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ABSTRACT 

Single-Site Surface Electromyography for Human-Machine Interfaces 

The aim of my dissertation was to investigate the command and control of machines by humans. There 

have been many control methods to interface with machines, and this dissertation focused on surface 

electromyography (sEMG). Surface EMG is the measurement of electrical signals produced by muscle(s) 

and measured at the skin’s surface. Several EMG techniques rely on multiple sensors and machine learning 

for multi-DOF (degree of freedom) or multi-command control and are therefore more complex and may be 

sensitive to signal degradation. The first goal was to develop a robust, single-site sEMG control 

methodology that could communicate more than one command from a single muscle site or EMG sensor. 

A computer-based cursor-to-target task assessed the performance of the single-site sEMG for two levels of 

control: auto-rotate (automatic cursor rotation and user-controlled cursor forward motion) and manual 

rotate (user-controlled cursor rotation and forward motion). The experiment demonstrated that the auto-

rotate method led to better throughput, or the rate of selecting targets adjusted for difficulty, but not 

significantly better path efficiency. However, the subjects were able to learn the manual-rotate method 

where a single-site sEMG control method communicated two commands. The manual rotate method 

appeared viable for expansion from two to four commands while maintaining a single sensor, but it was 

unclear how to best train subjects to use the system. The subsequent experiment investigated the effects of 

different training methodologies on performance, cognitive workload, and trust. The augmented feedback 

training techniques led to early and sustained performance gains with lower cognitive workload and higher 

trust. Even with extensive training to learn the commands, subjects did not perfectly perform the four sEMG 

commands. A subsequent analysis revealed that adjusting the sEMG command parameters may help 

personalize the command system to the individuals and improve command performance. The knowledge 

gained from these studies culminated in a three-handed coordination pilot study with a sEMG-controlled, 

collaborative robot serving as the third hand. Subjects learned how to improve their coordination of the 

three “hands.” The pilot study also served to inform future experiments that will continue to integrate the 

human with a collaborative robot for more complex tasks. 
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Chapter 1 

Introduction 

1.1 Body-Machine Interfaces for Aerospace Applications 

Human-Machine Interfaces (HMIs) traditionally use input devices such as a computer mouse, joystick, and 

steering wheel. A more recent subset of HMIs leverages signals derived from the human body to 

communicate intent and has been termed as Body-Machine Interfaces (BoMIs) [5]. These BoMIs can be 

passive, where the body signals are used as a state indicator to monitor or trigger a response to the human, 

or active, where the human directly controls the input to determine the device output. Furthermore, BoMIs 

are characterized by the body signal they use, such as brain signals, gestures, or muscular signals, and 

whether the measurement is invasive (i.e., penetrates the body) or noninvasive. BoMIs that use brain signals 

may be termed as Brain-Machine Interfaces (BMIs) or Brain-Computer Interfaces (BCIs), where the latter 

is a BMI specifically designed for computer-based applications. The present discussion is focused on 

noninvasive techniques for aviation and space applications. 

 An increased interest in BoMIs for use in aviation has led to the development of several passive 

and active systems. Passive systems have measured brain signals to predict the occurrence of inattentional 

deafness to auditory alarms [6], cognitive fatigue [7], monitor cognitive load [8], and track vigilance [9]. 

For example, Di Flumeri et al. [9] demonstrated improved vigilance when a BCI system detected changes 

in subjects’ vigilance and automatically adjusted the automation level to increase/decrease manual 

engagement for an air traffic control task. Electromyography (EMG), the recording of electrical muscular 

signals, has also been used for passive BoMIs to warn of gravity-induced loss of consciousness [10], [11], 

monitor muscle fatigue [12], [13], and differentiate pilot skill level [14]. The prior exemples are for passive 

EMG BoMIs; however, active EMG BoMIs are less prevalent in aviation. The work by Jorgensen et al. 

[15] demonstrated the successful implementation of an EMG BoMI to control the pitch and bank rates for 

an aircraft landing in simulation. In contrast, there has been an increased ubiquity in the use of body gestures 
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for active BoMIs related to drone control (see Refs. [16]–[19] for some recent examples). One study 

observed significantly better performance with torso gestures than a traditional HMI, a joystick [18], 

lending to the feasibility and potential benefits of these nontraditional interfaces. 

 In 2004, the European Space Agency’s Advanced Concept Team identified noninvasive BMIs as a 

research area with potential space applications [20]. Broschart et al. [21] proposed incorporation of BMIs 

for teleoperations, assistive robots, and to increase astronaut productivity, but recognized that the unique 

physical environment coupled with physiological changes experienced by astronauts would pose 

implementation challenges. Some initial steps have occurred, such as a BCI mouse for online control of a 

simplified, simulated spacecraft in yaw and pitch [22]. However, the findings from this study were limited 

due to low subject number and the simplified simulation but indicate an interesting application. Another 

preliminary study with limited subjects used a BMI during parabolic flights, which simulate microgravity, 

and found that the brain signals measured by EEG (electroencephalography) remained stable enough to 

achieve an average classification accuracy of 73.1% [23]. In a review of BMIs for space applications, 

Coffey et al. [24] argued that the implementation of noninvasive, active BMIs was unlikely due to gaps in 

information transfer rates, accuracy, and intuitiveness. In contrast, passive BMIs were 1) less operationally 

demanding because they do not require active engagement or control,  2) had established reliability for 

monitoring aspects like attention, workload, and task engagement, and 3) the derived human state 

information could be fed into adaptable, autonomous systems [24]. BMIs may be more challenging to 

develop for space applications because of increased hardware complexity and relatively low signal-to-noise 

ratio (SNR). EEG signals measured from the surface of the scalp are attenuated by the structures between 

the brain and electrodes. Additionally, EEG signals are orders of magnitude smaller than other body signals, 

like those from muscles. Therefore, other BoMIs may be more feasible. 

 The use of muscular signals in active BoMIs has not been well-studied for aviation and space 

applications, but BoMIs that use EMG have multiple advantages. When EMG is measured from the skin’s 

surface, it is noninvasive and referred to as sEMG. A sEMG system can be placed above any muscle 

location, can be designed to use a single sensor, and has a relatively high SNR. The sEMG signal quality 
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and reproducibility are affected by body pose [25], muscle fatigue [26],  as well as sensor shifts [27]. These 

changes in the sEMG signal are also known as signal non-stationaries. Mitigating these issues is an active 

area of research (see review by Kyranou et al. [28]). Furthermore, EMG control has already been applied 

to prosthetics (see reviews by [29], [30]), as well as robotics (for examples, see [31]–[34]) which have 

potential aerospace applications (i.e. teleoperations [35]). In general, BoMIs provide a control modality that 

can be used in addition to or in replacement of traditional HMIs. Users are not constrained to use an input 

device with their hands (e.g. a computer mouse) and performance may improve with a BoMI (as seen in 

[18]). 

 

1.2 Myoelectric Control 

Myoelectric control, or the use of EMG to communicate commands to a device, has been used in upper 

limb prosthetics for more than fifty years, and commercially available prosthetics have been almost 

exclusively based on mode-switching and proportional control [29], [36]. In mode-switching the user may 

use one muscle group to turn on/off an action (e.g., close prosthetic hand) and another for a different action, 

or mode (e.g., open prosthetic hand) [29]. Proportional control uses EMG amplitudes as a relative input to 

the device (i.e., a larger EMG amplitude results in a higher joint velocity of the prosthetic). This type of 

control has been reliable and robust, which are priorities for patients and supersede the desire for the often 

less reliable multifunction control [29], but typically have a limited number of commands. In academia, 

researchers have focused on two strategies for multifunction control to increase the number of commands: 

pattern recognition for sequential commands and regression control for simultaneous commands [36] (refer 

to [30] for a comparison of features and methods). Pattern recognition has often been used to classify 

different gestures in able-bodied subjects to characterize performance, which can be measured by 

classification accuracy, number of gestures, and number of sensors. For example, one system achieved 

greater than 90% classification accuracy for six gestures using four sensors [37], whereas another classified 

four gestures with four sensors at an accuracy of 80% [38]. Both systems used Support Vector Machines 
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[39], a relatively simple classifier in terms of computational cost. Other systems used more complex 

classifiers and/or increase the number of sensors to train on larger datasets, however factors like 

computation cost should be considered in application (see discussion by [40]). 

 Single-site sEMG provides an alternative to increasing the system complexity with more sensors 

and complex classifiers. Our lab at the University of California (UC) Davis, the Robotics, Autonomous 

Systems, and Controls Laboratory (RASCAL), has been active in the development of single-site sEMG 

systems. The first system, a two-band technique, used the linear combination of the normalized power in 

two frequency bands (80-100 Hz, 130-150 Hz) to calculate the cursor x and y position on a screen [41]. 

The sEMG signal was measured from the extensor pollicis longus in the forearm. This initial case study 

demonstrated that the two-band technique was feasible; subjects were able to learn to modulate the signal 

power to move the cursor on the screen. In a subsequent case study, the technique was tested on a spinal 

cord injury patient using the auricularis posterior muscle located behind the ear, [42]. The patient was able 

to use the single-site sEMG control interface to move a cursor to select on-screen commands to navigate a 

robot through an obstacle course. Weisz et al. [43] extended this concept to a grasping task, where a spinal 

cord injury patient selected on-screen commands to select a target object, grasp, and then refine the grasp. 

Perez-Madonado et al. [44] also demonstrated the feasibility of this system using an adjacent muscle, the 

auricularis superior, in four able-bodied subjects. A larger study with twelve subjects was conducted to 

assess the learning rate during a cursor-to-target task using sEMG from the extensor pollicis longus, and 

demonstrated increased success rate and decreased completion time over the course of the multi-session 

study [45]. As an alternative to extracting multiple commands from a single sensor, the overall system 

design can be altered such that less commands are needed. Weisz et al. [46] designed to system to cycle 

through commands that could be selected once the cursor left a rest area. Most of the prior work in single-

site sEMG used the two-band technique to derive two commands from one sensor. It was not clear if this 

technique could be expanded for more commands from the single sensors. The work presented in this 

dissertation explores an alternative single-site sEMG system that can accommodate more than two 

commands from one sensor.  
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1.3 Content Overview 

The underlying motivation for this dissertation research was to explore the implementation of a single-site 

sEMG control method, where the learning and training burden was largely allocated to the human. Humans 

have the ability to learn complex skills and are able to quickly adapt. As a result, the myoelectric control 

design can be simplified and made more robust to signal non-stationaries. Although advanced machine 

learning can implement adaptive features or strategies to deal with signal non-stationaries, it comes at the 

cost of increased system complexity and reduced robustness. It is worthwhile to consider how to best use 

the human’s innate abilities. From a human-machine integration perspective, proper allocation when 

designing roles would lead to better overall system performance. As discussed in the previous sections, 

there is an interest in alternative HMIs and the key to future integration and acceptance of BoMIs for 

aerospace applications lies in designing a high performance system. 

 This dissertation describes four studies concerning single-site sEMG using three muscle sites and 

between two and four commands. Chapter 2 presents the initial development of this single-site sEMG 

system that is based on serial patterns of muscle activation. In Chapter 3, the system is expanded from the 

two commands in Chapter 2 to four commands. Different training methodologies were assessed, as well as 

the impact on performance, cognitive workload, and trust. Chapter 4 investigates the possibility of adding 

more complexity to the system through adaptable features and classifiers to the same system from the 

previous chapter. Finally, Chapter 5 integrates robotic hardware with the sEMG system developed in 

previous chapters to assess coordination during a task between the hands and a lower limb using myoelectric 

control. The studies are summarized in the last chapter. 

 

  



 6 

Chapter 2 

Development of a Single-Site Surface Electromyography Control Method 

Preface 

This chapter describes my first myoelectric study, where I extended our previous work in RASCAL on 

single-site surface electromyography methods for cursor control. I wanted to investigate the ability of 

subjects to learn a less intuitive cursor control method as opposed to a more intuitive one. This approach 

was of interest because a less intuitive cursor control method also meant that the subjects had the ability to 

make corrections, whereas corrections can be more difficult to make in intuitive systems reliant on machine 

learning. The cursor control method I developed had the potential to accommodate an increased number of 

commands without increasing the number of sensors. The cursor control task provided a test paradigm with 

standard, widely used metrics that focused on the subject’s ability to learn a new myoelectric control scheme 

without the added infrastructure and complexity of a robotic testbed. The funding support for this 

experiment came from a grant focused on myoelectric control systems for patients with high-spinal cord 

injuries, which influenced the muscle site selection. The contents of this chapter have been previously 

published in [1]. 

 

2.1 Introduction 

Developing single-site sEMG systems are not only of interest for downstream robotic applications but could 

benefit users with limited functionality who rely on Human-Computer Interfaces (HCIs). In general, HCIs 

bridge the gap between users and the computer. Cursor control is a popular HCI method which allows users 

to select commands on a screen. These commands may be instructions to an advanced prosthesis or 

onscreen letter selection for a speller application. Individuals with the most severe spinal cord injuries (C1-

C4) often retain control of some head and neck muscles, and therefore several HCIs in the literature use 

head and neck muscle EMG as the input source [47], [48]. Typically, both the user-condition and the end-



 7 

goal application dictate the number and locations of EMG sensors. Users with severe spinal cord injuries 

may benefit from single-site sEMG systems due to reduced intrusiveness. 

 Previous sEMG HCIs have used several facial and neck muscles for user commands. Cler and 

Stepp capitalized on head muscle capability and demonstrated high efficiency using sEMG with a speller 

task application controlled by five facial muscles [49]. Each muscle functioned as a movement direction 

with the last one serving as a target selector or “clicker.” Similarly, Huang et al. used facial gestures 

measured from four muscle sites to select between four directional and three selector commands [50]. 

Others, like Williams & Kirsch and Choi et al. developed a two degree of freedom (DOF) cursor control 

HCIs using EMG signals recorded from four head and neck muscles and forearm muscles, respectively 

[51], [52]. Williams & Kirsch utilized dwell time to select targets which effectively eliminated the need for 

a selection confirmation command. Similarly, Choi et al. were also able to reduce input commands by 

implementing a clockwise command and a counterclockwise command to eliminate the need for a 

downward command [52]. However, the exact muscle utilization would not be possible for many 

individuals with high-level spinal cord injuries due to the number and location of the muscle sites chosen. 

In this study, we emphasized the use of as few sensors as possible. Limiting the number of sensors makes 

the HCI less intrusive and could be applicable to greater numbers of people who have fewer functional 

muscle sites. The methods presented in this chapter only use a single muscle on the head. 

 The objective of this experiment was to develop and evaluate two distinct single-site, noninvasive 

EMG-modulated HCIs aimed at cursor control. It was also an opportunity to assess the viability of a less 

intuitive cursor control method. A Fitts’s law-based task with a cursor-to-target paradigm was used to 

evaluate and compare performance between the two control methods, both of which enabled the cursor to 

move in 2-DOFs. The two methods differed in the level of user control, where one method allowed direct 

manipulation in 1-DOF and the other in 2-DOFs. For the first control method (the “auto-rotate” method), 

the cursor continuously rotates until the user chooses a favorable direction and then contracts the temporalis 

muscle above a specified threshold to send the cursor forward in the selected direction (see Figure 1 for 

electrode placement). For the second interface method (the “manual rotate” method), the user can choose 
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to rotate or move the cursor forward by using a series of muscle contractions of various length to indicate 

the command (similar to Morse code [53]). Target selection in both interfaces relied on dwell time to 

eliminate the need for an additional command.   

 We hypothesized that of the two control methods, the auto-rotate method would enable users to hit 

targets faster with lower workload. We further hypothesized that the manual rotate method would have 

more precision and perception of control over cursor behavior. 

 Fourteen able-bodied subjects with no prior EMG experience performed Fitts’s law-based tasks for 

both control methods. Subjects also completed the National Aeronautics and Space Administration (NASA) 

Task Load Index (TLX) to assess cognitive workload, as well as surveys for demographics and subjective 

assessment of the control methods. The results suggest that a viable cursor control method can be achieved 

with only a single muscle site. The auto-rotate method is favorable with regards to performance and 

workload. However, subjects indicated similar control authority between the auto-rotate and manual rotate 

methods. 

 

2.2 Methods 

2.2.1 Experimental Design and Setup 

The experimental protocol was approved by the Institutional Review Board at UC Davis (#1281106); all 

subjects reviewed the protocol and consented prior to the experiment. Fourteen able-bodied subjects with 

no prior EMG control experience participated: six males/eight females with a combined average age of 

26.64 ± 6.52 years (µ ± s). All electrodes were placed on the dominant hand side with thirteen subjects 

having right-hand dominance. 

 Two disposable Ag/AgCl center snap electrodes (ConMed 1620) spaced approximately 2.5 cm 

apart were placed on the temporalis muscle and a gold disc electrode with conductive paste (Weaver and 

Company 10-20) was affixed to the earlobe as a reference (see Figure 1). The electrodes were connected to 

a Motion Lab Systems Y03 amplifier (x300 gain) powered by a custom power supply board and connected 

to a 16-bit Measurement Computing USB-1608G data acquisition unit following a protocol outlined in [54]. 



 9 

The signal was sampled at 4096 HZ in 256-sample windows and bandpass filtered with a fourth order digital 

Butterworth filter at 10 Hz and 500 Hz. The rms (root mean square) value for each window was calculated 

and normalized by a manually set calibration value to produce an updated signal input value, x, at 16 Hz. 

The result was then put into a moving average filter of length 8 to yield the fully processed signal input, �̅� 

(used in Equation 1). 

 

 
Figure 1. Electrode placement on temporalis muscle (signal source) and earlobe (reference). 

 

 Subjects were assigned to Group 1 or Group 2, which dictated the order of the cursor control 

methods presented, where Group 1 evaluated the auto-rotate method followed by the manual rotate method. 

In the auto-rotate method, the cursor automatically rotated at a constant speed and the user controlled the 

forward motion. The subjects controlled both the cursor rotation and forward motion in the manual rotate 

method. The experimental flow for subjects was as follows: consent form, a pre-session survey to collect 

demographics, experiment introduction, electrode placement, signal verification, manual calibration, 

method 1 instructions, method 1 training (8 trials), method 1 testing (80 trials), NASA-TLX, method 2 

instructions, method 2 training (8 trials), method 2 testing (80 trials), NASA-TLX, and post-session survey 

for control method evaluation. A trial was defined as a single cursor-to-target task and testing was divided 

into blocks of 10 trials with two sessions (40 trials each). Subjects received mandatory breaks throughout 

training and testing to mitigate muscle fatigue. Please see Appendix A for the diagram of the experiment 

protocol. 
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2.2.2 Fitts’s Law Task 

The overall user interface shown in Figure 2, included a task interface where the cursor could operate on 

the left-hand side, and a feedback interface on the right-hand side containing information about the sEMG 

signal and performance (throughput will be discussed in 2.2.4 Analysis). The cursor interface dimensions 

were normalized to have horizontal and vertical bounds of [-1,1] on a square, right-hand Cartesian 

coordinate system. Target distances and widths are given in these normalized dimensions. At maximum 

velocity, the cursor could move from the center to the edge in 2 s.  

 Subjects used each control method for training and testing in the order determined by their Group. 

At the start of a trial, a target was presented at a randomized position and the cursor was positioned at the 

origin of the task interface with a randomized starting angle. There  were  five  possible target distances 

(0.05, 0.1, 0.2, 0.4, 0.8) that produced a range of index of difficulties (ID) from 1.00 to 4.09 bits, as 

calculated by the Shannon formulation [55]. To complete the trial, the cursor had to dwell on the target for 

one second. There was a trial time limit of two minutes. For each control method during testing, the subject 

completed 80 trials (5 target distances × 8 target angles × two repetitions). 

 

 
Figure 2. User interface for both control methods. The task interface with the cursor and target is shown on the left-
hand side. The feedback interface is shown on the right-hand side. The subject controls only the forward motion of 
the cursor in the auto-rotate method. Both rotation and forward motion are controlled by the subject during the manual 
rotate method. 
 



 11 

2.2.3 Cursor Control Method Designs 

The cursor control methods enabled the cursor to move in 2-DOFs, while differing in the level of control 

afforded to the subject. In the auto-rotate method, the cursor automatically rotated at a set angular velocity 

and moved forward in the direction of the cursor pointer when the subject contracted the temporalis muscle. 

In contrast, the subject had direct control over both the rotational and forward motion of the cursor in the 

manual rotate method. The subject used a muscle contraction pattern to select and control the mode (i.e., 

rotate or forward).  

 In the auto-rotate method, the cursor continuously rotated counterclockwise at 120 degrees per 

second and did not move forward while the input signal was below the first threshold (�̅� £ l1 = 0.2). When 

the subject’s input signal exceeded the first threshold and remained at or below the second threshold (�̅� £ 

l2 = 0.3), the cursor ceased rotating and moved forward at a constant, minimum velocity, vc, of 0.05 units/s. 

An input signal above the second threshold, l2, caused the cursor to move forward at a velocity calculated 

by: 

 

v = vc+ vm(x! − l2 1− l2⁄ )2.    Equation 1 

 

In the above equation to calculate the forward cursor velocity (v), the variables are defined as follows: vc is 

the constant, minimum velocity, vm is the maximum velocity, �̅� is the processed sEMG signal, and l2  is the 

threshold that separates the minimum, constant velocity from the increasing, proportional velocity. The 

maximum velocity was 0.55 units/s.  

 The manual rotate method design employed the same thresholds and velocities as the auto-rotate 

method design. The subject used a muscle activation pattern to convey intent, and a signal input was any 

activation above the first threshold. The first signal input selected the mode (rotate or forward) based on 

the length of the muscle activation, where an activation length of 0.5 s or less selected the rotate mode and 

a longer activation selected the forward mode. A second signal input within one second of the first signal 

input then allowed continuous control within the selected mode. The cursor acted according to the selected 
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mode for the duration of the second signal input, and the cursor mode was indicated with color feedback. 

Figure 3 depicts the muscle activation pattern for both modes. 

 

 

Figure 3. Diagram of muscle activation patterns for A) rotate mode and B) forward mode. Each plot indicates the 
activation times for mode selection (first signal input) followed by mode duration (second signal input, not time 
limited). The feedback bar from Figure 2 is shown for reference. The Morse code-like pattern is shown under each 
chart (circle = short signal input, dash = long signal input) and reflects the applicable cursor color feedback. The color 
feedback stays on for the mode’s duration. 

 

2.2.4 Analysis 

To measure performance during the Fitts’s law-based task, we calculated throughput (TP), overshoots (OS), 

and path efficiency (PE). TP (bits/s) is a common Fitts’s Law task metric for input devices that accounts 

for movement time (i.e., the time it takes the cursor to reach the target, 𝑀𝑇) and index of difficulty (𝐼𝐷), 

where 𝑇𝑃 = 	𝐼𝐷/𝑀𝑇. The OS metric measured the average number of times that the cursor passed through 

the target. PE was calculated by dividing the straight-line distance from the origin to target by the path 

length traversed by the cursor. The NASA-TLX workload scores were calculated as described in [56] on a 

scale of 0 to 100. 

 

2.3 Results 

2.3.1 Throughput, Overshoots, and Path Efficiency 

The results for the performance metrics—TP, OS, and PE—are shown in Figure 4. Generally, subject 

performance improved across subsequent sessions within a cursor control method. Group 2 appeared to 

have a higher TP during the training for the auto-rotate method compared to Group 1. Group 2 also 
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demonstrated higher OS (lower performance) during training for both control methods. A repeated-

measures two-tailed t-test on testing data (Session 2 and 3) with Groups 1 and 2 combined showed a 

significant difference in TP between the auto-rotate and manual rotate methods (𝑝 ≪ 0.001), but no 

significant differences for PE and OS (𝑝 = 0.128 and 𝑝 = 0.290, respectively).  

 

 
Figure 4. Results for Throughput (TP), Path Efficiency (PE), and Overshoots (OS). Session 1 is the training session 
and Session 2 and 3 are the testing sessions. Error bars denote standard error of the mean. 
 

2.3.1 Workload and Cursor Control Method Preferences 

Both Group 1 and Group 2 reported a higher average cognitive workload score for the manual rotate control 

method, 51.33 ± 13.38 and 40.24 ± 9.15, respectively. In general, Group 2 reported lower cognitive 
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workload scores with smaller variance for both control methods compared to Group 1. However, the 

average increase in cognitive workload from the auto-rotate to manual rotate cursor control method was 

similar (Group 1: 17.19 ± 7.18, Group 2: 14.52 ± 6.80). 

One subject’s survey was removed from the post-survey analysis because the subject appeared to 

confuse the cursor control methods. The remaining thirteen subjects all preferred to use the auto-rotate 

method. Interestingly, the subjects were split on their responses for which cursor control method afforded 

more control over cursor behavior (7 auto-rotate method, 6 manual rotate method). Two subjects from 

Group 2 (manual rotate method first) thought that the manual rotate method was more intuitive, and two 

subjects from Group 1 perceived the manual rotate method as allowing for more precise alignment of the 

cursor. 

 

2.4 Discussion 

The results presented for fourteen able-bodied subjects with no prior sEMG experience include performance 

metrics (TP, PE, OS) and a cognitive workload score for two single-site, noninvasive cursor control 

methods: auto-rotate and manual rotate. Subjects completed a Fitts’s law-based cursor-to-target task that 

included a training session and two testing sessions for each cursor control method. Subjects were randomly 

assigned to groups, which determined the order that they evaluated both cursor control methods. Group 1 

evaluated the auto-rotate method followed by the manual rotate method, and Group 2 evaluated the methods 

in the opposite order. Subjects completed pre- and post-session surveys. It was assumed that subjects had 

adequate control over their temporalis muscle, learned the control method at the conclusion of training, and 

could comprehend the information displayed on the screen. 

 The order of the cursor control methods may have affected the overshoots during training for Group 

2 (manual rotate first). Group 2 had a relatively high OS average during training for both cursor control 

methods. It was observed that subjects during the manual control method tended to maintain a basal muscle 

activation, which may be a result of their need to make more frequent activations to achieve the muscle 

activation pattern. This may explain the increase in the OS metric during the auto-rotate method training 
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for Group 2 compared to Group 1, as Group 2 subjects tended not to relax, and in the auto-rotate method 

the cursor will immediately move forward once the first threshold is exceeded. The higher OS average 

during training may indicate that these subjects had less control of their sEMG amplitude and less ability 

to predict the signal decay in order to stop the cursor. Group 2 had a higher TP during the auto-rotate method 

training, which may be attributed to their accumulated EMG experience aiding their performance for a less 

complicated control method. This does not seem to be the case for Group 1 when trained on their second 

control method, manual rotate. However, these differences appear limited to training. The statistical results 

indicated no differences in the OS and PE metrics during testing, however, TP was found to be significantly 

higher for the auto-rotate method. 

 The TP achieved during the auto-rotate method is an order of magnitude higher than the manual 

rotate method. The performance difference is likely attributed to the MT, which is the time it takes the 

cursor to reach the target not including reaction or dwell time [55]. For the auto-rotate method, the time 

starts when the cursor moves forward for the first time. The initial rotation time is not included, which gives 

the subject the opportunity to line up the target and may increase TP. In contrast, the time starts in the 

manual rotate method at the first signal input, which is defined as the first time the processed sEMG signal, 

�̅�, exceeds the first threshold. During testing the average initial rotation time was 1.29 ± 0.86 s and 1.39 ± 

0.85 s, and the average time to first signal input was 0.57 ± 0.40 s and 0.71 ± 0.57 s for Groups 1 and 2, 

respectively. The average TP was 2.24 bits/s for the auto-rotate method and 0.23 bits/s for the manual rotate 

method. In comparison, other studies have reported a multi-site EMG TP of 0.84 bits/s [51] and 0.57 bits/s 

(for a patient) [57]. Studies using multiple muscle sites including the forelimbs reported a TP of 1.3 bits/s 

[58] and 0.4 bits/s (0.2 bits/s for a patient) [52]. Although our TP results for the manual rotate method were 

below 1.0 bits/s, the results were on par with similar systems in the literature indicating that these types of 

myoelectric control systems generally have low communication rates and could be improved. 

 The PE is high for both groups and may have reflected a collective strategy to precisely hit the 

targets by accurately lining up the cursor. An alternative strategy would have been to place the cursor near 
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the target and make alignment corrections when in closer proximity. The apparent choice of this strategy 

may have been due to the training presentations, where the cursor rotation was described first. The subjects 

were also told to maximize TP (smaller 𝑀𝑇 would require higher PE), which may be a factor. It would be 

interesting to observe if the collective strategy holds with more subjects. 

 The cognitive workload scores for both groups reflected a similar trend that the manual rotate 

method induced a higher workload than the auto-rotate one. Both groups had similar increases in cognitive 

workload scores from auto-rotate to manual rotate, but Group 2 reported lower absolute workload scores 

for both cursor control methods. Both groups reported similar cognitive workload scores for their first 

cursor control methods (Group 1: 40.43 ± 6.24, Group 2: 40.24 ± 9.15), which indicated that their initial 

perception of the workload to use a sEMG-based control system was similar and the second cursor control 

method was assessed relative to the first even though subjects were instructed to only consider the most 

recent method. 

 We hypothesized that the auto-rotate method would result in a higher TP and lower workload, 

which the results appear to support. The manual control method did not have significantly more precision, 

as measured by PE. While subjects tended to prefer the auto-rotate method for this target-to-cursor task, 

approximately half the subjects thought the manual rotate method afforded them more control. Overall, our 

results suggest that a viable interface for 2D cursor control can be achieved using only a single muscle site, 

as compared to other studies in the literature that use more than one site. 

 

2.5 Conclusions 

The results from this study demonstrated the feasibility of a single-site sEMG control method that may be 

less intuitive than multi-site systems. Lessons learned from this study were used in the design of the 

subsequent study presented in the next chapter, Chapter 3. During the initial testing for this study, user 

feedback indicated that color feedback on the cursor body aided in understanding the command system. 

However, the timing and placement of the color feedback was not thoroughly investigated. Furthermore, 

this initial study only implemented two commands, which required minimal learning. For this sEMG 
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command system to be extended to more complicated systems, such as a robot that requires more 

commands, it is necessary to understand how to train the users.  Therefore, the study in Chapter 3 sought 

to evaluate two different options for color feedback and four training methodologies with the number of 

commands increased to four. 

 The study in the next chapter, Chapter 3, leveraged the data from the initial study to set system and 

task parameters. Specifically, the timeout between the first and second inputs was reduced from 1 s to 0.5 

s and the maximum trial time decreased from 2 minutes to 1 minute. The durations for short (≤ 0.5	𝑠) and 

long (> 0.5	𝑠) inputs remained, as they continued to appear reasonable. The feedback bar was removed 

from the user interface to isolate the forms of sEMG feedback. We expected the 80 trials used in the initial 

study would be too few for the subsequent study with four commands and doubled the trials to 160. Overall, 

this initial study provided guidance for developing the next study with increased command complexity.  
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Chapter 3 

Myoelectric Control Training Methodologies and Effects on 
Performance, Workload, and Trust 
 

Preface 

After demonstrating the feasibility of the single-site sEMG myoelectric control methodology established in 

Chapter 2, I wanted to increase the number of commands from two to four to prepare for more complex 

task control, test different training methodologies, and better understand human interaction with the 

myoelectric control system. This chapter describes a study that assessed four training methodologies and 

their effects on performance, cognitive workload, and trust, as well as post-training performance retention. 

An additional objective was to select the appropriate training methodology for subsequent studies. The 

contents of this chapter have been previously published in [3] and [2].  

 

3.1 Introduction 

Increased interest in BoMIs necessitates understanding how to train users to use nontraditional control 

inputs. The BoMI systems previously studied focused on the development and demonstration of the 

interface but did not address user training beyond task repetition or test setup familiarization. For a novel 

input, it is important to efficiently train new users. We decided to apply automation to the skill-based 

training of learning sEMG control and compare different automated training methodologies. Selection of 

the training methodology should take into consideration the effects on task and human-automation 

interaction factors, such as trust and workload, and should also account for context-specific interface 

elements (e.g., flight displays, communication interfaces). 
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3.1.1 Selected Training Methodologies 

Training novice users to effectively use sEMG control methods can be a long and difficult task [45]. While 

expert instructors can be effective at increasing learning rates, their time can be costly, and their availability 

is often limited. For these reasons, we were interested in automated training methodologies which seek to 

fill the role of an expert instructor. Self-directed practice and instructor-guided practice have both been 

shown to work for learning complex medical skills [59], though it is unclear how well this paradigm would 

transfer for non-medical tasks. The use of augmented feedback strategies, however, have been shown to 

help reduce training times and have the potential to reduce cognitive workload, or the amount of mental 

effort allocated, in especially demanding tasks [60]. Augmented feedback provides information that “cannot 

be elaborated without an external source; thus, it is provided by a trainer or a display” and has been shown 

to effectively improve performance in a wide variety of motor tasks [61]. Augmented feedback has been 

used for training, motor skill acquisition, rehabilitation, and operational assistance for tasks which range 

from simple, closed-environment lab demonstrations to complex, operational cases [61]. Recent approaches 

to using augmented feedback have focused on multimodal cueing and virtual and augmented reality 

displays in a variety of medical [62]–[64], aerospace, and robotic tasks [65]–[67]. Across these studies, 

results indicate that providing task-appropriate augmented feedback can improve rate of motor skill 

acquisition, final performance, and retention, though these results vary depending on the means of the 

augmented feedback presented. Many of these studies have compared how to provide feedback across 

different modalities to identify optimal pairings between modality and tasks but investigating when to 

provide feedback is equally important. Concurrent feedback is presented in real-time, as subjects execute a 

task, while terminal feedback is presented after the task is completed. Some researchers have found that 

intermittent, concurrent high-frequency feedback is superior to low-frequency feedback [62], [68], while 

others have found that terminal feedback outperforms a concurrent approach [69], [70]. It is difficult to 

generalize between different feedback and task types [71], [72]. In general, however, concurrent feedback 

has been shown to be more useful with higher functional task complexity, whereas terminal feedback is 

often less useful when task complexity is high [61]. Concurrent feedback has recently shown great promise 
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in myoelectric control, though less progress has been made comparing concurrent and terminal feedback 

strategies or investigating long-term learning effects [73]–[76]. Therefore, it is important to compare 

concurrent and terminal feedback approaches within the same task to better understand the appropriate 

application of training methodology. 

 Biofeedback, which applies augmented feedback strategies to measured physiological signals such 

as EMG, has proven to be a useful tool for improving performance and assisting in rehabilitation [77]. 

Researchers have investigated various augmented biofeedback techniques and found that they help subjects 

to “become more cognizant of their own EMG signal” [78], allowing for better control of their muscle 

activity. A recent review of the biofeedback literature suggests that “[b]iofeedback is more effective than 

usual therapy,” though they also note that “[f]urther research is required to determine the long-term effect 

[biofeedback has] on learning” [79]. In our study, we refer to any additional, visual information given about 

a sEMG signal input or its processed output as “augmented feedback.” The augmented training strategies 

are analogous to alerting automation and the strategy of complementation in aviation [80], where the 

augmented training strategies cooperate with and provide additional information to the user. 

 Another possible training methodology that leverages adaptation comes from motor learning. Users 

learn and adapt to improve performance throughout practice and training, and induced variability can 

improve performance. For example, Seow et al. varied a task parameter, where subjects either trained on a 

set thrust level or a variable one for a spaceship video game [81]. Subjects with variable thrust training 

performed better than those with a consistent thrust when tasked with a novel thrust level [81]. Braun et al. 

showed during a planar reaching task that randomly varying the feedback uncertainty (i.e., the difference 

between the actual and shown position of the hand) led to improved skill generalization [82]. Surface EMG 

control adaptation may follow Bayesian theory [83], where mapping uncertainty—or the uncertainty of the 

brain’s model of the applicable system—increases adaptation rate. Conversely, increased sensorimotor 

feedback uncertainty decreases adaptation rate. Lyons and Joshi demonstrated that subjects exposed to a 

mapping uncertainty during cursor control had higher adaptation rates to sensorimotor feedback when the 

mapping uncertainty was removed, indicating that artificially added mapping uncertainty during training 
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may increase adaptation rate [84]. Additionally, a noisier sEMG control method (i.e., increased mapping 

uncertainty) provides more information about the control signal, which can lead to a larger adaptation rate 

compared to a more filtered classification method [85]. Similarly, introducing noise in a joystick-controlled 

final approach flight task has been shown to increase the rate of motor skill acquisition [65]. Taken together, 

these studies indicate that varying a task parameter [81], [82] and increasing mapping uncertainty [84], [85] 

can potentially improve skill acquisition. However, research in this area is not well-studied for sEMG 

control or for tasks that do not use the planar reaching paradigm [86]. Therefore, we have included an 

adaptation-based strategy in our study to compare with more established training methodologies to 

investigate the feasibility of this method. 

 

3.1.2 Workload and Trust in Automation 

When evaluating the different automated training methodologies, it was important to select appropriate 

training feedback that does not cause additional cognitive demands. Karasinski et al. investigated the effects 

of concurrent feedback in a simulated, four degree of freedom manually controlled spacecraft inspection 

task [60]. Subjects in the feedback group performed the task substantially faster and more accurately than 

those in a control group and reported a significantly lower cognitive workload. Cognitive workload can be 

defined as “the cost incurred by a human operator to achieve a particular level of performance” [87], [88], 

and is commonly assessed using quantitative, subjective techniques such as the NASA-TLX [56], [87], [88] 

and Modified Bedford Workload [89] scales. While there are limits to these subjective techniques, such as 

the possibility of large intersubject variability, they provide a rapid and easily administered tool for 

cognitive workload assessment. The Modified Bedford Workload scale was administered frequently 

throughout this study as a rapid means of estimating spare cognitive capacity. In addition to subjective 

cognitive workload measures, there are a variety of techniques which aim to objectively estimate cognitive 

workload. Physiological measurements such as heart rate variability have been used to assess workload for 

many types of actual and simulated aerospace flight tasks [90]. Heart rate and heart rate variability also 

provide objective measurements that have been previously correlated with subjective scales such as Bedford 
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and NASA-TLX [91]. Researchers have had mixed success in being able to generally relate physiological 

measures to subjective workload scales, however, and physiological workload estimates were not used in 

this study. Among the most common objective measurement techniques, however, is the secondary task, 

which requires subjects to complete the primary task, and then use any spare cognitive margin to respond 

to an additional task [92]. This secondary task approach does not work well for simpler tasks, however, as 

completing it begins to compete for attention with the primary task [93]. No objective workload 

measurements were included in this study. 

 Trust is another important factor when considering human-automation interaction, and 

inappropriate trust can lead to the disuse or misuse of automated systems. Trust in an agent is “the attitude 

that an agent will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability” [94]. The reliability of a system, in particular, has been shown to be an important aspect of 

an operator’s trust in a system [95]. While there have been many proposed models for trust, Hoff and 

Bashir’s three layer model deserves particular attention [96]. After performing a systematic review of the 

literature, they developed a three-layer model of trust which is split between dispositional trust, situational 

trust, and learned trust. Dispositional trust is an individual’s tendency to trust automation, which is a 

relatively stable trait compared to situational and learned trust [96]. Situational trust is influenced by 

external and internal factors, such as the system design and cognitive workload [96]. Learned trust is 

impacted by the user’s experience and perception from interacting with the specific system [96]. Though 

researchers have little control over dispositional trust, they can affect situational trust by varying an 

experimental interface or environment and learned trust can be evaluated using repeated measures. Our 

study aimed to alter situational trust through different automated training methodologies, where the agent 

(i.e., the automated feedback in place of an instructor) helped the subjects learn a skill. We expected subjects 

in each group to perceive whether the agent will help them achieve their goals differently based on the 

assigned training methodology. We also assessed learned trust with measurements taken periodically during 

the study. The subjects did not have an option to turn off or alter the agent but may have felt that the agent 



 23 

was not aiding in their goals. If subjects became reliant on the agent, we expected to see decreased 

performance when the agent was removed. 

 

3.1.3 Study Objective 

While it is not the objective of this work to develop or optimize a sEMG system for a particular application, 

the sEMG system can act as a testbed in which the effects of different automated training methodologies 

are evaluated, and the novelty in using these systems enables the observation of early learning effects. The 

sEMG-controlled Fitts’s law-based task from Chapter 2 naturally serves as an excellent testbed for 

evaluating augmented feedback strategies. Most participants cannot easily predict or quickly understand 

the signal they generate and pass into the sEMG controller, so augmented feedback can provide insight into 

what would otherwise be an inherently noisy and elusive process. Current systems increasingly incorporate 

humans with automation, necessitating an enhanced understanding of human-automation interaction. The 

purpose of this study was to investigate human-automation interaction with an emphasis on performance, 

workload, and trust during early learning across different automated training methodologies. 

 To our knowledge, there has been no previous study investigating differences in performance, 

workload, and trust across different automated training methodologies using augmented feedback and 

adaptation-based method. In this study, we addressed the effects of automated training methodology on 

performance, cognitive workload, and trust during a computer-based Fitts’s law-based [97] cursor-to-target 

task. The training methodologies include repetition, concurrent feedback, terminal feedback, and an 

adaptation-based method. The treatments are removed for the evaluation phase to assess if subjects in the 

augmented feedback conditions—concurrent feedback and terminal feedback—succumbed to the guidance 

hypothesis [98], which would indicate that they have become reliant on the feedback in order to perform 

the task. The experiment was designed to provide subjects with a sufficiently challenging task to observe 

early learning effects and the evolution of performance, cognitive workload, and trust.  
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3.2 Materials and Methods 

3.2.1 Subjects and Experiment Setup 

The UC Davis Institutional Review Board approved the study protocol, and subjects were recruited from 

the university student population. Exclusion criteria for subjects included a history of neuromuscular 

disorders, physical limitations of dominant arm, and prior myoelectric control experience. Subjects 

provided written consent prior to participation. A total of 55 subjects volunteered, and subjects were 

released from the study due to equipment issues (N = 3), withdrawal request (N = 2), and significant 

motivation issues (e.g., not attempting the task; N = 2). The remaining 48 subjects completed the protocol 

and had an average age of 20.1 ± 1.4 years (μ ± σ), included 2 left-hand dominant subjects, and had an 

equal participation of men and women. 

 

 

Figure 5. Setup with interface displayed during training and testing of cursor-to-target task (a) and electrode 
placement (b). 

 

 Subjects were trained to control a cursor using sEMG to perform a Fitts’s law-based cursor-to-

target task with a center-out paradigm [1], [52]. During the experiment, subjects sat in front of a desk and 

a computer screen (see Figure 5a) with electrodes on their forearms. Two electrodes (ConMed 1620 

Ag/AgCl center snap) approximately 2.5 cm apart were placed on the dominant hand side near the extensor 

digitorum proximal attachment. A reference electrode was located near the lateral epicondyle of the 
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humerus (see Figure 5b). The electrodes’ signal was acquired as described in [54], the signal processing 

followed [1], and the experimental software used the UC Davis-developed Python AxoPy library [99]. The 

rms value for each time-domain sample window was calculated, normalized by a manually set calibration 

constant (in mV), and incorporated into a 0.5 s moving average window to yield an updated and processed 

sEMG signal, �̅� (mV/mV), at 16 Hz (used in Equation 1). The subjects learned to manipulate their sEMG 

signals to produce serial patterns that translated to cursor motion. 

 After the electrode placement, the subjects viewed their sEMG signal on an oscilloscope shown on 

the computer screen and were instructed to flex their hand to induce signal changes. This oscilloscope 

activity confirmed proper electrode adhesion and illustrated the subjects’ abilities to intentionally change 

their sEMG signal. For the remainder of the study, the subjects individually determined how to produce 

sufficient muscle activation and were prompted to try different, self-selected movements and contractions 

during the manual calibration. Subjects self-reported the muscle activation strategies they used at the end 

of the study. Flexing the wrist was the most common strategy (N = 34), possibly due to its introduction 

during the oscilloscope activity. Other strategies included making a fist, raising a single finger, or raising 

multiple fingers. Most subjects (N = 33) only used one strategy. Fifteen subjects elected to use multiple 

strategies, and five of those subjects used specific strategies for different actions (e.g., raising fingers for 

shorter inputs). A summary of the strategies used by experimental group is shown in Table 1. A more 

detailed discussion of the experimental groups is provided in section 3.2.3 Command Design and Group 

Treatments. 

 

Table 1. Summary of Muscle Activation Strategies by Group 

Strategy, N 
Group 

Control Concurrent 
Feedback 

Terminal 
Feedback 

Adaptive 
Threshold All 

Flex Wrist 7 10 9 8 34 
Make Fist 5 3 2 3 13 
Raise Finger 1 0 2 1 4 
Raise Multiple Fingers 3 6 5 6 20 
One Strategy 9 8 8 8 33 
Multiple Strategies 3 4 4 4 15 
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3.2.2 Cursor-to-Target Task 

In our study, the Fitts’s law-based task served to provide an interactive, engaging environment in which the 

subjects developed their proficiency of sEMG commands by moving a cursor to hit a target. The Fitts’s 

law-based task used a center-out paradigm and a similar interface as in [1]. The square cursor interface had 

normalized horizontal and vertical bounds of [-1,1] and a length of 2 units. Each trial began with the cursor 

at the center of the interface and a target in a pseudorandom position. There were 40 unique target positions 

that covered a range of index of difficulties (IDs) from 1.00 to 4.09 bits (calculated by the Shannon 

formulation [55]). The subject used sEMG to convey commands and moved the cursor to the target; the 

cursor had to dwell on the target for 1 s to successfully complete the trial. The maximum trial time was 60 

s, which was determined by reviewing previous data [1] and preliminary testing. 

 For myoelectric control, it is necessary to designate a threshold below which the signal input is 

considered at rest because sEMG signals effectively always have non-zero values. The threshold, 𝑙! (in 

mV/mV), defined the crossover value for a signal at “rest” versus active (see Figure7a). From our previous 

observations, cursor control improved when the initial motion had a slow, constant velocity before 

switching to a velocity proportional to the signal input, as it allowed subjects to maintain a slow velocity 

when desired (e.g., in close vicinity to a target). Therefore, we designated a second threshold, 𝑙" (in 

mV/mV), that delineated the constant from the proportional velocity control. The cursor was either 

stationary (�̅� < 𝑙!), moving at a small, constant velocity (𝑙! < �̅� ≤ 𝑙"), or moving at a velocity proportional 

to the input (�̅� > 𝑙"). When the input exceeded 𝑙", the cursor velocity was calculated by Equation 1, where 

𝑣# is the minimum velocity (0.05 units/second), 𝑣$ is the maximum velocity (0.50 units/second), 𝑙" is 0.30 

mV/mV, and �̅� is the filtered, averaged sEMG signal. The 𝑙! value was nominally 0.20 mV/mV, except for 

the Adaptive Threshold group in which the value was randomly selected for each trial (𝑙! = 0.10, 0.15, 0.20, 

0.25, 0.30 mV/mV). 

 Since the subjects could only select one command at a time, the cursor could either move up, 

down, left, or right. It was not possible to combine commands, which restricted the cursor motion to a 

rectilinear trajectory. To illustrate the resulting cursor trajectories, Figure 6 displays selected trials that are 
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either within one standard deviation of the median (see Figure 6a) or outside of one standard deviation 

(see Figure 6b) for a path efficiency metric. Example trajectories are superimposed on a cursor position 

heat map of successful trials for the applicable target (ID = 4.09). The trajectories and heat maps are from 

across groups for the selected target position. 

 

 

Figure 6. Sample cursor trajectories for a target (ID = 4.09) either a) within or b) outside one standard deviation of 
the median for path efficiency. Each dashed line shows a trajectory from a subject. Dashed line colors are varied to 
differentiate between individual trajectories. The target outline is shown with a white, dashed line. 

 

3.2.3 Command Design and Group Treatments 

The premise of the sEMG control methodology was to use serial patterns of muscle activation (“inputs”) to 

convey commands, similar to Morse code [53]. In our scheme, the first two inputs selected the command 

and a third input allowed for continuous control of forward movement in the selected direction (see 

Figure7a). A timeout between the first two inputs allowed a reset in the case of errors during command 

selection. The command inputs were defined by the duration that the sEMG signal exceeded the threshold, 

𝑙!, and each input was identified as “short” (≤ 0.50 s) or “long” (> 0.50 s). For example, the combination 

of two “short” inputs selected the “up” command. Subjects learned the 2-input code for four commands: 
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up, down, left, right. A portion of the user interface contained a command key so that the subjects did not 

need to memorize the serial, sEMG patterns to produce commands (see Figure 7c). 

 

Figure 7. Illustrative signal input (a) with the feedback timing (b) for applicable groups. The command key (c) is 
always present (dot = short, dash = long) 

 

The four groups were each assigned one training methodology:  

1) The Control group trained solely through task repetition and were able to view the motion of the cursor.  

2) The Concurrent Feedback group received additional visual feedback during the task that indicated when 

the processed sEMG signal, �̅�, exceeded the threshold, 𝑙! = 0.20 mV/mV, which was important for 

selecting commands. The subjects received feedback to confirm reception of the signal by the cursor 

changing color (see Figure 7b for timing and Figure 8b for coloring). 

3) The Terminal Feedback group received visual feedback after entering a command (see Figure 7b). The 

subjects received feedback regarding the interpretation of the signal to a command and signal reception 

during motion.  

4) The Adaptive Threshold group was the same visually as the Control group, but the threshold, 𝑙!, was 

randomly selected at each trial among values between 0.10 and 0.30. In this group, the processed sEMG 
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signal, �̅�, had to exceed the threshold that changed each trial to input commands. These subjects trained 

with variable parameters/increased mapping uncertainty (i.e., whether their signal will cross the 

threshold) with the aim of improving motor skill acquisition. 

 As shown in Figure 8, all the groups viewed a similar interface. Our previous findings in providing 

augmented feedback for manual control tasks found that visual augmented feedback worked best when 

placed on an element of the display that operators were already visually engaged with, and that visual 

feedback placed elsewhere would both lower performance and increase workload [100]. This takes 

advantage of operators’ normal patterns of visual attention, which is “drawn to display items that are…, 

colorful, and changing (e.g., blinking)” [95]. For this study, we sought to identify differences between 

providing feedback concurrently (every time subjects crossed 𝑙!), and terminally (only after they had 

successfully input a command). Additionally, we selected the feedback colors to be color-blind agnostic. 

The additional visual feedback in the Concurrent Feedback group was provided by changing the color of 

the cursor (Figure 8b). The Terminal Feedback group had additional visual elements at the edges of the 

cursor interface that changed color to reflect the command (Figure 8c). The visual element locations were 

selected based on pilot testing. Both of the two augmented feedback techniques provided users with 

feedback when the system had received a valid input (see the colored regions for the timing shown in Figure 

7b), and the Terminal Feedback group received the additional feedback of the system's interpretation of the 

direction to move the cursor. A recent review of augmented feedback techniques (see Ref. [61]) found that 

terminal feedback is more effective for tasks with low functional complexity, while concurrent feedback is 

more effective for tasks with high functional complexity. A summary of the training type, displays, and 

visual feedback are provided in Table 2 (Refer to Appendix B for a storyboard walkthrough of each 

interface). It should be noted that the subjects did not have a choice to disuse or turn off the automated 

training methodology. For example, this is similar to the predetermined automation design of a space 

exploration autonomous behavioral health tool reported in [101]. 
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Figure 8. Illustrative cursor interfaces for a) the Control and Adaptive Threshold, b) Concurrent Feedback and c) 
Terminal Feedback groups (not to scale). The target is shown as a purple circle. The cursor appears as a black circle 
for the Control, Terminal Feedback, and Adaptive Threshold groups. For Concurrent Feedback group, the cursor 
appears as a black circle when the signal is below the threshold, l1,  and green circle when the signal is above the 
threshold (b). In the Terminal Feedback group, a green bar appears at the edge of the interface to indicate the selected 
command. The example shown in (c) indicates that the up command has been selected. (Selecting the left command 
would cause the green bar to appear at the left edge and so on.) 

 

Table 2. Summary of Group Treatments and Displays 

Group Type Display Visual Feedback Timing 
Control Repetition Figure 8a N/A 
Concurrent Feedback Augmented Feedback Figure 8b Figure 7b 
Terminal Feedback Augmented Feedback Figure 8c Figure 7b 
Adaptive Threshold Motor Adaptation Figure 8a N/A 

 

 Subjects were assigned to one of four groups (12 subjects per group) and proceeded through the 

same protocol. The protocol consisted of the following general steps: consent, entrance survey, experiment 

overview and setup, pre-training assessments, training phase, post-training assessments, evaluation phase, 

post-evaluation assessments, and an exit survey. A maximum voluntary muscle contraction measurement 

was collected pre-training and post-evaluation to confirm that subjects were not significantly fatigued 

during the experiment, and which has been shown to affect sEMG signals [26]. 

 We developed a “Command Accuracy Test” to assess each subject’s ability to produce commands. 

The Command Accuracy Test was conducted pre-training, post-training, and post-evaluation to provide an 

assessment similar to offline classification accuracy (see Ref. [102] for a sEMG example). A Fitts’s law-

based task was implemented for the training and evaluation phases. There was a total of 160 trials with the 

first 120 trials used for training and the last 40 trials for evaluation. Trials were grouped into sets of 10 to 

form a Block; there was a 30 s minimum rest time after each Block during which subjects completed surveys 

for workload and trust. 
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3.3 Analysis and Hypotheses 

The analysis focused primarily on command and interaction (i.e., cognitive workload and trust) metrics to 

observe the effects of the automated training methodologies. Task-based metrics were also analyzed. A 

brief description of the analysis is provided in the following subsections. 

 

3.3.1 Command Metrics 

The Command Accuracy Test provided an opportunity to evaluate subjects’ proficiency in producing 

desired commands outside of the Fitts’s law-based task and was administered pre-training, post-training, 

and post-evaluation. During the Command Accuracy Test, subjects responded to a prompt to produce a 

specified command (either up, down, left, or right) and performed each command 5 times for a total of 20 

commands in a pseudorandomized order. The command was scored as successful when the input matched 

the prompt; inputs classified as any other command were not considered successful. The percent of 

successful commands was calculated for each subject and averaged within the group for a command 

accuracy metric. For all the successful commands, command time and average command amplitude were 

also calculated. The command time was the duration between the start and end of a command input (see 

Figure 7a). The average command amplitude was the average value of the input above the threshold during 

the command input (i.e., the shaded regions in first two inputs of Figure 7a); an average command amplitude 

close to zero represents an efficient input. Chhabra and Jacobs [103] used a similar signal magnitude metric 

to evaluate input proficiency. These metrics assessed the accuracy and efficiency of command input but 

were not calculated during the Fitts’s law-based task because subject intention (i.e., desired command) 

would need to be inferred for most time points. 

 

 

3.3.2 Interaction Metrics: Cognitive Workload and Trust 

Cognitive workload was measured using Modified Bedford Workload scale [89]; the subject rated their 

cognitive workload using a flow diagram (see Appendix C). Trust was evaluated using Jian et al.'s twelve 
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statement questionnaire which measures trust between people and automated systems [104]. Each of the 

twelve statements was evaluated on a seven-point Likert-type scale. Subjects completed these surveys after 

each Block in the training and evaluation phases. A Block consisted of 10 trials, where a trial is a single 

Fitts’s law-based cursor-to-target task. 

 

3.3.3 Cursor-to-Target Task Metrics 

The task metrics from the training and evaluation phases included percent of successful trials, completion 

time, throughput (TP), and normalized path length (nPL). The percent of successful trials consisted of the 

number of successful trials out of the 10 trials within a Block, and only successful trials contributed to the 

completion time, TP, and nPL metrics. Completion time was defined as the time from the start of the trial 

to the trial completion but does not include the 1 s dwell time. TP is a common metric for evaluating Fitts’s 

Law tasks and is defined as 𝑇𝑃 = 𝐼𝐷 𝑀𝑇⁄ , where 𝐼𝐷 is the index of difficulty and 𝑀𝑇 is the movement 

time. The ID is calculated by the Shannon formulation [55] and accounts for the distance between the cursor 

and target, as well as the target diameter. The MT is time from cursor motion onset to target selection 

(excluding 1 s dwell time). Given the control scheme and the target positions, there was an optimal, 

rectilinear path that minimized the distanced travelled by the cursor to select the target. The nPL metric 

assessed the efficiency of the path traveled by using the optimal path distance to normalize each value. 

There were 10 unique optimal paths due to the radial symmetry of the target positions. 

 The percent of successful trials was evaluated every Block. The 40 unique target positions repeated 

every four Blocks (a.k.a. a Session), so the completion time and nPL metrics were averaged over every four 

Blocks. We found completion time and nPL to be sensitive to target location or 𝐼𝐷, therefore averaging 

over four Blocks (i.e., the 40 unique target positions) was more representative of overall performance. TP 

is intended to evaluate an input device’s efficacy under the assumption that the user is proficient. Therefore, 

TP was only calculated during the evaluation phase when subjects had reached a performance plateau. 
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3.3.4 Hypotheses 

Based on our prior experience with augmented feedback and myoelectric control, we formed the following 

hypotheses: 

1) The Adaptive Threshold group will have the highest command proficiency by the end, followed by the 

Concurrent Feedback and Terminal Feedback groups, and then the Control. Varying parameters (i.e., 

thresholds) would improve sensitivity to the sEMG dynamics. Augmented feedback would provide 

better sensitivity to the sEMG dynamics than the Control. 

2) The Concurrent Feedback and Terminal Feedback groups will have a high level of trust during training 

with some slight decrease during evaluation. The Control group’s trust will continually increase. The 

Adaptive Threshold group will have lower trust during training, which will increase in the evaluation 

phase. 

3) The workload will continually decrease during the training phase for all groups with the largest 

decreases for the Concurrent Feedback and Terminal Feedback groups. There will be no significant 

difference in workload in the evaluation phase for all groups since the training phase was sufficiently 

long for all groups to proficiently learn to execute the Fitts’s law-based task. 

4) During the training phase, the Concurrent Feedback group will have the highest performance followed 

by Terminal Feedback, then Control, and finally the Adaptive Threshold groups. All groups will 

perform similarly in the evaluation phase since the training phase was sufficiently long for all groups 

to proficiently execute the Fitts’s law-based task. 

 

3.4 Results 

Subjects were evenly divided into four groups: Control, Concurrent Feedback (visual feedback when �̅� >

	𝑙!), Terminal Feedback (visual feedback after command selected), and Adaptive Threshold (𝑙! varied on a 

trial-by-trial basis). Subjects completed a total of 16 Blocks, each comprised of 10 cursor-to-target trials, 

for a total of 160 trials over the course of the study. When applicable, sets of four Blocks were grouped into 
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a Session. Each Session was identical, such that they contained the same sequence of pseudorandomized 

target positions. Muscle fatigue did not appear to alter the results, as the maximum voluntary contraction 

was not significantly different between the beginning and end of the study (F(1, 46) 	= 	2.554, p	 =

	0.117). One subject was removed from this analysis as they changed their arm position/contraction method 

during testing, which affects the signal. 

 We ran two-factor linear mixed effect models to investigate changes in command and task 

performance, workload, and trust with one between-subjects factor, Group, and one within-subjects 

repeated measure, Block/Session/Test. When significant effects were observed, post hoc comparisons using 

the Tukey Honest Significance Difference (HSD) test were performed and considered significant at the 

p	 < 	0.05 level, and the Satterthwaite method was used to calculate the adjusted degrees of freedom using 

the lmerTest package in R [105]. 

 

3.4.1 Command Metrics 

The results in this section—command accuracy, command time, average command amplitude—are 

assessed from the Command Accuracy Test. The Command Accuracy Test occurred three times (before 

training, after training, and after evaluation), and the average was calculated within a Group for each Test. 

We did not find evidence that analyzing results by command type (i.e., up, down, left, or right) altered the 

overall findings. 

 Subjects responded to command prompts in each Command Accuracy Test. The command 

accuracy indicates the percentage of the 20 prompts in each Test that subjects correctly performed (see 

Figure 9). There was a significant main factor of Test (F(2, 88) 	= 	108.485, p	 < 	0.001), but Group was 

not significant (F(3, 44) 	= 	2.631, p	 = 	0.062). The interaction effect between Group and Test was not 

significant (F(6, 88) 	= 	0.826, p	 = 	0.553). Investigation into the Test variable showed that subjects 

performed significantly better between Test 1 and 2, and between Test 1 and 3, but not between Test 2 and 

3. These results demonstrated that there was a significant improvement in the percent of accurate commands 

by the end of the training phase. 
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Figure 9. Command Accuracy Results. Test 1, 2, and 3 occurred prior to the training phase, after the training phase, 
and after the evaluation phase, respectively. The Adaptive Threshold Group is abbreviated as “AT.” 

  

 The command time and average command amplitude metrics were calculated only for successful 

commands. For command time, there was a significant factor of Test (F(2, 2055.358) 	= 	9.417, p <

0.001), but Group (F(3, 44.080) 	= 	0.662, p = 0.580), and the interaction between Group and Test 

(F(6, 2054.727) = 	1.005, p = 0.420) were not significant. Examining the Test variable, the command 

times significantly improved from Test 1 to Test 2 and Test 1 to Test 3, but not from Test 2 to Test 3 (see 

Figure 10). The average command times across Groups were 1.81 s, 1.69 s, and 1.63 s in order of Test. 

 Average command amplitude had a significant interaction factor of Group and Test 

(F(6, 2044.772) 	= 	17.143, p < 0.001), and the main factor of Test (F(2, 2044.882) 	= 	13.886, p <

0.001), but not Group (F(3, 44.211) 	= 	1.062, p = 0.375). The only significant Group and Test 

interactions occurred in Test 1 between the Control and Adaptive Threshold groups and the Concurrent 

Feedback and Adaptive Threshold groups. Notably, the Adaptive Threshold group’s average command 

amplitude increased from Test 1, whereas all other groups generally declined (see Figure 11). An average 

command amplitude close to zero represents an efficient input. 
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Figure 10. Command Time Results. Test 1, 2, and 3 occurred prior to the training phase, after the training phase, and 
after the evaluation phase, respectively. The Adaptive Threshold Group is abbreviated as “AT.” 

 

 
Figure 11. Average Command Amplitude. Test 1, 2, and 3 occurred prior to the training phase, after the training phase, 
and after the evaluation phase, respectively. The Adaptive Threshold Group is abbreviated as “AT.” 

 

3.4.2 Interaction Metrics: Cognitive Workload and Trust 

The study assessed the changes in cognitive workload—an important consideration for human-automation 

interaction. The Modified Bedford Workload metric is a subjective measurement of cognitive workload 
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that ranges from 1-10, where 1 indicates low workload and 10 indicates high workload. There was a 

significant main factor of Block (F(15, 660) 	= 	18.284, p	 < 	0.001), but Group was not found to be 

significant (F(3, 44) 	= 	2.164, p	 = 	0.106). There was also a significant interaction effect between Group 

and Block (F(45, 660) = 	1.818, p	 = 	0.001) (see Figure 12). The interaction effect resulted from subjects 

reporting lower cognitive workload as they learned the task at different rates, indicated by the Block factor. 

In further investigation of the interaction, we observed that the Adaptive Threshold group reported a 

significantly higher cognitive workload than the Concurrent Feedback group for Blocks 9, 10, and 11. This 

perception of high cognitive workload may have resulted from the uncertainties of the changing threshold. 

None of the groups showed a significant difference in cognitive workload compared to the Control group, 

and all four groups reported statistically similar workloads in the evaluation phase. 

 

 
Figure 12. Modified Bedford Workload Score. The vertical dashed line represents the transition from training to 
evaluation. Error bars shown are the standard error of the mean. The Adaptive Threshold Group is abbreviated as 
“AT.” 

 

 Intragroup changes in workload are also of interest. The Concurrent Feedback group showed no 

statistically significant changes in workload between Blocks, though they did demonstrate a nonsignificant, 

increasing workload trend in the evaluation phase of the experiment. The Terminal Feedback group had 

statistically higher initial workload for Blocks 1, 2, and 3, but the remainder of the Blocks had a statistically 
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similar level of workload to each other. The Control group's workload was significantly higher for Blocks 

1-6 but leveled off for the remainder of the trials. Finally, the Adaptive Threshold group reported the highest 

workload in Blocks 1-5, but also saw the largest improvement transitioning into the evaluation phase where 

their threshold, 𝑙!, stabilized to the same fixed value as the other groups.  

 The second human-automation interaction factor evaluated in the study was trust. Trust was 

measured using Jian et al.’s twelve question trust in automation survey [104], and administered at the end 

of each Block. Each question was rated on a 7-point Likert scale, the five reverse coded questions were 

reversed1, and the results were averaged to create a single trust score (see Figure 13). There was a significant 

main factor of Block (F(15, 660) 	= 	13.051, p	 < 	0.001), but Group was not found to be significant 

(F(3, 44) 	= 	2.588, p	 = 	0.065). There was also significant interaction effect between Group and Block 

(F(45, 660) 	= 	1.996, p	 < 	0.001). The significant main effect of Block shows a gradual increase in trust 

throughout the duration of the study. After investigating the interaction effect, we saw that no group 

reported a significantly different trust level than the Control group on any Block, but that the Adaptive 

Threshold group recorded a significantly lower trust than the Concurrent Feedback group on Blocks 3-6 

and 9. Similar to cognitive workload, the primary interaction effects appeared driven by intragroup 

differences. The Concurrent Feedback group showed no statistically significant changes throughout the 

study, the Terminal Feedback and Control groups displayed significant increases in trust in Blocks 1-6, and 

the Adaptive Threshold group reported significantly higher trust in the evaluation Session than during early 

Blocks. We investigated the ratings for each individual question in the trust survey but did not observe any 

trends that contradicted the overall trust score patterns shown in Figure 13. 

 

 
1 These questions asked about distrust in the system and the subject rated the system from 1 (Not at all) to 7 
(Extremely), which was the same scale for the question asking about trust. Reverse coding means a rating of 7 for a 
distrust question would become a 1 in order to calculate an overall trust score. 
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Figure 13. Trust Score. The vertical dashed line represents the transition from training to evaluation. Error bars shown 
are the standard error of the mean. The Adaptive Threshold Group is abbreviated as “AT.” 

 

3.4.2 Task Metrics 

Although the command metrics were the primary proficiency indicator, we did evaluate aspects of task 

performance including percent of successful trials, TP, completion time, and nPL. The percent of successful 

trials metric measured the percentage of successfully completed trials within a Block. For the percent of 

successful trials, there were significant main factors of Group (F(3, 44) 	= 	8.183, p	 < 	0.001) and Block 

(F(15, 660) 	= 	31.805, p	 < 	0.001). There was also a significant interaction effect between Group and 

Block (F(45, 660) 	= 	3.903, p	 < 	0.001). Despite the presence of an interaction effect that resulted from 

subjects learning the task (as indicated by the Block factor), the main effect of Group could still be 

interpreted. A Tukey test showed that the subjects in the groups differed significantly, with subjects in the 

Concurrent Feedback group performing significantly better than those in the Control group (p	 = 	0.020). 

The Tukey test also showed that subjects in the Adaptive Threshold group performed significantly worse 

than those in the Terminal Feedback and Concurrent Feedback groups (p = 0.009, p < 0.001,

respectively), but not worse than the Control (p	 = 0.394). 
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 The interaction effect resulted from different learning rates between the groups (see Figure 14), 

where subjects learned in the following order (fastest to slowest): Concurrent Feedback, Terminal 

Feedback, Control, and Adaptive Threshold. The Concurrent Feedback group significantly outperformed 

the Control group for the first six Blocks. Unlike the Concurrent Feedback group, the Terminal Feedback 

and Adaptive Threshold groups started with the same initial performance as the Control group. The 

Terminal Feedback group learned more quickly than the Control group, and significantly outperformed the 

Control group for Blocks 4 and 5. Compared to the Control group, all groups performed at statistically 

similar level after Block 6. Investigating the immediate evaluation effects when the group-specific 

treatments are removed in Block 13, the mixed model shows no change in performance for any of the groups 

(p	 > 	0.989	for	all	groups). As such, the percentage of successfully completed trials does not show any 

effect from the guidance hypothesis (i.e., the subjects did not rely on the feedback to complete the task and 

removing the feedback did not result in decreased performance). 

 
Figure 14. Percent of Successful Trials. The vertical dashed line represents the transition from training to evaluation. 
Error bars shown are the standard error of the mean. The Adaptive Threshold Group is abbreviated as “AT.” 

 

 The TP was calculated for the evaluation phase and averaged across Blocks 13 through 16 (i.e., 

fourth Session). Throughput is generally used to assess an input device, which should be measured when 
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the subjects can complete the task. Since there were no significant differences in the evaluation phase for 

percent complete, we only calculated TP at this time as initial Blocks may have been biased towards low 

IDs. There was no significant difference in TP between the Groups (F(3, 44) 	= 	1.625, p	 = 	0.197). The 

mean TP for all subjects was found to be 0.564 ± 0.023 bits/s (𝜇 ± 𝜎). 

 

 
Figure 15. Completion Time by Session (set of 4 Blocks) across groups. The vertical dashed line represents the 
transition between the training and evaluation phase. The Adaptive Threshold Group is abbreviated as “AT.” 

 

 The pseudo randomization of the 40 unique target positions occurred over four Blocks, thus it was 

appropriate to average completion time over a Session (i.e., set of four Blocks). Completion time was only 

defined for successfully completed trials; the results are displayed in Figure 15. There were significant main 

factors of Group (F(3, 43.968) 	= 	4.390, p	 = 0.009) and Session (F(3, 131.074) 	= 	24.906, p	 <

	0.001). The interaction effect between Group and Session was not significant (F(9, 131.069) 	=

	0.782, p	 = 	0.633). A Tukey test showed that the Concurrent Feedback group performed significantly 

better than those in the Adaptive Threshold group (p	 = 	0.004), which was the only significant difference 

between groups, and no groups significantly outperformed the Control group. Analysis of the Session factor 
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showed increased performance (p	 < 	0.05) until the last two Sessions, which were not statistically 

different (p = 0.646). These results further supported that the guidance hypothesis did not occur. 

 The significant difference in completion time between the Concurrent Feedback and Adaptive 

Threshold groups may have been explained by increased nPL, but there were no significant group 

differences (F(3, 44.099) 	= 	0.908, p	 = 	0.445). Increased nPL correlated with higher ID targets (see 

Table 3). 

 

Table 3. Normalized Path Efficiency for Different Targets 

Index of Difficulty (ID) 1.00 1.58 2.32 3.17 4.09 
Average 32.11 3.80 1.80 1.38 1.20 
Standard Error of the Mean 2.90 0.29 0.08 0.04 0.02 

 

3.5 Discussion 

The study investigated the effects of automated training methodologies to efficiently and accurately use a 

sEMG command system, and elucidate the relationship between performance, workload, and trust during 

training. The command metrics from the Command Accuracy Test, which were administered before 

training (Test 1), after training (Test 2), and after evaluation (Test 3), largely did not indicate Group 

differences. We expected the Groups to perform similarly during Test 2, which was administered at the 

conclusion of the training phase and when the subjects should have reached a performance plateau at the 

end of training. However, in Test 3 we expected that the Adaptive Threshold group would optimize their 

inputs to the stabilized threshold, but we did not observe significant differences in Test 3. We did not expect 

to observe differences between Groups in Test 1, but there was a significant difference in average command 

amplitude between the Control and Adaptive Threshold and Concurrent Feedback and Adaptive Threshold. 

Prior to Test 1, the subjects across groups had received a generic experiment introduction, group-specific 

training tailored to their different interfaces, and a manual calibration of their signals. After investigating 

the data from Test 1, we concluded that the differences may be a result of the group specific training and 

the manual calibration. The manual calibration for the Adaptive Threshold group had to accommodate the 
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range of thresholds (0.1 ≤ 𝑙! ≤ 0.3), which increased the average normalization value by approximately 

24% compared to the other groups. As a result, the processed signal input,	�̅�, decreased by the same 

proportion for the same rms input value. Combined with the standard threshold value (𝑙! = 0.2) during all 

Code Accuracy Tests, the Adaptive Group would have needed to input larger signals to compensate. There 

are no significant differences after Test 1, during the evaluation phase, or in the MVC (which would indicate 

fatigue), therefore the effect seems to be limited to pre-training. The Adaptive Threshold group’s average 

command amplitude values did increase for Test 2 and Test 3 compared to Test 1. Tests 2 and 3 occurred 

after the Fitts’s law-based task when the Adaptive Threshold group would have seen the effect of their input 

on the cursor motion. The Adaptive Threshold group did not pursue a strategy of maximally contracting 

their muscles evident by their convergent average command amplitude values with the other groups, 

particularly the Concurrent Feedback group which had feedback on threshold crossings. Our subjects’ 

adaptation follows other studies that observed adaptation to input noise characteristics [103] and the 

refinement of muscle synergies [106]. The subjects in this study improved across the command metrics 

after the training phase, demonstrating adaptation to the sEMG command system. In terms of these 

command metrics, the specific automated training methodology was less important. 

 The Adaptive Threshold group had increased mapping uncertainty during training while the 

Concurrent Feedback and Terminal Feedback groups received augmented feedback about the sEMG control 

system. Augmented feedback was more effective in assisting subjects in achieving a performance plateau, 

requiring only a third of the prescribed training phase and following the findings of Basmajian [78]. The 

Control and Adaptive Threshold groups needed the entire training phase to achieve a similar performance 

level, indicating that the augmented feedback enhanced the early acquisition of motor learning skills. The 

early motor learning we observed, where the Concurrent group led the Terminal group in initial 

performance gains, was expected as this sEMG testbed was designed to investigate a challenging task. 

Functionally complex motor control tasks are generally expected to respond better to concurrent feedback 

[61], though it remains difficult to estimate a task’s functional task complexity, or instances where 

Concurrent versus Terminal feedback will be more effective. Both feedback levels eventually resulted in 
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the same performance, but the high levels of performance initially observed in the Concurrent group (and 

corresponding decrease in cognitive workload), likely resulted from the subject’s increased internal 

understanding of the task dynamics. The augmented feedback groups appear to have the strongest 

performance advantage. 

 However, the Adaptive Threshold group’s results were interesting for two reasons. First, varying 

thresholds/increased mapping uncertainty did not appear to cause adverse effects compared to the Control 

group. Unreliable automation behavior can lead to poor human-automation interaction [107], but was not 

the case in this study. Secondly, the Adaptive Threshold group only trained at the standard threshold (𝑙! =

0.2) for 20% of the trials compared to the other groups. The changing threshold did affect task metrics 

during the training phase; the varying threshold levels were not inconsequential as evident by the significant 

differences between the Adaptive Threshold and Concurrent Feedback groups for cognitive workload, trust, 

percent of successful trials, and completion time. However, the Adaptive Threshold group’s performance 

was indistinguishable from the other groups during the evaluation. The training challenge of varying 

thresholds/increased mapping uncertainty did not cause poorer performance during evaluation, but also did 

not see significantly improved performance. It is possible that the adaptation training methodology could 

be redesigned to better elicit the benefits. Alternatively, we could have evaluated all groups at a novel 

threshold. To observe potential task generalization benefits, this methodology may be better tested with a 

different task that still uses the sEMG commands or a similar underlying task structure (a.k.a. a transfer 

task), instead of returning to a stable condition. For example, Braun et al. [82] showed that subjects trained 

with varying visuomotor tasks were able to quickly generalize to novel tasks that still retained similar 

features as the original training task. In one sense, the Adaptive Threshold group does have better command 

proficiency due to similar performance with less training at the standard threshold, which is encouraging 

although not strong support for the first hypothesis that the Adaptive Threshold group would have the 

highest command proficiency. We maintain that subsequent experiments should continue investigating the 

use of adaptation strategies for training. 



 45 

 The task results suggest that subjects reached a similar level of task proficiency by the end of the 

training phase, as we observed no significant differences between groups during the evaluation phase. 

However, a more complex interaction between task performance, cognitive workload, and trust occurred 

during the training phase and varied by training methodology. The Concurrent Feedback group started with 

the highest task performance, lowest cognitive workload, and highest level of trust. By the 5th Block, the 

Terminal Feedback group overlapped with the Concurrent Feedback group in terms of percent of successful 

trials, cognitive workload, and trust. These two groups then tracked each other for the remainder of the 

study. In both augmented feedback groups, our feedback displays act as an expert “Instructor” model, 

providing information to subjects in real-time about either the processed sEMG signal, �̅�, or their command 

state. Correspondingly, the results we observed closely align with prior literature when subjects are 

provided with expert feedback; subjects in both of our augmented feedback groups displayed reduced 

“cognitive load during initial practice, helping [them] integrate declarative knowledge with physical skills” 

[64]. The Concurrent Feedback and Terminal Feedback groups did not have significantly different average 

completion times throughout the study. In their initial learning, the Concurrent Feedback group 

demonstrated high initial performance with smaller, incremental gains, while the Terminal Feedback group 

had large Block-to-Block improvements. The Adaptive Threshold group did not appear to reach a 

performance plateau for the percent of successful trials and steadily, but not significantly, improved in 

subsequent evaluation Blocks. Interestingly, the trust score also continually increased for both the Control 

and Adaptive Threshold groups. Although the changing cursor dynamics in the Adaptive Threshold group 

does not seem to have adversely affected trust compared to the Control group, the Adaptive Threshold 

group did report a significantly higher cognitive workload for Blocks 9-11 than the Concurrent Feedback 

group. Once the threshold stabilized, the cognitive workload in the Adaptive Threshold group was not 

statistically different from the other groups. These effects that may be explained by Hoff and Bashir’s three 

layer model [96], where the training methodology altered situational trust and the continued interaction 

affected learned trust. Jian et al.’s trust survey specifically asks subjects about their familiarity with and 

confidence in the system, and asks subjects to rate the reliability of the system and its outputs [104]. 
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Changes in trust scores may reflect differences in components like confidence and reliability, but the survey 

also includes an explicit question about trust (“I can trust the system”). Analysis of the individual questions 

did not contradict the averaged results of the trust scale, however, and it likely that this reflects that learned 

trust, not simply understanding of the system, is increasing with time. Overall, these results suggested that 

augmented feedback led to earlier task performance gains with improvements in trust and cognitive 

workload. Surprisingly, the varying thresholds/increased mapping uncertainty did not adversely affect trust, 

but the mental cost was reflected in the task performance and cognitive workload. In general, the second, 

third, and fourth hypotheses from section 3.3.4 Hypotheses were largely supported with increased trust and 

decreased workload by the evaluation phase, with no differences between groups. 

 The cognitive workload scores indicated that the task of learning a novel sEMG cursor control 

system to hit targets on a screen was challenging. The average cognitive workload scores by Block across 

Groups ranged from 6.71 to 3.65 with the highest average score occurring in the first Block. The average 

cognitive workload score decreased with subsequent Blocks. According to the Modified Bedford Workload 

Scale [89], a score of 7 indicated that the task was possible, but that there was “…minimal spare time for 

additional tasks.” A score of 6 meant the task was possible and cognitive workload tolerable and “there was 

some but not enough spare time available for additional tasks” [89]. By the end of training, the average 

cognitive workload score was rated approximately at a 4, as the task was considered possible with tolerable 

workload and “…ample time to attend to additional tasks” [89]. In a simulated, four degree of freedom 

manually controlled spacecraft inspection task with a secondary task and verbal callouts, the average 

Modified Bedford Workload scores ranges from 7.17 to 3.94 [60]. The similarity in the workload scores 

indicate that the subjects found the task to learn sEMG control to be sufficiently difficult and enabled us to 

observe learning and performance improvements during training. We intended for the subjects to become 

proficient in sEMG cursor control by the end of training. Therefore, for an initial evaluation of automated 

training methodologies, we believe the task complexity to be sufficient. In future development of sEMG 

control for aerospace applications, it would be beneficial to include additional tasks to simulate a more 

realistic environment with representative aerospace tasks and displays. 
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 There are not many active BoMIs for aerospace applications available for comparison and with 

similar metrics. The code accuracy reported in this study, 67.2% in Test 3, appeared similar to the 

classification accuracy of a BCI mouse at 73.1% [23]. The percent of successful trials during the evaluation 

phase (86.18%) exceeded that of a BCI mouse for a simplified, simulated spacecraft (66.7%) [22], and was 

similar to the success rate for crossing gates in gesture-based drone control (87.67%) [18]. However, the 

differences in the tasks and requirements for success limit the extent and interpretability of the comparisons. 

As another point of comparison, the throughput values during the evaluation phase for all groups fell within 

previously published results for sEMG cursor control systems. From Chapter 2, our previous single-site 

sEMG cursor control system with 2 DOFs (counterclockwise rotation and forward) reported 2.24 bits/s and 

0.23 bits/s for control methodologies that used different levels of automation [1]. Multi-site sEMG systems 

have achieved 0.4 bits/s [49], 0.84 bits/s [51], and 1.3 bits/s [57]. The sEMG cursor control system used in 

this study had a throughput of 0.56 bits/s and may be of additional interest to the BCI community. The 

purpose of the sEMG cursor control system in this study was to extend the work presented in Chapter 2 

and to provide a testbed for automated training that lent itself to motor learning adaptation and was 

sufficiently challenging to probe the relationship between command and task performance, cognitive 

workload, and trust. 

 

3.6 Conclusions 

The study results largely supported our hypotheses described in section 3.3.4 Hypotheses. The percent of 

successful trials performance during the training phase followed the order of Concurrent Feedback, 

Terminal Feedback, Control, and Adaptive Threshold until all groups reached a statistically similar 

performance level towards the end of the training phase. All groups performed similarly in percent of 

successful trials during the evaluation phase. The subjects’ trust followed our expectations with Concurrent 

Feedback and Terminal Feedback having the highest levels, while the Control group’s trust continually 

increased at a slow rate. The Adaptive Threshold group had lower trust during training, and the trust 

increased to the level of the other groups during evaluation.  
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 The cognitive workload results also supported our hypotheses that Concurrent Feedback and 

Terminal Feedback groups would have the largest decrease in cognitive workload, and that all groups would 

have similar cognitive workload during the evaluation phase. Interestingly, the Concurrent Feedback and 

Terminal Feedback groups converged across performance, cognitive workload, and trust by Block 5. Our 

hypothesis that the Adaptive Threshold group would achieve the highest command proficiency was not 

entirely supported, although we observed encouraging indications. In future studies it may be of interest to 

include a transfer task or conduct the Command Accuracy Test throughout the training phase to improve 

understanding of the adaptation methodology. This study provided insights on the relationship between 

performance, cognitive workload, and trust for various automated training methodologies, and highlighted 

the advantage of augmented feedback methodologies during the training phase. By directly comparing 

methodologies and identifying human-automation interaction effects, this research provides a quantitative 

basis for exploring combined training approaches in future research. It would be interesting to investigate 

a mixed training methodology approach that combines concurrent feedback with the motor adaptation 

approach, where subjects potentially benefit from both increased feedback, adaptation rate, and skill 

generalization. This research also contributes to training users of BoMIs, but it is not known if the study 

results generalize to BoMIs with other signal types. The muscle activation patterns were mapped to cursor 

commands, which were relevant to the task, but could be translated to other commands as needed for an 

application and sEMG control is not limited to an on-screen application. The availability of multiple 

communication modalities provides flexibility and the opportunity to create new interaction paradigms. 

 This study addressed outstanding questions from Chapter 2. The changes made by decreasing the 

timeout between inputs and reduced trial time did not appear to adversely impact performance. Increasing 

the number of trials from 80 to 160 appeared adequate for training all groups to a similar level of proficiency 

in the evaluation phase. There were no significant differences in the command metrics between after 

training and after evaluation, further supporting that the training period of 120 was appropriate. This study 

also confirmed that the concurrent feedback, which was used in Chapter 2, resulted in early, high-level 

performance. The Concurrent Feedback group plateaued after Block 5, or 50 trials, for percent success and 
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Block 12, or 120 trials, for completion time. (The completion time was averaged over sets of four Blocks; 

it is possible the performance plateau for completion time may occur earlier.) This study demonstrated that 

concurrent feedback quickly trained subjects to use a myoelectric control system with an increased number 

of commands. These results built confidence in the abilities of subjects to learn less intuitive, serial patterns 

for myoelectric control, which expands the possibilities for single-site sEMG. 
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Chapter 4 

Myoelectric Command Accuracy Improvement in Trained Users 

Preface 

The Coronavirus pandemic disrupted the originally planned research due to limitations on in-person 

research activities, which was needed for myoelectric control studies. The restrictions on in-person research 

provided an opportunity to revisit the dataset from Chapter 3 and further investigate myoelectric command 

accuracy performance. Chapter 3 explored questions concerning feedback and training, but did not 

investigate predetermined timing requirements, such as the timeout between inputs and the input durations. 

The purpose of the study presented here in Chapter 4 was to determine if the “peak” performance achieved 

by the end of the original study could theoretically be improved with the addition of classifiers and/or 

adaptable features to alter the timing requirements.  This work was originally published in [4]. 

 

 Introduction 

Myoelectric control, or the use of EMG signals to convey a command, has been used in prosthetics and 

HCIs, with various strategies employed to create a reliable communication interface. However, EMG can 

suffer from signal non-stationarities due to subject fatigue, shifting electrodes, and postural changes [28]. 

Some researchers have mitigated signal non-stationarities by developing adaptive systems. These adaptive 

systems have been shown to improve pattern recognition classifier accuracy during increased signal noise 

[108], to augment performance with online co-adaptive learning [109], [110], and to maintain repeatability 

over multiple sessions [111]. All of these research studies used sEMG control with multiple sensors on the 

forearm, and most used pattern recognition [108] or regression-based methods [109], [110]. 

 Adaptive sEMG systems can focus on mitigating signal non-stationarities and/or improving overall 

system accuracy and performance. Benchabane et al. [111] developed a system for simultaneous control of 

prosthetic fingers using an adaptive threshold to select one or more finger functions and demonstrated low 
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accuracy loss, despite multiple sessions (-4.8% change in accuracy) and subject fatigue (-2.4% change in 

accuracy). Similarly, Zhang et al. [108] tested their system with several noise levels to compare a Linear 

Discriminant Analysis (LDA) classifier with an adaptive LDA (ALDA) that periodically incorporated new 

training data to recalculate parameters online. The ALDA outperformed the LDA across conditions [108]. 

Hahne et al. [109] investigated different adaptation rates for a co-adaptation cursor-to-target task in a 

regression-based system to improve task performance. In a similar regression-based system, Yeung et al. 

[110] compared different methods of weighting new training data, tested several adaptation rates, and 

demonstrated improved performance compared to an unassisted user. Taken together, these selected studies 

demonstrate the promise of adaptive sEMG systems for novice users. Our work was motivated to 

investigate the benefits of adaptive systems for users after completing training and reaching a learning 

plateau to further enhance their performance. 

 In Chapter 3, we developed a single-site sEMG cursor control method that allowed the user to 

select among four cursor commands, using a coded sequence of short and long muscle activations. This 

method may be less sensitive to signal non-stationarities due to the system design emphasis on user training 

and adaptation as opposed to the machine. The user only needs to cross a threshold to communicate and 

can adjust their own actions to make corrections when the signal changes. However, this approach placed 

the burden of learning on user training, therefore we investigated the effects of various training strategies 

on performance, cognitive workload, and trust [3]. At the end of the training period, subjects across training 

strategies successfully completed 86% of trials and had a command classification accuracy of 66% for a 

cursor-to-target task [3]. The purpose of the work presented in this chapter was to understand if adding an 

adaptive timing component or an individually trained classifier would improve the classification accuracy 

of trained subjects. 
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 Methods 

4.2.1 Experiment Design and Setup 

In this study, we utilized the data collected in [3] to explore the possibility of integrating an adaptive feature 

or classifier to our sEMG control method. (The detailed experiment design and protocol can be found in 

Chapter 3.) The forty-eight subjects that completed the experiment ranged in age from 18 to 23 years with 

two left-hand dominant subjects and an equal participation of men and women. Subjects were able-bodied 

university students who reported no history of neuromuscular disorders or myoelectric control experience. 

The UC Davis Institutional Review Board approved the experimental protocol. 

 The experimental setup included two electrodes (ConMed 1620 Ag/AgCl center snap) placed 

approximately 2.5 cm apart near the extensor digitorum proximal attachment on the dominant side. The 

reference electrode was fixed close to the lateral epicondyle of the humerus (see Figure 5b). The signal 

acquisition followed [54] and was processed as in [1], where the signal was sampled at 4096 Hz for 256-

sample windows with a Butterworth filter (4th order, bandpass at 10 Hz and 500 Hz). The rms value for the 

window was normalized by each subject’s calibration value and put in a moving average filter (length 0.5 

s) for a processed signal update rate of 16 Hz. 

 

4.2.2 Cursor Control and Training Methods 

As described in Chapter 3, The sEMG method consisted of four cursor-control commands—up, down, left, 

right—that the subjects selected through a serial pattern akin to Morse code [53]. The commands consisted 

of two consecutive signal inputs with a rest between each input; if the rest exceeded the timeout (0.5 s), the 

pattern reset (see Figure 16A). An input started when the processed signal exceeded a threshold, l1, and 

ended when the processed signal returned to below the threshold. Inputs less than 0.5 s were categorized as 

“short” and inputs greater than 0.5 s were “long”. The combined pair of short and long inputs (a.k.a. muscle 

activations) defined a command; for example, two short inputs selected the “up” command (see Figure 

16B). A third input moved the cursor forward in the selected direction while the processed signal remained 

above the threshold. 
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Figure 16. Overview of the coded sequence used in the sEMG method (also shown in Figure 7A). A) An illustration 
of a processed EMG signal is shown here. The coded sequence requires two inputs above a threshold to select the 
command and the third input results in continuous, forward motion until the signal drops below the threshold. Subjects 
must rest (i.e., drop below the threshold) between inputs, but a rest greater than 0.5 s resets the sequence. B) The 
commands are defined by the combination of short (£ 0.5 s) and long (> 0.5 s) inputs. For example, the “down” 
command is two long inputs. 

 

 During the training portion of the experiment, the subjects learned to control a cursor on a computer 

screen to select targets in a Fitts’s law-based task. There were 120 training trials and 40 evaluation trials, 

where a trial was a single cursor-to-target attempt. The training strategy was in effect during the training 

trials and removed during evaluation. Subjects were assigned to one of four groups that determined the 

training strategy: Repetition2, Concurrent Feedback, Terminal Feedback, and Adaptive Threshold. 

 

1) The Repetition group learned only by repeatedly performing the cursor-to-target task.  

2) The Concurrent Feedback group received an additional visual feedback element, where the cursor body 

changed color when the processed signal exceeded the threshold shown in Figure 16A (also may refer 

to Figure 7 for feedback timing).  

3) The Terminal Feedback group’s additional visual feedback element indicated the selected command at 

the onset of Input 3 (see Figure 16A; may refer to Figure 7 for feedback timing).  

 
2 The groups in Chapter 4 include a Control Condition with the original timing requirements to compare with the 
adaptive features and classifier groups. For clarity the Control Group from the original experiment covered in Chapter 
3 is referred to as the Repetition group here. Both Condition and Group are factors in the statistical analysis. 
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4) The Adaptive Threshold group saw the same interface as the Repetition group, but the threshold varied 

trial-by-trial (l1 = 0.10, 0.15, 0.20, 0.25, 0.30). The threshold was set to 0.20 for other groups (threshold 

shown in Figure 16A). 

 

4.2.3 Analysis 

To assess the subjects’ proficiencies in selecting commands, a Command Accuracy Test was administered 

before training, after training (Test 2), and after evaluation (Test 3). Subjects were prompted to produce 

each command 5 times for a total of 20 attempts per test. Subjects had only one try within an attempt. 

Command classification accuracy was calculated as the number of successfully selected commands out of 

the total for each test. From the previous study, there were no significant differences after the training period 

between Tests 2 and 3 [3]. An independent, two-tailed t-test indicated that there were no significant 

differences in command accuracy between men and women (p > 0.7). Therefore, the data from the 

Command Accuracy Tests 2 and 3 were combined and used for the analysis presented here. A larger dataset 

would have been ideal, but this analysis was developed under research limitations imposed by the 

Coronavirus pandemic, and so only our previously existing data from [3] was used. 

 In the original study, successfully selected commands met the input duration requirements (short £ 

0.5 s, long > 0.5 s) and the rest between inputs did not exceed a timeout (> 0.5 s). These values were selected 

from pilot studies and may not be optimal in general or for specific individuals. For the purposes of this 

study, the classification accuracy calculated with these predetermined values was considered the Control. 

We then recalculated the classification accuracy for two additional conditions that included certain 

unsuccessful commands: 1) No Timeout and 2) Individual Classification. For the No Timeout condition, 

the first two inputs were classified according to the original input duration requirements, but without regard 

to the timeout (rest > 0.5 s, rest shown in Figure 16A). The Individual Classification used the first two 

inputs as features for supervised machine learning and did not exclude any observations that exceeded the 

original timing requirements. Table 4 summarizes the Conditions with respect to the timing requirements 

used in this study. 
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Table 4. Timing Requirements per Condition 

Condition Timeout Input Duration 
Control Yes Yes 
No Timeout No Yes 
Individual Classification No No 

 

 In the Individual Classification condition, we made several decisions to accommodate the limited 

number of observations per subject. The K Nearest Neighbors (KNN) algorithm was selected due to its 

straightforward implementation without the need to tune many parameters. The Python package scikit-learn 

[112] was used and the parameters for k and weights were set to 4 and “distance” (voting weighted by 

distance from the observation to the kth neighbor), respectively. The number of neighbors, k, was selected 

based on the number of observations per class and approximately followed the general rule for selection of 

k (√observations » 5-6). We assumed that subjects performed command selection with precision, therefore 

we assigned more weight to closer neighbors. Typically, a 5- or 10-fold cross-validation strategy is used 

but based on the number of observations per class and the decision to use stratified folds, we implemented 

a 4-fold cross-validation with 3 iterations. Stratified folds aim to have even representation, or the number 

of observations, in each class. There were four classes, one for each command: up, down, left, right. Each 

fold was still unique, and we used a train/test split of 80/20. The number of observations in the training set 

ranged from 29-32, but we held the testing set constant at 8 observations (2 per class). One subject had a 

total of 24 useable observations, which resulted in a 2-fold cross-validation with 6 iterations and 4 

neighbors. Unusable observations occurred when the subjects’ attempts contained one or no inputs and 

accounted for 1.51% of the total attempts. 

 We compared the average classification accuracy across the Control, No Timeout, and Individual 

Classification conditions and hypothesized that removing the predetermined timing requirements would 

yield better classification accuracy. We also calculated the average increase in accuracy from the Control 

to No Timeout conditions, and the No Timeout to Individual Classification conditions. The reserved test 
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dataset was used for another Individual Classification accuracy estimate. Results are reported as (µ ± s) 

unless shown otherwise. 

 

 Results 

We ran a two-factor mixed model with a between-subjects factor of Group and a within-subjects factor of 

Condition. Significant effects (p < 0.05) were analyzed with the Tukey HSD test with the Satterthwaite 

method to calculate the degrees of freedom. The main effect of Condition was significant (F(2,88) = 31.40, 

p < 0.0001), but not Group (F(3,44) = 1.86, p = 0.15) nor the interaction between Group and Condition 

(F(6,88) = 0.83, p = 0.55). The Tukey test for Condition showed significant differences for each pairwise 

comparison. The classification accuracy improved from the Control to No Timeout (p < 0.0001), Control 

to Individual Classification (p < 0.0001), and from the No Timeout to Individual Classification (p = 0.04). 

The Conditions achieved average classifications accuracies of 66.15 ± 26.31% for the Control, 76.56 ± 

21.52% for No Timeout, and 81.58 ± 20.30% for Individual Classification; the results are shown in Figure 

17. 

 

 

Figure 17. Classification Accuracy across Conditions. The box-and-whiskers plot displays the median value and 1st 
and 3rd quartile within the box. The whiskers extend up to 1.5x of the 1st and 3rd quartile (not exceeding the maximum 
and minimum data points). Data points outside the whiskers are depicted as markers. 
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 Classification accuracy results varied as some subjects scored 100% accuracy in the Control and 

did not benefit from the other Conditions, whereas other subjects had large performance gains with loosened 

timing requirements. For the No Timeout condition, the increase in percentage points ranged from 0.00 to 

50.00 points with an average increase of 10.42 ± 13.71 points. The Individual Classification condition 

inherently included the No Timeout consideration because both did not impose the timeout restriction (see 

Table 4). The change in classification accuracy percentage points from No Timeout to Individual 

Classification conditions ranged from -12.29 to 36.46 points with an average increase of 5.02 ± 10.29 

points. For the cases where the classification accuracies decreased from No Timeout condition (N = 17), 

the Individual Classification condition classification accuracies were either worse (N = 8), better (N = 8), 

or the same (N = 1) as compared to the Control condition. 

 The reserved test dataset also provided another classification accuracy estimate for the Individual 

Classification condition. The resulting accuracy across groups was 85.00 ± 18.36%. These results were 

similar to the classification accuracy estimated from the training dataset with cross-validation. The 

classification accuracy from the training dataset was used in the statistical analysis because it was estimated 

over more observations and may be more accurate. 

 

 Discussion 

The results supported our hypothesis that removing predetermined timing requirements would yield better 

classification accuracy and indicated that most subjects could potentially benefit from customized adaptive 

elements in our sEMG command system. The main effect of Group was found to be not significant; 

therefore the training history did not appear to be a factor in the outcome of the conditions, and was 

consistent with our prior results of no significant performance differences after training [3]. 

 The No Timeout condition either benefited (N = 33) or did not affect (N = 15) the classification 

accuracy. Within the combined Test 2 and 3 datasets across groups, the timeouts accounted for 16.98% of 

the total attempts. It was interesting to note that timeouts by Group occurred in 15.63%, 5.42%, 17.92%, 
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and 28.96% of the attempts for the Repetition, Concurrent Feedback, Terminal Feedback, and Adaptive 

Threshold groups, respectively. The Concurrent Feedback group may have been more attuned to the timeout 

requirement because the visual aid inherently gave information about the timing between inputs. The 

Adaptive Threshold group may have struggled learning the timing with the changing threshold. The 

timeouts had a mean of 0.41 s and median of 0.31 s. For an online implementation, the timeout could be 

modified to the subject’s maximum timeout or 95th percentile based on a Command Accuracy Test 

administered after a training period. 

 The Individual Classification improved the estimated classification accuracy for most subjects. 

Figures Figure 18 through Figure 20 display the input durations performed for the target commands, which 

have a similar layout to Figure 16B with lines indicating the predetermined input duration. The subject’s 

data shown in Figure 18 demonstrates the benefit of Individual Classification when command inputs are 

precise but stray from the prescribed timing. In this case, the subject saw no improvement from the Control 

condition to the No Timeout condition which both had classification accuracies of 95%. Instead, the subject 

benefited in the Individual Classification condition with flexible input durations and improved to a 100% 

classification accuracy. In contrast, some subjects’ estimated classification accuracies remained low or 

decreased in the Individual Classification condition. One possible explanation may be that lower 

performing subjects inconsistently produced inputs, such that the classes are not easily separable, and the 

nearest neighbors mostly belong to other classes. This case is shown in Figure 19 and there is limited 

separation or clustering. Alternatively, high performers may have produced inputs within the prescribed 

timing, but the observation occurred closer to other classes. In Figure 20, the subject performed with 100% 

classification accuracy in the Control condition, was unaffected by the No Timeout condition, and had a 

decrease in classification accuracy to 97%. The encircled observation fell within the correct quadrant of the 

plot, but too close to neighbors of a different class causing the misclassification. 
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Figure 18. Example of a higher performing subject with classification accuracies of 95% (Control), 95% (No 
Timeout), and 100% (Individual Classification). The encircled points show attempts that did not have the correct input 
duration but remained close to their classes. 
 

 
 

Figure 19. Example of a lower performing subject with classification accuracies of 30% (Control), 35% (No Timeout), 
and 41.67% (Individual Classification). The encircled points show attempts that did not have the correct input duration 
and/or were surrounded by other classes. 
 

 
 

Figure 20. Example of a higher performing subject with classification accuracies of 100% (Control), 100% (No 
Timeout), and 96.88% (Individual Classification). The encircled point had the correct input durations but was closer 
in distance to the Up class causing a misclassification. 
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 In our study, the original classification accuracy ranged from 5.00% to 100.00% with low and high 

performers within the subjects. Classifiers and adaptive features may improve the average performance but 

should target individuals that would benefit from customized timing requirements. For example, the subject 

whose data were depicted in Figure 18 did not benefit from removing the timeout restriction but improved 

with Individual Classification. For Individual Classification, the average classification accuracy of 81.58% 

was comparable to Benchabane et al. [111] results of 87.8% average accuracy. Also, eleven of our subjects 

achieved classification accuracies of greater than 95%, similar to the LDA average accuracy of 95.12% and 

the ALDA classifiers with 95.45% to 100.00% accuracy [108]. Our results suggested that a customized 

approach to implementing classifiers and adaptive features could improve performance of already trained 

subjects. This customization could occur after a training period using the data from a Command Accuracy 

Test to determine the best approach for the subsequent online implementation. 

 This work used data already collected from subjects in an experiment not designed to test this 

hypothesis. The two main limitations of this study were the small dataset and post-data collection analysis. 

The maximum of 40 total observations was smaller than suggested by other researchers, who recommend 

starting with 75 observations per class [113]. The limited dataset for individuals also prevented a robust 

model selection step, but analysis done at the group level indicated a preference for KNN and selected 

parameters. Overall, the classification accuracy estimates indicated the potential benefits for individual 

subjects. 

 These are potential benefits. It is unclear whether an online adaptive sEMG command system that 

allows for custom timing would yield improved accuracy. How the subject would adapt in real-time is also 

unknown. Another possibility would be to use the adaptive component to train the subjects to become more 

efficient (e.g., smaller command time). Overall, these results are encouraging to pursue a future study to 

address these questions. 
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 Conclusions 

The analysis conducted in the study presented in this chapter indicated that potential performance 

improvements for fully trained subjects may be possible by incorporating adaptive features and/or 

classifiers for customized timing. In a future validation study, the customized timing should take into 

consideration the individual’s performance. Since the analysis was conducted with previously collected 

data and it was not possible to test the conditions online, the realized benefits remain unclear. Furthermore, 

it was not evident that the timing requirements should change for the training period. In both Chapter 2 and 

Chapter 3, the subjects learned to vary sEMG input durations to select commands and perform the task to 

a high degree of success by the end of the experiment. Therefore, it appears reasonable to continue to use 

0.5 s to separate short and long inputs. 

 A factor that can limit the efficiency of a sEMG command system based on a serial pattern of short 

and long inputs is the minimum command time. Any commands that include a long input require an input 

of at least 0.5 s in duration to communicate “long.” After an initial training period, it may be beneficial to 

use an adaptive feature to coach the subjects towards shorter inputs, but with enough precision that short 

and long inputs are clearly distinct. Based on the findings of Chapters 3 and 4, pairing an adaptive feature 

with concurrent bandwidth feedback could result in decreased command time. It would be interesting to 

study the upper communication rate limits in subjects.  
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Chapter 5 

Myoelectric Control of Robot During Coordination Task 

Preface 

The goal of the study conducted in this chapter was to perform an in-person, pilot study for a coordination 

task with myoelectric control of a collaborative robot that could function as a supernumerary robot. The 

coronavirus pandemic impacted the study schedule, such that I conducted a pilot study with a limited 

number of subjects and reduced the in-person duration of the study. I used the data from Chapters 2 and 3 

to estimate the number of trials, employed concurrent feedback for efficient training, and developed a 

coordination task that used the subject’s two natural hands and a third robotic “hand” controlled via sEMG 

on the subject’s leg. 

 

5.1 Introduction 

Robots are used in a wide variety of applications including disaster response and minimally invasive 

surgery. In these cases, robots augment the capability of humans by extending their presence into an extreme 

or challenging environment. The research interest in human-robot collaboration has grown exponentially 

[114] and a related field has recently emerged: supernumerary robots (SRs). SRs are characterized by 

creating an additional, kinematically independent limb or appendage that may serve various functions. Of 

particular interest is SRs’ potential to reduce risk and increase capability in challenging environments by 

providing a third, robotic arm for manipulation. The current state-of-the-art in SRs has focused on the 

development of the robot and less research has been done on the user interface and performance of the 

human-SR system. The experiments conducted with humans and SRs to complete a task have focused on 

specific use cases and tasks that do not provide as much detail on the human-robot interaction. 

 SRs are distinct from other assistive robots and comprise a relatively novel field of research. 

Exoskeletons augment the abilities of existing limbs, prosthetics restore functionality by replacing lost 
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appendages, and supernumerary robots can create limbs that are kinematically independent from the user. 

SRs may manifest as arms [115]–[120], legs [121], [122], or fingers [33], [123]–[127]. Current 

supernumerary robots have several potential use cases: body bracing [115], [121], [122], overhead tasks 

[116], [117], grasp assistance [123]–[125], and manipulation tasks [118]–[120] (a more detailed proposed 

usage taxonomy of a wearable supernumerary robotic arm may be found in Ref. [128]). The research in this 

field has centered on device development and proof-of-concept but has generally not focused on the human 

interface and human-robot performance. 

 According to the classification framework proposed by Leigh et al. [129], human-robot systems 

that can be considered a single unit, may be classified by type of support and control methods. SR 

development has focused on indirect control, or “Pseudo-Mapping” and “Shared Control” in Leigh’s 

framework, by predicting the human’s intent (for examples see Refs. [116], [117], [123]). In contrast to 

using prediction to identify intent, there has also been some work on direct control of SRs (i.e., “Direct 

Control”). A supernumerary finger used a combination of hand gestures to control the position and sEMG 

to modulate the grip strength [33], and a subsequent version of the supernumerary finger incorporated 

buttons and haptic feedback [124]. Another SR, a supernumerary arm, was commanded by foot position 

and toe flexion to directly control 6-DOFs [119]. The selection of the control method, whether direct or 

indirect, may depend on the application including the role of the SR in the task. However, there has been 

little available guidance or knowledge regarding control methods and task allocation due to the novelty of 

the field. Therefore, this study aimed to focus on direct control for a primary task, which has not been well-

studied in the field. 

 Direct control SRs that use BoMIs need to use an existing part of the body, which may seem counter 

to the concept of SRs creating a limb. However, for tasks or applications where part of the body would not 

otherwise be used, it provides an opportunity to reallocate resources. For example, the lower limbs are 

available in seated tasks as demonstrated in [119] for the foot control of a 6-DOF SR. Furthermore, 

coordination between the hands and legs occurs in a variety of skilled tasks, such as the use of foot pedals 

by dentists and doctors. For example, in a virtual laparoscopic task at least one hand worked in coordination 
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with the foot for 50% of the task time [130]. Alternatively, instead of controlling an instrument, the foot 

could also be represented as a hand. Abdi et al. compared two-handed and three-handed performance during 

a virtual task where subjects needed to catch falling objects [131]. The subjects controlled the third hand 

with their leg. The results showed that subjects missed fewer objects in the three-hand paradigm as task 

difficulty increased [131]. A similar study assessed coordination between the hands and legs for various 

virtual tasks and deemed the control strategy feasible for SRs [132]. However, the experiment did not 

include any robot simulation or hardware. Overall, the incorporation of foot control for SRs has precedent 

from other fields (refer to Ref. [133] for review of foot control in HCIs).  

 The purpose of this pilot study was to incorporate a direct control BoMI with a SR and assess the 

human’s ability to coordinate between their hands and the lower limb while controlling the SR (the robotic, 

third hand). The task was designed such that all three hands were needed to successfully complete the task. 

Simultaneous coordination of the hands was the goal communicated to the subjects, but it was possible to 

operate each hand independently. Instead of designing our own SR, we used a commercial, collaborative 

robot. We also did not constrain the SR to be physically attached to the human, since a wearable SR may 

not be necessary for every application. This study addressed current gaps in direct control interfaces and 

limb coordination for SR applications.  

 

5.2 Materials and Methods 

5.2.1 Subject Recruitment and Demographics 

We designed a pilot experiment for preliminary investigation of the three-handed, coordination task with 

two natural hands and a robotic, third one. The protocol was approved by UC Davis Institutional Review 

Board, and adult participants were recruited from the university. Exclusion criteria included history of 

neurological/neuromuscular disorders, limitations on arm and leg mobility, and failing coronavirus-specific 

screening. We chose to limit the age range of the participants to 18 through 39 years old based on the risk 

rates published by the Centers for Disease Control and Prevention [134]. Participants had to show proof of 
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a negative coronavirus test and pass a coronavirus survey addressing symptoms and exposure risk on the 

day of their scheduled experiment session. 

 To further reduce the risk of coronavirus transmission, in addition to the coronavirus-specific 

screening, we remotely conducted the intake. At the start of the scheduled experiment session, the subject 

called the researcher to complete the coronavirus-specific screening. After passing the screening, the 

researcher reviewed the consent form with the subject; both the subject and researcher could view and sign 

the form online through DocuSign® [135]. Consented subjects then completed a pre-session survey to 

collect demographic information. The remainder of the experiment protocol occurred in-person at the 

research location. The in-person protocol consisted of experiment instructions, sEMG setup and calibration, 

a maximum voluntary contraction measurement, the task, a second maximum voluntary contraction 

measurement, and a post-session survey. 

 Four subjects consented to participate in this pilot experiment. The subjects ranged in age from 20 

to 25 years with an equal participation of females and males. One subject identified their ethnicity as 

Hispanic, Latino/a, or Spanish and race as Asian. The remaining subjects were not of Hispanic, Latino/a, 

or Spanish ethnicity and identified their race as White. Origin and race survey questions followed the 

guidance document provided by the Food and Drug Administration [136]. All subjects self-reported a right 

hand dominance, and leg preference was determined using the revised Waterloo Footedness Questionnaire 

(WFQ-R) [137]. The leg preference was used for sEMG electrode placement, and three subjects reported a 

right leg preference. The remaining subject indicated a similar preference between left and right, but a 

recent injury resulted in the selection of the left leg. The subjects had some prior experience that may have 

made them amenable to the experiment’s task. One subject had prior experience with myoelectric control, 

and all subjects played video games. Two subjects had significant prior experience with robots and the 

other two subjects had little to none, but all subjects answered that they thought they would be comfortable 

around robots.  
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5.2.2 Experiment Setup and System Architecture 

The pilot study aimed to observe coordination between two natural hands and a robotic, third hand 

controlled by sEMG from the leg. As this was our first experiment with this robot (UR5e, Universal Robots 

[138]), we decided to not allow direct, physical interaction. A robotic simulation task was originally 

considered but due to schedule constraints caused by the coronavirus pandemic, we opted to focus our 

efforts on myoelectric control with the physical hardware. Therefore, we used a computer-based task for 

indirect, physical interaction and direct myoelectric control and integration with the actual hardware. The 

overall experiment task software framework was created using AxoPy [99], which provides basic 

infrastructure to design and run myoelectric control experiments. Communication with the robot controller 

used the Universal Robots Real-Time Date Exchange (RTDE) interface [139] and leveraged the API created 

by the University of Southern Denmark (SDU) Robotics [140]. 

 The subjects completed a cursor-to-target task visualized on a desktop monitor. They used their 

natural hands to input keyboard commands to control the cursor in 2-DOFs and used their leg muscle to 

command the robot end effector position in the third DOF. The cursor position on the screen in the third 

DOF reflected the actual, scaled position of the robot’s end effector. The ConMed 1620 Ag/AgCl center 

snap electrodes were placed approximately 2.5 cm apart on the tibialis anterior below the lateral tibial 

condyle to measure the muscle activation and a reference electrode was affixed to the kneecap (see Figure 

21). The electrodes were placed on the preferred leg as indicated by the WFQ-R. As in the previous 

chapters, the sEMG signal acquisition followed [54] and was processed as described in [1], where the signal 

was sampled at 4096 Hz for 256-sample windows with a 4th order Butterworth filter (bandpass at 10 Hz 

and 500 Hz). The rms value for the window was normalized by each subject’s calibration value and put in 

a moving average filter (length 0.5 s) to yield a processed signal update rate of 16 Hz. Commands and 

position data were exchanged between the experiment computer and robot controller at 16 Hz. 
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Figure 21. Electrode Placement on Tibialis Anterior. Image modified from [141]. 

 

 During the in-person portion of the experiment, the subjects sat at a desk in front of a desktop 

monitor. Subjects were instructed to adjust the chair height, so their feet rested comfortably on the floor 

and their thighs were approximately parallel to the floor. The robot was positioned within the field of view 

and off to the right of the desktop monitor. The subject and robot were separated by an adequate distance 

and stanchions were used as a physical barrier marking the keep out zone. The layout of the experiment 

room is shown in Figure 22. 

 

 
Figure 22. Experiment Room Layout. 
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5.2.3 Coordination Task 

The subjects were informed during the experiment instructions that their task was to “move the cursor in 

three dimensions to select targets on a screen using three ‘hands’” with the goal of simultaneous movement 

in 3-DOFs. The subjects controlled the cursor motion using keyboard inputs with their hands and 

myoelectric control with their leg. Their left hands used keys a and d to move the cursor left and right along 

the x-axis, respectively. Each keypress increased or decreased the cursor speed in the x-direction meaning 

that a single press of key a would cause the cursor to continue moving left until either the cursor hit the task 

boundary and stopped, or a press of key d negated the leftward motion. The right hand manipulated the 

cursor motion along the z-axis, which was into and out of the screen. To show 3D motion in a 2D 

visualization, the cursor diameter decreased to show motion into the screen and the diameter increased for 

motion out of the screen. Key j decreased cursor diameter and key l increased the diameter. The cursor 

diameter was constrained within 0.15x and 2.45x of the original diameter. The subjects’ legs controlled 

robotic motion in the y-axis to move the cursor vertically. Similar to Chapter 2, the subjects needed two 

commands, up and down, and used two inputs. The first input selected the command and the second input 

resulted in forward motion for the duration that the processed sEMG signal remained above the threshold, 

𝑙!. A short input (≤ 0.5	𝑠) selected the “up” command and a long input (> 0.5	𝑠) selected the “down” 

command. Unlike our previous work [1], [2], the forward velocity was not proportional to the processed 

sEMG value, �̅�. The robot moved at a constant velocity and therefore so did the cursor in the y-axis. This 

decision was made to help ensure smooth robotic motion. The commands are summarized in Table 5. 

 The user interface included an information interface and a task interface for the cursor-to-target 

task (see Figure 23). The information interface contained a set of status lights, the command key, and an 

sEMG signal bar. The status lights indicated in which DOFs the cursor was currently in motion by turning 

from gray to green. These lights could be helpful when the cursor moved at a low velocity, especially in 

the z axis, and provided a different visual representation of the subjects’ goal, 3-DOF movement (i.e., keep 

all the status lights green). The subjects never had to memorize the cursor commands and could refer to the 
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command key. The sEMG signal bar displayed their current processed signal value as an overlaid dark gray 

bar. The light blue region and light pink region designated the rest area and active area, respectively.  

 

Table 5. Summary of 3-DOF Cursor Commands 

Axis Direction Command Input Method Leg/Hand 

x 
left a 

keyboard left hand 
right d 

y up short sEMG leg 
down long 

z in j keyboard right hand 
out l 

 

 In addition to the elements in the information interface, we used color feedback to provide 

additional information during the task. The cursor body had concurrent feedback to indicate the reception 

and interpretation of the sEMG signal (see Figure 3). The cursor body changed from black to a dark gold 

when the sEMG signal crossed the threshold; the color would change to light blue if the first input time 

exceeded 0.5 s to indicate a long input. The cursor body remained the color of the selected command during 

the second input. This concurrent color feedback was the same scheme as the manual rotate method in 

Chapter 2. The other two forms of color feedback applied to the target. In order to select the target, the 

cursor needed to be at approximately the same depth, which was represented by diameter. The cursor was 

considered at the same depth if difference in scale between the cursor and target diameters was within 0.10 

units. In preliminary testing, we tried a fixed percentage of the target diameter, but the margins were too 

small for far targets and too large for near targets. Since it could be visually difficult to estimate the cursor 

depth, we used color feedback on the target body to indicate when the cursor and target were at 

approximately the same depth. The target was nominally light purple and turned green when the cursor was 

at depth. In addition to placing the cursor at the same depth as the target, the subjects needed to dwell on 

the target for 1 s to select it. The target turned orange when the cursor selected the target. If the cursor was 
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not at the appropriate depth and overlapped with the target, the target would remain light purple. Table 6 

contains a list of the additional visual feedback elements. 

 

 
Figure 23. User Interface. The Task Interface is on the left-hand side, and the right-hand side contains the Information 
Interface. 

 

 The subjects completed 80 trials of the cursor-to-target task on the task interface. The task interface 

dimensions were normalized to have horizontal and vertical bounds of [-1,1] on a square, right-hand 

Cartesian coordinate system. At the beginning of each trial, the cursor started at the origin (i.e., center of 

the screen) with a diameter of 0.100. The cursor and target diameters were relative to the task interface 

dimensions. There were 16 unique target positions based on the target angle (45°, 135°, 225°, and 315°) 

and target diameter (0.025, 0.050, 0.150, 0.175), and all targets were positioned 0.80 units from the origin. 

A Block consisted of 4 trials and the subjects received a minimum 30 s break before starting the next Block; 

subjects could ask to rest longer. A set of four Blocks, or a Test, covered the 16 unique target positions in 

a pseudorandomized order. The five Tests each had the same pseudorandomized order of trials. The trials 

timed out after 30 s, which was based on preliminary testing. The total number of trials was determined by 

reviewing the results from Chapters 2 and 3, as well as our decision to reasonably minimize the duration 

of the in-person portion of the experiment due to coronavirus transmission concerns. 
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Table 6. Additional Visual Feedback During Task 

Object Nominal Color Feedback Color Purpose 

Cursor Black 
Dark gold Indicates short input / up command 
Bright blue Indicates long input / down command 

Target Light purple Green Cursor at target’s depth 
Orange Cursor selected target 

 

5.3 Analysis 

5.3.1 Coordination Metrics 

To assess coordination between the hands and leg driving the robotic hand, we calculated a coordination 

score and DOF activation. The coordination score was calculated for each trial and was the weighted 

average of the time spent with 0-, 1-, 2-, and 3-DOFs activated. For each time step, points were added in 

proportion to the number of active DOFs. For example, if there were no DOFs active the time step would 

be assigned zero points. If any 1-DOF was active, then one point would be awarded. Each additional DOF 

earned another point. A final coordination score of 1 meant that on average 1-DOF was active during the 

trial. Larger coordination scores would indicate better and more coordinated performance. The coordination 

score did not detail which DOFs were active, only the number of DOFs. The DOF activation metric 

provided a finer analysis of which DOFs were used and the relative percentage for each trial. The DOF 

activation metric measured the proportion of the trial time spent with 0-, 1-, 2-, and/or 3-DOFs activated. 

This metric was calculated for the overall comparison between all DOFs, as well as within 1-DOF and 2-

DOFs. For the DOF activation within 1-DOF, the metric assessed the proportion of the trial time that the x, 

y-, and z- axes were activated. The 2-DOF activation metric measured the proportion of trial time for xy, 

xz, and yz activation. These metrics were calculated for all trials, regardless of success. 

 

5.3.2 Task Metrics 

Two task metrics were used to evaluate performance, percent of successful trials and completion time. The 

percent of successful trials was calculated as the number of successful trials divided by the total number of 
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trials in a Test (16 trials). The completion time was only calculated for successful trials. Both metrics were 

averaged over each Test. 

 

5.4 Results 

The coordination metrics and task metrics were calculated for all trials regardless of success, except for 

completion time. Performance during unsuccessful trials may provide interesting insights different than 

successful trials, however, the number of unsuccessful trials decreased substantially starting in Test 3. 

Across subjects, there were 25 unsuccessful trials (40% of the total trials) in Test 1 and 9 unsuccessful trials 

(14% of the total trials) in Test 2. The remaining Tests had a total unsuccessful trial count of 8 trials. 

Therefore, it was difficult to make meaningful comparisons between successful and unsuccessful trials.  

 

5.4.1 Coordination Metrics 

The coordination score was calculated for each trial and averaged over all subjects per Test. As shown in 

Figure 24, the coordination score increased each subsequent Test with a slight decrease in the last Test. The 

average coordination scores (µ ± s) in order of Test were 1.61 ± 0.37, 1.76 ± 0.27, 1.86 ± 0.26, 1.96 ± 0.23, 

and 1.89 ± 0.25. The coordination scores ranged from 0.61 in Test 1 to 2.42 in Test 5. The individual subject 

scores (averaged over all their trials) ranged from 1.65 to 1.93. The subjects did have a variety of 

experiences that may have been helpful for this task, such as prior myoelectric control and video game 

experience. Interestingly, the one subject with prior myoelectric control experience did not have the highest 

average coordination score. The subjects appeared to perform similar to each other in terms of the 

coordination score. There did not appear to be noticeable changes in the coordination score per Test when 

the results were disaggregated by trial success, target angle, or target depth. The slight decrease in the 

coordination score from Test 4 to Test 5 did not appear to be attributed to muscle fatigue. Two subjects 

reported feeling some muscle fatigue in their feet, but their maximum voluntary contractions decreased by 

less than 12% from before the task to after the task and remained well above the threshold. 
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Figure 24. Coordination Score by Test. The coordination score is averaged across all subjects for each Test (16 trials). 
The shaded region shows the 95% confidence interval. 

 

 The coordination score improvements may be explained by increased 3-DOF activation and 

decreased 1-DOF activation, which was captured by the DOF activation metric (see Figure 25). The largest 

changes occurred for 1-DOF and 3-DOF activation between Test 1 and Test 4. The 1-DOF activation 

decreased by 14 percentage points and 3-DOF activation increased by 16 percentage points, which may be 

explained as the subjects decreasing their 1-DOF control and learning to increase their 3-DOF control. In 

contrast, the 0-DOF and 2-DOF activation remained relatively constant between Tests 1 and 4 with a 

difference in percentage points of 3 and 1, respectively. At most, these differences in percentages for 0-

DOF and 2-DOF activation account for less than 1 s of the trial. The changes across DOF activations from 

Test 4 to Test 5 translate to a time difference of less than 0.5 s. Therefore, the most meaningful changes in 

DOF activations occurred from Test 1 to Test 4 for the 1-DOF and 3-DOF activations. As with the 

coordination score, there did not appear to be noticeable changes in the coordination score per Test when 

the results were disaggregated by trial success, target angle, or target depth. 

 In addition to the overall activation proportion between DOFs, it was also of interest to understand 

which axes were active within DOFs. As seen in Figure 25, about half of the trial time was spent with 2-

DOFs activated. Additionally, 1-DOF was activated between 16% and 30% of the trial time. Together the 
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1-DOF and 2-DOF activations accounted for most of the trial time. Within the 1-DOF activation during a 

trial, the activation tended to originate from one of the hands with keyboard inputs (see Figure 26A). It was 

relatively uncommon for leg activation for 1-DOF activation, which occurred less than 10% of the time. 

For 2-DOF activation, the most likely pairing was for both hands together (xz-axes) for approximately 80% 

of the time (see Figure 26B). Coordination between the leg and left hand (xy-axes) occurred approximately 

16% of time in 2-DOF activation, whereas the leg and right hand (xz-axes) coordination accounted for less 

than 4% of 2-DOF activation time. This analysis increased understanding of which axes were activated 

within a particular DOF activation case. However, it was also of interest to compare all combinations of 

DOFs and axes to determine an overall activation ranking. Each possible activation combination was ranked 

and percentage differences less than 1% were not considered different due to the small absolute time 

differences. The resulting 2-DOF activation order was both hands (xz, 41%), all three limbs (xyz, 19%), the 

left hand (x, 12%), and the left hand-leg (xy), right hand (z), and no activation tied and each accounted for 

8%. The right hand-leg (yz) and leg only (y) were 2% of the time each. These results indicated that subjects 

tended to coordinate their hands followed by all three limbs. 

 

 
Figure 25. DOF Activation by Test. The DOF activation metric is averaged across each Test (16 trials). The shaded 
region shows the 95% confidence interval. 
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Figure 26. 1-DOF and 2-DOF Activation Breakdowns. The percentage of time  is within either the 1-DOF (A) or 2-
DOF (B) activation time and not for the entire trial time. The shaded area shows the 95% confidence interval. The 
results are averaged over all trials within a Test (16 trials). 

 

5.4.2 Task Metrics 

The percent of successful trials was calculated for each Test and generally showed improvement throughout 

the experiment (see Figure 27). By Test 3, all subjects successfully completed more than 90% of the trials, 

and there were no unsuccessful trials in Test 4. The trend followed the coordination score, where there was 

a small decrease in the percent of successful trials for Test 5. There appeared to be relatively large 

differences in this metric between subjects for Tests 1 and 2. One subject only successfully completed one 

trial in Test 1 and seven trials in Test 2. Another subject successfully completed seven trials in Test 1 and 

then successfully completed all trials in the remaining Tests. The early differences in percent of successful 

trials may provide evidence of individual learning rates, however, the number of subjects was too low to 

correlate with demographic factors. These results indicated that the number of trials was sufficient for 

learning how to complete the task. 

 The completion time continually decreased on average in each subsequent Test (see Figure 28). 

The completion time was only calculated for successful trials, and trials had a maximum time of 30 s. In 

Test 1, the subjects used most of the allotted trial time with an average completion time of 21.98 ± 3.85 s 
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(µ ± s). The completion time decreased to less than half of the maximum trial time by Test 5 (11.84 ± 1.62 

s). Although completion time looked to be leveling off, it was not clear if the completion time plateaued in 

Test 5 and it could be interesting to observe this metric over more trials. These results combined with the 

percentage of successful trials supported the reduced trial times compared to Chapter 3 (60 s maximum 

trial time). 

 

 
Figure 27. Percent of Successful Trials. Results are averaged over the 16 trials within a Test. The shaded region 
indicates the 95% confidence interval. 
 

 
Figure 28. Completion Time by Test. The shaded area indicates the 95% confidence interval. 
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5.4.3 Additional Analysis 

The coordination metrics and task metrics provided a high-level assessment of the average subject 

performance; however, it was of interest to examine trial data in more detail. After reviewing data from 

low- and high-performance trials, one case was selected to highlight some of the changes in subject cursor 

control. The data shown in Figure 29 compares the normalized cursor velocities in each axis for the same 

target in Test 1 (Figure 29A) and Test 5 (Figure 29B). In the Test 1 trial, the subject moved the cursor 

primarily one axis at a time, except towards the end of the trial. The trial was unsuccessful and timed out 

with no inputs in the z-axis (i.e., depth/in and out motion). Directional corrections were made in both the x- 

and y- axes, as evidenced by the changing sign of the cursor velocities. In contrast, the trial data from Test 

5 showed precisely timed inputs with minimal corrections. The subject correctly estimated the duration for 

the y-axis input, which was myoelectric control. The x-axis motion continued to the right once initiated 

with a gradual decrease and a minor correction to increase the velocity. The motion in the z-axis had the 

latest onset and smallest velocity but appeared to be precisely estimated to reach the target depth. The 

subject successfully completed the trial in 7.13 s. The subject may have been able to improve performance 

by holding the x-axis cursor velocity at the maximum for longer, ramping down the velocity quicker, and 

having an earlier onset for the z-axis cursor motion. Compared to the Test 1 trial data, it was evident that 

the subject improved in their precision and estimation of the cursor velocity in each axis. This subject had 

the highest coordination score averaged across all Tests and provided an example of the improvements that 

can occur throughout the experiment. 

 The subjects were provided with instructions that explicitly stated the goal of 3-DOF coordination. 

However, prior to the pilot study, it was not clear if subjects would aim to continually improve their 

coordination, or if they would choose to maximize the cursor velocity and move in 1-DOF at a time. The 

coordination score results (see Figure 24) and DOF activation results (see Figure 25) confirmed that subjects 

did try to improve their coordination. Concurrently, their percent of successful trials increased, and 

completion time decreased. We tested the correlation between completion time and coordination score 

using the Pearson correlation coefficient, 𝑟, for all successful trials. The resulting value, 𝑟 = −0.50, 
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indicated a moderate, negative correlation between completion time and coordination score (see Figure 30). 

Increased coordination scores had a moderate tendency to also correlate with decreased completion times. 

These results provide evidence that increased coordination also correlated with increased efficiency when 

completing the task.  

 

 

Figure 29. Cursor Velocities During a Trial. Normalized cursor velocities are shown for each axis for the selected trial 
(diameter = 0.05, angle = 45°) in Test 1 (A) and Test 5 (B) for the same subject. The trial in Test 1 was not successful. 

 

 
Figure 30. Completion Time versus Coordination Score for all Successful Trials. 
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5.5 Discussion 

The results from this study showed increased coordination and task performance over its duration. The 

subjects were instructed to aim for 3-DOF coordination. The average coordination score in Test 4 and 5 

was approximately a 2, which can be interpreted as an average of 2-DOF control during the trial. The goal 

was for subject to achieve 3-DOF coordination, and the highest coordination score was a 2.42 in Test 5. 

The average 3-DOF activation was 19% of the trial time. All subjects responded affirmatively when asked 

if they felt that “…you coordinated your hands and leg well.” It may be beneficial in a future study to 

encourage subjects to increase their 3-DOF coordination. This encouragement could be achieved by 

showing the subjects their coordination score during or after each trial to give them a quantitative 

assessment of their performance. Another option would be to only allow cursor motion when all 3-DOFs 

are active as a training tool. This restriction could be removed during a subset of trials to evaluate their 3-

DOF coordination retention. 

 The cursor and target both employed color feedback to provide additional information to the 

subjects during the task. Three of the subjects felt that the cursor color changes helped them confirm the 

command selection prior to cursor motion. The remaining subject said they largely ignored the color 

feedback and focused on resulting cursor motion. All subjects agreed that the target color feedback for 

depth aided them in aligning their cursor with the target. One subject further detailed that the target color 

feedback enabled them to time their actions. In contrast, the subjects minimally used the status lights and 

sEMG signal bar on the Information Interface. This information was not particularly surprising since it was 

expected that the subjects would allocate most of their visual attention to the Task Interface. However, the 

additional information was available as needed and the subjects did use the information occasionally to 

better understand myoelectric control (e.g., confirmation of crossing the threshold) and axes statuses. 

 This pilot study provided insights regarding the task design. The number of trials and trial duration 

was selected based on preliminary testing and the results from Chapters 2 and 3. The results from the task 

metrics generally support these selections for the given task design. As discussed, it would be of interest to 
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revise the training design to encourage increased 3-DOF coordination as compared to the modest 

improvements in coordination seen in this study. A task with direct, physical interaction may provide 

additional motivation and more obvious connection to the robot. Another change that should be considered 

in future studies is the muscle site. The tibialis anterior was originally selected due to its good signal quality 

and use in prior experiments (e.g., [102]). Subjects primarily flexed their foot or raised their toes to activate 

the muscle, and some reported fatigue in their foot. Overall, this study provided initial results and insights 

for myoelectric control of a collaborative robot during a computer-based task. 

 

5.6 Conclusions 

This pilot study expanded upon our previous work and demonstrated the sEMG system with a collaborative 

robot. The knowledge gained from previous studies helped us devise a task with a reasonable level of 

difficulty. Subjects appeared to follow the instructions and tried to coordinate their inputs, but the 3-DOF 

coordination remained relatively low. Different options have been discussed for encouraging increased 3-

DOF coordination in future studies. Unlike previous chapters, the velocity controlled by sEMG remained 

constant. It would be technically possible to implement a proportional scheme, but some initial work should 

be done to better understand the relationship between the sEMG signal characteristics, the communication 

lag time, and the robot’s acceleration settings. The robot performed in a reliable and safe manner, which 

built confidence for future experiments with direct interaction. This study focused on coordination and 

learning how to integrate a collaborative robot with myoelectric control. The metrics centered on 

coordination and task performance, and the other metrics we have previously used to address interaction 

factors like trust and cognitive workload should be incorporated in future studies. Although the robot did 

not physically interact with the subjects, the robot was integrated with the experiment software and 

established a basic infrastructure for future robotic myoelectric control experiments. Overall, this pilot study 

provided some interesting and encouraging results upon which to build more complex experiments in the 

future.   
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Chapter 6 

Summary 

The studies described in this dissertation explored the use of a single-site sEMG system at three different 

muscle sites for communication with a computer and robot that could be used for different applications. In 

Chapter 2, we developed two cursor control methods intended for high-level spinal cord injury patients, 

where available muscle sites were limited to the head and neck areas. For patient comfort, it was desirable 

to minimize the number of sensors and their intrusiveness while maximizing the functionality of the control 

method. Accordingly, both of our control methods used a single, noninvasive, surface, differential EMG 

sensor at the temporalis muscle that controlled a cursor in two DOFs. Fourteen inexperienced able-bodied 

subjects completed a Fitts’s law-based cursor-to-target task using both control methods (“auto-rotate” and 

“manual rotate”). Subjects evaluated and compared performance between the two control methods, which 

both enabled the cursor to move in 2-DOFs. The control methods differed in the level of user control, where 

one allowed direction manipulation in 1-DOF and 2-DOFs in the other. Subjects also completed pre- and 

post-session surveys and the NASA-TLX for cognitive workload assessment. In general, subjects’ 

performance improved with subsequent sessions within each control method. Subjects achieved a higher 

throughput (better performance) in the auto-rotate method, had lower workload scores, and tended to prefer 

this control method. However, about half the subjects felt the manual rotate method allowed them more 

control over cursor behavior. Our results suggested that a viable cursor control method can be achieved 

with only a single muscle site. 

 After demonstrating the feasibility of this sEMG control method, we increased the number of 

commands from two to four in Chapter 3. We developed a control task driven by subject-activated sEMG 

signals to observe the effects of automated training methodologies on performance, cognitive workload, 

and trust. Forty-eight subjects learned to use a sEMG-based command system to perform a Fitts’s law-

based cursor-to-target task with 120 training trials and 40 evaluation trials. Subjects were divided into four 
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groups: Control, Concurrent Feedback, Terminal Feedback, and Adaptive Threshold. The Control group 

trained and learned through repetition using the visual feedback of the cursor position. The Concurrent 

Feedback group received additional concurrent visual feedback during command input, and the Terminal 

Feedback group had supplementary visual feedback after command input. The Adaptive Threshold group 

did not have any additional feedback, but experienced changes in the cursor control designed to induce 

adaptation. Our results indicated that 1) additional concurrent and terminal visual feedback improved task 

performance, decreased cognitive workload, and increased trust during training, and 2) the groups 

converged in their command proficiency by the end of training.  

 Chapter 3 established how to train novice subjects on this expanded sEMG system in a single 

session. However, there was an outstanding question regarding how to improve performance in trained 

subjects.  The aim of the study in Chapter 4 was to apply classifiers and adaptive features to sEMG signals 

obtained from subjects who were trained to perform cursor-control tasks (Chapter 4 reused data collected 

in Chapter 3). We had developed a robust sEMG command system that relied on training the human rather 

than training a classifier, thereby enabling the human to correct for signal changes. The purpose of the study 

was to understand whether adding an adaptive timing feature and classifiers to our sEMG system could 

improve the performance of trained subjects. A Command Accuracy Test assessed subject proficiency at 

producing commands when prompted. The command classification accuracy was calculated for a control 

condition and two conditions that reflected possible adaptive features: the timing between sEMG signal 

inputs and a subject-specific classifier. The overall results showed significant improvements in command 

classification accuracy for both adaptive components compared to the control (𝑝 < 0.0001). However, 

some initially high performing subjects did not receive as much benefit. These results suggested that 

customizing the sEMG command system for individual subjects could improve their performance. Future 

work should investigate the effect of customizing the system for performance and co-adaptation, as well as 

using the adaptive features as a training tool to further improve command accuracy and efficiency. 

 For the final study (Chapter 5), we incorporated the knowledge gained in the previous studies to a 

three-handed coordination task with a collaborative robot. Four subjects participated in this pilot study and 
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completed 80 cursor-to-target trials. The subjects used their two natural hands to control a cursor on a screen 

in 2-DOFs and used their leg with sEMG to control the robotic hand. The robotic hand controlled the cursor 

in the third DOF. We calculated two metrics to assess coordination, the coordination score and the DOF 

activation. Subjects improved in the coordination score and DOF activation throughout the study duration. 

The subjects increased the percentage of trial time with 3-DOFs active and correspondingly decreased 1-

DOF activation. The results indicated that subjects learned how to improve their coordination, while 

successfully completing trials and decreasing their trial completion time. The subjects tended to coordinate 

most of the time with their hands (41%) followed by all three hands (19%). Future studies should focus on 

increasing the proportion of 3-DOF coordination. 

 Overall, these studies showed that subjects were able to use the sEMG system by activating muscles 

at their temple, forearm, and lower leg. We demonstrated that the sEMG system can be expanded from two 

to four commands, and the efficacy of using concurrent feedback to train users on the expanded commands. 

The cursor-to-target tasks provided a consistent paradigm to assess the subjects’ performances with various 

metrics related to efficiency and accuracy. These studied established that subjects can learn less intuitive 

myoelectric command systems in a single session, demonstrating that allocating relatively more learning to 

the human as opposed to the machine is a viable strategy. Future studies should explore how to optimize 

performance over multiple sessions and assess the abilities of the subjects to adapt to signal non-stationaries 

that occur session-to-session. Overall, this dissertation research has provided evidence of human learning 

and training for single-site sEMG, and the infrastructure for future research investigations. 
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APPENDIX A 

Experiment Protocol for Chapter 1 

 

The diagram illustrates the experiment protocol for both the auto-rotate and manual rotate methods. Group 
1 started with the auto-rotate method and then proceeded to use the manual rotate method. Group 2 used 
the manual rotate method before the auto-rotate method. 
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APPENDIX B 

User Interface Displays for Different Training Methodologies for Chapter 3 

 

The signal and user interface illustrates the relationship between the signal input at particular times and the resulting 
changes in the user interface. All groups are shown for completeness, although there are no dynamic, visual elements 
for the Control and Adaptive Threshold groups. The varying threshold for the Adaptive Threshold group is not shown 
in the signal plots. All possible visual elements are shown for the Terminal Feedback group. For better visibility of 
the cursor and target, the user interfaces are not to scale. The signal plot is generic and is not specifically showing 
short or long inputs. 
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Feedback indicates 
signal reception. 
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APPENDIX C 

Modified Bedford Workload Scale for Chapter 3 

 

The subjects refer to the below flow diagram [142] when rating their cognitive workload every 10 trials 
(a.k.a. a Block). 

 




