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Abstract

Recent biogeographic and evolutionary studies have led to improved under-
standing of the origins of exceptionally high plant diversity in the California
Floristic Province (CA-FP). Spatial analyses of Californian plant diversity
and endemism reinforce the importance of geographically isolated areas of
high topographic and edaphic complexity as floristic hot spots, in which the
relative influence of factors promoting evolutionary divergence and buffer-
ing of lineages against extinction has gained increased attention. Molecular
phylogenetic studies spanning the flora indicate that immediate sources of
CA-FP lineages bearing endemic species diversity have been mostly within
North America—especially within the west and southwest—even for groups
of north temperate affinity, and that most diversification of extant lineages in
the CA-FP has occurred since the mid-Miocene, with the transition toward
summer-drying. Process-focused studies continue to implicate environmen-
tal heterogeneity at local or broad geographic scales in evolutionary diver-
gence within the CA-FP, often associated with reproductive or life-history
shifts or sometimes hybridization.
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1. INTRODUCTION

The California flora provides an outstanding system for exploring patterns of biodiversity and the
contributions of dispersal and diversification to the assembly of a regional flora. California has over
6,500 native minimum-rank vascular plant taxa (species, subspecies, and varieties), >25% of which
are endemic (Baldwin et al. 2012). The isolated and young Mediterranean-like climate of much
of California coupled with its dynamic geological history and diversity in substrates, topography,
and climates have been implicated in extensive evolutionary activity of the flora; at the same
time, long-term environmental stability of some areas has been inferred to account for substantial
paleoendemism (e.g., Stebbins & Major 1965, Raven & Axelrod 1978, Harrison 2013). California
is also unusual in the close correspondence between a major biotic region (the California Floristic
Province or CA-FP; Howell 1957) and a political unit, allowing pursuit of questions of basic
evolutionary biology and immediate conservation importance in parallel (in the United States, only
Hawaii has a closer alignment of biogeographic and political boundaries). Improved understanding
of the evolutionary history of the flora and of areas of high diversity and endemism are critical for
conservation planning in California, where urban/agricultural development, invasive organisms,
and climate change pose increasing challenges to biodiversity protection (e.g., Loarie et al. 2008)
and where protected areas do not encompass important floristic components (e.g., Kraft et al.
2010).

California contains a higher diversity of native and endemic vascular plant taxa than other states
or provinces in North America north of Mexico (Kartesz 2013) and includes most (∼88%) of the
exceptionally diverse CA-FP (Howell 1957, Raven & Axelrod 1978). The CA-FP is recognized
by Conservation International as the only North American area mostly north of Mexico that
ranks among the top 35 global biodiversity hot spots. Those hot spots collectively have been
estimated to contain >50% of Earth’s vascular plant species but represent only about 2.3% of
the Earth’s surface, in reference to intact remaining habitat (Mittermeier et al. 2011). Areas of
Mediterranean-like climate worldwide, including the CA-FP, central Chile, southern Australia,
South Africa’s Cape Floristic Province, and the Mediterranean Basin, are among those hot spots
with unusually high plant diversity and endemism in comparison with most other temperate floras.

Major climatic and dispersal barriers have isolated the CA-FP for millions of years and
required that colonizing plant lineages disperse there across unfavorable terrain, undergo climatic
adaptation, or both (Ackerly 2009). The climatic isolation of the CA-FP is on a continental scale;
the nearest other Mediterranean-like climatic area, in central Chile, is more than 8,000 km away.
Limited long-distance dispersal between central Chile and the CA-FP within the time frame of
Mediterranean-like climates in both areas has not made a sizable contribution to the assembly of
the California flora (see Wen & Ickert-Bond 2009). The CA-FP is bounded by the Pacific Ocean
to the west, an unbroken series of high mountain ranges (the Cascade, Sierra Nevada, Transverse,
and Peninsular ranges) running from Oregon to Mexico to the east, the wetter and cooler Vancou-
verian Province to the north, and the dry Sonoran Desert to the south. The Mediterranean-like
climate of wet, mild winters and dry, hot summers that dominates the CA-FP gives way, in eastern
California, to cold desert conditions of the Great Basin and, further south, to the warmer Mojave
and Sonoran desert environments. As noted above, California’s complex geological and climatic
history, and diverse topographic and edaphic conditions, has been implicated in in situ diversifi-
cation and resultant neoendemism as well as persistence of ancient taxa or paleoendemics within
environmentally stable or equable refugia (Raven & Axelrod 1978). Early attempts to understand
the importance of such ecological and biogeographic factors in diversification of Californian plants
led to major progress in plant evolutionary biology in general, through experimental studies at
the interfaces of ecology, taxonomy, and genetics (e.g., Stebbins 1950, Clausen 1951, Kruckeberg
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1954), and have made the flora a famous and continuing subject for studies of plant evolutionary
processes and patterns (e.g., Carlquist et al. 2003, Patterson & Givnish 2003, Angert et al. 2008,
Anacker & Harrison 2012, Yost et al. 2012, Anacker & Strauss 2014). Here, I review (a) regional
patterns of native vascular plant diversity and endemism in California, with an emphasis on the
CA-FP; (b) phylogenetic evidence on origins and assembly of the CA-FP flora in general; and
(c) examples of evolutionary processes that have contributed to floristic richness in the CA-FP. The
vast wealth of data and literature on these topics warrants a book-length treatment, as provided
by Raven & Axelrod (1978), who inspired this relatively limited presentation of mostly recent
findings.

2. SPATIAL PATTERNS AND ENVIRONMENTAL CORRELATES OF
ENDEMISM AND DIVERSITY IN CALIFORNIA

2.1. Classic Syntheses

Stebbins & Major (1965) were among the first to take a flora-wide approach to understand
evolution and assembly of California’s vascular plant diversity by examining patterns of endemism
at different geographic scales across the entire state. Their influential work resulted in recognition
of floristic subdivisions within California that they delineated to conform roughly to regions
of concentrated species-level endemism. The impact of their system is in part evident from the
resemblance of those floristic areas to currently recognized subdivisions of California (see Baldwin
et al. 2012). Stebbins & Major’s (1965) analysis also resulted in conclusions about regions of high
paleoendemism, and endemism in general, within the state. Based on their sampling of 70 large-
to medium-sized genera and 64 putatively relict genera of Californian vascular plants, they found
that endemic species were primarily concentrated in the three coastal subdivisions of California,
with increasing endemic diversity progressing from north to south. Relicts (paleoendemics)
were at highest frequency in northwestern California (Siskiyou-Trinity mountain area), where
relatively mild Pleistocene conditions prevailed, and in far southern California along the western
and northern margins of the Sonoran Desert. Lack of phylogenetic data at the time required the
considerable but necessary assumption that relicts comprised mono- and ditypic genera that are
largely or entirely confined to the state or isolated species with disjunct closest relatives elsewhere
in North America or outside the continent. These patterns of endemism and others, including
those involving neopolyploids (apoendemics), their presumed diploid relatives (patroendemics),
and paleopolyploids, were explained biogeographically within the context of Tertiary Geoflora
concepts, such as the Arcto-Tertiary and Madro-Tertiary geofloras, in the absence of an explicitly
phylogenetic framework.

Raven & Axelrod (1978) extended Stebbins & Major’s work greatly by expanding the scope of
discussion to encompass the entire vascular flora, rather than a subset of groups, and by giving
more attention to edaphic endemism (restriction to particular substrates) and especially serpentine
exposures, where ∼10% of Californian endemic plant taxa are restricted (Kruckeberg 1984). They
also addressed modes of evolution, drawing on the wealth of biosystematic data for California
plants available by then, with detailed accounts of exceptionally diverse genera and families.

2.2. Insights from Recent Floristic Analyses

More recent analyses of floristic endemism or diversity in California have attempted to refine
Stebbins & Major’s (1965) and Raven & Axelrod’s (1978) findings by examining patterns at finer
geographic and ecological scales. Richerson & Lum (1980), for example, used multiple regression
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analysis to assess the importance of particular climatic or topographic variables on vascular plant
species diversity (not just endemics) throughout the state. In general, they found that climatic
factors were the strongest predictors of elevated diversity, especially mean precipitation. Using
the same subcounty regions, Qi & Yang (1999) examined correlation coefficients between native
species richness (not just endemics), on a per genus or per family basis, and elevational means or
standard deviations to conclude that elevational or habitat heterogeneity was the most important
determinant of plant diversity in Californian environments. Thorne et al. (2009) used a finer-
scale geographic system of 228 units to examine patterns of endemism and native diversity of
species, subspecies, and varieties across the entire Californian vascular flora. Their results indicated
that the Sierra Nevada is a native plant diversity hot spot within the state and that Californian
endemics are most concentrated in the central Coast Ranges; Stebbins & Major’s (1965) southern
Californian endemic hot spot was mostly accounted for by the Transverse Ranges. Concentrations
of narrow endemics were greatest in the Channel Islands and in general were associated with
coastal or montane situations on the Californian mainland or with other mainland environmental
islands, including some that roughly corresponded with local hot spots identified by Stebbins
& Major (1965). Thorne et al. (2009) concluded that topographic complexity, edaphic diversity,
and isolation were likely more important than areal extent of habitat in explaining richness of
plant endemism and diversity in California. Kraft et al. (2010) incorporated terminal taxon age,
from phylogenetic branch lengths of ∼15% of Californian endemic taxa, in analyses of patterns
of Californian vascular plant neoendemism. Using a system of geographic areas totaling 800
nonoverlapping regions, they found that the central coast, Sierra Nevada, and San Bernardino
Mountains (one of the Transverse Ranges) had the highest concentrations of narrow endemics
within the state. They also found that the deserts (outside the CA-FP), including the Great Basin,
had the youngest and narrowest endemics on average and that a large proportion of Californian
areas with high neoendemic diversity were outside of protected lands.

3. ORIGINS AND RELATIONSHIPS OF CALIFORNIAN
VASCULAR PLANTS

Resolving the ages, biogeographic origins, and phylogenetic relationships of native CA-FP
vascular plant lineages is important for understanding the extent of diversification and duration of
lineages, the evolution of ecological adaptations (or exaptations) to the Californian environment,
and historical factors that may help to explain patterns of diversity in the flora (Ackerly 2009).
Raven & Axelrod’s (1978) monumental synthesis on this topic, based on analysis of modern and
fossil floras, considered past and present ecological contexts of different taxa in the framework of
Tertiary Geoflora concepts to show that CA-FP plant groups represent a wide diversity of bio-
geographic sources, including north temperate (Arcto-Tertiary), subhumid southwestern North
American (Madro-Tertiary), warm temperate or desert, and cosmopolitan elements, in addition
to some immigrants from other Mediterranean-like areas (in central Chile and the Mediterranean
Basin) and taxa mainly associated with the CA-FP and of uncertain relationships to plants
elsewhere.

The rise of molecular phylogenetic data since the 1980s has provided refined evidence for
relationships of CA-FP plants and biogeographic sources of the modern flora. At an intercon-
tinental level, major floristic interchange accounting for plant disjunctions between Eurasia and
North America evidently has occurred mostly since the Oligocene (<30 Ma), when a North
Atlantic corridor for overland migration between Europe and North America was likely no longer
in place and a far northern, Beringian route between east Asia and North America, as well as
long-distance dispersal, were potential means of exchange (e.g., Donoghue & Smith 2004, Wen
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et al. 2010, Kadereit & Baldwin 2012). At a similar scale within the New World, phylogenetic
studies have reinforced earlier conclusions by Raven (1963, 1973) that amphitropical plant
disjunctions between the CA-FP and central Chile generally reflect late Cenozoic long-distance,
bird-mediated dispersal within the general time frame of development of a Mediterranean-like
climate in both regions (see Wen & Ickert-Bond 2009).

3.1. Lack of Immigration to the CA-FP from Other Mediterranean-Like
Climatic Regions

An important implication of recent phylogenetic and biogeographic analyses is that the CA-FP
has received even fewer natural immigrants from other Mediterranean-like climatic areas than was
previously apparent. Strong asymmetry of dispersal directionality from north to south between
the CA-FP and central Chile has been long recognized (Raven 1963, 1973) and has gained support
from more recent studies (reviewed by Wen & Ickert-Bond 2009). That pattern contrasts with
the more extensive south-to-north dispersals reflected by amphitropical disjunctions of desert taxa
outside the CA-FP (Wen & Ickert-Bond 2009). Unusual examples of northward dispersal from
southern South America to the CA-FP likely include Eryngium (Umbelliferae; Calviño et al. 2010)
and some lineages of Montiaceae (e.g., Calandrinia, Cistanthe; Hershkovitz 2006).

Previously noted disjunctions between the Mediterranean Basin and the CA-FP (putative
Madrean-Tethyan elements) were revisited by Kadereit & Baldwin (2012), who concluded from
phylogenetic considerations that most of these examples were probably best explained by parallel
evolution to dry environments rather than by descent from a dry-adapted common ancestor (also
see Wen & Ickert-Bond 2009). Those lineages that were best explained by long-distance dispersal
within the time frame of aridification in the two regions ( Jiménez-Moreno et al. 2010, Millar 2012)
were each represented by only one or two CA-FP endemic taxa at most, e.g., California (Gerani-
aceae) and Polycarpon (Caryophyllaceae), with possible rare exceptions, such as the diverse, mostly
Californian clade of Antirrhinum sensu lato (Plantaginaceae; also see Vargas et al. 2014) and the
New World endemic clade of subtribe Filaginae (Compositae). Migration to North America via
the North Atlantic or Bering land bridges is consistent with estimated divergence times for some
Mediterranean–Californian disjuncts from mesic or cool settings, such as Datisca (Datiscaceae),
Cicendia (Gentianaceae), and Zeltnera and relatives (Gentianaceae).

Direct floristic ties between the CA-FP and other Mediterranean-like climatic regions (i.e., in
southern Australia and South Africa) that reflect dispersal within the time frame of development of
those climates are generally lacking. Probable evidence of long-distance dispersal from the CA-FP
or elsewhere on the Pacific Coast of North America to Australasia has emerged from phylogenetic
studies of Microseris (Compositae; Vijverberg et al. 2000) and Lepidium (Cruciferae; Dierschke
et al. 2009), with subsequent evolutionary radiation after arrival of both groups in Australia and
New Zealand, which is reminiscent of the more extensive radiations of tarweeds, sanicles, mints,
violets, and other angiosperms in the high Hawaiian Islands from western North American
ancestors (see Baldwin & Wagner 2010). Other potential examples of CA-FP to Australasia
dispersal, e.g., in Plagiobothrys (Boraginaceae) and the Crocidium-Blennosperma-Ischnea clade
(Compositae; Pelser et al. 2010) await more detailed analysis. Dispersal in the other direction, to-
ward the CA-FP, has been suggested as a possible explanation for phylogenetic data uniting South
Australian Malva preissiana (= Lavatera plebeia; Malvaceae)—reportedly with strongly saltwater-
buoyant fruits (and seeds that remain viable under those conditions)—with native mallows of the
California Islands, where the taxa have fruits that lack persistent buoyancy, putatively because of
secondary loss of dispersibility in the island environment (Ray 1995; also see Escobar Garcia et al.
2009).
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Beyond the scope of this review is consideration of the vast, nonnative component of the
CA-FP, which includes a wide diversity of naturalized taxa, especially from other Mediterranean-
like climatic areas, and which provide some evidence of evolutionary change since introduction,
including origin of distinctive new lineages, e.g., in Raphanus (Cruciferae; Hegde et al. 2006).

In summary, the ecological fit of native plants to the Mediterranean-like climate in the CA-
FP rarely can be explained by earlier adaptation to Mediterranean-like climates elsewhere (i.e.,
by synclimatic shift sensu Ackerly 2009), as earlier concluded by Raven & Axelrod (1978). In
contrast, California has been an important source of herb lineages to central Chile (especially
to vernal pools), as long understood, and a more important source area than earlier believed for
other regions, such as the Hawaiian Islands (Baldwin & Wagner 2010), as well as adjacent regions
of North America (e.g., see Lancaster & Kay 2013). An understanding of climatic adaptation or
exaptation to CA-FP conditions requires a closer look at the primary source areas of most native
plant lineages there. A review of recent phylogenetic studies that included CA-FP taxa in more
broadly focused analyses indicates that achieving that understanding for most of the diverse CA-FP
clades warrants even closer attention to nearby relatives.

3.2. North American Angiosperm Diversification

Available molecular phylogenetic evidence indicates that North America has been a site for more
extensive angiosperm radiations than earlier recognized and an even more important source of
CA-FP lineages than was previously evident. North American ancestry is evident not only for most
CA-FP-occurring clades associated by Axelrod (1958) with the Madro-Tertiary Geoflora but also
for most CA-FP clades of putative warm temperate/desert or even north temperate origin (Raven
& Axelrod 1978) that include at least one endemic CA-FP species (B. Baldwin, unpublished data).
The great diversity of mainly CA-FP taxa not assignable to a source area at the time of Raven
& Axelrod’s (1978) study also evidently belong to larger North American clades—usually from
the west or southwest—with few well-resolved exceptions (B. Baldwin, unpublished data), most
discussed below. Relevant North American or New World clades often descend from common
ancestors that can be inferred to have arrived in the Western Hemisphere by immigration from
Eurasia, but most show evidence of having undergone diversification in North America before
establishment and evolutionary divergence in the CA-FP.

Examples of such diverse, principally North American clades for the sunflower family (Com-
positae) alone include the New World true thistles (Cirsium, tribe Cardueae; Kelch & Baldwin
2003); a clade encompassing the vast majority of North American taxa of the aster tribe, Astereae
(Noyes & Rieseberg 1999); the New World subtribe Filaginae clade (tribe Gnaphalieae; Galbany-
Casals et al. 2010); the clade of primarily North American genera of the chicory tribe, Cichorieae
(Lee et al. 2003); the expanded, mostly Californian tarweed tribe, Madieae (Baldwin et al. 2002);
and the clade containing most primarily western North American genera of the ragwort tribe,
Senecioneae (Pelser et al. 2010). Highly diverse New World (primarily North American) clades
also have been resolved in different groups of legumes, as in the lotus tribe, Loteae (Allan &
Porter 2000); the milk-vetches (Astragalus; Wojciechowski et al. 1999, Scherson et al. 2008); tribe
Psoraleae (Egan & Crandall 2008); the clover genus Trifolium (tribe Trifolieae; Ellison et al. 2006);
the sweet-pea genus Lathyrus (tribe Fabeae; Schaefer et al. 2012); and the lupines (Lupinus; tribe
Genisteae), with a major western North American clade (Drummond 2008). In Umbelliferae, the
perennial endemic western North American genera of subfamily Apioideae constitute a highly di-
verse, previously unrecognized clade (Sun & Downie 2010, George et al. 2014). In the mint family
(Labiatae), the Californian sages (Salvia subg. Audibertia, including sect. Echinosphace) represent a
diverse western North American clade (Walker et al. 2004), as does a set of three mainly CA-FP

352 Baldwin

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

01
4.

45
:3

47
-3

69
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

B
er

ke
le

y 
on

 1
2/

03
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ES45CH16-Baldwin ARI 27 October 2014 11:34

genera, Acanthomintha (thorn mints), Pogogyne (mesa mints), and Monardella (coyote mints),
that belong to a recently resolved clade encompassing New World taxa of subtribe Menthinae
(Bräuchler et al. 2010). The bellflower family, Campanulaceae, also contains a novel North Amer-
ican clade (cam02) that encompasses a primarily CA-FP subclade of annual and perennial taxa
spanning multiple genera: Campanula (in part), Githopsis, and Heterocodon (Mansion et al. 2012).

These and other recently resolved examples are consistent with the conclusions from studies
of Eurasian–North American disjunct angiosperms that western North American taxa (including
those of the CA-FP) are usually more closely related to their eastern North American counterparts
than to those in East Asia or Europe regardless of the direction of migration or dispersal between
the two hemispheres that originally established the intra- and intercontinental distributional
patterns (Xiang et al. 1998, Donoghue & Smith 2004, Wen et al. 2010, Harris et al. 2013). As
widely noted, such disjunctions may have occurred at different times and thus have different
historical explanations; such considerations are also important for establishing the basis for
CA-FP vascular plant diversity.

3.3. A Predominant Pattern of CA-FP Diversification Since the Mid-Miocene

Published divergence time estimates for CA-FP vascular plant clades with at least one endemic
species indicate that most sampled lineages shared a common ancestor with a non-CA-FP clade
since the mid-Miocene, <15 Ma (Supplemental Table 1; follow the Supplemental Material
link in the online version of this article or at http://www.annualreviews.org/), when Cenozoic
cooling and drying intensified and summer rainfall decreased markedly, in association with onset
of development of a marine upwelling regime along the Pacific Coast ( Jacobs et al. 2004). Those
trends ultimately led to a fully developed Mediterranean-like climate in the CA-FP by the late
Neogene, when uplift of the Coast Ranges, inundation and changes in drainage of the Great Cen-
tral Valley, and other geological change implicated in ecogeographic divergence were underway
(Millar 2012). The onset of this climatic shift also is reflected by broader-scale biogeographic
patterns. For example, estimated divergence times for most temperate Northern Hemisphere
disjuncts involving eastern Asia and western and eastern North America reviewed by Wen et al.
(2010) date from the Miocene or Pliocene (25 to 3 Ma), and the interval from ∼15 Ma onward was
noted by Harris et al. (2013) for disruption of floristic connections by episodes of global cooling,
aridification of western North America, and renewed uplift of the Rocky Mountains. Diversifica-
tion that predates the mid-Miocene has been estimated for some clades associated primarily with
the CA-FP and may reflect evolutionary response to earlier episodes of Cenozoic cooling and
aridification in western North America (Millar 2012), although such ancient crown-group ages
for diverse CA-FP clades are rare and often in conflict with younger estimates from other studies
of the same groups.

3.4. Paleoendemics and Other CA-FP Lineages that Predate the Mid-Miocene

CA-FP lineages that evidently predate the mid-Miocene include conspicuous paleoendemics, such
as the well-known coast redwood (Sequoia) and giant sequoia (Sequoiadendron), whose precise rela-
tionships to one another and the other living member of the redwood clade, Metasequoia (an Asian
relict), remain uncertain but which all have extensive fossil records in the Northern Hemisphere
that date to the Mesozoic (Yang et al. 2012). Ancient divergence of other paleoendemic conifers
is reinforced by molecular phylogenetic data, as well. Bristlecone fir (Abies bracteata; Pinaceae),
restricted to California’s Santa Lucia Range but similar to Neogene fossils in Nevada, was re-
solved as sister to all other sampled taxa of Abies worldwide, based on nuclear rDNA (nrDNA)
(Xiang et al. 2009), or as sister to one of the two major clades of the genus, based on chloroplast
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DNA (cpDNA), with an estimated Eocene divergence time (Aguirre-Planter et al. 2012). Brewer
spruce (Picea breweriana; Pinaceae), endemic to the Klamath Ranges and long regarded as a paleo-
endemic with closest relatives in Asia, was resolved as sister to all other sampled spruces, based
on cpDNA, or as sister to northern Asian Picea obovata, outside the North American clade, based
on mitochondrial DNA (mtDNA), also in keeping with relict status (Bouillé et al. 2011). Incense
cedar (Calocedrus decurrens; Cupressaceae), which ranges to central western Oregon but is other-
wise within the CA-FP, is known from fossils outside its current range in the Pacific Northwest
and was estimated from an nrDNA phylogeny to have diverged from a common ancestor with all
other living, Asian taxa of Calocedrus at ∼25.2 Ma, putatively because of vicariance; fossils of the
genus also occur in Alaska, Asia, and Europe from as early as the lower Eocene (Chen et al. 2009).

Available molecular phylogenetic data also advance understanding of particularly ancient
CA-FP angiosperm lineages, including paleoendemics, which often are evergreen or drought-
deciduous trees or shrubs long regarded as having adapted initially to xeric conditions during
Paleogene cooling and drying episodes that predated the mid-Miocene onset of summer-drying in
western North America (Raven & Axelrod 1978). Those woody lineages sometimes include modest
contemporary diversity that probably reflects limited diversification under later, Mediterranean-
like conditions. For example, Catalina ironwood, Lyonothamnus (Rosaceae), an evergreen tree en-
demic to the Channel Islands but known from mainland fossils in California, Oregon, and Nevada
from as early as the Miocene, was resolved as sister to all other genera of subfamily Spiraeoideae
(Potter et al. 2007) and is now treated as the sole genus of tribe Lyonothamneae (Brouillet 2008).
Reinterpretation of fossil and modern Lyonothamnus (Irwin & Schorn 2000) and consideration
of minimal molecular divergence between representatives of the two extant taxa (Bushakra et al.
1999) indicate that the modern Channel Island representatives are probably best interpreted as
CA-FP neoendemics of a paleoendemic genus. Chaparral pea, Pickeringia (Leguminosae), an ever-
green shrub usually interpreted as a CA-FP paleoendemic of tribe Thermopsideae, was estimated
to have diverged at ∼31 Ma within the “Cladrastis clade” of tribe Sophoreae, which includes
two other genera (Cladrastis, Styphnolobium) that each represent eastern North American/east
Asian disjuncts and are known from fossils in western, central, and southern North America
(Wojciechowski 2013). Although interpreted as having diverged under ancient subtropical or
tropical conditions initially (Wojciechowski 2013), Pickeringia includes two intergrading taxa that
abut geographically in southwestern California and likely reflect recent evolutionary divergence
in the CA-FP.

Carpenteria (Hydrangeaceae), an evergreen shrub from the Sierra Nevada, is an example of
a monotypic, putatively paleoendemic genus evidently nested phylogenetically within another
genus, a pattern usually associated with young taxa (e.g., Sytsma & Gottlieb 1986) and warranting
taxonomic attention. Carpenteria was resolved as having diverged from within the mock oranges
(Philadelphus) in the late Oligocene, after the divergence of southwestern North American taxa
of Philadelphus subg. Deutzoides, which are sister to both Carpenteria and other New and Old
World taxa of Philadelphus based on cpDNA and nrDNA data (Guo et al. 2013). The authors
concluded that Carpenteria–Philadelphus represents an example of “out of western North America”
migration to Eurasia via Beringia; that pattern contrasts with the “out of Asia” pattern of migration
that is more commonly resolved for Eurasian–North American clades (Wen et al. 2010) but is
consistent with evidence for other ancient American clades, such as Ribes (Grossulariaceae) and
Fraxinus (Oleaceae), that Axelrod (1958) considered part of the Madro-Tertiary Geoflora and that
also show evidence of North American to Old World migration (Schultheis & Donoghue 2004,
Wallander 2008).

Other xeric-adapted woody taxa primarily associated with the CA-FP that molecular data indi-
cate as having diverged from their nearest relatives in the Paleogene include Adenostoma (Rosaceae;
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Töpel et al. 2012), Cneoridium (sister to Old World Haplophyllum, Rutaceae; Salvo et al. 2010),
Malosma (Anacardiaceae; Yi et al. 2004), and Aesculus californica (Sapindaceae; Harris et al. 2009).
Molecular evidence for mesic-adapted, woody CA-FP endemic angiosperms of similar antiquity
is relatively limited, e.g., Cornus sessilis (Cornaceae; Xiang et al. 2008).

Woody taxa endemic or nearly restricted to the CA-FP that phylogenetic data have shown to
be geographically isolated from relatives in Mesoamerica include two taxa regarded by Axelrod
(1958) as part of the Madro-Tertiary Geoflora but of then-uncertain relationships: California bay
(Umbellularia; Lauraceae) and flannelbush (Fremontodendron; Malvaceae). Umbellularia was long
thought to belong to tribe Laureae but instead was resolved as part of tribe Cinnamomeae, nested
among Central American members of the Ocotea complex, which in turn were part of a larger
primarily South American clade (Chanderbali et al. 2001). Fremontodendron was resolved sister to
the southern Mexican/Guatemalan devil’s hand tree (Chiranthodendron), both once placed in Ster-
culiaceae. Those two, genetically similar and crossable taxa, constituting tribe Fremontodendreae,
were resolved as part of a basal grade of southern, tropical, or subtropical clades of Malvoideae
(Alverson et al. 1999).

CA-FP herbs previously regarded as paleoendemics that phylogenetic evidence indicates as
having diverged from closest relatives elsewhere before the mid-Miocene include taxa generally
associated with ecological settings or characteristics that may have allowed them to persist with
limited interference by other plants (Stebbins 1942). Monotypic Odontostomum (Tecophilaeaceae),
a cormose monocot from northern California, is the only North American taxon of a primarily
Southern Hemisphere family and was resolved as diverging in late Cretaceous from its diverse
African sister group, possibly arriving in North America via a South American route (Buerki et al.
2013). Odontostomum often occurs on serpentine soils, which can pose major challenges to plant
growth (e.g., low calcium/magnesium ratios, high concentrations of heavy metals, low concentra-
tions of macronutrients) and are widely associated with plant endemism in the CA-FP and else-
where (Kruckeberg 1984). Serpentine paleoendemism has been widely discussed for CA-FP plants
(Raven & Axelrod 1978), but molecular evidence for great antiquity of serpentine lineages was
lacking until recently. California pitcher-plant (Darlingtonia; Sarraceniaceae) evidently diverged
from a common ancestor with the two other genera of New World insectivorous pitcher-plants,
Sarracenia (eastern North America) and Heliamphora (northern South America), in the Paleogene,
putatively because of vicariance stemming from late Eocene cooling and aridification (Ellison et al.
2012). Darlingtonia occurs in wet or boggy sites, often on serpentine, as does CA-FP endemic Pseu-
dotrillium (Melanthiaceae), a rhizomatous herb that is sister to Trillium (Eurasia–North America)
plus the Eurasian genera Daiswa, Kinugasa, and Paris (Farmer & Schilling 2002).

4. EVOLUTIONARY PROCESSES IN THE CA-FP

4.1. Diversification in CA-FP Vascular Plants

Clade- or taxon-focused studies of plant diversification within the CA-FP have revealed some
general evolutionary patterns and raised questions about the importance of different factors in
explaining how the flora became so diverse. Endemic diversity is greatest among eudicots in
clades representing more than 30 families (Harrison 2013), such as Boraginaceae, Compositae,
Cruciferae, Labiatae, Leguminosae, Onagraceae, Polemoniaceae, and Polygonaceae, with Eri-
caceae and Rhamnaceae containing the two most diverse radiations of woody taxa, Arctostaphylos
(Boykin et al. 2005) and Ceanothus (Burge et al. 2011), respectively. Endemic succulent diversity
is highest in Crassulaceae, primarily from the largely CA-FP diversification of Dudleya (Yost
et al. 2013). Hemiparasite and holoparasite diversification is strongly evident in Orobanchaceae
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(especially subtribe Castillejinae; Tank & Olmstead 2008) and Convolvulaceae (Cuscuta; Costea
& Stefanovic 2009). Monocot diversity and endemism is much lower, particularly in annuals as
noted earlier (Raven & Axelrod 1978), with diversification most evident in Agavaceae, Alliaceae
(Allium), Cyperaceae (e.g., Carex sect. Ovales), Gramineae (e.g., tribe Orcuttieae), Iridaceae,
Liliaceae, Melanthiaceae, and Themidaceae. Conifer diversification has been most extensive in
Hesperocyparis (Cupressaceae), which now appears to be a north temperate (Asian) rather than
Mediterranean or Madro-Tethyan element (Terry et al. 2012), and in the big-cone pines (Pinus
coulteri, P. sabiniana, P. torreyana; Gernandt et al. 2009) and closed-cone pines (P. attenuata,
P. muricata, P. radiata; Eckert & Hall 2006). Fern and lycophyte diversifications are best rep-
resented by families with desiccation-tolerant taxa, particularly Pteridaceae (e.g., Pentagramma)
and Selaginellaceae (Selaginella subg. Tetragonostachys; Arrigo et al. 2013).

Researchers have recently reevaluated the question of whether high diversity in Californian
plant clades is the result of elevated evolutionary activity compared with that of source areas. As
noted above, environmental and historical factors that have been widely discussed as important
in explaining plant diversification in the CA-FP include the shift to a Mediterranean-like climate
in isolation from climatically similar source areas, a high degree of temporal and spatial envi-
ronmental heterogeneity (e.g., in climatic and edaphic factors), and physical barriers to dispersal
between similar habitats, including a diversity of island-like conditions (Raven & Axelrod 1978). A
phylogenetic meta-analysis of 16 angiosperm clades did not find significantly elevated diversifica-
tion rates in general following a shift to the Californian environment or to its Mediterranean-like
climate using a 5-Ma climatic threshold (Lancaster & Kay 2013). Based on estimates of the spe-
ciation and extinction components of diversification rates, the authors noted low extinction in
general for Californian lineages and the possibility that high diversity in the California flora may
have more to do with factors that limit loss of lineages (e.g., climate-change buffering by dispersal
along steep topographic gradients and the moderating effects of montane areas on precipitation
patterns) rather than conditions that promote speciation. Although this hypothesis warrants fur-
ther testing, e.g., with a larger sample of clades, exploration of different climatic thresholds, and
normalization of geographic scale for diversification-rate comparisons, the proposal that both
paleoendemics and neoendemics have been sheltered from extinction is an important stimulus to
reexamine assumptions about Californian plant evolution.

4.2. Effects of Life History

The high diversity of annuals in the CA-FP, amounting to about a quarter of native species, is
unusual worldwide (especially for the New World) and accounts for more than half of the CA-
FP endemic eudicot species (Raven & Axelrod 1978). The ability of annuals to opportunistically
escape harsh conditions by remaining in the seed bank or confining their activity to relatively brief,
environmentally favorable periods might be expected to limit their vulnerability to extinction.
Based on a molecular phylogeny for Saxifragales worldwide, speciation rates were estimated to be
lower for annuals than for herbaceous or woody perennials, but estimated extinction rates were so
much lower for annuals than for either type of perennial that net diversification rates were highest
for annuals in general (Soltis et al. 2013).

Phylogenetic analyses of CA-FP clades with life-history diversity indicate that shifts from an-
nual to perennial habit have occurred repeatedly, in Compositae [e.g., Chaenactis (Baldwin et al.
2002), Deinandra (Baldwin 2007), the Eriophyllum-Pseudobahia-Syntrichopappus clade (Baldwin et al.
2002), Helianthus (Moyers & Rieseberg 2013), Lasthenia (Chan et al. 2001), Malacothrix (Lee et al.
2003)], Leguminosae (Lupinus; Drummond 2008), Orobanchaceae (Castilleja; Tank & Olmstead
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2008), Phrymaceae (Diplacus; Beardsley & Olmstead 2002), Plantaginaceae (Antirrhinum sensu
lato; Oyama & Baum 2004), Polemoniaceae (Linanthus; Bell & Patterson 2000), and Polygonaceae
(Eriogonum; Kostikova et al. 2013). Until recently, evolutionary transitions from perennial to an-
nual were widely regarded as irreversible (see Tank & Olmstead 2008) despite compelling evidence
to the contrary from anatomical studies (e.g., Carlquist 1962). Annual to perennial shifts instead
appear to be relatively common compared with perennial to annual shifts for CA-FP taxa based on
available phylogenetic data, in keeping with findings for Saxifragales worldwide (Soltis et al. 2013).

The transition from annual to perennial in primarily CA-FP-based clades has been repeatedly
associated with ecological shifts to maritime conditions along the immediate mainland coast or on
the California Islands (e.g., Deinandra, Lasthenia, Malacothrix), where an equable climate may select
for persistence (Carlquist 1965, 1974), or to montane environments (e.g., Lupinus, Eriogonum),
where selection for persistence may be associated with high juvenile mortality compared with
adult mortality (Drummond 2008) or low growth rates in cold climates or on poorly developed
soils. In Lupinus, the shift from annual to perennial habit was accompanied by accelerated
diversification, as well, and was suggested to reflect a key innovation for occupying newly available
high montane habitat following Pliocene uplift, in light of synchrony with estimated divergence
times and a significant phylogenetic correlation between perennial habit and highest elevation
(Drummond 2008). In Eriogonum and related eriogonoids, perennial species were found to have
broader climatic tolerance than annuals and more rapidly increasing niche breadth with increasing
mean elevational range (Kostikova et al. 2013). These contrasts were reflected by estimates of
climatic niche evolution, with niche breadth evolving much faster in perennials than in annuals
and niche optimum evolving more rapidly in annuals. In Delphinium (Ranunculaceae), wide
elevational occurrence in the diverse CA-FP clade was noted in the context of a transition from
annual to perennial in Eurasian ancestors that was associated with higher elevational occurrence
and accelerated diversification in the Eurasian/North American clade ( Jabbour & Renner
2012).

4.3. Divergence in Ecology

As noted above, ecological gradients and spatial environmental heterogeneity in general in the
CA-FP have been invoked in elevating speciation rates and/or reducing extinction rates of plants.
Evolutionary change along climatic/habitat gradients in the CA-FP was made famous by Clausen,
Keck and Hiesey’s pioneering reciprocal transplant studies along the Carnegie transect from the
San Francisco Bay Area to the Sierra Nevada (see Clausen 1951). More recent studies have built
on their methods to examine the relative evolutionary influence of different extrinsic and intrinsic
factors in some of the same systems studied by members of Clausen’s team, especially in mon-
keyflowers (Mimulus sensu lato; Phrymaceae) and yarrow (Achillea; Compositae). In general, these
studies have reinforced the importance of ecological differences between sister taxa or cryptic sister
lineages as components of reproductive isolation and as determinants of range limits (e.g., Angert
& Schemske 2005). In the Sierra Nevada, ecogeographic factors and pollinator preference were
estimated to account for ∼99% of reproductive isolation between sister species Mimulus lewisii (bee
pollinated) and M. cardinalis (hummingbird pollinated), with the highest contribution to total isola-
tion from ecogeographic (climate/habitat) differences, except in an area of sympatry (Ramsey et al.
2003).

Clausen, Keck and Hiesey’s evidence for evolutionary importance of steep ecological gradients
in coastal CA-FP from the shoreline to the interior (see Clausen 1951) has been extended
by studies of semicryptic lineages that replace one another along such transects. In Mimulus
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sensu lato, experimental studies involving reciprocal transplants demonstrated that (derived)
perennial M. guttatus in the salt-spray, moist environment along the immediate coast and annual
M. guttatus outside the salt-spray zone in drier inland sites are genetically differentiated and
almost completely isolated reproductively by habitat-mediated selection and differences in
flowering phenology but not by postzygotic barriers (Lowry et al. 2008). In Achillea, differences
in ploidy between populations of the A. borealis (= A. millefolium) autopolyploid complex on
coastal dunes versus coastal grasslands were found to correlate with differential performance in
the two environments, with the derived hexaploid condition associated with much higher fitness
(home-site advantage) compared with tetraploid (grassland) plants in the dune setting, even when
tested with synthetic neo-hexaploids (Ramsey 2011). In Layia (Compositae), Clausen’s (1951)
evidence from common garden studies of putative ecotypic differentiation of L. gaillardioides
along a coast-to-interior transect was found to reflect deep clade structure corresponding to three
semicryptic lineages that replace one another across that transect (Baldwin 2006).

Edaphic or substrate heterogeneity has been widely implicated in evolutionary divergence
within the CA-FP, especially in serpentine environments (Kruckeberg 1984, Kay et al. 2011).
Transitions from nonserpentine to serpentine ecology have been well documented in the CA-FP
between plant taxa or populations that retain high interfertility, as in Layia (Baldwin 2005), or
are intersterile, as in Collinsia sparsiflora (Plantaginaceae; Moyle et al. 2012). Strength of natu-
ral selection that can be imposed by distinct edaphic settings may be in part reflected by lack
of evidence for gene flow in parapatric, fully interfertile taxa, as between Ceanothus cuneatus, on
relatively nutrient-rich soils, and putative descendant species C. roderickii, on adjacent soils de-
rived from gabbro, another (mafic) rock associated with plant endemism (Burge et al. 2013). In
Mimulus guttatus, tight linkage between genes associated with recent adaptation to copper-mine
soil and genetic factors associated with hybrid inviability provide a different type of evidence for
reproductive isolation as a by-product of evolutionary divergence on different substrates (Wright
et al. 2013). A general pattern of range asymmetry and regional-scale sympatry between young
sister species of CA-FP angiosperms may be explained in large part by evolutionary divergence
involving soil and habitat heterogeneity (Anacker & Strauss 2014).

A phylogenetic meta-analysis of 23 genera with serpentine-endemic taxa suggested that tran-
sitions between edaphic states were biased in the direction of serpentine endemism and that
diversification rates in serpentine endemics were in general much lower than those of serpen-
tine nontolerators, possibly in part because of habitat limitation (Anacker et al. 2010). A more
recent study of jewelflowers (Streptanthus and relatives; Cruciferae) found evidence of multiple
(four) transitions to serpentine endemism and only one loss of endemism (Cacho et al. 2014); in
core Chlorogaloideae (Camassia, Chlorogalum, Hastingia; Agavaceae) estimated losses of serpentine
tolerance outnumbered gains (Halpin & Fishbein 2013).

Distinctions between grades of serpentine conditions and biotic influences associated with
transition to serpentine environments (e.g., disease, herbivores) are of increasing interest in studies
of serpentine and other edaphic adaptation. Reciprocal transplant and other experimental studies
of two recently recognized cryptic taxa of common goldfields (Lasthenia californica, L. gracilis) that
co-occur in the San Francisco Bay Area demonstrated that they have differential fitness (home-
site advantage) in their respective habitats along a serpentine gradient (Yost et al. 2012). In dwarf
flaxes (Hesperolinon; Linaceae), evolutionary transitions from soils with less serpentine influence
to extreme (lower calcium/magnesium) serpentine exposures evidently have occurred repeatedly,
with the extreme serpentine habitat associated with less fungal rust infection and potentially
serving as a refuge from such pathogens (Springer 2009). In Streptanthus sensu lato, cryptic leaf
pigmentation and lack of apparency to herbivores are characteristic of endemics of serpentine
barrens, where plants susceptible to herbivory have been shown to be more subject to such activity
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than when growing with neighbors or when contrasting with substrate in color (Strauss & Cacho
2013).

4.4. Evolution Across Habitat Islands

As in other areas of the world, oceanic islands and island-like habitats in the CA-FP provide
some evidence of insular diversification. In the California Islands (Channel Islands, and Pacific
islands of Baja California, Mexico), where ∼20% of species are endemic, endemism often has been
attributed to survival of lineages that once occurred on the mainland but became extinct there
with late Cenozoic climate change (e.g., Axelrod 1967). Distinguishing such relictual endemism
from in situ divergence in lineages with minimal insular diversity is difficult, especially when the
opposing mainland coast is so close and so climatically and floristically similar (Thorne 1969).

Carlquist’s (1965) hypothesis that the shrubby tarweeds (Deinandra) of the California Islands
provide a likely example of insular adaptive radiation was upheld by molecular and cytological
evidence for the taxa on Guadalupe Island, the most remote and second largest of the California
Islands (Baldwin 2007). Other lineages with insular diversity, including Dudleya (Yost et al. 2013),
Malacothrix (Davis 1997), and Malva (Ray 1995), warrant more study for possible examples of
island diversification. Comparisons between closely related insular and mainland populations or
taxa also have been productive for studying island biogeographic and evolutionary phenomena,
such as colonization filters (Schueller 2004), loss of defense traits (Bowen & Van Vuren 1997),
and potential loss of genetic diversity with increasing insular isolation, which was not evident for
Acmispon (Leguminosae) in the Channel Islands (McGlaughlin et al. 2014).

Studies of some plant lineages that span archipelago-like distributions of serpentine exposures
or vernal pools have provided evidence of diversification across those habitats. Phylogenetic data
indicate that some angiosperm clades have undergone considerable diversification on CA-FP
serpentines, which is in contrast to the more general pattern of low diversification rates noted
above. Streptanthus sensu lato (Cruciferae; Cacho et al. 2014), Harmonia (Compositae; Baldwin
2001), Hesperolinon (Springer 2009), and Allium sect. Lophioprason (Alliaceae; Nguyen et al. 2008)
include clades comprised largely or entirely of serpentine endemics that are often scattered across
discontinuous serpentine exposures of the Bay Area, Coast Ranges, Klamath Ranges, and/or Sierra
Nevada. Among the recent discoveries of new serpentine endemics that continue to be made in the
CA-FP are Navarretia paradoxiclara and N. paradoxinota, semicryptic sister species that represent
divergence across serpentine islands in the North Coast Ranges and Sierra Nevada, which are
separated by the Sacramento Valley ( Johnson et al. 2013).

Vernal pools (ephemeral pool systems that fill during winter rains and dry slowly by evaporation
as rains end in spring) also have island-like qualities, such as a highly endemic flora and widely
scattered geographic distribution, primarily in and around the Great Central Valley in the CA-FP.
Vertical zonation of individual pools is often evident from concentric bands of different herbaceous
taxa associated with distinct soil conditions that have been shown to represent distinct niche space
(e.g., Emery et al. 2009). Phylogenetic analysis of different niche components in Lasthenia indicated
that the vernal pool depth niche was more evolutionarily conservative than the climate niche; that
is, dispersal between pool systems in different climatic regions was more commonly associated
with diversification than ecological shifts in pool zonation (Emery et al. 2012). Diversification in
vernal pools has been associated with increasing specialization to an amphibious life history and
associated evolutionary change in photosynthetic pathway in the C4 grass tribe Orcuttieae, with
the most ancestral condition retained in Neostapfia, the sister group to the other two vernal pool
genera, Orcuttia and Tuctoria (Boykin et al. 2010), and with loss of Kranz anatomy in submerged
juvenile foliage of the more highly amphibious Orcuttia (Keeley 1998).
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4.5. Evolution of Reproductive Systems

Evolution of mating and pollination systems has long been of interest in studies of angiosperm
diversification in the CA-FP (e.g., Grant & Grant 1964). Although such shifts may be made possible
by initial ecogeographic or habitat divergence, or in some cases driven by reproductive interference
from distantly related plants, the involvement of floral and other reproductive changes in the
evolution of biodiversity and ecological interactions is widely evident (Armbruster & Muchhala
2009, Kay & Sargent 2009). Relatively intimate, long-term coevolutionary relationships between
pollinators and plants include associations involving pollinating floral parasites, which in the CA-
FP (and Pacific Northwest) are especially well documented in Lithophragma (Saxifragacaeae) and
Greya moths, with repeated innovations during diversification in floral ovary position and moth
oviposition (Thompson et al. 2013). Repeated pollinator shifts may be implicated in evolutionary
convergence or parallelism in floral morphology responsible for major taxonomic confusion in
Calochortus (Liliaceae; Patterson & Givnish 2003) and CA-FP Themidaceae (Pires & Sytsma 2002).
In Calochortus, such shifts were suggested to be in response to evolutionary transitions in habitat
and resultant changes in availability of different potential pollinators (Patterson & Givnish 2003).
Studies including CA-FP clades corroborate earlier evidence that transitions to hummingbird
pollination have occurred repeatedly, but these may be unidirectional or only rarely reversible
(Barrett 2013), as in the highly diverse Penstemon and Keckiella (Plantaginaceae), possibly because
of high efficiency of hummingbirds as pollinators (Wilson et al. 2007) or mutational disruption of
the anthocyanin biosynthetic pathway with the shift to red corollas (Rausher 2008).

Differences between sister lineages in floral size consistent with mating system shifts are
widespread in CA-FP angiosperms and have been traditionally considered to reflect highly
outcrossing versus highly selfing conditions, with the shift to selfing regarded as irreversible
(Stebbins 1957). Although convincing examples of shifts from selfing to outcrossing strategies are
lacking, the dichotomy between those conditions may be simplistic (Barrett 2013); mixed mating
systems are increasingly identified from genetic estimates of outcrossing rates (Goodwillie et al.
2005), even in instances in which late floral development indicates early self-pollination, as in some
small-flowered taxa of Collinsia (Armbruster et al. 2002, Kalisz et al. 2012). In any case, shifts be-
tween large-flowered and small-flowered states are common in CA-FP angiosperms, e.g., Collinsia
(Armbruster et al. 2002, Baldwin et al. 2011), Mimulus sensu lato (Grossenbacher & Whittall
2011), and Leptosiphon (Goodwillie 1999), and sympatry between sister taxa with distinct floral sizes
is often evident. In Leptosiphon, phylogenetic studies indicated such highly convergent evolution of
small flowered, self-fertilizing taxa that some had been mistakenly treated as conspecific (Good-
willie 1999). Some degree of phenological or elevational displacement between closely related
taxa differing in mating system, with the more strongly selfing taxon active earlier in the season, or
under cooler, wetter conditions at higher elevation, may indicate that drought avoidance can be an
important driver of mating system divergence, as suggested for Mimulus sensu lato (Ivey & Carr
2012).

4.6. Hybridization

The importance of hybridization in plant evolution has been long appreciated by evolutionists
working in the CA-FP (e.g., Anderson & Stebbins 1954). Evidence of retained interfertility be-
tween taxa and natural hybridization in many young CA-FP clades has contributed to hypotheses
of hybrid origins and introgression that are increasingly being tested with molecular evidence.
Molecular data are consistent with hypotheses of homoploid hybrid origin of the annual wire-
lettuce Stephanomeria diegensis (Compositae; Sherman & Burke 2009) and some annual sunflowers
(Helianthus bolanderi, H. exilis; Rieseberg 1991), which include other, well-characterized examples
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of such evolution outside the CA-FP (Rieseberg 2006). Comparisons of cytogenetic and molec-
ular phylogenetic data support a homoploid hybrid origin of Collinsia tinctoria associated with
convergent evolution of a chromosomal arrangement and expanded elevational range (Baldwin
et al. 2011). Hybrid origin of the vernal-pool endemic spurge Euphorbia hooveri (Euphorbiaceae)
from upland taxa E. albomarginata and E. serpens inferred from nuclear phylogenies (Yang & Berry
2011) may represent a major transgressive habitat shift associated with hybrid ancestry. Strong
incongruence between plastid trees versus nuclear trees and morphology have been interpreted
as evidence of introgressive chloroplast capture in various CA-FP lineages, including rockcresses
(Boechera, Cruciferae), possibly involving unreduced sperm and nuclear replacement (Alexander
et al. 2013), and oaks (Quercus, Fagaceae), including an apparent example of wide hybridization
between taxa of sect. Protobalanus and sect. Quercus (Manos et al. 1999).

Extensive polyploidization across vascular plants (Wood et al. 2009) frequently has involved
hybridization (allopolyploidization; see Ramsey & Schemske 1998), as inferred from molecular
and cytogenetic data in a wide diversity of CA-FP lineages. For example, diversification of CA-FP
blazing stars of Mentzelia sect. Trachyphytum (Loasaceae) involved an extensive and complex
history of allopolyploid (and autopolyploid) origins (Brokaw & Hufford 2010). Tetraploidy
in Pacific Coast polypody ferns (Polypodium, Polypodiaceae) was shown to represent separate
allopolyploidizations based on different diploid hybrid combinations and reciprocal parentage of
the same combination (Haufler et al. 1995). Molecular and cytogenetic data often indicate that
modern allopolyploids reflect hybridization between lineages that no longer occur in proximity
or that have undergone divergence or extinction. For example, Clarkia gracilis (Onagraceae)
was inferred to have an extinct diploid parent probably closely related to C. lassenensis (Ford &
Gottlieb 1999). One of the putative genomic contributors to perennial Helianthus californicus is
evidently represented by a southeastern North American clade (Timme et al. 2007). Lack of
potential diploid genome contributors has complicated understanding of the basis of polyploidy
across the largely North American (including CA-FP) campions of Silene sect. Physolychnis sensu
lato, although hexaploid S. hookeri (Caryophyllaceae) was resolved to represent an allopolyploid
from wide hybridization between sect. Trachyphytum and the S. menziesii group (Popp & Oxelman
2007). Discovery of cryptic allopolyploidy of some populations long treated as belonging to
the otherwise diploid Lithophragma bolanderi underscores the importance of genetic data for
diagnosing and corroborating the allopolyploid condition (Kuzoff et al. 1999).

5. FUTURE DIRECTIONS

The potential for evolutionary studies to resolve the origins and evolutionary histories of CA-FP
plants is far from realized, and too few clades are well-enough sampled phylogenetically to provide
a detailed estimate of relationships within those groups, although advances over the past decade
have been dramatic. The frequent discovery of undescribed CA-FP lineages worthy of taxonomic
recognition from phylogenetic studies that involved sampling across the ecological, morphological,
and geographic axes of variation within taxonomic species or infraspecific taxa indicates that
baseline estimates of diversity should be questioned even within those plant groups that were
subjects of experimental biosystematic studies (see Baldwin 2000). Some of the most interesting
clades of CA-FP plants are those that appear to have diversified so rapidly and recently that available
molecular data so far have been inadequate to gain a robust understanding of their evolutionary
histories [e.g., Grindelia (Compositae; Moore et al. 2012) and Monardella (K. Andreasen & B.G.
Baldwin, unpublished information)]. Genomic tools may provide a means of understanding their
complexity and resolving important processes operating during early stages of divergence in such
groups.
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In the short term, targeted expansion of molecular phylogenetic coverage for plant clades is
underway to improve resolution and interpretation of spatial patterns of biodiversity and endemism
at various levels of geographic resolution across California (B. Mishler, D. Ackerly, and B. Baldwin,
in preparation). In part, that effort is geared toward locating areas of high evolutionary activity
and ancient refugia of importance to evolutionary studies and conservation planning, as well as
considering diversity and endemism in light of the entire phylogeny as opposed to just terminal
taxa.

Growing appreciation for the importance of ecology in understanding evolutionary change and
recent evidence indicating evolutionary decoupling of niche parameters warrants more attention
to resolving the history of ecological factors in a phylogenetic context as well (e.g., Emery et al.
2012, Töpel et al. 2012, Arrigo et al. 2013, Anacker & Strauss 2014), in part to characterize likely
future responses of lineages to environmental change. Field-based descriptive and experimental
work is invaluable to these goals and, although often difficult and unavoidably slow, continues to
be the source of some of the most important contributions to evolutionary understanding of the
California flora (e.g., Ramsey et al. 2003, Angert & Schemske 2005, Lowry et al. 2008).
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