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ABSTRACT

A calculation is made of the interaction of a beam of particles in an
accelerator with the radio-frequency cavity that provides the accelerating
mechanism of the machine. A Hamiltonian for synchrotron motion is employed
that makes possible the simultaneous solution of Maxwell's equations and the
Vlasov equation, so that a self-consistent distribution of particles in synchrotron
phase space is determined.

The effective voltage on the cavity due to the beam of charged particles
is of the order of magnitude of the product of the total circulating current in the
accelerator and the shunt impedance of the rf cavity. It has the net effect of
producing a total voltage on the cavity which is both legs than the applied voltage,
and shifted in phase with respect to it. The increase in the stable phase angle
required so the particles will remain in phase with the accelerating radio
frequency is calculated. Thedecrease in total voltage and increase in stable
phase angle result in a decrease in stable phase space available for acceleration,
and convenient expressions are given for these quantities in terms of parameters
of the accelerator. It is shown that the consequences of the induced voltage may

be alleviated by increasing the voltage applied to the cavity.
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I. INTRODUCTION

As a beam of charged particles circulates in an accelerator, it may
pass through one or.more radio-frequency cavities. At least one of the cavities
is usually driven externally and provides the accelerating electric field that
bunches the beam azimuthally. We shall show in the following treatment of the
interaction of a charged-particle beam with an externally driven rf cavity that
the particles induce a periodic voltage on the cavity, which from consideration
of Lenz's law always opposes the particle motion. The particles lose energy to
the induced field and must therefore shift in phase relative to the applied voltage.
in order to gain more energy per turn. In this manner, particles that are phase-

stable adjust their net energy gain to remain in step with the applied radiofrequency.

L
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The phase shift of the distribution reduces the stable phase area just as if the
modulation rate were correspondingly increased.

This effect has been treated by different authors. 1,2 Although small in
existing machines, it will become a problem in accelerators with circulating
currents of several amperes. The action of a beam passing repeatedly through
the rf cavity is not unlike the action of bunched electrons in a klystron. A
periodic voltage is induced across the gap, and we shall see in the following
treatment that this voltage can be large. The effect is enhanced because Fourier
coefficients of the particle distribution are large for the resonance harmonic.

If the cavity in question is the accelerating device, or if it is merely maintaining
the beam (no modulation), beam and cavity are precisely in resonance.

Transverse particle motion is neglected. We simultaneously solve
Maxwell's equations and the Vlasov equation, thus obtaining a self-consistent
distribution of particles in synchrotron phase space. In Section II we develop
expressions for the induced voltage and effective electric field as functions of the
Fourier components of the particle distribution in azimuth. These expressions
are then employed in the Hamiltonian for synchrotron motion (Section IIIA), and
in Section IIIB we solve the Vlasov equation for the particle distribution. The
Hamiltonian formalism is that of Symon and Sessler, 3 and the notation closely
follows that of Nielsen and Sessler. 4 In Section IV we present a solution that is
valid when there is no modulation of the rf, and when longitudinal space-charge
effects are neglected.

The problem specified by the complete Hamiltonian is treated in Section V.
Certain integrations that cannot be performed analytically are encountered, and

results are given in graphical form. A simple expression is derived for the
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ratio of applied to total voltage, which is a function of the operating parameters
of the machine. The only parameter of the rf cavity entering into the results
is the shunt or input impedance, which may be determined experimentally.
Numerical examples are given in Section VU, and Section VD is devoted to the
problem of maximizing phase flux.

The paper is summarized in Section VI in a way that should allow the use
of the results without a careful study of the body of the paper.

An rf cavity will have an effect on a beam of particles even if it is not
externally driven. The influence of such a cavity on the stability of a coasting

particle beam will be considered in the third paper of this series.



The rf cavity is taken to be located with the center of the gap at

€ = 0. We shall use cylindrical coordinates (r, 8, 2) exclusively in this
paper. The gap has a width d which may be expressed in terms of the half
angle of the gap 91 = d/2K, where R is the radius of the accelerator. We
assume that the electric field E is (to good approximation) constant in r and z,
over the region of the gap in which particles move.

We take the beam current density circulating at a radius R as
j9=e woﬁ(r-R)b(z-zo)N(B-wot) (2.1)

where W, is the average angular frequency of the bunch. The assumption that
the beam has negligible cross-sectional area is merely convenient. Because of
the assumed uniformity of E, 2 current with a emall spread in r and z would
lead to the same results as the current given by Fqg. (2.1). Expanding N (0 - wot)
in a Fourier series gives

a
0 .
N (6 - wot) = —-?:—-- + a cosn ( 8 - Wy t) + bn sin n (6 - wot) . (2.2)

L -]
=1

n

The coefficients a, and bn are not time-dependent and may be evaluated at
t = 0 giving:
i

a_= 1 / N { 6) cos nbdé (2.3a)
o
™

n
{
b_ = I N (6) sin n6d6 (2.3b)

A e
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The nth Fourier component of the current at € = 0 is obtained from Fqgs. (2.1)
and (2.2):

In (6=0)=c¢e W (an cos n wot - bn sin n wot) (2.4)

If the r{ cavity has a natural frequency n Wy the fourier component
of the current that exhibits this frequency will be precisely in resonance with the
cavity, This Fourier component will thus induce a voltage 180° out of phase with
the current. Other Fourier components of the current will induce voltage
components whose phase is not simply related to the phase of the current. We
shall consider only the voltage induced by the resonance component of the current,
and defire the shunt impedance, Z, of the rf cavity by Z = - 'V'n (6 = 0)/4n (6 = 0),
where Vn is the voltage induced by In. > Since Vn (6 =0) = EB(G = Q) d, where

EG (6 = 0) is the azimuthal electric field across the gap, we have

Z

EQ(G = Q) = - --(;--— In (0 = 0) (2.5)
and conseguently
ewOZ
F’@ (? =0) = - 3 (an cos n mot - bn sin n wot), (2.6)

It should be emphasized that the cavity mode excited by the current is, in this
calculation, the same as that being driven externally.

We have in Eq. (2.6) an expression for the induced electric field in terms
of the Fourier coefficients of the particle distribution. An effective electric
field will now be found from Eq. (2.6) so that it may be inserted into the Vlasov
equation to complete the calculation. F¥Following the standard formalisem, we
decompose the electric field across the gap into standing waves around the azimuth

of the machine. Thus we expand EG in a Fourier series and keep only the nth
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harmonic. This Fourier decomposition brings in a factor of 2 sinn Gl/m which
is approximately 291/11 = d/nR. Thus, for the nth harmonic of the electric

field, we have

Zew,
Z - b [ - i
N -~ cosn 6 [ a cos nwyt - b sinn wyt 1 (2.7)

The effective electric field is found by decomposing }:';n into traveling waves,
and ikeeping only the wave traveling with the particles,
It will be convenient in what follows to introduce a new angle variable.

. . e 4
Following the notation of Nielsen and Sessler;

¢=n(0-w0t)+ ", (2.8)

This substitution transforms the calculation into a coordinate system rotating with

angular velocity n Wy The arbitrary addition of 7 is conventional. In terms

of this new variable our effective electric field becomes

ewOZ
€= ————1[ 2 cos ¢+b sin]. (2.9)

21 R



-9- UCRL-9326

III. PARTICLE DISTRIBUTION IN SYNCHROTRON PHASE SPACE

For the remainder of this calculation, we follow closely the development
of Ref. 4. So far, the externally-applied voltage, V, has not entered the
calculation. The frequency of V need not be wO/Zﬂ, but will generally be an
integral multiple n of this value, so that the cavity is operating on the nth
harmonic of the particle circulation frequency. It is possible to decompose this
voltage into traveling waves as was done with the beam-induced electric field.

In this way, the abrupt loss or gain of energy by a particle as it crosses the
cavity gap is replaced by a continuous change as the particle travels around the
machine. We define the phase of the voltage wave such that a particle at phase

$ gains energy at the rate eV sin ¢ per turn. Clearly, from this definition, the
angle ¢ is the phase of the particle relative to the phase of V. If the frequency
of the cavity f_  is constant, a particle at ¢ = 31/2 is riding the trough of the
wave, while a particle at ¢ = n/2 is riding the crest of the wave. For constant
fc we shall call the particle at ¢ = n the synchronous particle. Particles at
other phase angle ¢ will be oscillating back and forth in the trough about the
value ¢ = w, Modulation of the cavity frequency displaces the synchronous
particle to a position ¢ such that it gains energy at the rate eV sin ¢, per turn.

The phase anglea of the nonsynchronous particles now oscillate about cbs,
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A. Hamiltonian for Synchrotron Motion

Following Symon and Sessler, 3 we define an action variable w , that is

canonically conjugate to ¢ as

~E
w= _9E , (3.1)
! f (E)
< p
1‘—"0

where E is the energy of the particle, and fp is the instantaneous particle
frequency. The introduction of w allows us to write a single-particle
Hamiltonian in terms of canonically conjugate variables. Xach particle gains

an amount of energy per turn givea by

SE=eVsing+2neRE
Since the energy gain 18
dw

SE=f 6w= ——m
P dt

we have the first-order differential equation for w,

dw/dt = e V sin ¢ + 21 e R £ (3.2)
The angle variable, ¢ obeys the equation

d$/dt = n d8/dt = 2 m (ip - £, (3.3)
where fs is the frequency of the synchronous particle. A change of variable
defined by W= w - W allows the use of a Hamiltonian for W - $ motion of the form:

-~

%(W, $) = mn (f af ) WZ +e Vcos ¢ - 2reR ,;gdcp + Ws $ + 2nen U(d).
dE i

!

s !

The last term gives the forces due to longitudinal space-charge effects. In the

first term, fdf/dE is to be evaluated at the synchronous energy. This approximate
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form of the Hamiltonian is derived in Kef, 4, and the derivation will not be

repeated here. When Eq. (<.9) is used, the Hamiltonian becomes

WW.e)=m (£ S) W' ieVecos+ & ¢+ 2men Ulg)

dE
S

2 X
-e w Z [an sin ¢ - b cos ¢l . (3.4)

B. Solution of the Vlasov Equation

Having obtained a Hamiltonian in which the forces are functions of the
spatial distribution of particles, we are in a position to determine a stationary

distribution function ¥ (W, ¢) that obeys the Vlasov equation

°% dW , v d¢ ., (3.5)
oW dt ¢ dt

A particular solution is a distribution { (W, ¢), which is constant within a certain

bounding curve Wb(nt») and zero outeide. By Liouville's theorem, density in

phase space is a constant of the motion, which is determined in this instance by the

injector of the machine. Although a uniforin density is an idealization, it is a

reasonably valid assumption for most injection devices. The solution may be wriiten
VW, 9)= 0 [ |w, (9)] - |W]}, (3.6)

in which ¢ is the number density in W - ¢ space and 9D is the step function

which is unity for positive argument and zero otherwise, With this form for

Y, Eq. (3.5) yields
Y ‘AW, |

“W) | d + a?;dwbi
8¢ ewW d¢j

5(W =0,

b

which is satisfied for W =£ Wb. The term in brackets is zero for W = Wb if we have
* { W (9), ¢ ] = constant. (3.7)
Egquation (3.4) may then be used to determine Wb(¢), the bounding curve of the

distribution of particles in synchrotron phase space.



-12- UCRIL-9326
IV. SOLUTION IN THE ABSENCE OF FREQUENCY MODULATION
Before solving the complete problem specified by the Hamiltonian,

Eq. (3.4), we shall treat a somewhat simpler situation that arises in particle
siorage rings. Consider a stationary distribution of particles in the absence
of cavity modulation. Particles are being held at a constant energy and not .. =«
accelerated. The rf voltage merely provides stabilizing potential troughs and
compensates for any energy losses, For simplicity, longitudinal space charge
effects will be neglected here. Using Eqs. (3.7), and (3.4), without the space-

charge and modulation terms, we have the following equation for the boundary of

our distribution:

2

2 .
pteVecosd-e woz[ansmqa-bncos:p]-c, (4.1)

meEd) w
dE

8
where C is a constant. For the present, we shall discuss the problem below
transition energy, where df/dE is positive. A slight modification of the treatment

is necessary for negative df/dE, which will be considered subsequently.

We define the new quantities

Yp$) = K Wy (4), (4.2)

where
2 2m , df

K™ = < ({ IF )s (4.3)

and
e wOZ
¢ = . (4.4)
v

Since the impedance of the cavity may be determined experimentally, we

can now solve for Yb in terms of the operating parameters of the machine and the
Fourier coefficients of the distribution. It will then be poseible to calculate a,
and b as self-consistent functions of ¢, K, and § by performing the integrals

indicated in Eq. (2.3a-b).
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The definitions introduced by Eqgs. (4.2), (4.3) and (4.4) allow ug to write

Eq. (4.1) for the boundary curve as

4 .
l/ZYb +(l+bg€)coa¢-an§sm¢==c
or

. . 1/2
Yb-fé‘[c-(1+bng)cos¢.+an>;sm¢1 .

Constant C is selected so as to include the maximum area within the bounding

(4.5)

curve. It can easily be chosen in this simple case without resorting to topological

methods. If the reaction of beam and cavity were neglected, we would have

Y, = /2 [ C-cos ¢} 1/2’. The separatrix, or closed curve which includes

maximum area, is obviously obtained by setting C equal to 1. Our distribution in

Y - $ space is then bounded by the curve Yb = 2 8in §/2. The distribution extends

from ¢é=0to ¢ = 2 m and is centered at ¢ = m,
When ¢ % 0 , we may define an angle 1 which represents the shift of
the total voltage wave relative to the driving voltage.

Let

A

a

tan n = R
1+b &
n
and
u=¢+n
80 that u represents the phase of a particle relative to the total voltage. By
arguments analogous to those above we may determine C 380 as to obtain the

expression

Yo =/ Z [0 +b 6% +a 280 cos wl/?,

(4.6)

(4.7)
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The distribution extends from u = 0to u=2w. It has been shifted by an angle

n and the area has been changed by a factor [ (1 ¢ b £)° + a‘n &% 174 we

introduce the quantity £ by the definition

p

%= (1+ b_ £)% + a_ £2 (4.8)

This phase shift cannot be compensated by altering the phase of V, because the
angle m is the phase of the synchronous particle relative to the applied voltage.

It will be convenient to calculate the Fourier coefficients by integrating
over angle u rather than over 6. The density 0 g of particles in (W - 0) space
is related to the density o in (W - ¢) space by 0g =n00. Taking this relationship

into account, we f{ind:

N() = 20, W, (6) = 20y, (o). (4.9)

K

The Fourier coefficient a ~may then be written:

s

. 2ng -
a = - . Y. ($) cos $do .
no e . b

e
Since Yb (u) is an even function, we may use the relation between u and ¢ to obtain
"

- 4no
Kn

a = cos n Yb (u) cos u du. (4.10)

n
0
When Eq. (4.7) for Yy (u) is employed, the integral is easily evaluated, with the
result:
an={16n0/3 K) 91/2 cos 1. (4.11)
By a similar manipulation, we obtain
bn:-£16n0/3Kn)Ql/2 sin n . (4.12)
From Eqs. (4.11) and (4.12) we may eliminate a_ and bn in Eqs. (4.6)
and (4.8).

We may then solve the resulting simultaneous equations for 2 and

n to obtain:
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=.1/28%+( 1+1/4 BHY/? (4.1
and
cos N =2 (4.1.
with
. 16n0 & _ 16n0‘ewOZ ' ‘1.
31K 2KV

Examination of the Hamiltonian Eq. (3.4) reveals the physical meaning of the

phase shift. Eliminating space-charge and modulation terms, and using the

definition of £, we write:

%(W.x’?)&' ﬂn(f-d—f-) W2+eV(l+bn&,)cos4>-eVan§sin¢. (4.15

dE
s

From the equation of motiof, dW/dt = - 9 “%/6¢, we have

AW -evU+b E)singteVa tcosé, (4.16)
dt

which is zero for the synchronous particle. Therefore, the synchronhous phase-angle

is given by
an&,
tan ¢ = - ————— = -tann. (4.17)
1+ bnij

The synchronous particle gaing energy from the applied rf at a rate

SE =e Vain (7w -~ 1) (4.18)
in order to compensate for losses to the induced voltage and maintain w at a
constant value.

From Eqgs. {4.7) and (4.13) we see that the induced voltage has the effect of
reducing the height (and therefore the total area) of the stable region of (W - ¢)
phase-space. When this area is reduced by the factor Ql/z. the total number
of particles that can be held in stable phase is also reduced by this factor. This

number of particles can be found from
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2w
N = [ N(6d6, (4.1¢
t
O 4
which may be expressed in terms of an integral over u as
n
1/2
N, = 2no /K Y, (u) du (16 ng/K) D . (4.20

0
The quantity 01/2 takes on the value 1/2 when the phase is shifted by an angle
n of 78°. For B =0, Qis unity, and {2 approaches zero as B approaches
infinity. The phase shift 7 approaches /2 in this limit, and for small values of
B we have :isinn 34 B,
Perhaps more appropriate to storage schemes and beam stacking is the

situation above transition energy. When df/dE is negative, we must redefine

K by

KX = 2m/ev £8Ly |, (4.21)

which modifies the Yb equation so that

/oy 2 _
-1/2Yb (q‘:)+(1+anF,)c¢)su§>-an £Eping=C.,

A transfymation ¢ = ¢ + m restores this expression to the original form
l/Z.‘f.zb(tp)+(l+bn§)cos QJ-an S sing = C. (4.22)

The analysis proceeds just as above, with the distribution shifted in phase by an

angle w. The stable phase area is reduced by the same factor 91/2 given by

Eq. (4.13a-b).
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V. SPACE-CHARGE AND FREQUENCY MODULATION
We now turn our attention to the complete Hamiltonian of Eq. (3.4).

Although we could proceed analytically in Section IV, we must resort to
numerical computations in the general case. A limitation on the validity of the
treatment arises from the fact that, when longitudinal space-charge effects are
included, the theory is valid only below the transition energy; this failure is
discussed in detail in Ref. 4. When the space-charge term is neglected (as
in certain special cases below), the theory is also valid for df/dE negative.
Atthough space-charge effects constitute a problem separate from the cavity

interaction, they are included in order to present a complete theory.

A, Equation for the Separatrix

Again following Ref, 4, we replace the term 2 7 enU(¢) in Eq. (3.4) by the
approximate expression 4ne’nq g |W($)|/R, where g =1+ 21n (2 G/ma). The
subscript b will be omitted in the remainder of this paper, it being understood that
W and Y always refer to values on the boundary. The cross-sectional radius
of the beam, a, enters the calculation only through the factor g. The height of
the accelerator vacuum tank is here indicated by G in order to conform to the
notation of Ref. 4. With this alteration, the complete Hamiltonian of E£q. (3.4)

becomes

%{W(¢),¢}=‘Nn(f—(}-£ ) Wwe + W ¢+eV(l+b £)cos ¢
dE s n

8
2 2
-eVa tsing+t4anengg |W| /R. (5.1)
Evidently the phase shift n may be defined as in the previous section by Eq. (4.6).

In terms of n and 2 as defined by Eq. (4.8), the Hamiltonian takes the form

2 W 2.2
Z{W(ﬂ-ﬂ = "n(f_‘g)z w t & (u.“;)Jrcosu+llTTe = JE Wl
evﬂ eVQ dE s e.vg eV Q R

with u again equal to (¢ + 1). (5.2)
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We see that 2 represents the ratio of the total peak voltage on the
cavity to the pesk voltage, V, in the absence of the beam. It turns out that this
calculation is most easily carried out in terms of A\ 2V, which yields expressions
for @ and n as functions of \/'t and the operating parameters of the machine.
Using Vt as an independent variable is logical as well as convenient, since it is
certainly the quantity of physical interest. However, this procedure necessitates

one change in notation, namely we must redefine K as

KZ..2m ¢ 4f, (5.3)
th 4x s

and introduce two new quantities:

1/2

s e[ ehad s
Co oAl ! . 1: 3
R vt ”g'f)s
and
‘;&s
= 2 (5.4b)
th

Space-charge effects are completely contained in A, while T" contains the
frequency modulation. These definitions allow us to write the equation for the

boundary of the stable-phase area in the convenient form

L1/2 Yz(u) tVZA | Y| +cosu+T u=C.
Solving for Y results in
Y=f_2—{:A+{A2+C-cosu—1‘u11/2}o (5.5)
The evaluation of the constant C is not as simple as before. There are two

values of u for which dY/du vanishes for any value of the constant. These are

1

u_ = sgin ° T,

-]
with
w2 <u <w, (5.6)
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and up = TW-u. The firet of these represents the phase of the synchronous
particle, while uy gives one extreme of the stable-phase region. The value of
the constant that gives the separatrix is then found by setting Y (ul) equal to
zero. The value obtained in this manner is C = cos Uyt r u;- For A =0,
dY/du is undefined at vy but for non-zero A the separatrix has zero slope at
this point. The other end of the stable phase region is located at u, > u such
that cos u, + r u, = cos u,; + r u;. At Uy, the separatrix has finite slope if
A is different from zero. Parenthetically, the ends of the stable~phase region
have peculiar shapes that are due to approximations in the space-charge theory.
Space-charge effects at the ends of the bunch are not accurately treated.

We now see that the energy gain per turn is independent of (. From the
equation of motion, Fq. (3.2), we have for the synchronous particle in the absence
of induced voltage \ks = eV sin ¢_oin which ¢_, is the synchronous phase angle
if the induced electric field is zero. We then define 1"0 = sin ¢sO = \'vs/eV.

When the induced electric field is included in the Hamiltonian, it can be shown that

\'vs =eV, sinu_, (5.7)

which because of Egqs. {5.4b} and (5.6) and ‘the relation V, = @V, is just equal to
eV sin ¢°50' This result is not surprising, because otherwise the particles would
soon be completely out of phase with the external voltage and no stationary distribution
could exist. The maximum total number of particles in the accelerator is
appreciably affected by 2, and thus the total phase flux changes. This quantity is
defined by

= Nt fws ) (5.8)

and will be discussed in more detail later.
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B, Phase Shift and Total Voltage

Although explicit analytic expressions for a and bn cannot be found
in this general case, we can obtain simple expressions for I and n in terms

of two integrals. I'rom Eq. (2.3a-b) we can again derive

n

a =- 2ng Y(4) cos ¢ dé (5.9)
n Ka
- T
and
b =. B0 Y (¢) sin ¢ dé
n Kn

~R
The integrals are functions of A and I" and cannot be performed analytically.

If we introduce the quantities 1, (for later use), IS’ and IC by these definitions:
2 )
I1.{I',4a) = A +5A2+cosu + T'u, ~cosu -Tu 1/24‘ du;
A L 1 1
!

2f .
IS(I‘.A)= ﬁ-A+ iA2+coaul+I\§l -cogw~Iu 1/2}‘} sin u du;
] ‘

u

£

g i
IC (C,A) = [ {- A+ [ AZ +cos u, + l’u1 - cos u - I"u] 1/2 }cos u du;
J (5.10)

hed

we may express a_ and bn in terms of IC and Is. These integrals have been

evaluated numerically and are plotted in Figs. 1, 2,3, and 4. Our definition of I,

differs from that of Ref. 4 by a factor 2'1/2 .
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In terms of these quantities we have

a = - _%Z:__Z-_El_g {cos 1l

n Kw

+e8in nl

C S)’

b =-£Q—E—g»(~sinnl.+cosnl). (5.11)
n K = C S
Proceeding as in the previous section we may solve to obtain
2= [(Dig + 1)® + D? 17 /2 (5.12a
and
DI
tan 1N = - c , (5.12b
DIS + 1
where _1/2
21/ Zae wo Zng e3n
t t " dE |

When I' and A are zero, we have Ig=0and I.=- (4/3)\/T
These results reduce to Eq. (4.13a-b) in this limit. If I" is not zero, the angle
n still represents the difference in phase between the total voltage and the applied
voltage. There is no simple relationship such as Eq. (4.18) between n and the
energy-gain per turn. Instead, the energy-gain per turn is not affected by the
induced voltage. From Eq. (5.12a) we have the ratio Vt/V as a function of Vt.
We might then choose a desired value for the total voltage and stable-phase angle
from which T" and A can be calculated. Then from Eq. (5.12a), together with
the graphs of IC and IS' we may determine the necessary applied voltage. A

criterion for selecting the stable phase angle will be given shortly.
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Fig. 1. The Fourier cosine transform I~ (I, A) of the
stable phase region (Eq. 5.10) as a?unction of I'
which characterizes the rate of frequency modulation
for A =0, 1 and 2, where A characterizes the effect
of longitudinal space charge.

[



-23- UCRL-9326

- 0.500
-0.450
-0.400
-0.350
-0.300
-0.250
- 0.200

—-0.150
- 0.100

—0.050

MU-19919

Fig. 2. The Fourier cosine transform IC (', A) of the stable
phase region (Eq. 5.10) as a function of T" which
characterizes the rate of frequency modulation for

A =3,4,5,6,7, and 8, where A characterizes the
effect of longitudinal space charge.
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Fig. 3. The Fourier sine transform Ig (I, A) of the stable
phase region (Eq. 5.10) as a function of I' which
characterizes the rate of frequency modulation for
A =0,1,2, and 3, where A characterizes the effect
of longitudinal space charge.
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Fig. 4. The Fourier sine transform Ig (I', A) of the stable
phase region (Eq. 5.10) as a function of I' which
characterizes the rate of frequency modulation for
‘A =4,5,6,7, and 8, where A characterizes the effect
of longitudinal space charge.
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Although Eq. (5.12a) is the import ant result of the calculation, the
equation does not give a clear picture of what is actually happening. Fxamination
of Fig. 5 may be helpful. The total voltage wave is shifted to the left by an
amount 7n, and the amplitude is reduced by the factor (L In the absence of induced
voltage, the synchronous particle would ride at a phase angle 4)80 and gain energy
at the rate eV sin 4;80 per turn. When we 'turn on' the induced voltage, the
synchronous particle must move to a phase u, relative to the total voltage-wave.
This angle is determined by the relation V sin ¢s() = Vt sin ug- The synchronous

particle is now at a phase b ZUg = M relative to the applied voltage. The over-all

8
result ia a reduction in the bucket area, which ie caused by an increase in the

energy per turn taken from the rf. This increase has the same effect as a
corresponding increase in the modulation rate. As the strength of the beam-cavity
interaction increases, perhaps through a larger shunt impedance, the angle ¢s
approaches m/2, and the stable phase area approaches zero. The phase shift

n also approaches zero in this limit.

In Fig. 6 we have plotted 2 and than m for % _ = 0.3 eV. Notice that the
abscissa in Fig. 6 is /Q D, which is proportionalb<V~l/21-4atyher than '&/%'Mzandthsis a fundic
only of the operating parameters. The method involved in obtaining these curves
is quite tedious, and they are presented only as an illustration. Fquation (5.12) is

more easily used for numerical computation. We see that the limiting value of

Vt is 0.3 V= 'Jva/e, Since the phase shift 7n goes to zero in the limit of infinite

D, we have u, = ¢>8 in this limit.

All the parameters in D, with the possible exception of ¢, are well-known.

The density in W - 6 space at injection may be found from

N, N, £,
ng = = (5.14)

2 mAW 2T AE
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Fig. 5. Applied voltage wave and total voltage _vs _
the phase angle ¢ for phase shift n= /10



0.9
0.8
0.7
0.6
0.5
04
0.3
0.2

0.1

_28- UCRL-9326

T I | ] 1 [ | I T I N
a _
- —]
Vi/v
| Tan ]
B N
| | 1 1 | I R B [t 1 | l

Oo— 0z 04 06 08 10 I2 14 16 |18 20 22 24 26 28 30

QI/Z D

MU~-19923

Fig. 6. The ratio of total peak voltage V to peak applied
voltage V, andlt tangent of the phase shift n as
function of Q D (Eqs. 5.12a and 5.13). The
abscissa contains the operating parameters of the
machine and is directly proportional to the shunt
impedance of the cavity. The energy-gain per
turn is 0.3 V.
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where fi is the frequency at injection, A E is the energy spread, and Ny is
the number of particles injected per turn. The following numerical examples of

two quite different accelerators illustrate the possible magnitudes of D.

C. Numerical Examples

As a first example we take the Bevatron. The configuration of the rf
cavity in the Bevatron is that of a drift tube. The shunt impedance of the drift
tube has not been measured but has a theoretical value of about 3000 ohms at the
high-energy end of the accelerating cycle. > The peak applied voltage is 22 kv, with
an energy of 15 kev per turn being imparted to the particles. Using the experi-
mentally determined total number of particles, Nt' we may use the relation for
the total number of particles in the accelerator
Ntm E-E— ng IA(I‘,A), (5.15)
K
to solve for n¢g rather than calculating it from Eq. (5.14). When the value of
¢ found in this manner is inserted into Eq. (5.13) for D, we find
Nt e w., Z

D= 90 (5.16)

thIA

in solving Eq. {5.15) for n 0, we have assumed that the particles are uniformly
distributed over the entire stable-phase area, This is an idealization, because
the stable phase area is probably not uniformly filled in this machine, and the
approximate value of D obtained from Eq. (5.16) is slightly less than the accurate
value.

We use Nt = 2)(1011. which is typical for this machine, and

wo/Z'u = 2.,5)(106 sec'x. If we make the assumption (borne out by the result) that

V. is nearly equal to V, we find that the sine of the stable phase angle is 0.68.
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From Fig. 7, for 4 = 0 and T = 0.68, we find I, = l.Inserting these values
into Eg. (5.16) for D, we obtain D = 0.021, From Iigs. 1 and 3 we find

1. =-0.51 and I_ = 0.7. When these values are employed in Eq. (5.12a), the

C S
result is Vt = 0.986 V = 21.7 kv, The effects of the induced voltage are evidently

small for this current.

The transverse space-charge limit for the Bevatron has been estimated
and found to correspond to 1013 particles, or a circulating current of 4 amp.

Leet us suppose that 1013 particles are circulating in this machine and that it is
desired to maintain the total voltage at 22 kv with an energy gain of 15 kev per turn.
Again using Eq. (5.16), we find D = 1. From Eq. (5.12a) we now obtain

v, = 0.57 V. It will then be necessary to apply a peak voltage of 39 kv to the

cavity in order to maintain a total voltage of 2 kv. This may not be an in-
surmountable difficulty, but may require a much larger rf power input. The
additional power necessary to apply the higher voltage will depend upon the
circuitry of the external power supply and its coupling to the rf cavity.

Qur second example is the Cambridge electron accelerator. 6,7 The
numerical results in this example will be approximate, because Liouville's
theorem dces not hold when the particles loge energy by radiation. The density
of particles in phase space is therefore not a conatant in time. We have further
assumed that the phase-space density is uniform within a bounding curve
Wb (¢), which is not true during the accelerating cycle of this machine. Even in
this situation, the principles underlying our theoretical calculation remain valid.
The theory should yield results that are accurate to within 50% if we correctly
approximate ¢. We use the technique of the previous example and determine the
phase density from Eq. (5.15). Determining ¢ in this manner replaces the actual
particle distribution with a region of phase-space of uniform density, and adjusts
the density of particles in this region so as to give the correct total number of

particles.
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There are 16 rf cavities operating on the 360th harmonic of the
particle circulation frequency. FEach cavity has a shunt impedance estimated
at 10 megohms and a peak voltage of 1 Mwv. At an energy of 5 Bev the incoherent
radiation amounts to an energy loss of 2 Mev per turn. If, as proposed, the
particles gain 0.8 Mev per turn, the stable-phase angle must be such that
I'=2.8/16, or 0.175. From Fig. 7 we find that I, =4, and from Fige.land4 we find

11

I.=-1.94 and I, = 0.68. The total number of particles is expected to be 10" 7,

C S
and the circulation frequency is 1.32 Mc. Eq. (5.16) yields D = 0.105, and with
the use of Eq. (5.12a) we find that an applied voltage of 1.09 Mv is necessary to
maintain a peak voltage of 1 Mv on each rf cavity.

Let us consider the effects of the induced voltage in this machine when
the particle energy reaches 7 Bev. At this energy, the energy-loss per turn due
to incoherent radiation reaches 8 Mev. This loss necessitates a stable-phase angle
such that I" is at least 0,5. Assuming that there are still 10“ particles in the
accelerator, we may repeat the calculation to find that an applied voltage of
1.25 Mv is necessary to maintain a total voltage of 1 Mv.

In the total voltage in this machine is not maintained at a high level,
particles will be lost from the stable-phase region. A reduction in Nt will
lower the value of D, and thus tend to reduce the magnitude of the induced voltage.

The ultimate result of the beam-cavity interaction should then be a loss of

particles from the beam at the high-energy end of the accelerating cycle.
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D. Maximu

Normally one attempts to operate an accelerator so as to maximize the

total phase flux:

$= Nt W - (5.8)
From Eq. (5.15) we obtain the expreséion:

3= ﬁ ncrthFIA(I‘.A). (6.17)
K

Thus for fixed o aand a given Vt' we must maximize I’ IA {',A). This can be
done by vsing the curves (Figs. 7 and 8) for IA ve. I'. For A = 0 we get the
well-known result that the maximum occurs at I" = 0.43. ! As A increase to . tnity,
the optimum I' falls to about 0.3 and remains fairly constant at this value as
A increases to 10.

it is of interest that A is directly proportional to ¢, and therefore when
the longitudinal space charge is considered, there also exists an optimum ¢ that

maximizes the phase flux. If we solve Eq. (5.4a) for ¢ and employ the result

in Eq. (5.17) for ¢, we obtain

v 3 1/2
t { &15)_
$ = Y 2R 5 & } Ta I,(T.4). (5.18)
K e n ™ B

We may, for fixed I' and V,, find a value, A ., which maximizes ¢ . The

problem is to maximize A I,(I",A), which may be accomplished by inspection
of the curves of Figs. 9 and 10. For example, when I'" = 0.309, we find A’m = 1.3,

while for I = 0.453 a value of 1.6 is found. As I' increases to a value of

0.7, Am increases to about 1.8. The optimum ¢ is then found from

§

df J1/2
v, (£ HE)&; ,

Am . (5.19)

2g 33 n3 w



33 UCRL-9326

5.60 ]
5.20 ]
4.80 ]
4.40— —
4.00 ]
3.60— ]
3.20— ]
2.80 ]
2.40
2.00
1.60
1.20
0.80

0.40

1.0

MU -19924

Fig. 7. The area I, (I',AA) of the stable region of Y - ¢
space (Eq. 5.1%) as a function of I' which
characterizes the rate of frequency modulation for
A =0,1, and 2, where A characterizes the effect
of longitudinal space charge.
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Fig. 8. The area Ip (I',A) of the stable regionof Y - ¢
space (Eq. 5.10) as a function of I'" which
characterizes the rate of frequency modulation
for A =3,4,5,6,7, and 8, where A characterizes
the effect of longitudinal space charge.
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Fig. 9. The area I (I',A) of the stable region of
Y - ¢ space (Eq. 5.10) as a function of A
which characterizes the effect of longitudinal
space charge for I' = 0, 0.309, and 0.453,
where I' characterizes the rate of frequency
modulation. For A > 5, the dependence is
approximately A-L
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Fig. 10. The area Ip (I',A) of the stable region of
Y - ¢ space (Eq. 5.10) as a function of A which
characterizes the effect of longitudinal space charge
for I" = 0.588 and 0.707, where I" characterizes
the rate of frequency modulation., For A » 5, the
dependence is approximately A~ ".
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Since the longitudinal space charge is a more restrictive effect at the
beginning of the acceleration cycle than at other times, 4 we shall employ the
nonrelativistic expression for f df/dE in Eq. (5.19) to determine o If we
neglect the change of radius with energy, it is clear that this nonrelativistic

expreasion is

ey =
dE (27" B) m

5

for particles of mass m circulating at a radius R, Equation (5.19) then becomes:

A, v, ~ 1/2

Cm = 3 . (5.20)
4g (enm)" m

{
!

The factor g is always of the order of unity. For a typical proton machine, with
v, of the order of 50 kv and n = 10, we find that o~ 1019 Mev™! sec”l. This

is a density slightly greater than the capability of most injectors currently in use.
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VIi. SUMMARY

We have considered a beam of particles which passes through an
externally driven rf cavity in an accelerator. The particles induce a back
voltage across the cavity gap, and an expression is developed for this voltage
as a funttion of the Fourier coefficients of the particle diatribution in azimuth.
Clearly this voltage depends upon the total number of particles Nt and their
azimuthal distribution as well as upon the shunt impedance of the rf cavity.
Describing the motion of particles by a Hamiltonian, we proceeded to find
a self-consistent distribution of particles in synchrotron phase-space. The
Hamiltonian is strictly valid only for a fixed magnetic guide field, because of the
assumption that the particle frequency is not an explicit function of time. This
assumption is inherent in the definition of the action variable w. As pointed
out by Nielgen and Sessler, 4 if the variation of the magnetic field is slow compared
with the synchrotron oscillation of the particles, the inetantaneous solution to the
Vlasov equation is the same as that for a fixed field. It may also be true that the
azimuthal distribution of the particles varies slowly with time. If the characteristic
time for this variation i3 very much longer than a period of the applied rf, itis
a good approximation to assume that the distribution is constant.
The effects of induced voltage are to reduce the total voltage Vi across
the cavity gap, and to shift ite phase relative to the applied voltage V. The

ratio of these is given by Eq. (5.12a):

v -1/2

-t
v

2 2. 2
= [(DIg+1)" + D7 1.7]
with D given by Fq. (5.13). In Eq. (5.13) the quantity ¢ is the number-density
of particles in synchrotron phase space, and may be found from Eq. (5.14). A rough
approximation for D is given by Eq. (5.16). The integrals IC and Is are plotted

in Figse. 1 - 4.
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Since the area of stable phase-space is proportional to the square root of
the total voltage, this area is reduced by the presence of the back-voltage. It is
further reduced by another consequence of the reduction of the total voltage;
namely, that the stable-phase angle must shift toward /2, so that the energy-
gain per turn remains constant. The total number of particles that can be accelerated
is given by Eq. (5.15). The quantity I, is plotted in Figs. 7-10. It is a function
of I', the sine of the stable-phase angle, and decreases as the stable phase-angle
moves toward n/2,

We see from Fig. 6 that the ratio Vt/V increases as the quantity QI/Z D

decreases. This quantity is proportional to ZV'I/Z. These difficulties may
therefore be alieviated by increasing the applied voltage and (or) decreasing
the shunt impedance Z. The shunt impedance is directly proportional to the Q of
the cavity, which suggesta that high-{) cavities may create some problems in high-
current accelerators. We have not considered the effects of the induced voltage
on the trapping efficiency of the rf system, but they may be important enough
to preciude acceleration schemes in which the applied voltage rises slowly.

By the technique developed in this paper, one may easily calculate the effect
on the beam of a cavity not driven externally. Such cavities might be present for use

at some stage of the accelerating process. They have an eiffect on the beam

even if their external power is turned off.
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LEGENDS

Fig. 1. The Fourier cosine transform IC (I", A) of the stable phase region
(Eq. 5.10) as a function of I" which characterizesthe rate of frequency
modulation for A = 0,1 and 2, where A characterizes the effect of
longitudinal space charge.

Fig. 2. The Fourier cosine transform IC ("', A) of the stable phase region
(Eq. 5.10) as a function of T' which characterizes the rate of frequency
modulation for A = 3,4,5,6,7, and 8, where A charaaterizes the effect
of longitudinal space charge.

Fig. 3. The Fourier sine transform IS (', A) of the stable phase region
(Eq. 5.10) as a #unction of I" which characterizes the rate of frequency
modulation for A =0,1,2, and 3, where A characterizes the effect of
longitudinal apace charge.

Fig. 4. The Fourier sine transform IS (I"', A) of the stable phase region
(Eq. 5.10) as a function of I' which characterizes the rate of frequency
modulation for A = 4,5,6,7, and 8, where A characterizes the effect
of longitudinal space charge.

Figo 5. Applied voltage wave and total voltage vs the phase angle ¢ for
phase shift m=1/10,

Fig. 6. The ratio of total peak voltage Vt to peak applied voltage V, and the
tangent of the phase shift n as function of Ql/ZD (Egs. 5.12a and 5.13).
The abscissa contains the operating parameters of the machine and is
directly proportional to the shunt impedance of the cavity. The energy-gain

per turn is 0.3 V.
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Fig. 7. The area I, (I', A) of the stable region of Y - ¢ space {Eq., 5.10)
as a function of I" which characterizes the rate of frequency modulation
for A =0,1, and 2, where A characterizes the effect of longitudinal
space charge.
Fig. 8. The area I, (I", A) of the stable region of Y - $ space (Eq. 5.10)
as a function of I" which characterizes the rate of frequency modulation
for A = 3,4,5,6,7, and 8, where A characterizes the effect of
longitudinal space charge.
Fig. 9. The area IA (I', A) of the stable region ofoc Y - ¢ space (Eq. 5.10)
as a function of A which characterizes the effect of longitudinal space
charge for I' = 0. 0.309, and 0.453, where I" characterizes the rate
of frequency modulation. For A > 5, the dependence ia approximately

Al

Fig. 10. The area 1, (I',A) of the stable region of Y -~ ¢ space (Eq. 5.10)
as a function of A which characterizes the effect of longitudinal space

charge for I' = 0.588 and 0.707, where I' characterizes the rate of

frequency modulation. For A > 5, the dependence is approximately A-l.





