
UCSF
Archives & Special Collections Projects

Title
2024 Industry Documents Undergraduate Summer Fellowship - JUUL Labs Collection
Final Report

Permalink
https://escholarship.org/uc/item/3cf2389w

Author
Lichtstein, Gordon

Publication Date
2024-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cf2389w
https://escholarship.org
http://www.cdlib.org/

2024 Industry Documents Undergraduate Summer
Fellowship - JUUL Labs Collection Final Blog Post
By Gordon Lichtstein

Table of Contents
1. Introduction
2. Project 1: OCR Accuracy Without Ground Truth Data
3. Project 2: Embedding Search and Visualization
4. Project 3: Sensitive Information Scanning
5. Project 4: LLM Summarization Sentiment Analysis
6. Conclusion
7. Contact Information and Final Thoughts

Introduction

The 2024 Industry Documents Undergraduate Summer Fellowship is an 8-week virtual summer
fellowship aimed at doing research into the JUUL Labs Collection, a set of documents related to
the e-cigarette brand from lawsuits against JUUL, the FDA’s Center from Tobacco products, and
Schlesinger Law. The UCSF Industry Documents Library (IDL) is a repository for documents like
those from JUUL to make them available to the public after processing (although not all
documents in the IDL are public)

Throughout this fellowship, I designed and executed multiple projects utilizing natural language
processing (NLP) techniques to investigate and learn from the JUUL Labs Collection and the
IDL as a whole. I participated in weekly meetings with the IDL and Amazon Web Services
(AWS) workshops.

For some brief background about me, I’m an incoming freshman at MIT planning to double
major in computer science and linguistics. I’m passionate about their intersection in the field of
NLP, and the application of NLP for the betterment of humanity, such as in environmental
sustainability or the digital humanities.

Thank you so much to UCSF, my co-workers, and mentors at the IDL whose support made this
fellowship not only possible but incredible. I learned so much, and I can’t thank them enough.

Project 1: OCR Accuracy Without Ground Truth Data

OCR Context

Optical Character Recognition, or OCR, is a heavily utilized technology with broad applications
across many industries. In essence, OCR is just converting pictures of printed text or
handwriting into digital text - something along the lines of a .txt file or Word document. While at
face value this seems simple (probably because it’s very easy for us humans to do), in fact it is
not. Think of all the situations you see text in on a daily basis - vastly different fonts, lighting
conditions, rotations of the text, formats of the text, layout of the page (e.g. newspapers), and
handwriting styles.

There exist a vast array of open-source and commercial OCR technologies with a wide range of
capabilities. However, there exists a general dichotomy in the solutions available: highly
accurate yet expensive or slow OCR vs comparatively inaccurate yet cheap or very fast OCR.
Proprietary solutions such as AWS Textract fall in the expensive/slow/accurate category, while
open-source solutions like Tesseract fall more in the cheap/fast/inaccurate category.

UCSF IDL Context

In the UCSF Industry Documents Library, the problem is even more complex. Text might need to
be redacted, we have to deal with many file formats (e.g. pdf, tiff, Excel sheets, images, etc…),
and with varying qualities of text. Some digital scans of physical documents might be very poor,
grainy, have various ink stamps on them, or have any other number of issues.

Specifically relevant to the JUUL Labs and RJ Reynolds collections I focused on in my
fellowship, there was a handwriting campaign that led to a huge chunk of inconsistently written
and formatted letters.

The IDL has a massive database of documents to support researchers studying digital
humanities around the world. In order to easily find the specific documents they are looking for,
they can search the IDL website for keywords (e.g. “JUUL”, “disclosure”, or “youth”), which will
go through our previously-generated OCR. This OCR was generated using older OCR
technology. Much of this OCR text is fine, with most keywords from the original documents
being contained in the OCR text. However, some of the original OCR text doesn’t accurately
transcribe the content of the original document, leading it to lack keywords, particularly on
handwritten text. This is essential data to have, as scanned letters from a letter writing
campaign compose an important portion of the dataset. If a researcher were to search for a
keyword, these documents likely wouldn’t appear. It would be almost like they are invisible,
inaccessible by many searches.

This could also introduce biases into research, as documents with poor quality OCR would be
less likely to be included in search results. These might be handwritten documents like letters,
which could contain very valuable information for researchers, a topic my fellow summer fellow
Theo Zhang investigated.

Modern software like Textract can get acceptable OCR for even the most illegible handwriting,
but it would be unfeasibly expensive and time-consuming to re-run all documents through an
algorithm like that. Most of the original OCR is fine too, so running this through Textract wouldn’t
yeild as much benefit. We need some way of using the already-generated OCR, and specifically
applying the more expensive algorithm in the places it is most needed, like in handwritten
letters.

My Solution

In thinking about this problem, I believe that the best solution is to develop or identify a metric
that can distinguish between poor quality OCR (such as that from handwriting) and acceptable
OCR, perhaps with a few typos or mid-level errors (such as from scanned-in emails). This is not
a trivial problem, as the poor quality OCR can have some of the trappings of reasonable English
like the length of “words”, and the acceptable OCR can have some of the indicators of
meaningless text (e.g. erroneous numbers, many typos, etc…).

There already exist standard metrics for testing the accuracy of OCR text such as word error
rate and character error rate, but these rely on having “ground truth” text - transcriptions of the
documents generated by humans that are known to be correct. We need an algorithm that can
do the same, except without any ground truth data.

In this project, I identified and tested numerous algorithms on their ability to distinguish between
these two types of OCR text. Many of these algorithms come from completely different areas of
computer science and even mathematics, and represent many hours of research identifying and
testing them. I also explore where the best of these algorithms fail, unique methods to combine
them, and optimizations.

Autocorrect-based Algorithms
The first general category of algorithms for detecting poor quality OCR was autocorrect
algorithms. The main idea is to take OCR text, run it through an autocorrect algorithm, then look
to see how much autocorrect changed the text. If autocorrect changed the text a whole lot, then
the original text probably was of poor quality. On the other hand, if autocorrect doesn’t do much
(doesn’t change many words), the text is probably high quality to begin with.

In practice, there are a few more steps. When I take in a file with OCR text, I first split it into
lines. Then, I apply a normalizer algorithm (whisper’s EnglishTextNormalizer). This reduces text
to lower case and performs other normalization steps to make the autocorrect effects more
consistent. Many files contain numerous empty lines, and some autocorrect algorithms also do
not work on them. So to mitigate this, I map ever totally empty line to an arbitrary string that
never appears in text and will not be changed by autocorrect (in my case I used
“1111111111111111”). Thus, new lines will always equal new lines in the normalized and the
normalized + autocorrected text, without causing errors if the autocorrect algorithm doesn’t
accept empty new lines. Then the process diverges. These normalized lines are saved, and
another version is fed through the autocorrect algorithm. Finally, I compare each normalized line

to its corresponding normalized + autocorrected version using a word error rate (WER)
algorithm (I use jiwer.wer) and place the WER for each line in a new array. WER measures the
proportion of words containing errors to the total numer of words. A high WER means the text is
low quality, and a low WER means the text is high quality. I then average the WERs and return
this value as the final error for this file and this particular autocorrect algorithm.

In this category, I tested two Python libraries: autocorrect and jamspell.

Autocorrect is, a multilingual spelling corrector based on the older autocorrect library and Peter
Norvig’s spelling corrector. This algorithm uses the Levenshtein distance (also called the edit
distance), which calculates the number of edits it takes to change one word to another word, to
determine the word from a corpus closest to misspelled words, and correcting the misspelled
word to that word. When a misspelled word could potentially be converted to multiple known
words with the same edit distance, it chooses the most common target word in the corpus. The
library autocorrect also has a few other features which I tested. It has a fast mode, that only
detects single typos (e.g. edit distance of 1), and also an OCR-specific mode that only uses
edits based on replacements, as these are particularly common for OCR text (e.g. amount is
OCR-ed as omount). I tested every combination of these features (standard autocorrect,
OCR-mode, fast mode, and OCR + fast mode). These could be helpful, as speed is of the
essence for our project. We want our algorithm to save time and money, and as such it has to
be able to process thousands of documents very quickly. Anything that reduces computation
time a tiny bit will correspond to a huge improvement when run on thousands of documents.

Jamspell is another autocorrection library focusing on accuracy, speed, and cross-platform
availability. It is a more modern and advanced library, utilizing an N-gram Markov model to
achieve context-specific accuracy, and implements a number of optimizations (such as a Bloom
filter) over its predecessor SymSpell. I expected this algorithm to perform better than the more
basic autocorrect library.

Gibberish Detector Algorithms
The second major category of algorithms I used was gibberish detectors. Gibberish can actually
be a significant problem for those who host and manage websites and web services, as
malicious users can automatically submit random queries to occupy the server and slow down
other users. In some cases, each user query costs the website a tiny amount of money, and
random queries could become extremely expensive. In a similar scenario, malicious users of
forum websites like Reddit could automatically submit many junk posts. Thus, numerous tools
have already been developed to quickly detect gibberish text quickly and very efficiently, as a
computationally expensive gibberish detector could impose more strain on servers than a junk
query. For these, I tested three tools: gibberish-detector, autonlp_gibberish_detector, nostril, and
random_string_detector. For each, I run the algorithm through a similar process as described
above, where I split the text into lines, pass each line to the gibberish detector, and average the
scores into a final gibberish score. For detectors that return one True/False value, I return the
proportion of gibberish lines. While this is not a perfect way of generating metrics, it is more than
sufficient and is very efficient.

https://github.com/filyp/autocorrect
https://norvig.com/spell-correct.html
https://norvig.com/spell-correct.html
https://github.com/bakwc/JamSpell

Gibberish-Detector is a Python program forked from rrenaud’s algorithm of the same name,
modified to support Python 3 and using a 3-character Markov chain model instead of rrenaud’s
2-character model (Random-String-Detector also uses a 2-gram model. This model returns a
True/False value. Markov models are the precursors to modern neural networks, in this scenario
they work by training on a corpus of correct English text (such as Wikipedia), and record how
often each sequence of n characters (n = 3 in the case of amitness’ Gibberish-Detector). Then,
when the model sees new text, it calculates the probability of seeing each sequence of n
characters in the text and multiplies them all together. If this probability per character is below a
cutoff value (which can be optimized, as I will discuss later), then the text is marked as
gibberish. A lot probability per character score would align with strange text that was not
commonly seen in the original corpus of example text. As an implementation note,
Gibberish-Detector is not a Python library or module, and is two Python programs and a
compressed file of frequencies. This made it slightly harder to run from Google Colab. To make
this easier I downloaded the relevant files into my Google Drive which I then connected to
Colab, to allow for file persistence. Then, I imported the Python file’s methods from inside my
main Google Colab notebook.

Autonlp-Gibberish-Detector uses a neural classifier model to identify text as either gibberish or
reasonable English. Like the Markov models some of the previously described algorithms use,
neural networks have to be trained on a corpus. In classifiers like Autonlp-Gibberish-Detector,
the corpus must be labeled, meaning that the corpus consists of some gibberish text that we
know is gibberish text, and some text that is known to be correct. During training the classifier
makes an educated guess as to which category text in the corpus belongs to, and then we
correct it’s guess and modify the model to be more likely to generate the correct answer next
time. Neural models like Autonlp-Gibberish-Detector return a confidence score as to whether
the text is gibberish or not, and I use the average of this score directly.

Nostril, or the Nonsense String Evaluator, is a Python module that provides a convenient
function that returns a True/False value as to whether the the input text (a short string) is
gibberish text or not. This model was actually specifically trained on source code to identify
meaningful identifiers like variable and function names, but it actually works quite well on
standard English text. Nostril works by using heuristics to detect simple True/False cases, and
an TF-IDF scoring system based on 4-grams for more complex cases, described in the paper
“Nostril: A nonsense string evaluator written in Python”. This is similar to the Markov models
described above, but with an added caveat that TD-IDF adjusts the frequency lists based on
both the frequency of n-grams within one document, but also across all documents in the
training set. In the implementation of this algorithm, I came across the problem that Nostril will
refuse to evaluate very short strings (less than 6 characters). This is a problem for lines that
contain fewer than 6 characters, as Nostril will throw an error. To account for this, I simply
caught any errors that Nostril produced and marked that line as nonsense. While again this is a
very rudimentary metric, it is quick

https://github.com/amitness/Gibberish-Detector
https://github.com/rrenaud/Gibberish-Detector
https://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
https://github.com/casics/nostril
https://joss.theoj.org/papers/10.21105/joss.00596

Random-string detector is a Python library that uses a 2-gram (bigram) model, like
Gibberish-Detector but with less context information. I expected that this library would perform
worse than Gibberish-Detector as it used a 2-gram model compared to a 3-gram model, but that
it might also be faster. This library returns a True/False value.

Mathematical Algorithms
This general category encompasses mathematical methods for detecting gibberish text. Here I
analyzed two metrics: the index of coincidence and the character entropy. These methods are
generally quick, and I wanted to test their accuracy compared to the specifically designed
gibberish detection algorithms.

The index of coincidence (IC) is a metric originally from cryptography to detect correct
decryption of ciphertext. The IC of a string is also not affected by substitution ciphers (where
each unique character of plaintext is mapped to unique ciphertext character). It measures the
probability of pulling two random characters from a text and getting the same one. The
probability of pulling the first letter is n / L, where n is the count of how many times the target
character appears in our text, and L is the total number of characters in the text. The probability
of pulling the second letter is (n-1) / (L-1), as by pulling the first letter out, we have reduced both
the number of our target characters, and the total number of characters in the text. To calculate
the IC of a specific character, we multiply these two values together ((n/L) * ((n-1)/(L-1)). To
calculate the IC of a whole text, we calculate the average IC of all characters contained in the
text. The idea of the IC is that for random or gibberish text, each character is about evenly
distributed as as such the IC for that text will be close to 1. For text in English or any other
language, characters are not evenly distributed so the IC will be somewhat greater than 1,
somewhere around 1.7. Notably, my algorithm normalizes text to be lowercase and counts all
characters present in the text except spaces and new lines (even numbers, punctuation, and
symbols). This differs a bit from its original usage where ciphertext and plaintext would usually
only contain letters. As such the IC values for my text can sometimes be over 2, but gibberish
text still has an IC value of about 1. This is a relatively simple algorithm to implement with a
dictionary in Python, which is an efficient data structure that allows this algorithm to run very
quickly.

Character entropy as I am using the term here refers to the entropy of the distribution of
characters in a document. I am using Shannon’s definition of entropy of the distribution of a
quantity (such as the frequency of letters) to be the average of (-1 * p * log(p)), where f is the
proportion of text taken up by each character. A low entropy means the text is very predictable,
while a high entropy means the text is difficult to predict. I’ve seen this metric used in an attempt
to determine whether or not the Voynich Manuscript represents meaningful language or is a
hoax (apparently the language has a significantly lower character entropy than languages we
know to be real). As a note, in my implementation of this, I do not count spaces.

LLM-based Algorithms
The final general category I investigated (though not extensively) was LLM-based gibberish
identification. LLMs, at a high level, work by predicting a probability distribution for the next

token (part of a word) based on previous tokens. LLMs like ChatGPT take your prompt and
continuously select the next token according to this probability distribution. I take advantage of
this for identifying nonsense text by tokenizing (splitting the text into tokens) each line and
measuring the perplexity of GPT-2 on that line (any language model would do, but I wanted
something relatively lightweight). Perplexity is e to the power of the loss per token of input text
of the model. Loss is how “incorrect” or how “surprised” the model is by the next token. I
averaged the perplexity of each line of the file. High perplexity means the text is very “confusing”
- that it doesn’t look like anything it has seen before - that it is gibberish. In the implementation
of this algorithm, I initially got exemplary results: extremely quick and very accurate. This made
me a bit suspicious as LLMs are generally somewhat slow, plus I was running GPT-2 on Google
Colab without huge computational resources so it would likely be even slower. Upon
investigation, I realized that I had been passing in the file name instead of the file text to GPT-2.
Somehow, the file name is highly correlated with whether the document is good OCR or bad
OCR. After fixing this error, the perplexity-based metric was extremely slow and gave frequent
errors. LLMs have maximum context sizes - the maximum number of tokens they can process in
one run - and I was exceeding it for some longer lines. This gave frequent errors that I caught
and recorded. The metric was the slowest by far (taking over 4 hours to run on 160 documents)
and it wasn’t even very accurate. As a result of this poor initial performance, extreme length of
tests which limited me from running other code on Google Colab, and the outstanding
performance of other metrics, I decided not to pursue LLM-based metrics any further.

Experimental Metrics - Testing Metrics

Each of the algorithms above generated a somewhat continuous metric. The ones that
inherently returned True/False were modified as described above to produce a proportion of
gibberish between 0 and 1. Some algorithms similarly generated scores between 0 and 1, while
others generated numbers that were smaller or larger.

The data I had available were the JUUL hot 60 documents (mostly PDFs of emails, word
documents, Excel sheets, and other things that have accurate OCR), and the RJ Reynolds 100
handwritten documents, which mostly contained handwritten letters which have very poor OCR
transcriptions. Every document has an OCR file associated with it, run previously with older
technology. I took advantage of this pre-labeled data by assuming that the JUUL documents
were good OCR, and the RJR documents were bad OCR, but it’s important to note that this
assumption isn’t perfect. Although the JUUL documents may contain small amounts of
handwritten or mixed text and the RJR documents may contain some printed text, the two sets
were sufficiently different to be valuable in measuring transcription accuracy.

For each metric, I ran every bad OCR file and every good OCR file through it, and recorded this
result in dictionaries based on whether the origin file (the key is the name of the file, the value is
the metric score). Errors in processing (such as GPT-2 running out of tokens) were recorded as
value = -1. Then, I normalized those scores to be between 0 and 1 by dividing each score by the
maximum score I calculated for that metric. It is possible that running this algorithm on future
text would generate scores greater than 1, but this doesn’t affect anything due to the cutoffs

which I will describe shortly. Errors were converted to either 0 or 1, and for every metric I tested
which value was better for errors.

Now, for every metric I have two dictionaries: one containing the scores when ran on the bad
OCR documents, and one when run on the good OCR documents. I could compare the average
metric scores between the two categories, but this isn’t actually very useful in the real world. We
really want a decision function that when a metric is passed as input, it outputs True if the text is
good OCR, and False if the text is bad OCR. This function and its optimization is described
below. For now, I will assume that we have such a function.

Then, I iterate through every file in the dictionary and run this decision function on the metric
score. I then take the proportion of files that it correctly sorts and return this as the final
accuracy of that metric.

Decision Functions
The individual metrics generate one-dimensional outputs (just one number between 0 and 1).
Thus, the best decision function will be a hard cutoff. Any value below the cutoff will be labeled
good OCR, and any value above the cutoff will be labeled bad OCR. Whether good OCR is
above or below the cutoff is actually arbitrary and will not affect the final accuracy of the metric,
but it will invert whether high scores = good OCR or high scores = bad OCR.

OK so now we know the general format of the decision function: a hard cutoff. But how can we
optimize this cutoff? One solution is to iterate through every possible cutoff between 0 and 1,
and test how many the model got correct. However, this would require testing an infinite number
of points (infeasible). Another idea would be to test cutoffs all spaced 0.001 (or any other
arbitrarily small number) apart. Yet again, this would be inefficient and slow. The solution I
employed is to test every value each metric generated as a potential cutoff point. This would still
generate the optimal cutoff for our specific dataset, but the best cutoff might be slightly different
in the real world.

This cutoff point could then be tweaked up or down manually to select for more false positives or
false negatives, depending on the needs of the user.

Testing Environment
All tests were run on the free tier of Google Colab. This did pose occasional problems for the
slower metrics, as Colab will automatically disconnect you after a certain period of inactivity
(even while code is running). However, this was relatively minor. I was on a Python 3 CPU
runtime with 12.7 GB of RAM and 107.7 GB of disk space. It’s likely that these computation
times could be sped up by multithreading, but I did not experiment with this.

Results
Some decision functions generate higher scores for good OCR documents, while others
generate higher scores for bad OCR documents. For example, my GPT-2 based metric would
score the worst possible OCR text as a 1 and the most perfect OCR as a 0, while Nostril would
score perfect OCR as a 1 and absolutely horrible OCR as a 0. I have separated the two below.
If a number is in the “Accuracy, printed < handwritten” column, then the metric is higher for
handwritten (poor quality) text, whereas if it is in the “Accuracy, printed > handwriting” column,
then the metric is greater for printed (good quality) text.

The time in seconds taken for each algorithm to run through the 160 documents, the average
time in seconds to run on one document, and the time in days to run through about 19.971
million documents is shown to the far right of the table. The time taken to run through about 20
million documents was included, as this is the total number of documents in the UCSF IDL (it
may have changed by the time you are reading this, so I would recommend checking the UCSF
IDL stats here).

https://www.industrydocuments.ucsf.edu/about/overview/

Accuracy

0 or 1 better
for errors

printed,
handwriting

handwriting,
printed

time (sec) per
doc days / 19,971,203

Autocorrect 1 0.79375 22.41744735 5181.752219

Autocorrect (ocr) 1 0.73125 6.439200085 1488.409399

Autocorrect (fast) 1 0.7125 1.055654182 244.0125458

Autocorrect (ocr
fast) 1 0.775 0.975997594 225.6000703

Jamspell 1 0.875 1.983058323 458.3803279

Gibberish-Detect
or 1 0.89375 0.03305484504 7.640567365

Autonlp
Gibberish
Detector 0 0.84375 48.40951883 11189.77231

Nostril 1 0.975 0.0527151227 12.18500482

Random-String-
Detector 1 0.85625 0.01944239736 4.494074819

Character
Entropy 0 0.79375 0.01866874546 4.315246589

Index of
Coincedence 1 0.88125 0.0198105216 4.57916607

GPT-2 0 0.84667 91.62318412 21178.53252

Conclusion & Discussion
Overall, the most accurate metric was Nostril by far, achieving an accuracy of 97.5%. This
means that out of the 160 documents, it only for 4 incorrect. Other metrics such as Jamspell,
index of coincidence, and Gibberish-Detector also did well, with accuracies significantly over
80%. Nostril was reasonably fast and very accurate, but the index of coincidence struck a very
good balance between speed and accuracy. It is extremely important to note that this doesn’t
exactly mean that we can distinguish between handwriting and printed text 97.5% of the time,
only that we can distinguish between these two collections with 97.5% accuracy, which may or
may not translate to larger or different samples. For example, we compared mostly printed text
to pue handwriting, and this sort of pure handwriting is a small percentage of the overall data.

Many documents are some mix of handwriting and printed text, and we would likely detect these
as “good OCR”. In fact though, the handwritten information may be the most useful part of the
document, such as in printed forms where all the interesting information is handwritten in. While
lowering the cutoff may be able to detect some of these documents, future investigations on
mixed handwriting & printed documents are necessary to confirm. The results of one such
investigation are described below.

It is interesting to observe that 1 is a better value for errors when printed < handwriting, while 0
is better for errors when the opposite is true. This makes intuitive sense, as an error likely
indicates poor quality text, and 1 represents the worst possible quality text when the metric is
higher for handwritten (poor quality) text compared to printed (high quality) text.

Evaluation on Random IDL Data
To test the generalizability of these metrics, I ran
3 promising metrics on a randomly selected set
of about 30,000 documents from the Industry
Documents Library I scraped from the public
library. The reason I didn’t run any more due to
time constraints. I wanted to see how well these
metrics would be able to distinguish between
high and low-quality OCR. However, there aren’t
labeled datasets like there were for the JUUL
data. So, in order to evaluate these metrics, we
can look at the distribution of scores. If a metric
were very good at separating high and
low-quality OCR, we would hope to see a
bimodal distribution, making separating the two
sets easy. Additionally, we’d like a metric that can
generate a number as often as possible, and not
fail often. Thus, I also include the percent of the
time the accuracy generated a value.

Looking at the graphs below, it is clear that Nostril
has the most bimodal distribution. The metric
score is on the x-axis, and the count of how many
documents fell into that bucket is on the y-axis.
This is even further evidence that this is the most
robust and balanced metric.

Category Comparison and the Time/Accuracy Trade-off

Some categories performed remarkably better than others. Autocorrect-based algorithms were
the worst of the categories, often failing to reach 80% accuracy. I believe this is because these
algorithms essentially “gave up” correcting extremely bad OCR, which is what most of the RJR
handwritten documents are. The autocorrect can’t correct single letters or totally meaningless
symbols, so oftentimes the autocorrect algorithms didn’t change much of the bad OCR text.
These algorithms were also extremely slow, and the more accurate algorithm Jamspell was
slower then the second and third best performers in this category.

Gibberish detection algorithms performed the best, with the two best performers being in this
category. These algorithms were much faster than the autocorrect-based metrics, but within this
category we yet again see a tradeoff between time taken and accuracy. While Nostril was the
most accurate algorithm, it was not the quickest in the category (this title goes to
Random-String-Detector, which was almost 3 times quicker than Nostril).

The mathematical category performed surprisingly well, better than the autocorrect-based
algorithms but marginally worse than the gibberish detection algorithms. The third best
algorithm (index of coincedence) is in this category. What they lose in accuracy, they make up
for in speed. These algorithms take only one pass through the text to count the occurrences
each character, then perform one calculation per character.

The LLM category performed acceptably well, but took an extremely long time, eliminating this
group as a candidate for large-scale gibberish detection.

While there is no one best algorithm for every use case, it is my opinion that the index of
coincidence is the best compromise between speed and accuracy, especially when applied to
large datasets. For smaller datasets, one could afford to spend a bit more time running the more
accurate Nostril algorithm.

Error Analysis
I am primarily going to investigate the errors that Nostril makes. I’ve listed the documents Nostril
gets wrong alongside some commentary.

The two other most promising algorithms get many of the same documents as Nostril incorrect,
although their errors don’t necessarily overlap with each other as much. One of the four
documents that Nostril got “incorrect” was arguably a mistake in the dataset, as it mostly
contains printed text. Additionally, some of the incorrectly labeled files are Excel files, hinting at
a deeper error with how the original OCR algorithm handled these files.

It is interesting to note that these algorithms are sometimes getting the scan of an email or two
incorrect. these scans seem generally clean, and this is worth some further investigation.
Printed documents Nostril incorrectly identifies as bad OCR

mjxw0291 - This is a Excel file (not a PDF or other easily OCR-able format)
sgxd0283 - I think this is happening because there are a lot of lines with only email addresses,
strange numbers, and names. There is also a bit of clutter
Handwritten documents Nostril incorrectly identifies as good OCR
Lghl0187
fqdx0231 - This is a printed PDF (incorrectly labeled as handwritten)

Multiple Metrics

One potential idea is to create a combination of metrics that could potentially score higher than
any one metric. We could run multiple metrics on a text, and take a weighted average over
these scores. This would only be beneficial if the documents that our best metric identifies
incorrectly are documents that other metrics identify correctly. However, in analyzing the
incorrect results of Nostril, Random-String-Detector, and other top performers, the documents
that Nostril were identifying incorrectly were also identified incorrectly by the other algorithms.

Another limitation is in the total time required to run these metrics. Our goal is to save time and
money, and running 10 computationally expensive metrics wouldn’t do either of those things.
The final blow to combinations of metrics is done when considering the potential benefit: 2.5%.
The absolute worst an optimized weighted combination of metrics could do is 97.5% correct,
and the absolute best it could do is 100% correct. Keep in mind that 2 of the 4 documents that
contribute to that remaining 2.5% were actually correctly categorized when we looked back at
them. So at best, it’s possible we might be able to improve our performance by 2.5% maybe, at
the cost of spending 2 times as much computational time. I actually tested this with 2 metric
combinations, and I could not generate an increase in accuracy at all.

Learning and Takeaways

I unfortunately could not include one or two algorithms, as I couldn’t get them running in Google
Colab. Many of my initial hypotheses and ideas (e.g. using autocorrect algorithms) were
ultimately not correct. There were also barriers around downloading and accessing documents
programmatically, which inadvertently resulted in the discovery of a minor bug. I would also like
to test these methods on documents that contain mixed handwriting and printed text, as these
are the majority of documents with handwriting in the UCSF IDL database.

I think this project was valuable, as it taught me a lot about the research process, utilizing
Google Colab, and about designing and executing independent projects generally. Being almost
completely independent, I was able to decide the point to stop investigating. Actually similar to
the cutoff function I used, I needed some way of determining at what point my current research
was “good enough”. If I didn’t have a cutoff, a project like this could go on for weeks, with only
marginal improvements being made. I quite enjoyed the freedom, and I’m proud of the work I
did.

Project 2: Embedding Search and Visualization

Introduction

Currently, the UCSF Industry Documents Library uses Apache Solr’s MoreLikeThis (MLT)
feature to allow researchers or anybody browsing the web to discover more documents similar
to the one they are currently viewing. This is important for those exploring the dataset or looking
for specific information to navigate more easily. Anybody can click the “More Like This” button in
the top right corner when viewing a document, and get a list of about 10 similar documents.
However, sometimes this doesn’t work how we want. Apache Solr is currently configured to
produce this list based on a weighted sum of fields like the industry, author, and title similarity.
This doesn’t take into consideration document contents or themes of documents, and while
often the titles of documents are correlated with their contents, a lot of the time they are not.
There are cases where the current MLT search returns no results as there aren’t any documents
with similar authors and names, and poor quality MLT results are much more common.

While there might be many possible solutions to this problem, I believe the most elegant is to
generate document embeddings, a way of taking a document and converting it to a vector that
(hopefully) represents all the key information of that document. Other algorithms like TF-IDF
compare word frequencies and counts, but an embedding-based search could go much deeper.

Document embeddings capture semantic content by encoding the context and meaning of
words in a dense vector space. This method uses natural language processing (NLP) to
(hopefully) provide more nuanced and relevant search results. Unlike TF-IDF or similar
algorithms like MLT, which rely on the frequency of terms and often miss context, embeddings
allow for more sophisticated comparisons that consider the semantic and thematic elements of
documents, improving the accuracy and relevance of search results.

We can also generate interesting visualizations, necessitating dimensionality reductions. As the
embeddings are just vectors (lists of numbers), we could imagine each one as representing a
point in a high-dimensional space. Documents close to eachother in this space would also
hopefully be close to eachother in meaning or theme. However, visualizing high-dimensional
data requires reducing it to 2 or 3 dimensions, which makes it comprehensible to our 2 and 3-D
adjusted minds. Dimensionality reduction techniques such as PCA, t-SNE, and UMAP can
transform embeddings into lower-dimensional representations, enabling the creation of
interactive and intuitive visualizations which help users explore the dataset more effectively,
revealing clusters and patterns that might not be apparent through text alone. Additionally, the
visualizations give the user an ability to grasp entire collections or databases at once, which can
often consist of thousands or millions of documents in the case of UCSF.

Embedding Search

To create an embedding search algorithm, we need two main parts: an embedding algorithm
and a similarity metric. There are also nearest neighbor algorithms that are necessary to the
search, but Apache Solr provides its own kNN (k-nearest neighbor) algorithm that gets
approximate closest documents based on the embeddings and distance function quickly.

The first algorithm I tested was Doc2Vec, an extension of the Word2Vec model designed to
generate vector representations of entire documents, rather than single words. It creates these
embeddings by training on a corpus of provided documents and learning to predict words based
on both their surrounding words and a unique document identifier. This lets Doc2Vec to produce
vectors that encode the document content and structure, making it useful for various natural
language processing tasks such as document classification, clustering, visualization, and
embedding search. Doc2Vec generates embeddings that are tailored to the specific corpus it is
trained on, ensuring that the vectors represent the unique characteristics of the documents. We
can also choose the exact size of the vector (a variable I will illustrate in the visualization
section), resulting in quick and efficient similarity searches and training for documents within the
training dataset. It also means that we don’t have to send data to a third party or run extremely
resource-intensive machine learning models, so we can save a lot of money. However, its
performance might degrade when applied to out-of-sample data, as the model might not
generalize well to documents with different styles or content not seen during training. For UCSF
specifically, this means that an embedding model trained on only JUUL documents wouldn’t
embed documents from the opioids industry very well. Additionally, in my testing it seemed that
running Doc2Vec on a random sample of the entire IDL database, a lot of contextual information
was lost. This is shown in the visualizations, where Doc2Vec doesn’t group similar documents
well. The solution to these problems is likely training and running different Doc2Vec models for
each industry or even for each collection. Then when we execute a similarity search, we first
filter for only documents in the same industry, then sort by closeness to the original document
according to our distance function. This would mean giving up seamless visualizations of the
entire database at once, but would be significantly faster and more accurate than training and
running one Doc2Vec model on the entire database.

The second major category of embedding algorithm I tested were TogetherAI embedding
models, pretrained models used by large language models (LLMs) to generate vector
representations of text, so that text can be understood and utilized by LLMs. They perform well
across diverse and variable text inputs due to their pretraining on extensive and varied datasets
(mostly text data from the internet). They can likely capture broader contextual relationships and
nuance, making them suitable for a wider range of documents. However, they’re often
resource-intensive and slow, requiring significant computational power for processing and
dimensionality reduction. Usually they would be used via a third party, sending data to them and
receiving embeddings, but this incurs a fee and may restrict our ability to work with sensitive or
unredacted data. Additionally, there are a few other key practical barriers to using TogetherAI
models. For one, they have maximum context sizes in the range of 512 tokens to 32768 tokens.
However, tokens don’t correlate very well with words or number of pages, and the number of

tokens a document uses up can be quite variable depending on the text it is used on. For
example, low quality OCR looks like gibberish and would likely take up more tokens per page
than perfectly coherent OCR. As it is hard to predict the number of tokens a document will take
up, I essentially used a trial and error approach, where I first tried to feed in the entire
document, and if that errored because of too many input tokens, I cut the document down by 2/3
and retried it recursively. Thus, eventually the document would fit in the context size and it would
return an embedding. This is not elegant at all and there are far better ways of embedding large
documents (such as taking many embeddings and averaging them), but these are all
complicated when submitting bulk API requests to TogetherAI. Another practical difficulty with
the TogetherAI embedding models are their dimensionality. Embedding models often produce
vectors with a dimensionality of 768 or more, which would take up too much storage space and
would be too slow to search through. Thus, dimensionality reduction algorithms must be applied
to reduce the number of dimensions, but this warps the data. I tested all 8 of TogetherAI’s
embedding models, using the $5 of free credits anybody can get by signing up for an account. It
is difficult to compare their performance as we don’t actually know what documents are “closer”
to others, because this is a subjective judgment. The best way to get a sense of performance is
to look at the visualizations, but even these are poor metrics for how the embeddings actually
look and act in the high-dimensional space. However, I am interesting in developing a small
dataset to test this based on human understanding of document similarity.

Similarity Metrics:

Apache Solr includes a dense vector search, so these embeddings can be plugged right into our
current database. It’s important that this dense vector kNN search is approximate, as this
balances speed of retrieval with accuracy of results. There are multiple similarity metrics:

Euclidean Distance measures the straight-line distance between two points in a
multi-dimensional space, similar to the Pythagorean theorem (it is actually the Pythagorean
theorem, but with more numbers squared under the square root). It is useful when the
magnitude of the vectors is important, but it is the slowest of the algorithms.

Cosine Similarity calculates the cosine of the angle between two vectors, focusing on their
direction rather than their magnitude. This metric is useful when the orientation of the vectors is
more relevant than their length, such as in text similarity tasks where document size varies.
Something interesting that I observed when testing is that in extremely high dimensional data
(e.g. the 768 dimensions generated by TogetherAI embedding models), the 10 closest
documents were the exact same when measuring distance using cosine and Euclidean
distance. I believe this is related to the curse of dimensionality, as in high dimensions distances
become more uniform. Overall, I believe this is the strongest of all the algorithms, and it is
generally standard for these types of applications.

Dot Product (Inner Product) measures the length of the projection of one vector onto another,
combining aspects of both magnitude and direction. It’s computationally efficient and often used
in scenarios where both the size and alignment of vectors matter, or when speed is necessary.

Dimensionality Reductions

As previously mentioned, to efficiently utilize the
embeddings from the TogetherAI models, we must
reduce their number of dimensions from ~768 to
somewhere between 10 and 100. I often defaulted
to using 20 dimensions, but this was somewhat
arbitrarily chosen based on what seemed to be the
standard in previous work. Another application of
dimensionality reduction algorithms is in
visualization of data. Instead of converting to
somewhere around 20 dimensions, we can convert
the data down to 2 or 3 dimensions, which we can
visualize with standard tools. This can also be
applied to the Doc2Vec embeddings to visualize
them as well. There are a few key embedding
algorithms I tested, which I’ll describe below.

Principal Component Analysis (PCA) transforms the
data into a set of orthogonal components that capture
the maximum variance, reducing dimensionality while
preserving as much variance as possible using
eigenvalue decomposition. It’s computationally
efficient, very fast, and easy to apply to new data,
making it a practical choice for large datasets or initial
discovery work. However, PCA’s linear nature means it
can struggle with capturing complex, non-linear
relationships like those present in document
embeddings. Additionally, PCA is sensitive to outliers
which can skew results significantly.

t-distributed Stochastic Neighbor Embedding (t-SNE)
works by converting high-dimensional Euclidean
distances into conditional probabilities that represent
similarities, and then optimizing the low-dimensional
representation to reflect these probabilities. It’s very
good at preserving local structures in the data and can
understand non-linearity, making it useful for visualizing
clusters, but it has a high computational cost, scaling
quadratically in both time and space with the number of
data points, making it unsuitable for very large datasets.

The stochastic nature of t-SNE also means that different runs can produce different results, and
it commonly has a number of hyperparameters to tune.

Uniform Manifold Approximation and Projection
(UMAP) fundamentally works similarly to t-SNE,
computing hihg-dimensional similarities and tuning a
low-dimensional graph to to match it as much as
possible, but it also uses sophisticated techniques from
algebraic topology and cross-entropy similarity
functions to speed up generation. Like t-SNE, it works
well for non-linear data and is stochastic, but it is
considered better at preserving the overall shape of the
data and is much faster than t-SNE. However, it’s
effectiveness depends significantly on the tuning of its
hyperparameters, and it’s much more sensitive to small
changes in them than t-SNE. Thus, in exchange for
running each reduction faster, we must run a greater
quantity of reductions testing different
hyperparameters.

The final option I considered were using autoencoders, which are neural network models
designed to learn efficient codings of input data. They work by compressing the data into a
lower-dimensional representation and then reconstructing it back to the original input (training to
match the identity function). This process can capture complex, non-linear relationships within
the data and contextual understandings. While autoencoders may provide the better
dimensionality reduction, they are computationally expensive to train and run, especially on
large amounts of data.

Due to the difficulty of pursuing this option, I decided to leave it to future experiments.
Dimensionality reduction isn’t the core of this project, and wouldn’t be relevant if we used
Doc2Vec (the overall best algorithm). Because of its speed and the size of my datasets, I largely
stuck to using PCA for initial visual investigation, and UMAP for more in-depth searching.

Conclusion

The initial implementation has demonstrated promising results, showing that embedding-based
search can provide relevant document recommendations. The performance of the embedding
models, particularly Doc2Vec, was quite good, often yielding recommendations similar to the
original MLT algorithm, which suggests that the previous method had some merit. However, it
was also able to return appropriate results when MLT did not and actually appeared to have
contextual understanding. TogetherAI models, while providing better contextual understanding,
often struggled with long documents, necessitating truncation, which might lead to loss of
important information. Doc2Vec’s efficiency and cost-effectiveness make it a strong candidate
for continued use, especially when combined with pre-filtering for industry.

For interactive visualizations, see the version of this post on my website.

Limitations

One significant challenge is scaling the system to handle larger datasets effectively. I tested on
three datasets: one of 2.8k documents (San Francisco Walgreen litigation documents), 17k
(Tobacco Products Liability Project collection), and one of 30k (my random sample of all the IDL
documents). None of these compare to the roughly 20 million documents in the IDL currently, so
there would likely be unpredictable complications when scaling.

Next Steps and Future Investigations

Autoencoders - It would be interesting to study the potential of autoencoder models for
generating higher-quality, context-aware embeddings specifically for our datasets and compare
them to more general-purpose dimensionality reduction algorithms like UMAP and PCA.
Performance would be an extremely important factor due to the size of our datasets, so I could
specifically research lightweight autoencoder models.

Matryoshka Embedding Models - These are machine-learning based models trained to generate
valid embeddings at a range of dimension sized, capturing the most important information in the
first few dimensions. These perform better than standard embedding models overall, and could
eliminate the need for extra dimensionality reduction algorithms.

Dataset for Similarity Quality - Compile or curate a benchmark for accuracy of document
similarity algorithms. This would likely be subjective, but by averaging many opinions I could
potentially generate a useful testing dataset that would allow me to systematically test and
measure the performance of various embedding models, better quantify the information lost by
dimensionality reductions, and formalize some hyperparameter optimization.

Testing Scalability - I think this would be the most useful research area, as it is incredibly
relevant for UCSF. I could perform tests on embedding time, search time, model training time
and space, database space, additional optimization algorithms such as prefiltering, and other
relevant factors when scaling up to large datasets.

Project 3: Sensitive Information Scanning

Background and Need

The IDL gets large amounts of sensitive data, including PHI, PII, and other information that is
better left off the public internet. This data has often been processed through tools like Everlaw
or others, which provide some automatic redaction services for easily recognizable data.
However, these automatic tools don’t catch everything, so there must be an element of human

https://generic-account.github.io/embedding-search-and-visualizations

review. But humans can’t look at every single document, so there are likely at least a few bits of
private data that make it through the process.

This is a challenging process to totally automate, however, as we really can only access the
OCR text easily, but this OCR is often of a low quality. Therefore, automatic algorithms that are
scanning for sensitive data in the OCR text may miss data that is perfectly legible to a human
looking at the original document, but that is scanned in badly, handwritten, or written sideways.

My project idea was to scan for some of the low-hanging fruit and partially corrupted data that
automatic redaction tools might have missed, all from the public IDL database.

Methodology and Tools

The main tool I used for this project was txt-ferret, a tool for scanning databases for sensitive
information using regular expressions. It comes pre-configured with many regular expressions to
identify credit card numbers of various types, but I also added many of my own to help identify
social security numbers.

However, there were a few difficulties in this process. For one, I wanted to scan the entire UCSF
database, which meant that scanning individual files would be impossible. Therefore, the only
option was to scan the full compressed files, without decompressing them entirely. Txt-ferret
includes a feature to do this by decompressing parts of the file at a time.

Additionally, not all the detected credit cards or social security numbers will be legitimate. Many
might be accident detection of other numbers with the same format as that type of data. Thus,
txt-ferret allows for the use of sanity-checking algorithms, such as the Luhn algorithm for credit
card numbers. These can filter out many of the accidental detections, but even so there are a lot
of false positives.

Results
This process flagged about 28,000 credit card numbers, inlcuding false positives. Many were
receipts from the 90s so wouldn’t be a whole lot of use to people trying to steal money, but could
be used to identify people in the documents. There were no social security numbers found with
strict regular expressions, but a number were flagged when I used much more permissive
regexes (e.g. allowing a few exceptions to the format). This is a very good sign that much of the
automatic redaction is working, but it also indicates that there may be a few heavily corrupted
unredacted ones.

There are also likely things we missed, like numbers that have a few digits incorrectly OCRed
more than just one. These are extremely difficult to detect, but could still potentially be pieced
together to identify people so they should be redacted if its reasonably possible. I also briefly
investigated some of the false positives, and it appeared many were from sequential digits that
happened to pass the Luhn test, perhaps indicating that these were from lists or spreadsheets
with line numbers.

Project 4: LLM Summarization Sentiment Analysis

Introduction
The final research project I worked on was evaluating the bias of LLM summarization with
sentiment analysis. This project was relatively brief, but I think the results were quite interesting.
One potential application of LLMs is to generate summaries of documents, allowing researchers
to better search through them for key information. However, it’s possible that these LLM
summaries are biased one way or another, which wouldn’t be good news for the integrity of
research and data. Thus, I investigated the bias of LLM summaries of JUUL documents and
compared them to human summaries.

Method
To generate the LLM summaries, I used
TogetherAI models and their API to
automatically send the OCR of documents
in. I instructed the LLMs to generate one to
two sentence summaries. I also tested
GPT-4, GPT-4o, and GPT-3.5 through
Versa Chat, which are the LLMs most likely
to be used by UCSF.

To measure the sentiment of summaries, I
used TextBlob, a Python library that
packages the Natural Language Toolkit
(NLTK) for ease of use. Its sentiment
analysis measures the polarity and
subjectivity of documents. Polarity is on a
scale of -1 to +1, where +1 would be a very
positive comment, while a -1 would be
extremely negative. Subjectivity is measured
on a scale of 0 to 1, with a 0 score being
perfectly neutral, while a score of 1 would be
totally subjective. Average sentiment scores
of the LLM summarizations of about 60
JUUL documents were measured and
compared to the sentiment scores of a
human reviewer.

Results
As seen in the charts above, The LLMs were generally slightly positively polar, meaning that
they generally talked in favorable terms about the JUUL documents. They were also generally
consistent with their sentiment scores, not wildly varying from one document to the next.
Interestingly, the LLMs were every rarely negative, and when they were, they were only very
very slightly negative. This is acceptable, especially given the significantly higher polarity of the
human summaries. As for subjectivity, the LLMs were somewhat subjective (average of about
0.4), generally about as subjective as the human summaries. This is a good sign, as they tend
to be more objective than subjective, an important metric in this context.

Meta’s Llama models and GPT-3.5 (via Versa Chat) performed particularly well, although it is
interesting to note that GPT-3.5 was also less consistent than the other models. However, all in
all, most of the LLMs’ summaries were about as good if not better than the human summaries,
which is to be expected from models trained to imitate human text and responses. It is important
to note, however, that this project did not measure the truth, accuracy, or helpfulness of the
summaries. It’s possible, although unlikely, that the LLMs generated totally wrong summaries of
the documents, and further analysis would have to be done to catch this.

Conclusion

In summary, I largely worked on four projects all centered around the applications of natural
language processing and data science to the JUUL Labs Collection and the IDL digital
collections as a whole. In addition to these, I also helped develop AWS workshops specifically
for UCSF researchers in the style of Software Carpentry (available on my website) and looked
into the LLM-based categorization of documents.

There are a few key things I learned from
this fellowship. For one, I learned that not
every project idea is successful. I worked
on the LLM categorization of documents
for a week or two (where LLMs would label
the documents as fitting into certain
categories of interest), but I was never
able to achieve very good results. To
illustrate, you can see a small overview of
the results of some LLM categorization
schemes to the right (red is bad, green is
good). While using certain models and
asking a series of yes/no questions to the
model helped, their accuracy was still far
too low to be useful. I think the root
problem was that the categories and their
descriptions were a bit ambiguous and
difficult for humans to categorize, so there

wasn’t even a good metric for verifying the LLMs’ performance.

On top of learning multiple new technologies and libraries (such as AWS, regular expressions,
TextBlob, and TogetherAI embedding models), I also learned the benefit of hands-on testing and
how to deal with large datasets and slow running times, recurring themes in my projects. The
IDL database in its entirety is huge, containing about 20 million documents, meaning that
running many programs on my laptop would be infeasibly slow. Thus, I had to learn about
multithreading, parallelism, asynchronity in API requests, and (de)compression schemes to
handle the many gigabytes of data.

I also gained experience writing about my projects in an academic yet informative style, and
presenting them at the mid-fellowship Zoom meeting. I think the ability to communicate technical
topics is just as important as the work itself. After all, what’s the use of research if nobody else
can understand it?

In the future I hope to continue research like that I here at UCSF, especially focusing on the
applications of NLP to diverse fields like environmental sustainability, policy, and the digital
humanities.

Contact Information and Final Thoughts

More specific details about my projects and the live embedding visualizations are hosted on my
website at https://generic-account.github.io/. Much of the code is hosted on my GitHub. If you
have any suggestions, corrections, potential collaboration ideas, or would just like to talk, feel
free to reach out through LinkedIn or the email addresses I have listed on the website!

Thank you again to all my friends and mentors at UCSF. Your support, guidance, and wisdom
were incredibly valuable. I loved every moment of my time here and I genuinely cannot thank
them enough.

https://generic-account.github.io/
https://github.com/generic-account

