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ABSTRACT

A calculation is made of the interaction of a beam of particles in an

accelerator with the radio-frequency cavity that provides the accelerating

mechanism of the machine. A Hamiltonian for synchrotron motion is employed

that makes pas sible the simultaneous solution of Maxwell'" equations and the

Vlasov equation, so that a self-con8i8tent distribution of particles in synchrotron

phase space is determined.

The effective voltage on the cavity due to the beam of charged particles

is of the order of magnitude of the product of the total circulating current in the

accelerator and the shunt impedance of the rf cavity. It has the net effect of

producing a total voltage on the cavity which is both lesl than the applied voltage,

and shifted in phase with respect to it. The increase in the .table phase angle

required so the particles will remain in phase with the accelerating radio

frequency is calculated. The decrease in total voltage and increase in stable

phase angle result in a decrease in stable phase space available for acceleration,

and convenient expressions are given for these quantities in terms of parameters

of the accelerator. It is shown that the consequences of the induced voltage may

be alleviated by increasing the voltage applied to the cavity.
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1. INTRODUCTION

As a beam of charged particles circula.tes in an accelerator. it m.ay

pass through one or.:rnore radio-frequency cavities. At lea.t one of the cavities

is usually driven externally and prOVides the accelerating electric field that

bunches the beam azimuthally. We shall show in the following treatment of the

interaction of a charged-particle beam with an externally driven rf cavity that

the particles induce a periodic voltage on the cavity. which from consideration

of Lenz'!l law always opposes the particle motion. The particles lose energy to

the induced field and must therefore shift in phase relative to the applied voltage,

in order to gain more energy per turn. In this manner. particles that are phase-

stable adjust their net energy gain to remain in step with the applied radiofrequency.

·This work was done under the auspices of the U. S. Atomic Energy Commission.

It is based in part on the thesis submitted by one author (V. K. N. ) to the University

of California in partial fulfilment of the requirements for the Ph. D. degree in physics.

t
Permanent address: Ohio State University, Columbus. Ohio.
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The phase shift of the distribution reduces the stable phase area just as if the

modulation rate were correspondingly increased.

This effect has been treated by different authors. I, 2 Although small in

exi8ting machines, it will become a problem in accelerators with circulating

currents of several amperes. The action of a beam passing repeatedly through

the rf cavity is not unlike the action of bunched electrons in a klystron. A

periodic voltage is induced acros s the gap, and we shall see in the following

treatment that this voltage can be large. The effect is enhanced because Fourier

coefficients of the particle distribution are large for the resonance harmonic.

If the cavity in question is the accelerating device, or if it is merely maintaining

the beam (no modulation), beam and cavity are precisely in resonance.

Transverse particle motion is neglected. We simultaneously solve

Maxwell' 8 equations and the Vlasov equation, thus obtaining a self-consistent

distribution of particles in synchrotron phase space. In Section II we develop

expressions for the induced voltage and effective electric field as functions of the

Fourier components of the particle distribution in azimuth. These expressions

are then eITlployed in the Hamiltonian for synchrotron motion (Section IlIA), and

in Section IIIB we solve the Vlasov equation for the particle distribution. The

Hamiltonian formalism is that of Symon and Sessler, 3 and the notation closely

follows that of Nielsen and Sessler. 4 In Section IV we present a solution that is

valid when there ill no modulation of the rf, and when longitudinal space-charge

effects are neglected.

The problem specified by the complete Hamiltonian is treated in Section V.

Certain integrations that cannot be performed analytically are encountered, and

results are given in graphical form. A simple expression is derived for the
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ratio of applied to total voltagc. which is a function of the operating parameters

of the machine. The only parameter of the rf ca.vity entering into the results

is the shunt or input impedance. which may be determined experimentally.

Numerical examples are given ill Section ve, and Section VD is devoted to the

problem of maximizing phas c flux.

The paper is suxnmarized in Section VI in a way that should allow the use

of the results without a careful study of the body of the paper.

An rf cavity will have an effect on a beam of particles even if it is not

externally driven. The influence of such a cavity on the stability of a coasting

particle beam will be considered in the third paper of this series.
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rt
.1..1••

The rf cavity is taken to be located with the center of the gap at

e =O. We shall uee cylindrical coordinates (r, e, z) exclusively in this

paper. The gap hal a width d which may be expressed in terms of the half

angle of the gap e1 :z; d/ZR, where R is the radius of the accelerator. We

assume that the electric field E is (to good approximation) constant in rand z,

over the region of the gap in which particles move.

We take the beam current density circulating at a radius R a8

where wo is the average angular frequency of the bunch. The assumption that

the beam has negligible cro.a-sectional area is merely convenient. Becauee of

the assumed uniformity of E. a current with a amaH spread in rand z would

(2.1)

lead to the same results as the current given byEq. (2.1). Expanding N ( e - wot)

in a Fourier series gives

tIO

-+ I an cos n ( 0 - Wo t) + bn sin n (0 - wot) •

0=1

(2.2)

The coefficients a and b are not time-dependent and may be evaluated atn n

t =0 giving:

1
'If

a = [ N ( e) cos n9 de
n

tT

1
tT

I
b = I N ( 0) sin neden tT

In

(2.3a)

(2.3b)
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The nth Fourier component of the current at e:: 0 is obtained from Eqs. (2.1)

and (2. 2):

(2.4)

If the rf cavity has a natural frequency n wo' the Fourier component

of the current that exhibits this frequency ·...rill be precisely in resonance with the

cavity. Thieo Fourier cO:1.'1pOIlent will tuue induce a voltage 180
0

out of phase with

the current. Other Fourier com.ponents of the current will induce voltage

components whose phase is not simply related to the phase of tht: current. rYe

shall consider only the voltage induced by the resonance component of the current,

and define the shunt impedan.ce, Z, of the rf cavity by Z == - Vo «() ::: 00n (8 :: 0),

where Vn b the voltage induced, by In.
5

Since Vn (6 c 0) :: .£6(6 =0) d, where

EO (1'1 ::: 0) is the azimuthal electric field across the gap. we have

z
= - --

d
I (G:;: 0)
n

(2.5)

and consequently

Fe (8 :: 0) :: - (2.6)

It should be emphasized that the cavity mode excited by the current is, in this

calculation, the same as that being driven externally.

We have in Eq. (2.6) an expression for the induced electric field in terms

of the Fourier coefficients of the particle di&tribution. An effective electric

field will now be found from Eq. (l.6) 80 that it may be inserted into the Ylasov

equation to complete the calculation. Following the standard formalism, we

decompose the electric field across the gap into standing waves around the azimuth

of the machine. Thus we expand E 8 in a Fourier series and keep only the nth
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(2.7)cos n (J

nR
F =­

11

harmonic. Thie Fourier decompoaition brings in a factor of 2 sin n e1/ 1Tll which

i8 approximately 2° 1/ 11 := d/nR. Thus, for the nth harmonic of the electric

field, we have

Zewn
u

The effective electric fielel is found bydecoE1posing E into traveling waves,
n

and Ikeeping only the wave t!-avding with the particles.

It will be conveni.mt in what follows to introduce a new angle variable.

Following the notation of Nielsen and Sell sler j
4

~ =n ( f) - wot) + tf. (2.8)

This substitution transfornls the calculation into a coordinate systen.l. rotating with

angular velocity n w00 The arbitrary addition of n is conventional. In terms

of this new variable our effective electric field becomes

[= [a cos <p + b sin 4>1 •
n n (2.9)
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III. PARTICLE DISTRIBUTION IN SYNCHROTRON PHASE SPACE

For the remainder of this calculation, we follow closely the development

of Ref. 4. So far, the externally-applied voltage, Y, has not entered the

calculation. The frequency of V need not be w
O

/2tr, but will generally be an

integral multiple n of this value, so that the cavity is operating on the nth

harmonic of the particle circulation frequency. It is possible to decompose this

voltage into traveling waves as was done with the beam-induced electric field.

In this way, the abrupt 108s or gain of energy by a particle as it crosses the

cavity gap 18 replaced by a continuous change as the particle travels around the

machine. We define the phase of the voltage wave such that a particle at phase

4J gains energy at the rate eV sin 4> per turn. Clearly, from. this definition, the

angle <p is the phase of the particle relative to the phase of V. If the frequency

of the cavity f is constant, a particle at 9 = 3trj2 is riding the trough of thec

wave, while a particle at ep =n/2 is riding the crest of the wave. For constant

f we shall call the particle at <p = TT the synchronous particle. Particles at
c

other phase angle 4> will be oscillating back and forth in the trough about the

value <l> = TT. Modulation of the cavity frequency displaces the lBynchronous

particle to a position "s such that it gains energy at the rate eV sin CPs per turn.

The phase angles of the nonsynchroIlous particles now oscillate about <p •
8



-10-

A. Hamiltonian for Synchrotron Motion
«

UCRL-9326

Following Symon and Sessler, 3 we define an action variable w , that is

canonically conjugate to ep as

.,..E
dE

w=

where E is the energy of the particle, and f is the instantaneous particle
p

frequency. The introduction of wallows us to write a single-particle

Hamiltonian in terms of canonically conjugate variables. .Each particle gains

an amount of energy per turn given by

6E ill: e V sin $ + 2.n eRe

Since the energy gain is

(3.1)

6E = f 6 w :::
p

dw

dt

we have the first-order differential equation foI' w,

dw/dt :;: e V sin <p + 2.n e R t
The angle varia.ble, <p obeys the equation

(3.2.)

d4>/dt == n d8/dt :: 2. un (f - f ) , (3.3)P s

where f s is the frequency of the synchronou8 particle. A change of varia.ble

defined by W =w - wallows the use of a Hamiltonian for W '- ,;p motion of the form:s

qj df
~(W, q,) = trn (f - )

dE s

W2. + e V COil <l> - 21TeR

The last term gives the forces due to longitudinal space-charge effects. In the

first term, fdf/dE is to be evaluated at the synchronous energy. This approximate
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form of the Hamiltonian is derived in Ref. 4, and the derivation will not be

repeated here. When Eq. (2.9) is used, the Ham.iltonian becomes

~ / df-tb(W, q» :: nn (f - )
IT dE-

s

2
W + e V cos ~ + -lrs 4> + 2'YTen U(~)

- e
2

<.0.>0 Z [a sin 41 - b cos ljll .n n (3.4)

B. Solution of the Vlasov Equation

Having obtained a Hamiltonian in which the forces are functions of the

spatial dietribution of particles, we are in a position to determine a atationary

distribution function ~ (W, 4» that obeys the Vlasov equation

a~ dW + otjJ ~ :: 0 •
&W dt 04> dt

A particular solution is a distribution IjJ (W, ~), )Which is constant within a certain

(3.5)

bounding curve Wb (4)) and zero outdde. By Liouville;' iii theorem, density in

phase space is a constant of the motion, which is determined in this instance by the

injector of the machine. Although a uniform. density is an idealization, it is a

reasonably valid assumption for most injection devices. The solution may be written

~ (W, q» :: C1 (1 [ Iwb (lP) I - IwlJ, (3.6)

in which (j is the number density in W - <f> space and '9 is the step function

which is unity for positive argument and zero otherwise. With this form for

tjJ, Eq. (3.5) yields
r 1

o(W - W) i a'?:l + &?t'dWb! :: 0 ,

b l 8$ aW dlj> J
which is satisfied for W ~ Wb • The term in brackets 18 zero for W =W

b
if we have

?d [ Wb(~)' 4' 1%: constant. (3.7)

Equation (3.4) may then be used to determine W
b

(4)), the bounding curve of the

distribution of particles in synchrotron phase space.
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IV. SOLUTION IN THE ABSENCE OF FREQUENC Y MODULATION

Before solving the complete problem specified by the Hamiltonian,

Eq. (3.4), we shall treat a somewhat simpler situation that arises in particle

storage ringa. Consider a sta.tionary distribution of particles in the absence

of cavity modulation. Particle. are being held at a constant energy and not ':>"}

accelerated. The rf voltage merely provides stabilizing potential troughs and

compensates for any energy losses. For simplicity. longitudinal space charge

effects will be neglected here. Using Eqs. (3.7), and (3.4). without the space-

charge and modulation terms. we have the following equation for the boundary of

our distribution:

1I1l (f <!.f) W
Z

b + e V cos <p - e Z Wo Z [an sin <j> - bn cos '1>1 =C,
dE s

where C is a constant. For the present. we shall discuss the problem below

(4.1)

traneition energy, where df/dE is positive. A slight modification of the treatment

1s necessary for negative df/d£. which will be considered subsequently.

We define the new quantities

where

2 2.~ (f ~ )K =~ed~ev E s

and

Since the impedance of the cavity may be determined experimentally, we

(4.2)

(4.3)

(4.4)

can now solve for Yb in terms of the operating parameters of the machine and the

Fourier coefficients of the distribution. It \\-'1.11 then be possible to calculate a
n

and bn as seli-consistent functions of a, K, and ~ by performing the integral.

indicated in Eq. (Z.3a-b).
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The definitions introduced by Eqe. (4.2), (4.3) a'ld (404) allow us to write

Eq. (4.1) for the boundary curve as

1/2 y b
2 + (1 + bn S) co8 4> - an ~ IIin q> ::; C

or

Y
b

::: ..[l: [ C - (1 + b £) cos q, + a ~ sin tP JI/2 0n n

Con8tant C is selected 80 as to include the maximum area within the bounding

(4.5)

curve. It can easily be chosen in this simple calle without resorting to topological

method.. If the reaction of beam and cavity were neglected, we would have

Yb :: ("Y [ C - COl ct>l l/Z. The .eparatrix, or closed curve which includes

maximum area, is obviously obtained by setting C equal to L Our distribution in

Y - tp space is then bounded by the curve Yb :: 1. .in 4>/2. The distribution extends

from 4':: 0 to ep =2 'If and is centered at <t> = 'If.

When g =1= 0 , we may define an angle " which represents the shift of

the total voltage wave relative to the driving voltage.

Let
f·a <;

n
tan T'J:; ---

I + b Sn

and

&0 that u represents the phase of a particle relative to the total voltage. By

arguments analogous to those above we may determine C so as to obtain the

expression

- 1. 1. 1. 1/4 l/ZYb(u) ::; I 1. [(l + b S) + a ~ 1 (1 cos u) .
n n -

(4.6)

(4.7)
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The distribution extends from u = 0 to u = 2.11'. It has been shifted by an angle

Tj and the area has been changed by a factor [(1 t b s)2 + a 2 ~211/4. We
n n

introduce the quantity 0 by the definition

rl- s (1 + b £)2. + a 2. ~2 •
n n

Thb phase shift cannot be compensated by altering the phase of V. becau.e the

angle T'f i8 the phase of the synchronous particle relative to the applied voltage.

(4.8)

It will be convenient to calculate the Fourier coefficients by integrating

over angle u rather than over 8. The density 0' e of particles in (W - 6) space

i8 related to the density (] in (W - q,) space by (J () =nO". Taking this relationship

into account, we find:

The Fourier coefficient a may then be written:
n

(4.9)

a --- -n •
2.n(1

K1I'

Since Y b (u) is an even function. we may use the relation between u and ep to obtain

4na
a = - - cos "1

n K'It J
'It

Yb (u) cos u du •

o

(4.10)

When Eq. (4.7) for Yb (u) is employed. the integral is easily evaluated. with the

result:

a =(I6n a /3 K'It) 0
1

/
2

co. "l.n

By a similar manipulation. we obta.in

b =-(16na/3Krr}Dl/2sinllo
n

From Eqso (4 0 11) and (4 0 12) we may eliminate a and b in Egs, (4 0 6)
n n

We may then solve the resulting simultaneous equations for D and

T'J to obtain:

(4.11 )
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fA 1
, ;a ....

(4.1.

with

Be 16 n (T ~-_......._=
31TK

1600' ew
O

Z

2.1TKV
(4.1~

Examination of the Hamiltonian Eq. (3.4) reveals the physical meaning of the

phase ehift. Eliminating space-charge and !nodulation terms, and using the

definition of ~, we write:

a/ df 2.
fJ/(W, ~) = Trn (f -) W + e V (l + b ~) cos 4> - e Va; sin ep •

dE n n
s

From the equation of motio~J d W/dt =' - a CJ:I/0" we have

~ = e V (1 + b ~) sin ++ e Vas COB +.
~ n n

(4.15

(4.16J

which is zero for the synchronous particle. Therefore, the .ynchronou8 phase-angle

is given by
a tn

tan ep. =-
1 + b ~n

=- tan 1"J • (4.17)

The synchronous particle gains energy from the a.pplied rf at a rate

6E =e V sin ( 1T - '1')

in order to compensate for 108se8 to the induced voltage and maintain w at a

constant value.

(4.18)

From Eqs. (4.7) and (4.13) we Ilee that the induced voltage has the effect of

reducing the height (and therefore the total area) of the stable region of (W - +)

phase-space. When this area is reduced by the factor rilZ• the total number

of particle. that can be held in stable phase is also reduced by this factor. This

number of particles can be found from
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N ::: ( N{ 8)dG •
t Jo ...

which may be expressed in terms of an integral over u as

UCRL-9326

J A 1 r
\, • .1 ~

iTT 1/2
Nt::: 2na/K Y

b
(u) du :(I6 na/K) n .

o

The quantity 0 1/
2

takes on the value 1/2 when the phase is shifted by an angle

(4.20

o'1 of 78. For B:: 0, 0 is unity, and &1 approaches zero as B approaches

infinity. The phase shift " approaches n/Z in this limit, and for small values of

B we have >sin'l':u' B.

Perhaps more appropriate to storage schemes and beam stacking is the

situation above transition energy. When df/dE is negative, we must redefine

K by

l
K = lTrn/ eV (f df )

dE
8

(4.21)

which modifies the Y b equation so that

- 1/2 y b
l

(4)) + ( 1 + b t) cos ep - a ~ sin q> ::: C •n n

A tran&b:mation 4l c ~ + TT restores this expression to the original form

1/2 y2
b

( ~) + (1 + b g) cos .p - a :; sin ~ ::: C •
n n

The analysis proceeds jU8t as above. with the distribution shifted in phase by an

angle TT o The stable phase area is reduced by the same factor rill given by

Eq. (4.13a-b).

(4.22)
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V. SPACE-CHARGE AND FREQUENCY MODULATION
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We now turn our attention to the complete Hamiltonian of Eq. (3.-4).

Although we could proceed analytically in Section IV, we must resort to

numerical computationa in the general case. A limitation on the validity of the

treatment arises from the fact that, when longitudinal space-charge effects are

included, the theory is valid only below the transition energy; this failure is

discussed in detail in Ref. 4. When the space-charge term is neglected (as

in certain special cases below), the theory is a180 valid for df/dE negative.

Although space-charge effects constitute a problem separate from the cavity

interaction, they are included in order to present a complete theory.

A. Equation for the Separatrix

Again following Ref. 4, we replace the term 2 n enU(tP) in Eq. (3.4) by the

approximate expression 4ne
2

n
2

(] g IW(q,)!/R, where g::l 1 + 2.1.n (2 G/TTa). The

subscript b will be omitted in the remainder of this paper, it being under.tood that

Wand Y always refer to values on the boun4ary. The cro.s-sectional radius

of the beam, a, enters the calculation only through the factor go The height of

the accelerator vacuum tank 18 here indicated by G in order to conform to the

notation of Ref. 4. With this alteration, the complete Hamiltonian of Eq. (3.4)

becomes

~
d£

W(ep), iPl =nn (f - )
dE s

(5.1)

Evidently the phase shift TJ may be defined as in the previous section by Eq. (4.6).

• In terms of 11 and n as defined by Eq. (4.8), the Hamiltonian takes the form

~ W(t), ,1
eVO

_ TTn (f df 2-- -)
eVr2 dE s

2
W +

.'w-
~ ~--evn

2 2
(u- £) + cos u + 4 7T e n: a g

eV n R
Iwl,

with u again equal to (<I> + TJ).
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We see that n represents the ratio of the total peak voltage on the

cavity to the peak voltage, V, in the absence of the beaIn. It turns out that thi_

calculation is Inost easily carried out in terms of Vt ::: () V, which yields expressions

for 0 and" &s functions of Vt and the operating parameters of the ma.chine.

Uling V as an independent variable is logical as well as convenient, since it il
t

certainly the quantity of physical intere.t. However, this procedure necessitates

one change in notation, namely we muat redefine K as

(f ~ )
dE

8

(5.3)

and introduce two new quantities:

liZ

(5.4a)

and

r=
eV

t

Space-charge effecu are completely contained in A, while r contains the

frequency modulation. Theae definitions allow U8 to write the equation for the

boundary of the stable -phase area in the convenient form

t.l/Z yZ (u) +{7A I Y (u) I -I- coe u + rue c.

(5.4b)

Solving for Y results in

Y· IYfA+ [AZ+C-co8u_rull/Z} (5.5)

The evaluation of the constant C is not as 81mple a8 before. There are two

values of u for which dY/du vanishes for any value of the constant. These are

. -1 rUs ::: sIn ,

with

n/Z <u <W,
S (5.6)



-19- UCRL-9326

and u
l

::; 11 - us' The first of these represents the phase of the a ynchronou8

particle, while u
l

gives one extreme of the stable-phase region. The value of

the constant that gives the separatrix is then found by setting Y (u I ) equal to

zero. The value obtained in this manner is C = cos u l + r u l . For.A.::: O.

dY/du is undefined at u I ' but for non-zero A the separatrix has zero slope at

this point. The other end of the stable phase region is loca.ted at U z > Us such

that COB U z + r U z =cos u 1 + r u l . At u z. the separatrix hae finite slope if

A is different from zero. Parenthetically. the ends of the stable-phase region

have peculiar shapes that are due to approximations in the space-charge theory.

Space-charge effectl1l at the ends of the bunch are not accurately treated.

We now see that the energy gain per turn i8 independent of O. From the

equa.tion of motion, Eq. (3.2), we ha.ve for the synchronous particle in the absence

of induced voltage W =eV 8in 4J 0 in which ep 0 ia the synchronous phase angle
S S 8

if the induced electric field is zero. We then define r 0 ::: 8in +80 = ws/eVo

When the induced electric field is included in the Hamiltonian. it can be shown that

~ ::: e V
t

sin u
• III

(5.7)

which because of Eqs. (5.4b) and (5.6) and ~he rela.tion V
t

:: 0'1, is just equal to

eV sin .&0' This result is not 8urprisingll because otherwise the particles would

soon be completely out of phase with the external voltage and no stationary distribution

could exist. The maximum total number of particles in the accelerator is

appreciably affected by n. and thus the total phase flux changes. This quantity is

defined by

~= N ~
..t: t s

and will be discussed in more detail later.

(5.8)
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Although explicit analytic expressions for a and b cannot be foundn n

in thia general case, we can obtain sim.ple expressions for Q and. '1 in terms

01 two integrals. From Eq. (2.. 3a-b) we can again derive

a :::­
n

2.n CJ

K1I
(5.9)

and

b =_ 2n (J

n K1f
f Y (4)) sin 4> d<j>

-11

The integrals are functions of A and r and cannot be performed analytically.

If we introduce the quantities 1A (for later use), IS' and Ie by these definitions:

IA(LA) = J2{-A .[A2 + cos u 1 + rUI - cos U - ru 1/2]} duo

u 1

r 2. 1/21 }l J:i. + COB U 1 + I\1} - cos u .. ru ,j sin u du;

",
I

[ ]A Z + coe u. l + rUl - cos u - ru] 1/2 fCOS u dUj

(S.lO)

we may expres8 an and bn in terms of Ie and IS. These integrals have been

evaluated numerically and are plotted in Figs. 1. 2.3, and 4. Our definition of l
A

differs from that of Ref. 4 by a factor 2- 1/2.
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In terms of these quantities we have

UGRL-9326

a ;:­
n

2nn fJ

Kn

ZYlna
b =- ( - sin " Ie + cos " IS) .

n K 1T

Proceeding as in the previous section we may solve to obtain

0::: [(DIS + 1)2 + OzIC2l -1/2 ,

and

(5.11)

(5.l2a

tan (5.l2b

where

(5.13 )

When r and A are zero, we have IS;: 0 and Ie;: - (4/3)yT

These results reduce to Eq. (4.l3a- b) in this limit. If r is not zero, the angle

" still represents the difference in phase between the total voltage and the applied

voltage. There is no simple relationship such ae Eq. (4.18) between " and the

energy-gain per turn. Instead, the energy-gain per turn is not affected by the

induced voltage. From Eq. (5.12a) we have the ratio Vt/V as a function of V
t

.

We might then choose a desired value for the total voltagl! and stable-phase angle

from which r and A can be calculated. Then from Eq. (5.l2a), together with

the graphs of Ie and Is' we may determ.ine the necessary applied voltage. A

criterion for selecting the stable phase angle will be given shortly.
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Fig. 1. The Fourier cosine transform I C (r,.fl-) of the
stable phase region (Eq. 5.10) as a function of r
which characterizes the rate of frequency modulation
for A = 0, 1 and 2, where A characterizes the effect
of longitudinal space charge.
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Fig. 2. The Fourier cosine transform I C (r, A) of the stable
phase region (Eq. 5.10) as a function of r which
characterizes the rate of frequency modulation for

1l = 3,4,5,6, 7, and 8, where A characterizes the
effect of longitudinal space charge.
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Fig. 3. The Fourier sine transform IS (r, 1l.) of the stable
phase region (Eq. 5.10) as a function of r which
characterizes the rate of frequency modulation for
A = 0,1,2, and 3, where A characterizes the effect
of longitudinal space charge.
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Fig. 4. The Fourier sine transform IS (r, A) of the stable
phase region (Eq. 5.10) as a function of r which
characterizes the rate of frequency modulation for
A = 4,5,6,7, and 8, where A characterizes the effect
of longitudinal space charge.
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Although Eq. (5.1 Za) is the import ant result of the calculation. the

equation does not give a clear picture of what is actually happening. Examination

of F1g. 5 maybe helpful. The total voltage wave is shifted to the left by an

amount ". and the amplitude iii reduced by the iactor a. In the absence of induced

voltage. the synchronous particle would ride at a phase angle epsO and gain energy

at the rate eV sin ~sO per turn. When we ''turn on" the induced voltage. the

synchronous particle must move to a phase u. relative to the total voltage-wave.

This angle is determined by the relation V sin <P
sO

:c V
t

sin us' The synchronous

particle is now at a phase 4>6 =Us - " relative to the applied voltage. The over-all

result i. a reduction in the bucket area, which is caused by an increase in the

energy per turn taken from the rf. This increase has the same effect as a

corresponding increase in the modulation rate. .A.s the strength of the beam-cavity

interaction increases. perhaps through a larger shunt impedance. the angle eps

approaches Tf/2. and the stable phase area approaches zero. The phase shift

" also approaches zero in this limit.

In Fig. 6 we have plotted 0 and than" for ,;, :: 0.3 eVo Notice that the
8

abscissa in Fig. 6 is /n D. which is proportional to V-l/Z~afher than Vi-1/~andthsis a functic
t

only of the operating parameters. The method involved in obtaining these curves

is quite tedious. and they are presented only as an illustration. Equ~ti(m (5.12) is

more easily used {or numerical computation. We see that the limiting value of

Vt is 0.3 V:::: *,/e. Since the phase shift 11 goes to zero in the limit of infinite

D, we have Us :::: Ijls in this limit.

All the parameters in D. with the possible exception of C!. are well-known.

na ::::

The density in W - () space at injection may be found from.

N. f.
1 1

ZTfAW
(5.14)
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Fig. 5. Applied voltage wave and total voltage ~_
the phase angle <j> for phase shift "1 = TT/IO



-28 - UCRL-9326

0.7

0.6

0.5

0.4
Ton

0.3

0.2

0.1

0.2 0:4 06 0.8 1.0 1.2 1:4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

nl12 D
MU-19923

Fig. 6. The ratio of total peak voltage Vt to peak applied
voltage V, and t~ tangent of the phase shift T] as
function of r2 l/LD (Eqs. 5.12a and 5.13). The
abscissa contains the operating parameters of the
machine and is directly proportional to the shunt
impedance of the cavity. The energy-gain per
turn is 0.3 V.
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where £i is the frequency at injection. Ii. E is the energy spread. and Ni is

the number of particles injected per turn. The following numerical examples of

two quite different accelerators illustrate the possible magnitudes of D.

C. Numerical Examples

As a first example we take the Bevatron. The configuration of the rf

cavity in the Bevatron ia tha.t of a drift tube. The .hunt impedance of the drift

tube has not been measured but has a theoretical value of about 3000 ohms at the

high-energy end of the accelerating cycle. 5 The peak applied voltage is II kv, with

an energy of 15 kev per turn being imparted to the particles. Using the experi-

m.entally determined total number of particles, Nt' we may use the relation for

the total number of particles in the accelerator

Nt == !:..fl nO' I A ( r,.t.\.) , (5.15)
K

to solve for n ()" rather than calculating it from Eq. (5.14). When the value of

(] found in this manner 11 inserted into Eq. (5.13) for D, we find

D== (5.16)

In solving Eq. (5015j for n a, we have assumed that the particles are uniformly

distributed over the entire stable-phase area. This is an idealization, because

the stable phase area is probably not uniformly filled in this machine. and the

approximate value of D obtained from E:q. (5.16) is slightly leas than the accurate

value.

If we make the assumption (borne out by the result) that

We use Nt =2)(10
11

• which is typical for thh

/
. 6 -1

Wo 2n co 2.5XIO sec .

machine. and

Vt is nearly equal to V, we find that the sine of the stable phase angle is 0.68.
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From Fig. 7, for 1i :: 0 and r ::: 0.68, we find IA:: 1. Inserting these values

into Eq. (5.16) for D, we obtain D:: 0.021. From Figs. 1 and 3 we find

Ie =- 0.51 and IS::: 0.7. When thes e values are employed in Eq. (S.l2a), the

result is V
t

::: 0.986 V ::: 21.7 kv. The effect8 of the induced voltage are evidently

sma.ll for this current.

The transverse space-charge limit for the Bevatron has been estimated

13
and found to correspond to 10 particles, or a circulating current of 4 amp.

Let us suppose that 10
13

particles are circulating in this machine and that it is

de.ired to maintain the total voltage at ZZ kv with an energy gain of 15 kev per turn.

Again using Eq. (5.16), we find D ::: 1. From Eq. (5.12a) we now obtain

Vt ::: 0.57 v. It will then be necessary to apply a peak voltage of 39 kv to the

cavity in order to maintain a total voltage of 2 kv. This may not be an in-

surmountable difficulty, but may require a much larger rf power input. The

additional power necessary to apply the higher voltage will depend upon the

circuitry of the external power supply and its coupling to the rf cavity.

Our second example is the Cambridge electron accelerator. 6, 7 The

numerical results in thie example will be approximate, because Liouville ' 8

theorem does not hold when the particles lose energy by radiation. The density

of particles in phase space is therefore not a constant in time. We have further

assumed that the pha:se-space density is uniform within a bounding curve

Wb (4)), which is not true during the accelerating cycle of this machine. Even in

this situation. the principles underlying our theoretical calculation remain valid.

The theory should yield results that are accurate to within 500/0 if we correctly

approximate (J. We USe the technique of the previous example and determine the

phase density from Eq. (5.15). Determining (] in this manner replaces the actual

particle distribution with a region of phase-space of uniform density, and adjusts

the density of particles in this region so all to give the correct total number of

particles.



-31- UCRL-9326

There are 16 rf cavities operating on the 360th harmonic of the

particle circulation frequency. Each cavity ha.s a. shunt impedance .stiIn.ated

a.t 10 megohms and a peak voltage of 1 Mev. At an energy of 5 Bev the incoherent

ra.diation a.mounts to an energy loss of Z !v1ev per turn. If, alll proposed, the

particles gain 0.8 Mev per turn, the stable-phase angle must be such that

r = 2.8/16, or 0.175. From Fig. 7 we find that IA =4, and from Figs. I 'am 4 we find

Ie =- 1.94 and IS:: 0.68. The total number of particles i8 expected to be lOll,

and the circulation frequency h 1. 32 Me. Eq. (5.16) yield. D :: 0.105, and with

the use of Eq. (5.1 Za) we find that an applied voltage of 1.09 Mv'·is. necea fiJary to

maintain a peak voltage of I Mv on each rf cavity.

Let ue consider the effects of the induced voltage in this machine when

the particle energy reaches 7 Bev. At this energy, the ene;rgy-Iolili per turn due

to incoherent radiation reaches 8 Mev. Thill 10s8 necessitates a. stable-phase angle

such that r is at least 0,5. Assuming that there are still lOll particlea in the

accelerator, we may repeat the calculation to find that an applied voltage of

1.25 Mv is necessary to maintain a total voltage of 1 Mv.

In the total voltage in this machine is not maintained at a high level,

particles will be lost from the stable-pha.e region. A reduction in Nt will

lower the value of D, and thus tend to reduce the magnitude of the induced voltage.

The ultimate result of the beam-cavity interaction should then be a loss of

particles from the beam at the high-energy end of the accelerating cycle.
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D. Maximum Phase FIll-x

Normally one attempts to operate an accelerator 80 as to maximize the

total phase flux:

(5.8)

From Eq. (5.15) we obta.in the expression:

.I:r; ~ n a e Vt r I A (r. A) . (5. 17)

Thus for fixed (J and a given V
t

, we must maximize rIA (r. A). This can be

done by u.sing the curves (Figs. 7 and 8) for I
A

VI. r. For A l:: 0 we get the

well-known. result that the maximum occurs at r x; 0.43. 1 As A increase to..mity,

the optimum r falls to about 0.3 and remains fairly constant at this value as

A increases to 10.

It is of interest that .A is directly proportional to (J. and therefore when

the longitudinal space charge is considered, there also exists an optimum C1 that

maximizes the phase flux. If we solve Eq. (5.4a) for C1 and employ the result

in Eq. (5.17) for 'tl. we obtain
.- ., 1/2

",__ y'Z'R [Vt
3

(i ~)s;, l
cf.- -'-- 3 3 .

Ken 11'
-'

(5.18)

We may, for fixed r and V
t

, find a value, A. ,which maximizes '</> •
m- The

problem is to maximize A I A(r, A). which may be accomplished by inspection

of the curves of Figs. 9 and 10. For example. when r =0.309, we find 11 :: 1.3,
m

while for r = 0.453 a valu.e of 1.6 is found. As r increases to a value of

0.7. A increases to about 1. 8. The optimum a is then found fromm

(5.19)3 3
e n 11'

[

V (f df ), I 1/2
t erE _ I

· J
R

Zg
C1 =m
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Fig. 7. The area I A (r ,.Ai) of the stable region of Y - <j>

space (Eq. 5.10) as a function of r which
characterizes the rate of frequency modulation for
A = 0, 1, and 2, where A characterizes the effect
of longitudinal space char ge.
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Fig. 8. The area IA (r ,A) of the stable region of Y - cj>
space (Eq. 5.10) as a function of r which
characterizes the rate of frequency modulation
for A = 3,4,5,6,7, and 8, where A ch~racterizes

the effect of longitudinal space charge.



-35-

6.0..-----~--~---.-------r----,

5.6

5.2

4.8

4.4

4.0

3.6

UCRL-9326

8 10
A

MU-19926

Fig. 9. The area IA (r, A) of the stable region of
Y - <I> space (Eg. 5.10) as a function of A
which characterizes the effect of longitudinal
space charge for r = 0, 0.309, and 0.453,
where r characterizes the rate of frequency
modulation. For A > 5, the dependence is
approximately .A-I.
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Fig. 10. The area IA (r, A) of the stable region of
Y - <j> space (Eq. 5.10) as a function of A which
characterizes the effect of longitudinal space charge
for r = 0.588 and 0.707, where r characterizes
the rate of frequency :modulation'
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Since the longitudinal space charge is a more re.trictive effect at the

beginning of the acceleration cycle than at other times, 4 we shall employ the

nonrelativistic expression for f df/dE in }~q. (5.19) to determine 0' • If wem

neglect the change of radius with energy, it is clear that this nonrelativistic

expression is

4g

fA m

(f df )
dE

for particles of mass

(J =
m

s

1
2(Z1f R) m

m circulating at a radius R.

[

~ 1/2

(e n-:--'>'-m-.J

Equation (5.19) then becomes:

(5.l0)

The factor g is always of the order of unity. For a typical proton machine, with

. d f d f' 19 - 1 - 1V
t

of the or er 0 50 kv an n =10, we lnd that (J m ~ 10 Mev sec . This

is a density slightly greater than the capability of most injectors currently in use.
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We have considered a beam of particles which passes through an

externally driven rf cavity in an accelerator. The particles induce a back

voltage across the cavity gap, and an expression is developed for this voltage

as a funttion of the Fourier coefficients of the particle distribution in azimuth.

Clearly this voltage depend. upon the total nurn.ber of particles Nt and their

azimuthal distribution as well as upon the shunt impedance of the rf cavity.

Describing the motion of particles by a Hamiltonian, we proceeded to find

a self-consistent distribution of particles in synchrotron phase-space. The

Hamiltonian is strictly valid only for a fixed magnetic guide field, because of the

assumption that the particle frequency is not an explicit function of time. This

as sumption is inherent in the definition of the a(:tion variable w. As pointed

out by Nielsen and Sessler, 4 if the variation of the magnetic field is slow compared

with the synchrotron oscillation of the particles, the instantaneous solution to the

Vlaeov equation is the same as that for a fixed field. It may also be true that the

azimuthal distribution of the particles varies slowly with time. If the charactfJri8tic

time for this variation is very much longer than a period of the applied ri, it is

a good approximation to assume that the distribution i8 constant.

The effects of induced voltage are to reduce the total voltage V
t

acrOBS

the cavity gap, and to shift its phase relative to the applied voltage V. The

ratio of these is given by Eq. (5.12a):

with D given by Eq. (5.13). In Eq. (5.13) the quantity (J is the number-density

of particles in synchrotron phase space, and may be found from Eq. (5.14). A rough

approximation for D is given by Eq. (5.16). The integrale Ie and IS are plotted

in Figs. 1 - 4.
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Since the area of stable pha.se-space is proportional to the square root of

the total voltage, this area is reduced by the presence of the back-voltage. It is

further reduced by another consequence of the reduction of the tota! voltage;

namely, that the stable-phase a.ngle must shift toward Tf/Z. 80 that the energy-

gain per turn remains conitant. The total number of particles that can be accelera.ted

is given by Eq. (5.15). fhe quantity I
A

is plotted in Fige. 7-10. It is a function

of r. the sine of the stable-phase angle, and decreases as the stable phase-angle

moves toward n/l.

We See from Fig. 6 that the ratio Vt/V increases as the quantity n1
/

2
D

decreases. This quantity is proportional to ZV- 1/ 2• These difficulties may

therefore be alleviated by increasing the applied voltage and (or) decreasing

the shunt impedance Z. The shunt impedance is directly proportional to the Q of

the cavity, which suggesta that high-Q cavities may create some problems in high-

current accelerators. We have not considered the effects of the induced voltage

on the trapping efficiency of the r£ system. but they may be important enough

to preclude acceleration schemes in which the applied voltage rises slowly.

By the technique developed in this paper, one may easily calculate the effect

on the beam of a cavity not driven externally. Such cavities rnight be present for use

at some stage of the accelerating procesti. They have an effect on the beam

even if their external power is turned ofl.
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Fig. 1. The Fourier cosine transform Ie (r, A) of the stable phase region

(Eq. 5. 10) as a function of r which characterizes the'rate of frequency

modulation for A:: 0, 1 and Z, where A characterizes the effect of

longitudinal space charge.

Fig. Z. The Fourier cosine transform Ie (I"'. A) of the stable phase region

(Eq. 5.10) a.s a. function of r which characterizes the rate of frequency

modulation for A c 3,4,5.6,7. and 8, where t:J.. charaaterizea the effect

of longitudinal space charge.

Fig. 3. The Fourier sine transform IS (r. A) of the sta.ble pha.e region

(Eq. 5.10) as a ffunction of r which characterizes the rate of frequency

m.odulation for A :::: 0, 1, 2, and 3, where f1. characterizes the effect of

longitudina.l apace charge.

Fig. 4. The Fourier sine transform IS (I', 11) of the stable phase region

CEq. 5.10) as a function of r which characterizes the rate of frequency

m.odulation for A = 4,5.6, 7, and 8, where A characterizes the effect

of longitudinal space charge.

Figo 5. Applied voltage wave and total voltage VB the phase angle 4' for

phase shift TJ::;: n/l0.

Fig. 6. The ratio of total peak voltage Vt to peak applied voltage V. and the

tangent of the phase shift 'l'\ as function of ri/2
D (Eqil. S.IZa. and 5.13).

The abscisea contains the opera.ting parameters of the machine and is

directly proportional to the shunt impedance of the cavity. The energy-gain

p&r turn is 0.3 V.
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Fig. 7. The area I A (r. A) of the stable region of Y - <p space (Eq. 5.10)

as a function of r' which characterizes the rate of frequency nlodulation

for A = 0, I, and 2, where fA characterizes the effect of longitudinal

.pace charge.

Fig. 8. The area I A (r', fA) of the stable region of Y - 1> space (Eq. 5.10)

a8 a function of r which characterizes the rate of frequency modulation

for A::: 3,4, 5,6, 7, and 8, where A characterizes the eifect of

longitudinal space charge.

Fig. 9. The area I A (r, A) of the stable region of 0 Y - <f> space (Eq. 5.10)

as a function of fA which characterizes the effect of longitudinal space

charge for r = o. 0.309, and 0.453, where r characterizes the rate

of frequency modulation. For A > 5, the dependence i, approxim.ately

-1
J:j. •

Fig. 10. The area IA (r,A), of the stable region of Y - cjJ space (Eq. 5.10)

as a function of A which characterizes the effect of longitudinal space

charge for r::; 0.588 and 0.707, where r characterizes the rate of

frequency modulation. For A ) 5, the dependence is approximately A-I.




