
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Overview of the InterGroup protocols

Permalink
https://escholarship.org/uc/item/3cf4t427

Authors
Berket, Karlo
Agarwal, Deborah A.
Melliar-Smith, P. Michael
et al.

Publication Date
2001-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cf4t427
https://escholarship.org/uc/item/3cf4t427#author
https://escholarship.org
http://www.cdlib.org/


Overview of the InterGroup Protocols?

K. Berket1, D. A. Agarwal1, P. M. Melliar-Smith2, and L. E. Moser2

1 Ernest Orlando Lawrence Berkeley National Laboratory
1 Cyclotron Rd, MS 50B-2239

Berkeley, CA 94720
fKBerket, DAAgarwalg@lbl.gov

2 Department of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106
fpmms, moserg@ece.ucsb.edu

Abstract. Existing reliable ordered group communication protocols
have been developed for local-area networks and do not, in general, scale
well to large numbers of nodes and wide-area networks. The InterGroup
suite of protocols is a scalable group communication system that intro-
duces a novel approach to handling group membership, and supports
a receiver-oriented selection of service. The protocols are intended for a
wide-area network, with a large number of nodes, that has highly variable
delays and a high message loss rate, such as the Internet. The levels of
the message delivery service range from unreliable unordered to reliable
group timestamp ordered.

1 Introduction

Distributed applications often need to maintain consistency of replicated infor-
mation and coordinate the activities of many processes. Collaborative applica-
tions and distributed computations are both examples of these types of appli-
cations. With the advent of grids [8], distributed computations will be spread
across multiple computer centers requiring e�cient mechanisms for coordination
between the processes. Collaborations are by their very nature distributed and
built in an incremental, ad hoc manner. Group communication provides a very
natural mechanism for supporting these types of applications and allowing them
to use a peer-to-peer architecture rather than a server-based architecture.

The MBone videoconferencing tools (vic, vat, and rat), the session direc-
tory tool (sdr) and the whiteboard tool (wb)1 are excellent examples of the
peer-to-peer model. These tools are designed to use multicast protocols to send

? This work was supported by the Director, O�ce of Science. O�ce of Advanced Scien-
ti�c Computing Research. Mathematical, Information, and Computational Sciences
Division, U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This
document is report LBNL-47567.

1 More information on all of these tools and their binaries can be found at
http://www-itg.lbl.gov/mbone.



data, which allows groups to form and communicate without coordination with
a server. This peer-to-peer model inherently makes the tools easier to design
and to operate for groups of two and groups of hundreds. Because there are no
servers, groups can be formed in an ad hoc manner with no setup. Scheduling
using a centralized authority is sometimes used in these systems.

There are many applications that can bene�t from the use of a peer-to-peer
group communication capability. Instant messaging systems, shared remote visu-
alization, shared virtual reality and collaborative remote control of instruments
are just a few examples. Most of these applications currently use a central server
to collect messages and forward them to the participants. A peer-to-peer group
communication service that provides group membership services, reliable ordered
message delivery, and progress in the presence of process and network faults can
be used to allow the participants to talk directly to each other.

Although group communication systems can provide these services, the pro-
tocols have historically been limited in their scalability. The InterGroup proto-
col suite, described in this paper, is a group communication system that tackles
scalability by taking a novel approach to providing these services. Our solution
includes rede�ning the meaning of group membership, allowing voluntary mem-
bership changes, adding a receiver-oriented selection of delivery services (which
permits heterogeneity of the receiver set), and providing a scalable reliability
service. The InterGroup protocols are designed speci�cally with the intention of
scaling to the Internet and to large numbers of participants.

2 Related Work

Group communication systems provide reliable group ordered message delivery
and membership services that allow the system to make progress in the presence
of process and network faults. The main concerns in scaling these protocols
are ow control, congestion avoidance, the reliable multicast service, and the
membership service. The membership service needs to support a reliable group-
ordered delivery service and a form of virtual synchrony [5, 12]. Because of this,
it is essential for the membership service to be based on protocols that reach
group-wide consistent decisions.

Traditionally, group communication systems, such as the Totem Single Ring
Protocol (SRP) [3], Transis [2], Isis [5], and RMP [18], were designed for the local-
area network environment, where network latencies and losses are minimal, and
there is a small number of processes. Because of this, scalability concerns were
not vital in the design of these systems.

Recently, group communication systems have made advances beyond the sin-
gle local-area network environment, and research into scaling the membership
services has intensi�ed. The Totem Multiple Ring Protocol (MRP) [1] uses a
hierarchy of rings interconnected by gateways. Each ring is an instantiation of
the Totem SRP and the gateways provide coordination and message forwarding
between the rings.



To reduce the costs encountered in applications requiring the use of a large
number of process groups, dynamic light-weight groups [9] were introduced. The
idea is to map this large number of application process groups to a smaller
number of protocol process groups. This concept is implemented by the process
group interface of Totem [13], which provides a static mapping of the application
groups to one protocol group, and by the gateways of the Totem MRP, which
�lters the forwarding of messages based on application groups.

Another trend in group communication systems has been the breaking up
of the system into building blocks. Horus [17] (and its follow-on Ensemble[16])
introduced the building block approach to group communication systems. This
approach allows more exibility in the delivery services provided to the applica-
tion. It also breaks away from a monolithic approach to design, allowing a better
understanding of the interactions within a group communication system.

Moshe[10] is a group membership service (building block) for use by group
communication systems in the wide-area environment. It provides an optimistic
algorithm, for reaching a group-wide consistent decision regarding the mem-
bership, that usually �nishes in one round. This is achieved by separating the
membership service from the fault detection mechanisms in such a way that
most membership changes can be handled as voluntary. Moshe also separates
the membership service from the virtual synchrony service. For full virtual syn-
chrony, an additional layer built on top of Moshe is necessary.

Scalable Reliable Multicast (SRM) [7] is a protocol that was designed specif-
ically to scale to the Internet. It is not a full group communication system; it
only provides the mechanisms for recovering messages in a scalable manner. It
achieves this by separating the reliability mechanisms from the loss detection
mechanisms, leaving those up to a higher layer. The SRM protocol exchanges
session messages between group members to update the control information at
each individual process. The original SRM protocol uses a group-wide multicast
for all of its communication, which limits its scalability. One proposed solution
to this problem is the organization of the group members in a self-con�guring
hierarchy [15].

3 The Architecture

The InterGroup protocols are designed using a building block approach. We
divided the protocols into four separate modules based on functionality. The
modules are control hierarchy, reliable multicast, message delivery, and process
group membership.

The control hierarchy provides a scalable mechanism for the exchange of
control information between sites in the system. Each site has a control process
that collects and disseminates the control information for all of the processes
at that site. The control hierarchy also provides mechanisms for determining
message stability, and providing group-wide consistency of information to the
group members. The essential components of the control hierarchy are explained
in Section 4.



Reliable multicast provides mechanisms to detect missing messages, request
the retransmission of messages, retransmit messages, and detect whether a mes-
sage can be recovered. The detection of missing messages in InterGroup is
through detection of gaps in the sequence numbers of messages from the same
source. When a node detects a missing message, it requests the retransmission
of the message.

Message delivery entails the ordering and delivery of messages to the ap-
plication based on the delivery service chosen by the application for a process
group. The essential components of message ordering and delivery are explained
in Section 5.

The process group membership protocols run at each process and track the
changes in the group membership. They are a�ected by the delivery service
chosen by the application and the sending characteristics of the process. The
essential components of process group membership are explained in Section 6.

4 Control Information

There are many types of control information that need to be gathered by the
InterGroup protocols. The reliable multicast protocols gather information about
the latency between processes (based on algorithms introduced in SRM). The
bu�er management protocols gather information from the reliability service of
each process so messages are held in the bu�ers only until they have been de-
livered to all of the processes in the group. The membership protocols collect
information from all of the processes in the group in order to reach a consistent
decision regarding the group-wide logical time at which a membership change
occurs, called a cut.2

This control information must be obtained from all of the processes in the
group or from all of the processes in the system. To make this operation more
scalable, we gather and disseminate the control information in a hierarchical
manner. The structure of our hierarchy is based on the work proposed for scal-
ing the control information exchange in SRM [15]. The logical structure of this
hierarchy attempts to mimic the underlying network topology by considering the
latencies between control processes. This structure improves the e�ciency of the
control communication.

The control processes are organized in multicast trees, with the roots referred
to as coordinators, and the leaves referred to as children (Fig. 1). Each child is
associated with at least one coordinator. The local group of a coordinator is
composed of the children of that coordinator (including the coordinator itself).
The coordinator group consists of all the coordinators. Each control process limits
its communication of control information to its local group; the coordinators also
communicate with the coordinator group. The frequency of control messages is
regulated using a simpli�ed version of the congestion control algorithm used by
RTCP [14].

2 This is required for virtual synchrony.



Coordinator

Child

Fig. 1. The control hierarchy.

The hierarchy dynamically reorganizes based on changes in the system. A self-
determination protocol is executed periodically to determine whether a control
process in the hierarchy should change states (child to coordinator or vice versa)
in response to changes in the system. The determination of a state change is a
local decision made at each control process based on control information gathered
before the self-determination protocol is executed, and based on a prede�ned set
of rules adapted from [15].

A control process, upon startup, checks to see how many coordinators are
present in the hierarchy, by checking the messages sent in the coordinator group.3

If the number of coordinators is less than or equal to the expected average
coordinator group size or the control process does not receive a control message
from the coordinator group within a given time, the control process starts up as
a coordinator. Otherwise, the control process starts up as a child.

A control process, starting up as a coordinator immediately starts sending
control messages. A control process, starting up as a child, needs to �nd a co-
ordinator that will accept it into its local group. This step is accomplished by
using an expanding ring search. When it �nds a coordinator, the control process
starts sending messages to the coordinator's local group and becomes a child.
If the expanding ring search doesn't provide a coordinator within a given time,
the control process starts up as a coordinator.

3 Only one message is necessary to make this determination.



The detection of control process faults is accomplished via a fault-detection
algorithmthat runs periodically. If the information from a control process has not
been updated recently, the control process is removed from the data structures
and thus removed from this control process's view of the membership of the
hierarchy. When a fault regarding the coordinator for this control process is
detected, the control process uses the information from the self-determination
protocol to decide whether it should �nd another coordinator and remain a child,
or whether it should become a coordinator.

Global control tra�c from all control processes is gathered using the hi-
erarchy. The control information is aggregated as it is gathered through the
InterGroup control hierarchy, thus controlling the control information message
size. Otherwise, the size of control messages would grow proportionally with the
number of control processes.

For a detailed description of the control hierarchy and a full state machine,
see [4].

5 Delivery Services

The InterGroup system provides the following delivery services within a process
group:

1. Unreliable unordered. Messages received from the process group are de-
livered directly to the application. Some messages might never be received,
and multiple copies of the same message might be received. There is no
guarantee regarding the order in which messages are received. IP Multicast
provides this functionality.

2. Reliable source ordered. All messages from a particular source will be
received by the application (unless a process fault occurs), and they will be
delivered in sequence number order. This service is well-suited to applications
such as multicast �le transfers and many other applications currently using
TCP/IP [6].

3. Reliable group timestamp ordered. Messages are received by the appli-
cation in timestamp order over the entire process group. The membership
service ensures the consistency of received messages at group members during
membership changes. This service is closest to the idea of agreed messages
in group communication systems [3].

Each process determines the delivery service it desires for a process group at
the receiving end. To achieve this receiver-oriented delivery service, we need (1)
to order messages independently at each receiver without restricting the delivery
service choices of the other receivers, and (2) to separate the reliability service
from the ordering service.

We make application messages \born-ordered" [12] to achieve the �rst goal.
Each message is ordered based on information in the message: the process iden-
ti�er of the sender, a sequence number, and a logical timestamp at the time
the message is sent. The process identi�er is guaranteed to be unique in this



group. The sequence numbers preserve the order of the messages sent by the
application. The logical timestamp is based on a Lamport clock [11], and is used
to preserve the causality between messages in the group. These three values are
used by a deterministic algorithm applied at the individual receivers to produce
a group-wide ordering of messages. Determining message order during a mem-
bership change is the work of the protocols that guarantee virtual synchrony
(see Section 6).

The reliability service in the InterGroup protocols is represented by the re-
liable multicast module. The ordering protocols receive messages in sequence
number order for each individual source from the reliability service. In the case
that an unreliable delivery service is requested, the reliability service is bypassed.

These mechanisms allow the delivery service provided to the application to
be chosen, independently, at each receiver. Our approach requires all of the ac-
tive senders in the group to subscribe to the reliable group timestamp ordered
delivery service4 to preserve causality between messages. This requirement re-
sults in unnecessary overhead if none of the processes receiving messages in the
process group has subscribed to the reliable group timestamp ordered delivery
service. However, the bene�ts are the exibility and data abstraction that this
method provides.

A bene�t of the receiver-oriented selection of delivery service is that the num-
ber of participants in the acknowledgment and cut gathering operations can be
reduced. Processes that have not subscribed to the reliable group timestamp or-
dered delivery service do not, in general, have to participate in these operations.

6 Membership

The process group membership is used to update the group membership and
allow the delivery of messages to continue after faults, joins and merges.

The InterGroup group communication system takes a novel approach to pro-
viding consistent message ordering and delivery within groups. A cornerstone
of this approach is the recognition that the message order and reliability con-
straints can be met by counting only the processes currently sending messages in
the group. In the InterGroup system, not all processes are equal. In each process
group, a process is classi�ed by its recent activity. If the process has been sending
data to the group recently, it is classi�ed as an active sender. Each group thus
has two memberships; the receiver membership that contains all the members
of the group, and the sender membership that contains only the active senders.
The sender group membership is maintained using consistency-based member-
ship mechanisms and is explicitly known. The receiver group membership does
not need to be maintained explicitly for the purposes of message ordering and
reliable delivery.

The active senders run a membership repair algorithm (MRA) that is based
on the membership algorithms used by Transis [2]. The MRA of the InterGroup

4 This does not a�ect the application requested delivery service. It is handled internal
to the InterGroup protocols.



protocols has been designed so that participation of processes not in the sender
group is minimized. The active senders run the membership algorithms to reach a
consistent decision on the new membership, to ensure that a unique cut is chosen,
and to decide on the place in the message ow that a membership change occurs.

Of the remaining processes, only the processes that have requested the re-
liable group timestamp ordered delivery service participate in the membership
repair. They run a membership repair algorithm built speci�cally for the Inter-
Group system, the receiver membership repair algorithm (RMRA).

The RMRA is started when a process receives a message that signals the
beginning of the MRA at a process that is an active sender. The process run-
ning the RMRA halts delivery of messages to the application and sends out the
timestamp of the last message delivered to the application before it stopped de-
livering messages. This timestamp provides the earliest logical time at which the
process can begin a new membership. It then waits for a message that describes
the membership change. This message is sent by an active sender and signals
the completion of the MRA. The information in this message includes a list of
active senders in the new membership and the logical time at which the mem-
bership begins. This process attempts to recover and order all of the messages
that precede the new membership. If it succeeds in the recovery, it installs the
new membership, and successfully completes the RMRA. Otherwise, it does not
successfully complete the RMRA.

The combination of the MRA and RMRA allows the active senders to provide
virtual synchrony information to the entire group, while keeping the number of
participating processes to a minimum.

InterGroup also provides voluntary mechanisms for processes to enter and
leave the sender group. A process, wishing to join the sender group, contacts
a member of the sender group that serves as a sponsor. The sponsor sends
a message to the group requesting to add this process to the sender group.
The delivery of that message signi�es the addition of the process to the sender
group. A process wishing to leave the sender group sends a message to the
group, requesting that it be removed from the sender group. The delivery of
that message signi�es the removal of the process from the sender group.

Detailed membership algorithms and their interface to the other modules can
be found in [4].

7 Conclusion and Future Work

The goal in designing the InterGroup protocols has been to provide the applica-
tion services of group communication systems in a wide-area environment with a
large number of participants, prone to large latencies and frequent faults, such as
the Internet. Thus, we designed an architecture that divides the system into four
major components: a control information service, a reliability service, a deliv-
ery service, and a membership service. Prior research into scaling the �rst two of
these components allowed us to focus our e�orts on the delivery and membership
services.



The membership protocols of existing group communication systems have
traditionally limited their scalability. The InterGroup protocols take a novel ap-
proach towards enhancing the scalability of membership protocols, while main-
taining consistent message ordering and delivery within groups. In most appli-
cations, only a few group members are sending messages at any one time. A
cornerstone of the InterGroup approach is the recognition that the message or-
der and reliability constraints of a group communication system can be met by
keeping only the processes currently sending messages in the group membership.
The membership protocols require only the sending processes to participate in
expensive group-wide decisions.

We step away from the traditional approach of choosing a delivery service to
provide more exibility to the application by allowing each process to choose a
delivery service independent of the other processes in the group. This approach
also allows processes that cannot meet the desired system quality of service to
participate in the group, using a weaker delivery service, and improves scalability
of the system.

We are currently undertaking simulation studies of the various aspects of the
protocols in order to determine the scalability bounds. We are also measuring
the performance of our implementation in order to investigate the performance
characteristics. We are expecting to release an implementation of the InterGroup
protocols soon, for further testing and use by applications.

References

[1] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia. The Totem
multiple-ring ordering and topology maintenance protocol. ACM Transactions on
Computer Systems, 16(2):93{132, May 1998.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication subsystem
for high availability. In Proceedings of the 22nd IEEE International Symposium
on Fault-Tolerant Computing, pages 76{84, New York, NY, July 1992.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella.
The Totem single-ring ordering and membership protocol. ACM Transactions on
Computer Systems, 13(4):311{342, November 1995.

[4] K. Berket. The InterGroup Protocols: Scalable Group Communication for the
Internet. PhD thesis, Department of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, CA, 2000.

[5] K. P. Birman and R. Van Renesse, editors. Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, 1994.

[6] V. G. Cerf and R. E. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on Communications, 22(5):647{648, May 1974.

[7] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking, 5(6):784{803, December 1997.

[8] I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[9] K. Guo and L. Rodrigues. Dynamic light-weight groups. In Proceedings of the
17th IEEE International Conference on Distributed Computing Systems, pages
33{42, Baltimore, Maryland, May 1997.



[10] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A client-server oriented al-
gorithm for virtually synchronous group membership in WANs. In Proceedings
of the 20th IEEE International Conference on Distributed Computing Systems,
pages 356{65, Taipei, Taiwan, April 2000.

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558{565, July 1978.

[12] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended vir-
tual synchrony. In Proceedings of the 14th IEEE International Conference on
Distributed Computing Systems, pages 56{65, Poznan, Poland, June 1994.

[13] L. E. Moser, P. M. Melliar-Smith, R. K. Budhia D. A. Agarwal, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39(4):54{63, April 1996.

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport
protocol for real-time applications. IETF Request for Comments: 1889, January
1996.

[15] P. Sharma, D. Estrin, S. Floyd, and L. Zhang. Scalable session messages in SRM
using self-con�guration. Technical Report 98-670, USC, February 1998.

[16] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building
adaptive systems using ensemble. Software: Practice and Experience, 28(9):963{
979, July 1998.

[17] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A exible group communi-
cation system. Communications of the ACM, 39(4):76{83, April 1996.

[18] B. Whetten, T. Montgomery, and S. Kaplan. A high performance totally ordered
protocol. In Proceedings of the International Workshop on Theory and Practice
in Distributed Systems, pages 33{57, Dagstuhl Castle, Germany, September 1994.
Springer-Verlag.




