-
pled general circulation climate models and calculating the
covariance across the samples. Prior to this study, separate
models were used for the surface and ocean diagnostics, po-
tentially yielding inconsistent variability estimates. We elim-
inate that issue by using the Community Climate System
Model, version 4 (CCSM4, Gent et al., 2011) to estimate the
natural variability for both the surface and ocean diagnos-
tics. In its simplest form, the r2 statistic is the weighted sum
of squares residual between the model simulation and the ob-
served pattern. Multiplying x(θ )–y by the noise-covariance
matrix rotates the patterns into the coordinate space of the
natural variability and scales the differences such that r2 is
the sum of independent normals. The noise-covariance ma-
trix is thus a pre-whitener of the residuals.

From the r2 field, we calculate

1r2
= r2(θ )− r2

min, (4)

the difference between r2 at an arbitrary point and the mini-
mum r2 value in the domain. The run with minimum r2 rep-
resents the model run with parameters θ that best matches the
observed record. 1r2 gives a measure of how much an arbi-
trary run differs from the model run that produces the best fit
to the observations. Whereas regions with large1r2 indicate
θs that do not simulate the particular diagnostic well, regions
with small 1r2 indicate θs that simulate the particular diag-
nostic comparably to the minimum. Regions of high (low)
1r2 can (cannot) be rejected for being inconsistent with the
observed climate record.

Because of the pre-whitening by the noise-covariance ma-
trix, 1r2 is known to follow an F distribution (see Forest
et al., 2001, for a complete derivation and discussion). Know-
ing the distribution of 1r2 provides the link between the
goodness-of-fit statistics and the final PDFs. Through this
connection, we convert r2 to probability distribution func-
tions for the model parameters using the likelihood function
based on an F distribution described in Libardoni and For-
est (2011) and modified by Lewis (2013). Through an ap-
plication of Bayes’ theorem (Bayes, 1763), we combine the
likelihoods from each diagnostic and a prior on the model pa-
rameters to estimate the joint PDF. We apply the expert prior
derived in Webster and Sokolov (2000) to ECS and uniform
priors to Kv and Faer. Probability distributions for individual
parameters are calculated by integrating the joint PDF over
the other two parameter dimensions.

Prior to calculating the likelihood function, we interpolate
the goodness-of-fit statistics onto a finer grid in the param-
eter space. This interpolation fills in the gaps between θs
where the model was run and increases the density of points
within the domain. Forest et al. (2006) presented an interpo-
lation method that was implemented in Libardoni and Forest
(2011). The interpolation is first carried out on ECS–

√
Kv

planes via a spline interpolation on all Faer levels to a finer
mesh of points. A second set of spline interpolations at every
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ECS–
√
Kv point on the fine mesh then fills in the fine grid in

the Faer dimension.
In this study, we implement an alternate interpolation

method based off of radial basis functions (RBFs, Powell,
1977). The RBF method approximates the value of a function
based off of a set of node points where the functional value
is known and is a variation of kriging that does not allow
the data to inform the internal parameters of the algorithm.
The function value at any point in the domain is calculated
as the weighted sum of the value at all nearby node points.
The weight assigned to each node is related to the radial dis-
tance between the location that is being interpolated to and
the node. We view this method as an improvement because
it is a three-dimensional method and does not require multi-
ple steps. We will also show in Sect. 3.1 that this leads to a
smoother interpolation surface.

For our implementation, we use the 1800 r2 values at the
points θ where the model has been run as nodes. For node
points, we have sampled ECS from 0.5 to 10.0 ◦C in incre-
ments of 0.5 ◦C,

√
Kv from 0 to 8 cms−1/2 in increments of

1 cms−1/2), and Faer from−1.75 to 0.5 Wm−2 in increments
of 0.25 Wm−2. We interpolate the r2 values from the θs of
the node points to the fine grid used in the spline interpolation
method. In particular, we interpolate r2 values for ECS be-
tween 0.5 and 10.5 ◦C in increments of 0.1 ◦C,

√
Kv between

0 and 8 cms−1/2 in increments of 0.1 cms−1/2, and Faer be-
tween −1.75 and 0.5 Wm−2 in increments of 0.05 Wm−2.
For weights, we choose Gaussian basis functions, with the
weight assigned to each node given by

φ(d)= e−(εd)2
, (5)

where φ is the weight, d is the radial distance between the
two points, and ε is a scaling parameter that determines how
quickly the weight decreases with distance. Typically, RBFs
are calculated in physical space, where the distance between
points, d , is well defined. However, in this application, we
need to apply the concept of distance in model parameter
space. Because the spacing between nodes in each dimension
of the parameter space is different, we normalize all distances
by the range in a given parameter dimension. We recognize
that this choice of normalization constant is arbitrary and in
the future should be determined by a physical metric. Once
normalized, we treat each parameter dimension as isometric,
so that the distance between two points is represented by

|d| (θi,θn)=

√(
ECSi −ECSn

NORMECS

)2

+

(√
KVi −

√
KVn

NORMKV

)2

+

(
FAi −FAn
NORMFA

)2

, (6)

where subscript i refers to the interpolated point, subscript
n refers to the node points, and the normalization constants
are 9.5 ◦C in ECS, 8 cms−1/2 in

√
Kv , and 2.25 Wm−2 in
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Figure 1. Weight assigned to each node point as a function of radial
distance in normalized parameter space. The decay is isometric in
the parameter space and the same for all node points.

Faer. Because the distance between any two points in the pa-
rameter space is always the same, the choice of ε plays a
critical role in determining the behavior of the algorithm. We
demonstrate this by showing the weights for six different ε
values as a function of normalized distance (Fig. 1). Small
values of ε lead to a slow decay and large values of ε lead to
a rapid decay of the weighting function. The choices of ε are
described in Appendices A and B.

The weighting function is applied to each node point
within the parameter space. One can imagine a sphere sur-
rounding each of these points, with the weight assigned to
that point decaying as a function of the distance from the
center. All points within the parameter space are in regions
where the spheres from multiple node points overlap. The
interpolated value at any point is the weighted sum of the
node values associated with the overlapping spheres. Thus,
we calculate the r2 value at any point in the domain as

r2(θ )=
∑N
i φir

2
i∑N

i φi
, (7)

where the sum is over all N = 1800 node values. When cal-
culating the sum, all 1800 node values are considered, but the
weights from those far away in parameter space are close to
zero and do not contribute to the sum.

In summary, we have made a number of changes and up-
dates to the methodology. (i) To account for a change in ob-
servational dataset, we have modified the ocean diagnostic
to be estimated from the 0–2000 m layer, as opposed to the
0–3000 m layer. (ii) We now estimate the natural variability
from a common model, as opposed to using different mod-
els for the surface and ocean diagnostics. (iii) We implement
a new interpolation scheme where radial basis functions are
used to interpolate goodness-of-fit statistics from the coarse
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grid of model runs to the fine grid used to derive the joint
probability distribution functions.

Using the updated methodology, we show how tempo-
ral and spatial information impacts the PDFs of the model
parameters. We address the temporal component by adding
more recent data to the model diagnostics in one of two
ways. First, we extend the diagnostics by fixing the starting
date while shifting the end date forward in time. To maxi-
mize the amount of data that we use in the surface diagnos-
tic while also ensuring good observational data coverage, we
take decadal mean temperature anomalies with respect to the
1906–1995 base period starting in 1941. We then shift the
end date from 1990 to 2000 to 2010 to change the diagnostics
from 5 to 6 to 7 decades, respectively. For the ocean diagnos-
tic, we choose 1955 as the starting date of the first pentad
to correspond to the beginning of the observational dataset.
Similar to the surface diagnostic, we increase the length of
the ocean diagnostic by changing the end date of the last pen-
tad from 1990 to 2000 to 2010.

In a second test, we fix the length of the diagnostics while
shifting the end date forward in time. This maintains a 5-
decade diagnostic for the surface diagnostic by shifting the
50-year window from 1941–1990 to 1951–2000 to 1961–
2010 and a 35-year ocean diagnostic by shifting the period
we use to estimate the linear trend from 1955–1990 to 1965–
2000 to 1975–2010. By deriving PDFs with each pair of di-
agnostics corresponding to a given end date, we determine
the impact of recent temperature trends on the parameter dis-
tributions in both the extension and sliding window cases.

In a third test, we derive PDFs with different structures for
the surface diagnostic. In these new diagnostics, we maintain
the decadal mean temporal structure but reduce the dimen-
sionality of the spatial structure by replacing the four zonal
bands with global mean or hemispheric mean temperatures.
In the former case, we have a one-dimensional spatial struc-
ture, and in the latter a two-dimensional structure.

3 Results

We present our findings as follows. In Sect. 3.1 we (i) show
the difference in the ocean diagnostic due to changing to
the 0–2000 m data, (ii) provide justification for using the
RBF interpolation method, and (iii) present the impact of the
methodological changes described in Sect. 2 on the parame-
ter distributions. In Sect. 3.2, we (i) analyze how the model
diagnostics change due to the inclusion of more recent data
and (ii) assess how those changes impact the distributions. In
Sect. 3.3, we show how including spatial patterns of surface
temperature change impact the distributions.

3.1 Methodological changes

We first identify the difference in the ocean diagnostic de-
rived from the 0–3000 and 0–2000 m layers for the common
period of 1955–1996 (Fig. 2). This period is chosen to coin-
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Figure 2. Global mean ocean heat content for the 0–3000 m layer
(Levitus et al., 2005) and 0–2000 m layer (Levitus et al., 2012).
Shading indicates twice the standard error on either side of the es-
timate. Standard error estimates are included with the time series
from the respective datasets. Dashed lines represent the 95 % confi-
dence interval for the trend line derived from the data and its uncer-
tainty estimates.

cide with the ocean diagnostic in Libardoni and Forest (2013)
and allows for a direct comparison of distributions presented
later in this section. We observe a stronger warming trend of
3.6±0.50 ZJyr−1 in the 0–2000 m layer compared to the es-
timate of 2.7±0.39 ZJyr−1 in the 0–3000 m layer, suggesting
that the rate of heat penetration into the deep ocean decreases
with depth.

Second, we demonstrate the impact of switching to the
RBF algorithm. For one of our surface temperature diagnos-
tics, we interpolate the r2 values using each of the six ε val-
ues presented in Sect. 2. We show the resulting r2 patterns
and compare them against the surface derived using the For-
est et al. (2006) spline interpolation method and the original
pattern (Fig. 3). We observe that the old method is very suc-
cessful at matching the r2 values at points where they were
run (Fig. 3b). However, the surfaces are not always smooth
and in some instances the location of the minimum value of
r2 shifts to a new, nearby location in the interpolated space.

We aim to improve upon the shortcomings of the old in-
terpolation method by identifying ε so that not only is the
spatial pattern of r2 maintained, but the resulting response
surface is also smooth. We observe smoother interpolated
surfaces for lower values of ε because of the relationship
between ε and the radius of influence of each node point
(Fig. 3c–h). Because we do not require the interpolated val-
ues to pass exactly through the node points, the smoothness
comes at the expense of increasing the interpolation error at
the node points. Unlike the old interpolation method, the er-
rors at node points do not lead to a change in the rank order
of r2 values at the node points, however. The location of the
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Figure 3. Example of the differences between the algorithms to
interpolate goodness-of-fit statistics from the coarse grid of model
runs to the finer grid used for the derivation of parameter distribu-
tions. Calculated r2 values (a) are shown along with the interpolated
values using the algorithm from Libardoni and Forest (2011) (b) and
the radial basis function interpolation with six different values of ε
(c–h). Node points (+) are indicated in (a), while the interpolated
grid has been omitted for clarity (b–h).

minimum remains the same, as well as all subsequent com-
parisons.

We also observe a reduction in the range of r2 values
within the domain. The reduction occurs because regions
where r2 is originally low are now influenced by areas fur-
ther away in the parameter space where r2 is high, and vice
versa. This is true of the algorithm in general, with the errors
at each node point and the reduction of the range diminish-
ing as ε increases and the radius of influence of each node
point decreases. However, as ε increases and the radius of
influence for a given node decreases, the response surface
becomes less smooth. Thus, there is a tradeoff, in that de-
creasing the interpolation error at node points leads to a de-
crease in the smoothness of the surface. Small εs provide the
desired smoothness, while large εs provide the truest fit to
the actual values at the node points. This indicates that inter-
mediate values of ε (e.g., 10.8 or 14.4) are appropriate.

Thus far, we have only investigated the impact of ε on the
fit of the interpolated r2 values to the raw values. As out-
lined in Sect. 2, inference on the model parameters is based
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Figure 4. As in Fig. 3, except for 1r2, the difference between r2

at a given point and the minimum r2 value in the domain. This
represents the difference between r2 at an arbitrary point and that
of the best fit of the model to the observations.

on1r2, the difference between r2 at an arbitrary point in the
parameter space and the minimum within the domain. Plot-
ting the 1r2 field as a function of ε confirms our assessment
that intermediate values of ε lead to the best fit to the raw
values (Fig. 4). Both ε = 10.8 and ε = 14.4 fit the raw 1r2

values quite well as the inflation of low r2 values is normal-
ized by the subtraction of the minimum value (which is also
interpolated to a greater value). However, for ε = 14.4, the
region of best fit (1r2 less than 10) is larger than the raw
values and there are regions where the interpolated surface is
not as smooth as when ε = 10.8. In some situations, this lack
of smoothness leads to PDFs that are also not smooth and dis-
play bumps at values for the parameter settings of the node
points (not shown). For these reasons, we choose ε = 10.8
for our analysis.

To further test our choice of ε, we perform an out-of-
sample test on 300 runs of the MESM that were not included
in the 1800 member ensemble used in this study. The pa-
rameter settings for the out-of-sample runs were the result of
two separate 150-member Latin hypercube samples (McKay
et al., 1979) and did not correspond to the settings of any
of the node points. For each run, we calculate 1r2 for the
surface diagnostic matching the one used in Figs. 3 and 4
and compare those against the values calculated using the
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Figure 5. Comparison of 1r2 values calculated from out-of-
sample model runs and those calculated using the RBF interpola-
tion method. (a) All 300 runs. (b) All runs with 1r2 less than 200.
The one-to-one line is plotted for reference (red, dashed line).

RBF interpolation method with ε = 10.8 and the 1800 runs
as nodes (Fig. 5).

With a few exceptions, we see good agreement between
1r2 calculated from the model output and 1r2 estimated
from the RBF algorithm. The biggest discrepancies are typi-
cally found for 1r2 values greater than 50, where the like-
lihood function for the diagnostic approaches 0. We also
note that the differences are small in regions of the param-
eter space where the likelihood function approaches its max-
imum, namely for small1r2. Lastly, we find an almost equal
number of runs where the difference between the value calcu-
lated from the model output and the value estimated from the
RBF method is greater than zero and where the difference
is less than zero, indicating no substantial bias in the RBF
algorithm. Because we see good agreement of the RBF inter-
polated surface with the out-of-sample test runs and observe
a smooth response surface with a good fit to the data (Figs. 3
and 4), we argue that choosing ε = 10.8 is appropriate.

To test the impact of the methodological changes, we start
from a previously published probability distribution and ap-
ply the changes one at a time. For a reference point, we start
with the PDF from Libardoni et al. (2018a) derived using the
HadCRUT3 surface temperature dataset (Brohan et al., 2006)
and the likelihood function presented earlier in Sect. 2. The
changes we implement are to (i) change the ocean diagnos-
tic from the 0–3000 m layer to the 0–2000 m layer, (ii) re-
place the interpolation method of Forest et al. (2006) with
the RBF interpolation method, and (iii) change from using
natural variability estimates from different control run mod-
els for the surface and ocean diagnostics to a common model
for both estimates. To better illuminate the changes, we de-
rive an additional PDF changing both the control run model
and the interpolation method simultaneously. We summarize
the resulting distributions in Fig. 6.

When changing the ocean diagnostic from the 0–3000 m
layer to the 0–2000 m layer, we observe the largest change
as a shift towards higher Kv . As measured by the 90 % cred-

ible interval for the marginal distribution of ̂√Kv , our es-
timate increases from 0.29–1.90 to 0.81–3.22 cms−1/2. We
also note that the wider interval indicates a weaker constraint
on the estimate of Kv . In the MESM, Kv controls how fast
heat is mixed into the deep ocean. Thus, we trace the shift to-
wards higher Kv to the stronger heating rate in the ocean di-
agnostic due to estimating the trend from the 0–2000 m data
(Fig. 2). We observe a small shift towards higher ECS and
almost no change in estimates of Faer.

For the second change, we explore the implementation of
the RBF interpolation algorithm. In Fig. 6, we observe that
the parameter distributions are indeed smoother when the
RBF method is used. This is particularly evident in the cli-
mate sensitivity distributions. We also note changes to the
constraints on model parameters. In general, we see a flat-
tening of the center of the distributions, as measured by the

interquartile range (IQR). In particular, the IQR for ̂√Kv in-
creases from 0.59 to 0.71 cms−1/2 (ranges of 0.71–1.3 to
0.86–1.57 cms−1/2) and for F̂aer from 0.07 to 0.11 Wm−2

(−0.25–−0.18 to −0.32–−0.21 Wm−2) when comparing
the reference PDF using the old interpolation method to the
PDF estimated using the RBF method. This increase is con-
sistent with our previous discussion that the RBF method
tends to adjust low r2 values upwards and high r2 values
downwards. In this situation, the maximum likelihood region
of the joint PDF, where r2 is a minimum, impacts all points
within its radius of influence.

In general, we observe tighter constraints on all of the dis-
tributions when a common control run model is used for the
surface and ocean diagnostics. For all three parameters, the
width of the 90 % credible interval decreases. One potential
reason for these tighter constraints is an undersampling of
the internal variability resulting from using only CCSM4’s
variability and not across multiple models. Due to structural
differences, the internal variability is not the same across all
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Figure 6. Marginal probability distribution functions for (a) ECS,
(b)
√
Kv , and (c) Faer derived with changes in methodology. A

comparison between the HadCRUT3 distribution derived in Libar-
doni et al. (2018a) (black) with those derived using all changes
outlined in the text (red) and individual changes to the control
run used to estimate natural variability (blue), the ocean diagnos-
tic (green), and the interpolation method (orange). Also shown is the
case where the natural variability estimate and interpolation method
are changed together (purple). Whisker plots indicate boundaries
for the 2.5th–97.5th (dots), 5th–95th (vertical bar ends), 25th–75th
(box ends), and 50th (vertical bar in box) percentiles. Distribution
means are represented by diamonds and modes are represented by
open circles.

models and a single model does not span the full range of
variability. We investigate the sensitivity of the distributions
to the internal variability estimate in a separate study (Libar-
doni et al., 2018b).

Despite the tighter constraints, we observe multiple min-
ima and maxima in the climate sensitivity distribution. All of
the local extrema occur at values of ECS where the model has
been run. We attribute these oscillations to the spline interpo-

lation method attempting to pass through r2 exactly at all of
the points and observe them in plots similar to Fig. 3 for dif-
ferent aerosol levels (not shown). In addition to the method
developed in this study, using a smoothing spline is another
interpolation method that can eliminate these multiple ex-
trema. Because the assumed impact of the old interpolation
method leads to the spurious ECS marginal distribution, we
also show the case where both the control run and interpo-
lation method are changed together (purple curve in Fig. 6).
This test also separates the impacts of changing datasets and
diagnostics (ocean dataset) from the technical details of the
derivation (interpolation method and variability estimate).

We summarize the net impact of the changes by imple-
menting all three simultaneously (red curve in Fig. 6). When
comparing the ECS and Faer distributions, we observe very
little change in the estimates of central tendency and stronger
constraints on the parameters. Here, we measure central ten-
dency by the median of the distribution and the constraint by
the width of the 90 % credible interval. Before implementing
the changes, we estimate the median ÊCS to be 3.44 ◦C with
a 90 % credible interval of 2.24–5.48 ◦C. After the changes,
we estimate a median of 3.45 ◦C and a 90 % credible inter-
val of 2.54–4.96 ◦C. Similarly, for F̂aer we estimate a me-
dian of−0.22 Wm−2 and a 90 % credible interval of−0.38–
−0.11 Wm−2 before and a median of −0.23 Wm−2 and
a 90 % credible interval of −0.38–−0.11 Wm−2 after the
changes. This pattern does not hold for the Kv distribution.

For ̂√Kv , we estimate the median to increase from 1.00 to
1.77 cms−1/2 and the 90 % credible interval to change from
0.29–1.90 to 1.03–3.32 cms−1/2 when implementing the new
methodology. We previously showed that the change in ocean
dataset led to higher Kv estimates without changing the cen-
tral estimates of the other two parameters. Combining this
with the findings from the ECS and Faer distributions leads
us to conclude that the central estimates of the distributions
change with the diagnostics, and that the technical changes,
namely the unforced variability estimate and the interpola-
tion method, impact the uncertainty estimates.

3.2 Temporal changes to model diagnostics

Before presenting new PDFs using the methods discussed in
the previous section, we present the model diagnostics used
to derive them. We show the time series of decadal mean tem-
perature anomalies with respect to the 1906–1995 climatol-
ogy in the four equal-area zonal bands of the surface temper-
ature diagnostic (Fig. 7). We plot the time series from 1941
to 2010 with the decadal mean plotted at the midpoint of the
decade it represents. In tests where we extend the model di-
agnostics by holding the start date fixed and add additional
data, we add an additional data point to the end of each time
series. In tests where we hold the length of the diagnostics
fixed while adding recent data, we change which five data
points are used.
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Figure 7. Decadal mean temperature anomaly time series derived
from the HadCRUT4, NOAA MLOST, BEST, and GISTEMP 250
datasets. Time series are for the four equal-area zonal bands span-
ning (a) 30–90 ◦N, (b) 0–30 ◦N, (c) 0–30 ◦S, (d) and 30–90 ◦S.
Temperatures are plotted as anomalies with respect to the 1906–
1995 base period at the midpoint of each decade.

From the time series, we see that while general similar-
ities exist, the model diagnostic depends on which surface
observations are used. Across all datasets, we observe the
largest signal in the 30–90 ◦N zonal band, consistent with the
polar amplification of warming. We also note that the high-
est agreement across the datasets is observed in this band.
We find that there is a separation between the time series in
the 0–30 ◦N and 0–30 ◦S zonal bands based on which SST
dataset a group used for the temperatures over the ocean.
When considering this split, we see similar patterns in the
tropical bands between datasets using HadSST (HadCRUT4
and BEST) and datasets using ERSST (MLOST and GIS-
TEMP250). Although not shown, we observe similar pat-
terns in the hemispheric and global mean time series, with
a stronger warming signal in the Northern Hemisphere and
the time series showing sensitivity to the dataset.

We illustrate how additional data impact the estimate of
the linear increase in ocean heat content (Figs. 8 and 9). In
both figures, we plot the time series from Levitus et al. (2012)
with the pentadal mean plotted at the midpoint of the 5-year
period defining the pentad. In Fig. 8, we fix the starting date
in 1955 and shift the end date further ahead. In Fig. 9, we fix
the length of time over which the linear trend is calculated
and shift the entire range forward.

The recent acceleration of heat stored in the deep ocean is
well documented (Levitus et al., 2012; Gleckler et al., 2016),
and as expected, we find that the trend estimate depends on
both the end points of the period used for estimation and
the length of the period used for estimation. As previously
stated, more recent observations have a stronger influence on
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Figure 8. Global mean ocean heat content for the 0–2000 m layer.
Shading indicates twice the standard error on either side of the es-
timate. Also shown are the best fit linear trend lines for the trend
beginning in 1955 and ending in 1990 (black), 2000 (red), and 2010
(blue). Dashed lines indicate the 95 % confidence interval for the
point estimate for a given year based on the best fit line and its un-
certainty.
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Figure 9. As in Fig. 9, except the diagnostic length is held fixed.
Linear trend estimates are for the 1955–1990 (black), 1965–2000
(red), and 1975–2010 periods.

the trend estimate because the standard error of the obser-
vations decreases with time. We calculate higher trend es-
timates when holding the period length fixed while includ-
ing more recent data compared to when the period is ex-
tended to include more recent data. We estimate a trend of
3.4±0.28 ZJyr−1 when considering the period from 1955 to
1990. For diagnostics ending in 2000, we estimate a trend
of 4.0± 0.19 ZJyr−1 if the starting date is shifted to 1965
and a trend of 3.7± 0.15 ZJyr−1 if the starting date is held
at 1955. Trends of 6.0± 0.18 and 5.2± 0.12 ZJyr−1 are es-
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timated when using data up to 2010 and holding the diag-
nostic length fixed and extending the diagnostic length, re-
spectively. By shifting the diagnostic rather than extending
it, the accelerated warming signal is stronger because peri-
ods of slower warming earlier in the time series are replaced
by periods of more rapid warming later in the time series.

For each surface and ocean diagnostic set, we derive
joint probability distributions according the experiments dis-
cussed in Sect. 2. To account for the different surface tem-
perature datasets, we derive a PDF using each of the four
datasets as observations in the surface temperature diagnos-
tic. We combine the four PDFs into a single estimate by tak-
ing the average likelihood at each point in the joint PDF. In
offline calculations, we confirmed that the marginal PDFs for
each parameter using the average joint PDF were nearly iden-
tical to the marginal PDFs resulting from the merging method
used to submit the distributions from Libardoni and Forest
(2013) for inclusion in the Intergovernmental Panel on Cli-
mate Change Fifth Assessment Report (IPCC AR5, Collins
et al., 2013). For the IPCC AR5 estimates, we drew a 1000-
member Latin hypercube sample from each distribution and
calculated marginal distributions for each parameter from the
histogram of the drawn values. By including an equal number
of samples from each distribution, we assign equal weight to
each surface temperature dataset and make no assumption or
judgement about whether any dataset is better or worse than
the others. Taking the average of the four PDFs is the limit of
this method as the number of draws approaches infinity. We
justify using the average of the four PDFs by noting that the
same general conclusions are drawn from the combined PDF
as would be drawn from the PDFs derived from individual
datasets.

We first investigate the PDFs by looking for correlations
between the model parameters. For each pair of model pa-
rameters and for each configuration of the model diagnostics,
we calculate the two-dimensional marginal distribution by
integrating over the third parameter (Fig. 10). From these dis-
tributions, correlations between the pairs of parameters are
evident, independent of the diagnostic length and end date.
We find ECS and Kv to be positively correlated, ECS and
Faer to be negatively correlated, and Kv and Faer to be pos-
itively correlated. These correlations make sense when re-
lated to the model diagnostics. If we take a fixed surface tem-
perature pattern and conduct a thought experiment for each
pair of parameters, the correlations emerge when consider-
ing the energy budget at the atmosphere–ocean interface. For
a fixed forcing, if climate sensitivity increases, surface tem-
peratures would increase in response to the more efficient
heating of the surface. Because these higher temperatures no
longer agree with the fixed temperature pattern, a mechanism
for removing excess heat from the surface is needed to re-
establish balance in the system. In the MESM framework,
this mechanism is more efficient mixing of heat into the deep
ocean, and thus higher values of Kv . If we fix Kv and again
increase ECS so that surface temperatures would increase in
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Figure 10. Two-dimensional joint probability distribution func-
tions for each pair of parameters: (a) ECS–

√
Kv , (b) Faer–

√
Kv ,

(c) Faer–CS. Distributions with diagnostics ending in 1990 (black),
2000 (red), and 2010 (blue) are shown. Solid contours indicate an
extension of the diagnostic and dashed contours indicate that the
lengths of the diagnostics remain fixed when incorporating more
recent data. Contours show the 90 % and 50 % credible intervals
and symbols indicate the distribution modes.

response, the mechanism for reducing the energy budget at
the surface is the aerosol forcing. To maintain the necessary
balance at the surface, Faer needs to be more negative, and is
thus negatively correlated with ECS. Lastly, if ECS is fixed,
an increase inKv would remove energy from the surface and
tend to cool temperatures. A weaker (less negative) aerosol
forcing is needed to maintain the energy balance, indicating
that Kv and Faer are positively correlated. Similar arguments
follow when considering the ocean heat content diagnostic
and the energy budget of the ocean.

Second, we show that incorporating more recent data into
the temperature diagnostics has a significant impact on the
individual parameter estimates by investigating the marginal
PDF of each parameter (Fig. 11). Unless otherwise noted, we
again approximate the central estimate of the distributions as
the median and use the 90 % credible intervals to estimate
the uncertainty. Across all three parameters, we generally
observe sharper PDFs as more recent data are added. Fur-
thermore, the constraints are stronger when the data are used
to extend the diagnostics as opposed to when the diagnos-
tic lengths are fixed. We attribute the general tightening of
the distributions with recent data to the strong climate sig-
nals that have emerged in the observations. Further, we argue
that the uncertainty bounds tend to be tighter when the di-
agnostic lengths are increased because the model output is
being compared against more detailed temperature patterns
with additional data points to match. Runs that do not match
the added points are rejected for being inconsistent with the
observations.

www.adv-stat-clim-meteorol-oceanogr.net/4/19/2018/ Adv. Stat. Clim. Meteorol. Oceanogr., 4, 19–36, 2018



30 A. G. Libardoni et al.: Estimates incorporating recent change

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

-1.5 -1.0 -0.5 0.0 0.5 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
de

ns
ity

D
en

si
ty

SQRT(ocean diffusivity) SQRT([cm s ])2 -1

Net aerosol forcing (W m )-2 Transient climate response ( C)o

(a) (b)

(c) (d)
Climate sensitivity ( C)o

D
en

si
ty

D
en

si
ty

Diagnostics end in 1990
Diagnostics end in 2000
Diagnostics end in 2010

Extended diagnostics
Fixed diagnostic length

Figure 11. Marginal probability distribution functions for (a) ECS,
(b)
√
Kv , and (c) Faer, and (d) cumulative distribution function for

TCR when changing the end date of model diagnostics. Distribu-
tions with diagnostics ending in 1990 (black), 2000 (red), and 2010
(blue) are shown. Solid lines indicate an extension of the diagnostic
and dashed lines indicate that the lengths of the diagnostics remain
fixed when incorporating more recent data.

For climate sensitivity, we find that extending the data be-
yond 1990 leads to higher climate sensitivity estimates when
compared to the estimate shown in Fig. 6 that incorporates
all of the methodological changes. However, we find that the
inclusion of more recent data does not always lead to an in-
crease in the estimate of ECS. Our estimate of ECS for di-
agnostics ending in 2000 is greater than the estimate for the
diagnostics ending in 2010, regardless of whether the diag-
nostic length is extended or fixed. For the case where the
diagnostics are extended, we estimate a median climate sen-
sitivity of 4.04 ◦C with data ending in 2000 and 3.73 ◦C with
data ending in 2010. When the diagnostic length is fixed, we
estimate median climate sensitivities of 4.08 and 3.72 ◦C for
diagnostics ending in 2000 and 2010, respectively. We hy-
pothesize that the lowering of the estimate for ECS with di-
agnostics ending in 2010 can be attributed to the slowing of
global mean temperature rise in the 2000s as more heat was
stored in the deep ocean. We also note the uncertainty in the
estimate of ECS decreases as more recent data are added and
the tighter uncertainty bounds come predominantly from a
reduction in the upper tail of the distribution. There is also a
slight increase in the estimate of the lower bound, however.

Our estimates of Kv show large shifts in response to
changes in the diagnostics. When the diagnostics end in
1990, we find a very weak constraint on Kv , with a non-zero
tail throughout the domain. As more recent data are included,
we see a large reduction in the upper tail of the distributions.
We also see shifts towards higher Kv with the inclusion of
data from 2001–2010. When including these data, we esti-

mate ̂√Kv to increase from 1.45 to 2.08 cms−1/2 when the

diagnostic lengths increase and from 1.16 to 1.62 cms−1/2

when the diagnostic lengths are fixed. Because Kv sets how
fast heat is mixed into the deep ocean in the model, we at-
tribute the higher estimates to the recent acceleration of heat
storage in the 0–2000 m layer (see Figs. 8 and 9).

We also see shifts in the Faer distribution in response to
the changes in model diagnostics. We reiterate that in the
MESM, Faer sets the amplitude of the net anthropogenic
aerosol forcing and represents the sum of all unmodeled forc-
ings. We observe shifts towards stronger cooling (more neg-
ative values of Faer) when diagnostics end in 2000 and shifts
back towards weaker values (less negative) when the diag-
nostics end in 2010. When the diagnostics are extended, F̂aer
estimates shift from −0.28 Wm−2 when data up to 1990 are
used to −0.32 and −0.23 Wm−2 when data up to 2000 and
2010 are used, respectively. Similarly, we observe shifts to
−0.32 and −0.28 Wm−2 when the diagnostic lengths are
held fixed and include data up to 2000 and 2010, respectively.
Thus, the observed change from the 2000 to 2010 estimate is
larger in the case where the diagnostics are extended rather
than of fixed length.

Although not shown, we observe these shifts in the Faer
distributions for each of the PDFs derived using the different
datasets individually, but note that we see smaller changes
with the merged PDF. Also, from the individual PDFs, we
see a grouping of the Faer distributions based on the SST
dataset used by the research center. We find the HadCRUT4
and MLOST distributions (HadSST) and the BEST and GIS-
TEMP250 distributions (ERSST) to be similar.

We attribute the shift towards stronger cooling for the
1991–2000 decade to the cut-off of the high Kv tail. When
Kv decreases, excess heat in the Earth system is stored in the
ocean less efficiently. In response to this excess heating, sur-
face and atmospheric temperatures would rise unless an ex-
ternal factor is active and opposes the heating. In the MESM,
negative values of Faer reduce the net forcing and contribute
to balancing the global energy budget. The spatial pattern of
the net aerosol forcing in the MESM leads to the forcing be-
ing stronger in the Northern Hemisphere than in the Southern
Hemisphere. With this pattern, we observe stronger temper-
ature responses in the Northern Hemisphere when we adjust
Faer than we do in the Southern Hemisphere. We attribute the
shift back towards weaker aerosol cooling when adding the
2001–2010 trends to the northern hemispheric polar amplifi-
cation signal noted earlier in this section.

Finally, we derive estimates of transient climate response
from the PDFs discussed above (Fig. 11d). From each PDF,
we draw a 1000-member Latin hypercube sample and calcu-
late TCR for each of the ECS–

√
Kv pairs using the model re-

sponse surface derived in Libardoni et al. (2018a). The PDFs
of TCR are estimated from the histogram of TCR values with
bin size = 0.1 ◦C. We show that the TCR estimates reflect
changes in the parameter distributions. In particular, TCR
and climate sensitivity are positively correlated and TCR and
Kv are negatively correlated. Furthermore, the uncertainty
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Figure 12. Marginal probability distribution functions for (a) ECS,
(b)
√
Kv , and (c) Faer and (d) cumulative distribution function for

TCR derived from different spatial diagnostics. Diagnostics end in
2010 and data are added by extending the diagnostics.

in the TCR distribution is correlated with the uncertainty in
ECS and Kv . Thus, we find that TCR estimates are greater
when more recent data are added due the higher climate sen-
sitivity estimates, but are smaller in 2010 than in 2000 due
to the shift towards higher Kv . Furthermore, TCR estimates
are higher when the diagnostic lengths are fixed compared to
when they are extended.

3.3 Spatial changes to model diagnostics

Until now, we have only considered how the temporal com-
ponent of the diagnostics impacts the parameter estimates.
As a final case study, we reduce the spatial dimension of the
surface temperature diagnostic by replacing the four zonal
band diagnostic with either global mean surface temperature
or hemispheric mean temperatures using the 1941–2010 di-
agnostic period (Fig. 12). Similar to the PDFs shown when
changing the temporal structure of the diagnostic, we present
the distributions calculated from the average of the four indi-
vidual PDFs derived using the different surface temperature
datasets.

We find little sensitivity in the central estimates of the ECS
and Kv distributions to the spatial structure of the surface di-
agnostic using data up to 2010. For ÊCS, the median estimate
for when global mean temperatures, hemispheric means, and
four zonal bands are used are 3.81, 3.75, and 3.72 ◦C, respec-

tively. Similarly, median estimates for ̂√Kv are 2.06, 1.94,
and 2.08 cms−1/2 when global mean, hemispheric mean, and
four zonal mean temperatures are used. However, we observe
a tightening of the distributions as the spatial resolution of the
surface diagnostic increases. The narrowest distributions are
derived using the four zonal band diagnostic and the widest

distributions are derived using global mean temperatures. We
note that the TCR distributions follow the shifts in ECS and
Kv . Thus, the central estimates do not change significantly,
but the width of the distribution shrinks as spatial informa-
tion is added to the surface diagnostic.

Unlike with the ECS and Kv distributions, we observe a
sensitivity to the surface diagnostic structure in the Faer dis-
tributions. In particular, we observe that the estimate derived
using global mean temperature leads to the strongest (most
negative) aerosol forcing and the estimate derived using the
four zonal bands leads to the weakest aerosol forcing. When
considering only global mean temperature, we remove the
polar amplification signal from the temperature diagnostic.
Removing this signal means that we ignore the spatial de-
pendence of the aerosol distribution and only consider the net
effect on the global energy budget. However, as we include
variations of temperature with latitude, the spatial pattern of
the aerosol forcing pattern matters. As a result, the median
estimate of F̂aer shifts from−0.31 to−0.28 to−0.23 Wm−2

when global mean, hemispheric mean, and four zonal bands
are used. Thus, while the spatial structure has only a small
influence on ECS and Kv , it has a strong influence on Faer.

4 Conclusions

We implement a number of methodological changes to im-
prove probability estimates of climate system properties.
Changes include switching to an interpolation based on ra-
dial basis functions, estimating natural variability from a
common model across diagnostics, using new observational
datasets, and incorporating recent temperature changes in
model diagnostics. We show that the parameter estimates fol-
low signals in the data and depend on the model diagnostics.
Furthermore, we show that the technical changes, namely the
interpolation method and the natural variability estimate, do
not considerably change the central estimate of the parame-
ters, but do impact the uncertainty estimates of the distribu-
tions.

We have shown that the RBF interpolation method is
successful in smoothing the distributions while not chang-
ing the central estimate. The success of the RBF method
is an encouraging sign for future research. Due to the two-
dimensional interpolation method previously used, our work
until now has been restricted to running ensembles on a uni-
form grid of points in the parameter space. The RBF method
is three-dimensional and can be applied to any collection of
node points. We can thus run the full model at any set of non-
gridded nodes and interpolate the goodness-of-fit statistics
to estimate the values at intermediate points. Other studies
(Sansó and Forest, 2009; Olson et al., 2012) have built sta-
tistical emulators to approximate model output at non-node
parameter settings for each point in the diagnostic time series
and then calculate the likelihood function by comparing the
emulator output to observations. We argue that by interpolat-
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ing the metrics, rather than model output at individual points
in the time series, we approximate the impact of all feed-
backs on the diagnostic together, rather than individually at
different spatial and temporal scales.

Our results suggest that the spatial structure of model diag-
nostics plays a key role in the estimation of parameters with
spatial variation. When adding spatial structure to the diag-
nostics, we observed little change in parameters representing
global mean quantities (ECS and Kv), but the distributions
of Faer differed depending on whether global mean tempera-
ture, hemispheric mean temperatures, or temperatures in four
equal-area zonal bands were used. When global diagnostics
are used, we ignore the spatial variation of forcing patterns
and fail to account for regional influences on climate change.
Our estimates provide an assessment of the importance of
these spatial patterns when estimating probability distribu-
tions for model parameters.

Overall, our work highlights that recent temperature trends
have a strong influence on the parameter distributions. In par-
ticular, we observe a shift in the distributions towards higher
climate sensitivity due to the addition of recent surface tem-
perature warming trends relative to 1990, but with a reduc-
tion in the estimate when using data up to 2010 as opposed
to 2000. We also observe that the distributions of Kv shift
towards higher values. The uncertainty in our estimates de-
creases as more recent data are used in the temperature di-
agnostics. Our estimates of transient climate response reflect
the changes in ECS and Kv and are correlated with ECS and
anticorrelated with Kv . By incorporating more recent data,
which are of higher quality, and using improved methodol-
ogy, we are more confident in our estimates of the model
parameters and transient climate response.

Code and data availability. The source code of MESM will be-
come publicly available for non-commercial research and educa-
tional purposes as soon as a software license that is being prepared
by the MIT Technology Licensing Office is complete. For further
information contact mesm-request@mit.edu. All data required to
reproduce the figures in the main text and scripts to replicate the
figures are available. Model output is available upon request.
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Appendix A: Grid spacing in normalized model
parameter space

As discussed in Sect. 2, when estimating r2 at intermedi-
ate points, the weight assigned node point values in the ra-
dial basis function interpolation is a function of the distance
between the two points. We have normalized the parameter
space for each parameter by the range sampled in the 1800-
member ensemble of MESM runs so that each dimension
is isometric in the distance calculation. In this normalized
space, the grid spacing for each model parameter is

1ECS=
0.5 ◦C
10 ◦C

= 0.05, (A1)

1Kv =
1 cms−1/2

8 cms−1/2 = 0.125, (A2)

1Faer =
0.25 Wm−2

2.25 Wm−2 = 0.111. (A3)

Appendix B: Interpretation of ε values in model
parameter space

The weight of any node point in the calculation of r2 at an
interpolated point is given in Eq. (5) and is a function of
the distance between the points and the scaling parameter
ε. When first developing the algorithm, we hypothesized that
having each node point influence the r2 value at an interpo-
lated point within three grid points in model parameter space
would achieve the fit and smoothness we sought from the
interpolation. Because the grid spacing in normalized space
is not equal for the three parameters, we chose an average of
the three individual spacings and used 0.1 as the approximate
distance of one grid space. Setting d = 0.3 and φ = 0.01 to
account for the distance between three nodes and the weight
approaching zero at that distance, respectively, we solve for
ε = 7.2.

To test other ε values, we scaled the original choice by fac-
tors of 0.5, 1.5, and 2. For ε = 3.6, we calculate an e-folding
distance of 0.27. This implies a large sphere of influence,
as the weight decays to 0.37 at a distance of approximately
three grid points away in normalized parameter space. Thus,
rather than decay to zero as for the original estimate, there
is still significant influence from the node point at d = 0.3.
This leads to the over-smoothing of the r2 pattern observed
in Fig. 3. In similar calculations, we determine e-folding dis-
tances in normalized parameter space of 0.09 and 0.07 for
ε = 10.8 and ε = 14.4, respectively. For ε = 10.8, this im-
plies an e-folding distance of approximately one grid space in
the
√
Kv and Faer dimensions, while for ε = 14.4, the weight

has decayed to 0.13 at a distance of one grid space in those
dimensions. Using larger values of ε leads to further decay of
the weighting function one normalized grid point away from
the nodes. We chose εs of 17.2 and 21.2 to demonstrate this
feature.
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