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Non-Linguistic Constraints on the Acquisition of Phrase Structure

Jenny R. Saffran (jsaffran@facstaff.wisc.edu)
Department of Psychology; 1202 W. Johnson Street

Madison, WI 53706 USA

Abstract

To what extent is linguistic structure learnable from statisti-
cal information in the input? One set of cues which might as-
sist in the discovery of hierarchical phrase structure given se-
rially presented input are the dependencies, or predictive rela-
tionships, present within phrases. In order to determine
whether adult learners can use this statistical information,
subjects were exposed to artificial languages which either
contained or violated the kinds of dependencies which charac-
terize natural languages. The results suggest that adults pos-
sess learning mechanisms which detect and utilize statistical
cues to phrase and hierarchical structure. A second experiment
contrasted the acquisition of these linguistic systems with
the same grammars implemented as non-linguistic input (se-
quences of non-linguistic sounds or shapes). These findings
suggest that constraints on the mechanisms which highlight
the statistical cues which are most characteristic of human
languages are not specifically tailored for language learning.

Introduction
While the idea that surface distributional patterns point to

pertinent linguistic structures holds a distinguished place in
linguistic history (e.g., Bloomfield, 1933; Harris, 1951),
statistical learning has only recently re-emerged as a poten-
tial contributing force in language acquisition (though see
Maratsos & Chalkley, 1980). This renewed interest in sta-
tistical learning has been fueled by developments in compu-
tational modeling, by the widespread availability of large
corpora of child-directed speech, and most recently by em-
pirical research demonstrating that human subjects can per-
form statistical language learning tasks in laboratory ex-
periments. For example, computational algorithms can use
the co-occurrence environments of words to discover form
classes in large corpora (e.g., Cartwright & Brent, 1997;
Finch & Chater, 1994; Mintz, 1996; Mintz, Newport, &
Bever, 1995). Similarly, individual verb argument structures
can be induced by models which tracks the co-occurrences of
verbs and their arguments in the input (e.g., Schütze, 1994;
Seidenberg & MacDonald, 1999). Extensive modeling work
has also examined the statistical cues available for the dis-
covery of word boundaries in continuous speech (e.g., Aslin,
Woodward, LaMendola, & Bever, 1996; Brent & Cartwright,
1996; Cairns, Shillcock, Chater, & Levy, 1997; Christian-
sen, Allen, & Seidenberg, 1998; Perruchet & Vintner,
1998).

These models provide invaluable explorations of the ex-
tent to which statistical information is available, in princi-

ple, to language learners equipped with the right distribu-
tional tools. But are humans such learners? A wealth of sta-
tistical cues are useless unless humans can detect and use
them. In fact, recent research suggests that humans are ex-
tremely good at some statistical language learning tasks,
such as word segmentation (e.g., Aslin, Saffran, & New-
port, 1998; Goodsitt, Morgan & Kuhl, 1993; Saffran,
Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996)

These results suggest that humans possess powerful sta-
tistical language learning mechanisms, which are likely to
provide important contributions to the language learning
process. At the same time, it is important to recognize that
these mechanisms would not be useful in language acquisi-
tion unless they are somehow    constrained       or       biased    to per-
form only certain kinds of computations over certain kinds
of input. The pertinent generalizations to be drawn from a
linguistic corpus are awash in irrelevant information. Any
learning device without the right architectural, representa-
tional, or computational constraints risks being sidetracked
by the massive number of misleading generalizations avail-
able in the input (e.g., Gleitman & Wanner, 1982; Pinker,
1984). There are an infinite number of linguistically irrele-
vant statistics that an overly powerful statistical learner
could compute: for example, which words are presented third
in sentences, or which words follow words whose second
syllable begins with th (e.g., Pinker, 1989).

One way to avoid this combinatorial explosion would be
to impose constraints on statistical learning which perform
only a subset of the logically possible computations. It is
clear that learning in biological systems is limited by inter-
nal factors; there are species differences in which specific
types of stimuli serve as privileged input (e.g., Garcia &
Koelling, 1966; Marler, 1991). External factors also
strongly bias learning, because input from structured do-
mains consists of non-random information. In order for sta-
tistical learning accounts to succeed, learners must be simi-
larly constrained: humans must be just the type of statistical
learners who are best suited to acquire the type of input ex-
emplified by natural languages, focusing on linguistically
relevant statistics while ignoring the wealth of available
irrelevant computations. Such constraints might arise from
various sources, either specific to language or from more
general cognitive and/or perceptual constraints on human
learning.



We have recently begun to explore the possibility that
statistical learning itself is constrained. This line of research
focuses the acquisition of hierarchical phrase structure.
While words are spoken and perceived serially, our represen-
tations of sequences of words are highly structured. Consider
the sentence The professor graded the exam. This sequence of
words cannot be grouped as follows – (The) (professor graded
the) (exam) – because words that are part of the same phrase
are separated. For example, determiners like the require
nouns; separating these two types of words violates the de-
pendency relations which are part of native speakers’ knowl-
edge of English. The correct groupings, (The professor)
(graded (the exam)), reflect English phrase structure, which
generates a non-linear hierarchically organized structure. Hi-
erarchical phrase structure represents a fascinating learning
problem, because the child must somehow arrive at non-
linear structure which is richer than is immediately sug-
gested by the serial structure of the input. How do children
make this leap? Innate knowledge is one possibility; pro-
sodic regularities may also serve to chunk the input into
phrasal units (e.g., Morgan, Meier, & Newport, 1987).

Another type of potentially useful information in the in-
put suggests a statistical learning solution (see also Morgan
& Newport, 1981). Linguistic phrases contain dependency
relations: the presence of some word categories depends on
others. For example, English nouns can occur without de-
terminers like the or a. However, if a determiner is present, a
noun almost always occurs somewhere downstream. This
type of predictive relationship, which characterizes basic
phrase types, may offer a statistical cue that highlights
phrasal units for learners. Research using artificial languages
with phrase structure grammars suggests that adult and child
learners can exploit predictive dependencies to discover
phrases (Saffran, 2000).

These studies suggest that people are skilled statistical
learners. But what about the constraints required for the suc-
cessful acquisition of languages? A particularly useful type
of constraint would bias statistical learning mechanisms to
preferentially acquire the types of structures observed in
natural languages. To address this issue, Experiment 1 as-
sessed the extent to which adults’ ability to acquire an artifi-
cial grammar is affected by the availability of predictive de-
pendencies as cues to linguistic phrase structure.

Experiment 1

Participants. 40 monolingual English speaking under-
graduates at the University of Rochester participated in this
study, and were each paid $6. Subjects were randomly as-
signed to the two experimental conditions.

Materials. The artificial grammars were adapted from the
language used by Morgan & Newport (1981). One of the
languages used in this study was a small phrase structure
grammar (Language P, for predictive), in which dependencies

between word categories afforded predictive cues to phrases,
as in natural languages (e.g., if D is present, A must be
present). Importantly, attempts to impose English predictive
structure onto the input would mislead learners, as the
phrase structure of Language P was head-final while English
is head-initial. The second language was equally complex in
terms of its size and formal characteristics, but contained a
phrase structure unlike natural languages (Language N, for
non-predictive). This language did not contain predictive
dependencies marking phrases. Rather, it was characterized
by overarching optionality: the presence of one word type
never predicted the presence of another, which generates sta-
tistical properties unlike natural languages (note, however,
that this language still possesses phrase structure of a sort –
the absence of one word type predicts the presence of an-
other; e.g., if A is    not    present, D must be present). Each
form class (A, C, etc.) included 2 - 4 nonsense words (e.g.,
the words for the A category were BIFF, RUD, HEP, and
MIB).

Table 1. Phrase structure grammars for Experiments 1 - 2.
Letters refer to word classes; items in parentheses are op-
tional. In Language N, one member of each phrase type
must be present; if both are present, they must be in the
order described by the grammar.

Language P     Language N
S   → AP + BP + (CP)    S   →  AP + BP
AP → A + (D)    AP →  (A) + (D)
BP → CP + F    BP →  CP + F
CP → C + (G)    CP →  (C) + (G)

The language generated by Language N is no larger than
the language generated by Language P. In fact, Language N
contained fewer sentence types (nine) than Language P
(twelve). Language N also had shorter sentences on average,
presumably making it less daunting to the learner: Language
P generated 60% more five word sentences than Language N,
and only 40% as many three word sentences. For both lan-
guages, only sentence types with five or fewer words were
used (eight types for Language P, nine for Language N).
Both languages contained the same number of grammatical
categories and vocabulary items.

Because the languages were so similar in terms of their
non-structural attributes, comparison of learning outcomes
is valid. Language P is larger, and contains longer sentences,
which could make it more difficult to acquire. However, if
predictiveness affects learning, then the structure of Lan-
guage N might have hindered its acquisition. A trained
speaker recorded a corpus of 50 sentences from each lan-
guage, with uniformly descending prosody but no grouping
cues to phrase structure. Subjects were randomly assigned to
hear either Language P or Language N sentences. Following
approximately 30 min. of auditory exposure to one of the



two languages (the corpus was repeated eight times during
exposure), all participants received the same forced-choice
test consisting of novel grammatical and ungrammatical
sentences, in order to assess acquisition of the rules of the
two languages. Importantly, attempts to impose English
syntax on either language would hinder performance. No
cues other than the statistical information mirroring the un-
derlying phrase structure of the language were available to
learners.

Results. Each group’s overall performance was signifi-
cantly better than would be expected by chance: for Lan-
guage P, the total score was 22.8 out of a possible 30: t(19)
= 10.46, p < .0001; for Language N, the total score was
20.55: t(19) = 6.62, p < .0001 (see Figure 1). The principal
hypothesis of interest concerns differences in learning as a
function of structural differences between the two languages.
To address this question, the scores for the two language
groups for items testing each of the five rules were submit-
ted to an ANOVA. The main effect of Language (P versus
N) was significant: F(1, 38) = 4.2, p < .05.

These findings suggest that humans may be constrained to
learn most readily via exactly the types of cues present in
languages. To the extent that this is the case, the structure
of natural languages may have been shaped by the nature of
human learning (e.g., Bever, 1970; Christiansen, 1994;
Christiansen & Devlin, 1997; Morgan, Meier, & Newport,
1987; Newport, 1990). According to the constrained statisti-
cal learning hypothesis, the mechanisms underlying lan-
guage acquisition are biased to assist learners in detecting the
‘right’ statistical properties of the input. On this view, hu-
man languages have been sculpted by human learning and
processing mechanisms – thereby creating input which con-
tains the types of properties most useful for human learners,
and rendering a close match between constraints on human
learning and constraints on natural language structure.

If learners are biased to preferentially acquire structures
where one item predicts another, is this constraint on learn-
ing particularly tailored for linguistic input? Biases in learn-
ing mechanisms may develop tightly coupled with the par-
ticular structure they are designed to acquire. Alternatively,
constraints to use predictive statistics may be more generally
applied to other types of sequentially presented information,
as suggested by the constrained statistical learning hypothe-
sis. Constraints on statistical learning which are not specific
to language acquisition, but rather on the acquisition and
processing of serial information, may have shaped the struc-
ture of natural languages. Experiment 2 thus utilized non-
linguistic stimuli from two different modalities: visual
shapes and complex sounds. An additional condition included
visual linguistic stimuli (written words). As in Experiment
1, we contrasted the acquisition of Language P and N.

Experiment 2

Participants. 154 monolingual English speaking under-
graduates at the University of Wisconsin - Madison partici-
pated in this study participated in this study for course extra
credit. Forty-four subjects were randomly assigned to the
non-linguistic auditory condition, forty subjects to the non-
linguistic visual condition, and thirty subjects to the lin-
guistic visual condition. Within each exposure condition,
half of the subjects were assigned to Language P and half
were assigned to Language N.

Method. For the    non-linguistic       visual       condition,    we trans-
lated the Language P and N grammars shown above into
languages of shapes (for a similar methodology, see
Goldowsky, 1995). For example, consider the phrase struc-
ture rule: AP → A + (D). In the linguistic version of this
language, the category A consisted of 4 nonsense words. In
the visual version, the category A consisted of 4 distinct
shapes (such as a red circle with stripes). Category member-
ship could not be induced by shape similarity, unlike prior
studies by Morgan & Newport (1981). Participants observed
the language on a computer monitor: each shape was pre-
sented in the middle of the screen, one at a time, with the
same timing parameters as the auditory linguistic stimuli
used in Experiment 1. Following exposure, participants
were tested using a forced-choice test analogous to the lin-
guistic task, in which they saw two shape sequences, one
after the other, and decided which shape sequence more
closely approximated the exposure stimuli. The    linguistic
visual       condition    was identical to the non-linguistic visual
condition except that the nonsense words from Experiment 1
were shown typed on the computer screen. In the    non-   
linguistic       auditory       condition   , we translated Language P and
N into non-linguistic sounds drawn from the digitized bank
of alert sounds provided with Windows 98. Each word corre-
sponded to a different sound, chosen to be maximally dis-
criminable (an ascending buzz, a chord, chimes, etc.). Sound
“sentences” generated by Language P and N were presented
auditorily at the same rate as the linguistic and visual stim-
uli. Following exposure, participants received the same
forced choice test, translated into non-linguistic sounds. Nei-
ther of the two non-linguistic conditions contained any lin-
guistic information.

Results. Each group’s overall performance was significantly
better than would be expected by chance: for Language P
Non-linguistic auditory, Nonlinguistic visual, and Linguis-
tic visual, p < .0001; for Language N Nonlinguistic visual,
p < .001; for Language N Nonlinguistic auditory, p < .001;
and for Language N Linguistic visual, p < .05 (see Figure
1). As in Experiment 1, the principal hypothesis concerns



differences in learning as a function of structural differences
between Language P and Language N. To address this ques-
tion, the scores for the two language groups for items test-
ing each of the five rules were submitted to an ANOVA.
The main effect of Language P versus N was significant for
the Nonlinguistic auditory [F(1, 42) = 7.72, p < .01] and the
Linguistic visual condition [F(1, 28) = 4.56, p < .05], but
not for the Nonlinguistic visual condition [F(1, 38) = .23,
n.s.].

In order to ask whether the linguistic or non-linguistic
status of the input influenced performance differentially as a
function of the availability of linguistic dependencies, we
performed a two-way between-subjects ANOVA contrasting
Language (P versus N) and Linguistic Status (language ver-
sus non-language materials), including the auditory linguis-
tic data from Experiment 1. There was a significant main
effect of Language: F(1, 150) = 15.17, p< .0001. Neither
the main effect of Linguistic Status [F(1, 150) = 1.09, n.s.]
nor the interaction between Language and Linguistic Status
[F(1, 150) = .71, n.s.] were significant. These analyses indi-
cate that the linguistic status of the input – that is, whether
the grammars were implemented in linguistic or non-
linguistic tokens – did not affect overall performance. In-
stead, the dominant factor was whether the input was derived
from Language P, which contained predictive dependencies
as a statistical cue to phrase structure, or Language N, which
did not. This overall non-effect of linguistic status occurred
despite the fact that performance on the visual non-linguistic
task did not show the predicted difference between Language
P and N (see Figure 1). We are currently testing hypotheses
concerning why the visual nonlinguistic task patterned dif-
ferently from the other three conditions included in Experi-
ments 1 and 2.

General Discussion

These studies ask whether predictive dependencies serve a
learnability function in the acquisition of language. The
results of Experiment 1 suggest that adult learners are better
able to acquire an artificial language which contains predic-
tive dependencies as a cue to phrase structure than a compa-
rable language which does not. Experiment 2 extends these
results to demonstrate that the use of predictive dependencies
in learning phrase structure is not limited to language learn-
ing tasks. These findings mirror prior results suggesting that
transitional probability computation in word segmentation
tasks can occur when ‘words’ are created from non-linguistic
tones (Saffran, Johnson, Newport, & Aslin, 1999) or visuo-
motor sequences (Hunt & Aslin, 1998).

Predictive dependencies are a hallmark of natural lan-
guages. However, it is of interest to note that these general
organizational principles are by no means unique to lan-
guage. Lashley (1951) observed that hierarchical organiza-
tion characterizes an enormous variety of behaviors: “the
coordination of leg movements in insects, the song of birds,
the control of trotting and pacing in a gaited horse, the rat
running the maze, the architect designing a house, and the
carpenter sawing a board present a problem of sequences of
action which cannot be explained in terms of successions of
external stimuli” (p. 113). Such observations suggest that
learners may be biased to process information in a particular
fashion, enabling a learning process which results in phrases
and hierarchically structured representations.

The kinds of structure at issue here serve to organize and
package serial information into manageable chunks, which
then enter relationships with one another. This process pre-
sumably maximizes cognitive economy, facilitating the
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Figure 1: a. Mean scores from Experiment 1. b. Mean scores from Experiment 2.



transmission of more complex information than could be
transmitted otherwise. Pinker and Bloom (1990) argue that
“hierarchical organization characterizes many neural systems,
perhaps any system, that we would want to call com-
plex...Hierarchy and seriality are so useful that for all we
know they may have evolved many times in neural systems”
(p. 726). When applied to syntax, this kind of argument
suggests that grammars look the way they do because these
kinds of organizational principles are the human engineering
solution to the problem of serial order.

It is conceivable that this type of packaging of serial in-
puts into higher-order organization facilitates not only lan-
guage production and processing, but also language acquisi-
tion. Systems which are highly organized are more learnable
than systems which are not -- as long as the system of orga-
nization is consistent with the learner's cognitive structure.
We anticipate that future research will be extremely useful in
further clarifying the extent to which the constraints ob-
served during the process of language acquisition subserve
other learning processes as well.

With respect to linguistic structure, one potential theo-
retical implication of this research concerns an alternative to
the traditional innate universal grammar explanation for the
pervasiveness of particular linguistic features cross-
linguistically.. If human learners are constrained to preferen-
tially acquire certain types of structures, then some of the
universal structures of natural languages may have been
shaped by these constraints (see also, e.g., Bever, 1970;
Christiansen, 1994; Christiansen & Devlin, 1997; Newport,
1982, 1990). Perhaps languages fit our learning abilities so
neatly precisely because languages have no choice. If the
pertinent learning mechanisms preceded the advent of lan-
guages, then there must have been intense pressure for lan-
guages to be learnable, with learnability dictated by the
structure of human learning mechanisms. On this view,
languages evolve to fit the human learner. To the extent that
this type of view is correct, then the striking similarities of
human languages may be in part the direct reflections of
constraints on human learning abilities.

The present research begins the task of recharacterizing
language universals in terms of constraints on learning by
recasting the distributional features and dependencies inherent
in hierarchical phrase structure into cues detected during the
learning process. In the case of the constraint to interpret
predictive relations as signaling a linguistic unit, the phrase,
we find the beginnings of an explanation for why languages
ubiquitously contain the within-phrase dependencies initially
characterized by structural linguists. Future research will
continue to pursue the hypothesis that constraints on learn-
ing play an important role in shaping the structure of natural
languages. For example, recent computational research sug-
gests that universal word order typologies may in fact reflect
the ease with which different types of systems are learned
(Christiansen & Devlin, 1997).

With respect to statistical learning, the present research
runs counter to the assumption that statistical language
learning accounts -- and any other type of theory which as-
signs an important role to linguistic input -- are necessarily
underconstrained. As animal research has amply demon-
strated, learning in biological systems is highly constrained
(e.g., Garcia & Koelling, 1966; Marler,  1991). There is
every reason to believe that statistical learning is similarly
constrained; the purported intractability of statistical learning
need not be asserted prima facie. What exactly these con-
straints will turn out to be, and whether they will confer
sufficient explanatory power, remain empirical questions.
Nevertheless, there are grounds for optimism. Learners are
not, and never have been, blank slates. The more we learn
about the mechanisms engraved upon that slate, the more we
learn about learning.
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