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REVIEW ARTICLE

Rapid-acting antidepressants and the circadian clock
Shogo Sato1,2, Blynn Bunney3, Lucia Mendoza-Viveros4,5, William Bunney3, Emiliana Borrelli 6, Paolo Sassone-Corsi2,7 and
Ricardo Orozco-Solis 5✉

© The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2021

A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated
with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant
considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that
may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep,
temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as
subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in
striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data
show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data
implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling
pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between
depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like
symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how
clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian
rhythms and neuroplasticity.

Neuropsychopharmacology (2022) 47:805–816; https://doi.org/10.1038/s41386-021-01241-w

INTRODUCTION
Major depressive disorder (MDD) is one of the most serious
psychiatric disorders. Worldwide, depression affects over 300
million people of all ages and is the leading cause of lifetime
disability out of all medical disorders according to the World
Health Organization (WHO) [1, 2]. Approximately 800,000 indivi-
duals die from suicide each year, many of which are associated
with MDD [2, 3]. In the United States, the burden of MDD
increased substantially over the past decade in terms of
prevalence, the stress associated with COVID-19, rising economic
costs and importantly, the limited efficacy of standard antide-
pressants [4]. Fast-acting interventions such as subanesthetic
ketamine or sleep deprivation therapy (SDT) (e.g., 36 h of
continuous wakefulness [5]) can effectively decrease suicidality
within hours [6], thereby potentially saving many lives. The
therapeutic limitation of classic antidepressants including limited
efficacy (~50%), low remission rates (~30–40%) in addition to the
prolonged response delay of several weeks [7] suggests that
additional mechanistic factors may contribute to the pathophy-
siology of MDD.
Emerging evidence supports a circadian hypothesis of depres-

sion based, in part, on data showing that a subgroup of depressed
patients (20–30%) has dysregulated 24 h rhythms including sleep,

core body temperature, hormonal secretions (i.e., cortisol,
melatonin) and mood. Moreover, rhythms may normalize as
symptoms remit [8–14]. Diurnal fluctuations in mood in a
subgroup of depressed patients include a pattern of depressive
symptoms that are significantly worse in the morning and
dramatically improve by evening [6]. Perhaps the strongest and
most direct evidence for a circadian defect in depression comes
from a study of postmortem 24 h sinusoidal gene expression
rhythms across six regions of human brain showing a dramatic
dysregulation of circadian genes in MDD compared to controls
[15]. The analysis supports the hypothesis that the disruption of
the circadian expression of the essential genes running the
circadian clock (i.e., core-clock genes) and the genes that they
control (clock-controlled genes- CCGs) have an impact on the
functional regulation of numerous neuronal processes and
behaviors including mood [15].
The circadian clock, in addition to its canonical role in the

regulation of circadian rhythms, participates in the control of
diverse brain functions, including memory formation, astrocyte-
mediated circadian behavior, sleep homeostasis, and energy
balance [16–20]. More than 90% of depressed patients report
disruptions in sleep including insomnia and early morning
awakening. These patients tends to have more severe forms of
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MDD, are less likely to have full clinical responses to standardized
treatments and may be at an increased risk for suicidal ideation
and suicidal behaviors (for review, [21]).
Genetic and transcriptomic data provide convincing evidence

linking circadian gene polymorphisms with an increased risk for
depression [15, 22, 23]. Studies in rodent models of depressive-like
behaviors highlight the complex interactions of the circadian
system in mediating rapid antidepressant responses [24–26]. In
this review, we summarize the rapid-acting mechanisms of action
of subanesthetic ketamine and sleep deprivation and their effects
on clock function, neuronal plasticity, sleep homeostasis, and
neurogenesis.

THE CIRCADIAN CLOCK
Circadian rhythms control virtually all physiological, behavioral,
and metabolic processes. In mammals, the suprachiasmatic
nucleus (SCN) located in the hypothalamus serves as the central
pacemaker, which is synchronized daily by light cycles via input
from the retino-hypothalamic tract. The SCN in turn synchronizes
peripheral clocks in other brain areas and peripheral organs to
orchestrate circadian rhythms, through synaptic connections,
autonomic innervations, and endocrine signaling [27]. The SCN
can also be influenced by non-photic inputs including behavior,
nutritional intake, exercise and social contact [27]. Moreover, on
an anatomical level, the SCN is capable of receiving, integrating
and sending information to an estimated 85 brain areas, resulting
in the regulation of higher brain function [28] (Fig. 1A). Viral
transneuronal labeling techniques in rats identified six afferent
projections to the SCN including the retina, limbic system,
hypothalamus, raphe nuclei, paraventricular thalamus, and extra
retinal visual system [29]. Importantly, interactions between the
SCN and limbic structures including the infralimbic cortex, lateral
septal nucleus, bed nucleus of the stria terminalis, ventral
subiculum, paraventricular thalamic nucleus, dorsal raphe nucleus
(DRN) median raphe nucleus and lateral habenula (LHb), comprise
critical circuitries that impact higher brain function [30]. Addition-
ally, the peri-habenular nucleus, a recently identified region,
serves as a link between intrinsically photosensitive retinal
ganglion cells (ipRGCs) (expressing the photopigment melanop-
sin) and an SCN-independent pathway, to regulate affective
behavior [31]. LHb neurons show daily firing-activity patterns,
suggesting that the LHb likely relays circadian outputs through
efferent projections to forebrain and midbrain aminergic nuclei
[32–34]. The LHb is not considered an autonomous pacemaker
since it depends on SCN innervation and light information to

maintain synchrony [35]. Light/dark environmental signals can
trigger changes in circadian rhythmicity related to antidepressant
efficacy of light therapy as demonstrated by light-mediated
induction of Per1 in the LHb. In contrast, long-term exposure to
dark can transiently desynchronize SCN and habenular rhythms
(dark-associated depressive-like symptoms are reversible by
antidepressants) [36].
At the molecular level, the circadian clock consists of a network

of interlocked transcriptional-translational feedback loops (TTFL).
The core proteins within the TTFL are the transcription factors,
Circadian Locomotor Output Cycles Kaput (CLOCK), and BMAL1.
These transcription activators heterodimerize and rhythmically
bind to E-box promoter elements and activate the clock-
controlled genes (CCGs) (Fig. 1B). Among the CCGs, PERIOD 1–3
(PER 1–3), and CRYPTOCHROME 1 and 2 (CRY1 and 2) repress the
transcriptional activity driven by CLOCK/BMAL1, and inhibit their
own expression through a negative autoregulatory feedback loop
that cycles in ~24 h [27, 37]. The CCGs encode transcriptional
regulators, including the D-box binding protein (DBP), thyrotroph
embryonic factor (TEF), retinoic acid-related orphan receptor a/b/c
(RORα/β/γ) and REV-ERBα/β (reverse erythroblastosis virus α/β).
DBP and TEF bind to D-boxes, while RORα/β/γ and REV-ERBα/β
bind to REV-ERB/ROR promoter elements, in turn, inducing
additional circadian waves in the expression of downstream
genes. It is estimated that the circadian machinery controls the
cyclic expression of about 10–30% of genes in any given cell
[27, 37], although recent estimates indicate that many more genes
may exhibit robust oscillations in response to nutritional and
metabolic inputs to modulate the organization of circadian
physiology [27, 38].
Moreover, neurotransmitters, hormones, metabolites, nutrients,

humoral and environmental inputs interconnect cellular signals
with the molecular clock [39–41]. For example, synchronous
astrocytes have the capability of entraining rhythmicity in neurons
via GABA signaling [42]. When rhythms are disrupted, (e.g., varied
light/dark cycles, jet lag) interference with central and peripheral
clock function can lead to abnormal clock gene rhythms [43] and
increase the risk for physical and psychiatric disorders including
depression [6, 13, 15, 44, 45].

Sleep deprivation therapy (SDT) and subanesthetic ketamine:
clinical data and circadian mechanisms
Sleep deprivation therapy (SDT). SDT has been recognized as an
effective treatment for depression [46, 47]. Its rate of efficacy,
estimated to be at 40–60% efficacy is comparable to that of
monoaminergic drugs but with a much faster onset (within 24 h).

Fig. 1 Organization of the circadian clock. A Representative schema depicting efferent and afferent signaling to the suprachiasmatic nucleus
(SCN) (black arrows). These include limbic structures including the infralimbic cortex (LC), lateral septal nucleus (LSN), basal forebrain of the
stria terminalis (BST), ventral subiculum (VS), paraventricular thalamic nuclei (PVT), nucleus accumbens (NAc), ventral tegmental area (VTA),
medial preoptic nucleus (MPO), dorsal raphe nucleus (DRN), median raphe nucleus (MRN) and hypothalamic nuclei [i.e., dorsomedial
hypothalamus (DMH), and the retino-hypothalamic tract (RHT)] [28, 30]. The lateral habenula (LHb) efferent and afferent connections are
shown (red arrows), ventral lateral geniculate (Vlgn), intergeniculate leaflet (IGL), rostromedial tegmental nucleus (RMTg) [25, 28, 34, 116, 220].
B A predictive model in which ketamine and sleep deprivation elicit common transcriptional responses by blocking BMAL1/CLOCK function at
specific times of the day (Zeitgebers-ZTs) associated with neuronal and behavioral responses [94, 95, 219]. Changes in the acrophase and/or
amplitude of the CCGs participating at different regulatory levels could affect mood. The 7 clock-controlled genes represent potential
components of rapid antidepressant actions of ketamine and sleep deprivation.
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In Europe SDT is often used as a first line treatment but less
frequently in the United States [48]. Although high relapse rates
(return of depressive symptoms following a night of recovery
sleep) are a major limitation, improvement can be sustained for
several weeks with the administration of non-pharmacological
circadian interventions of bright light therapy, and sleep phase
advance [49, 50]. While the mechanism of SDT remains largely
unknown, the sleep homeostasis hypothesis proposes that sleep is
associated with synaptic downscaling, a weakening of synaptic
strength thought to involve metabotropic glutamate receptors,
while wakefulness facilitates synaptic potentiation [51, 52]. More-
over, in vivo two-photon imaging show that dendritic spine
morphology is constantly changing during both wakefulness and
sleep as demonstrated in rat pyramidal cells of the sensorimotor
cortex [53]. Therefore, it is conceivable that extended wakefulness
contributes to the antidepressant effects of SDT by promoting
synaptogenesis.
Sleep is regulated by circadian (diurnal timing of sleep) and

homeostasis (sleep pressure) processes. Circadian regulation of
sleep is reported to be independent of prior wakefulness,
differentiating it from homeostasis, although data in humans
and rodents suggest an interaction. Insomnia affecting about 90%
of depressed patients, is characterized by difficulty in falling
asleep, staying asleep, early morning awakening and/or shortened
rapid eye movement (REM) latency—symptoms compatible with a
shift in circadian phase. Chronic insomnia is associated with an
increased risk for recurrent depressive episodes as well as
suicidality while normalization of sleep patterns may be an early
predictor of antidepressant response [6, 21].
Clinical research has implicated the response to sleep depriva-

tion associated with variants in serotonin-related pathways,
(5HT2A, rs6313, 5HTTLPR) [54, 55], the serine-threonine kinase
GSK3β [56] and the core-clock gene Per3 [57]. A genome-wide
study of SDT in MDD and BP patients [58] showed post-SDT
alterations in circadian genes (Bmal1, Per2, Per3, and Nr1d1) [58].
Of potential relevance is that we found that this subset of genes
were abnormally expressed in MDDs across six brain areas
compared to controls [15].
Studies in rodents suggest that astrocytes a subtype of glial cell

are an important contributor to antidepressant actions of sleep
deprivation specifically involving the adenosine receptor, A1 (A1R)
[59, 60]. Importantly, astrocytes are key contributors to sleep
homeostasis. When sleep need is high, astrocytes release chemical
transmitters such as adenosine, that presynaptically inhibit
excitatory transmission and induce slow-wave activity in rodent
brain [61–63]. Furthermore, in the SCN, astrocytes contribute to
pacemaker properties by relaying glutamatergic and ATP signals
to neurons at night [64]. For example, astrocytic expression of
clock genes modulate broad network fluctuations in glutamate in
the sleep/wake network [65].

Ketamine. Subanesthetic ketamine administered intravenously
dramatically decreases symptoms within 2–4 h with an efficacy of
70–80% [66–69]. Maintaining improvement longer than 1 week
post-infusion has motivated strategies for sustaining responses
including administering repeated doses [70] and adding adjunc-
tive treatments [71]. Subanesthetic ketamine is also shown to
decrease suicidal ideation as reported in double-blind studies in
depressed patients [72, 73]. The moderate hour-long psychoto-
mimetic side effects of ketamine are transient and may include
hallucinations, dreamlike states, confusion, gaps in memory and
out of body experiences. Ketamine has two enantiomers, (S) and
(R); intranasal esketamine (S-ketamine) has been recently
approved by the FDA [74].
Ketamine is a noncompetitive high-affinity N-methyl-D-

aspartate receptor (NMDAR) antagonist, selectively blocks
GluN2B-containing NMDAR on inhibitory GABAergic interneurons.
This allows the disinhibition of glutamatergic transmission, which

in turn activates postsynaptic AMPA receptors and intracellular
signaling pathways inducing plasticity [68, 75–79]. When the
AMPA antagonist NBQX (2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]
quinoxaline) is administered prior to ketamine injection (i.p.), the
ability of ketamine to decrease depressive-like behavior in rodents
is blocked [68, 80]. It is also postulated that ketamine could block
the GluN2B component of the NMDA, thereby reducing the
activation of the elongation factor-2 kinase (eEF2K) to prevent the
phosphorylation of eEF2, thus inducing the translation of BDNF
[76]. The BDNF–TRKB pathway activates the mammalian target of
rapamycin complex 1 (mTOR1) [81–83]. mTOR, a signal integrator
and neuronal response regulator, modulates the production of
proteins required for the formation of spines and synapses [81].
This process underscores another intriguing interplay: mTOR
signaling is controlled by the circadian clock, leading to the cyclic
regulation of protein synthesis [84, 85]. In the SCN, mTOR
participates in the light-induced translation of the core-clock
and CCGs including PER1-2 and VIP (vasoactive intestinal peptide).
This is achieved by phosphorylating and inhibiting the translation
repressor eIF4E binding protein (4E-BP), releasing the translation
initiation factor 4E (eIF4E), and by activating translational effectors
such as ribosomal proteins including S6 kinases [86]. Strikingly, the
core-clock protein BMAL1 acts as a translation factor by
interacting with the translational machinery and promoting
protein synthesis, and this mechanism is modulated by mTOR
via phosphorylation of BMAL1 at Ser42 [87].
The BDNF–TRKB pathway is induced by both classic mono-

aminergic antidepressants and fast-acting ketamine, by directly
binding to TrkB [88], implying that classic, and glutamatergic
antidepressants may share some common mechanisms. For
instance, the TrkB gene is expressed in a circadian manner, which
could be controlled directly by BMAL1/CLOCK, as suggested by
the presence of E-box sites within its promoter [89]. Moreover, the
melatonin precursor N-acetylserotonin (NAS) activates the TrkB
pathway resulting in antidepressant-like effects in rodents [90].
Furthermore, daily TrkB activity follows a circadian pattern [90],
suggesting that the circadian clock further modulates the TrkB
pathway via neuronal plasticity.
Chronotherapeutics have gained traction as a strategy to

increase antidepressant efficacy when treatment is administered
in synchronicity with specific phases of the circadian clock. It is
hypothesized that a novel mechanism of action of ketamine is to
restore depression-related glial defects by modulating the density
and distribution of cholesterol in the plasmalemma of astrocytes
via interactions with cholesterol, BDNF and TrkB [88, 91, 92]. BDNF
increases cholesterol signaling in neurons while cholesterol
regulates TrkB signaling. Although biomarkers of cholesterol (i.e.,
lathosterol, mevalonate, squalene) have nocturnal peaks in
expression, the absorption rates of cholesterol do not vary [93].
Nevertheless, further research can help determine whether the
timing of ketamine administration as a function of peak
cholesterol levels could increase antidepressant efficacy.
We demonstrated that ketamine represses circadian expression

of clock genes Bmal1, Per2, Cry1, and Dbp in mouse fibroblast cell
culture by decreasing binding of CLOCK/BMAL1 to its target
promoters. The binding capacity of CLOCK/BMAL1 to its target
promoter DBP was inhibited at circadian time 24 (CT24) 1 h
posttreatment, paralleling its transcriptional inhibition. We esti-
mated that the inhibitory effect lasted only a few hours as no
effects were observed at other CTs [94].
Rodent and human data appear to be comparable in terms of

timing of ketamine antidepressant actions. In rodents, ketamine
was shown to reduce depressive-like behavior starting 30min
postinjection (paralleling changes in BDNF and mTOR levels in the
hippocampus) with antidepressant effects lasting for several
days [81, 83]. For MDD patients, the onset of improvement
ranged between 40 and 120min and was sustained from 2 h to
7 days [69].
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Overlapping effects of ketamine and sleep deprivation
We hypothesized that SD and KT may share common mechanisms
of action that converge on circadian-related processes to
accelerate antidepressant responses. We analyzed the anterior
cingulate (ACC) in mice treated with either 12 h sleep-deprived or
8 h post ketamine injection at a single time point (ZT13) and
compared the results to a control group to determine which
genes, if any, were shared between the two treatments in the ACC
[95]. In support of a circadian role, we identified an overlapping
downregulation of circadian genes including Ciart, Per2, Npas4,
Dbp, and Rorb in both ketamine and sleep deprivation-treated
mice [95]. Though the underlying mechanisms involved in the
effects of ketamine and SDT as zeitgebers are unknown, data
implicates the BDNF–TrkB pathway since both treatments act on
this pathway across several brain areas [76, 88, 96–98]. Moreover,
infusion of BDNF in the SCN induces phase advances in the
circadian activity of rodents [99]. The BDNF–TrkB pathway also
relays light inputs to the central clock [100]; specifically, the
transcriptional repressor methyl-CPG binding protein 2 (MECP2 a
BDNF regulator) is phosphorylated in response to light within the
SCN via a CaMKII-dependent mechanism, allowing the expression
of BDNF [101]. Lei et al. reported that the GluN2B antagonist MK-
0657 (a component of the NMDA receptor), induces antidepres-
sant effect by reducing BDNF expression and neuronal activity in
the LHb [102]. Although not yet well understood, it is postulated
that the actions of BDNF on mood or clock regulation is
dependent on brain area and/or neuronal subtype [102].
Rapid antidepressant responses in treatment-resistant

depressed patients suggest a mechanism that is linked to fast
changes in synaptic function and plasticity as demonstrated with
the restoration of spine density within hours of treatment with
SDT or ketamine [79, 81, 103–105] It is hypothesized that the
induction of synaptogenesis reverses the loss of depression-
associated synaptic connectivity and restores cognitive and
emotional function. In contrast to ketamine and SDT, slower-
acting antidepressants first target monoamines to promote
synaptogenesis [79]. Ketamine has unique properties in its rapid
acceleration of synaptic plasticity but may also have actions that
overlap with molecular mechanisms that regulate homosynaptic
scaling [106] while acute sleep deprivation induces rapid
formation of hippocampal dendritic spines [104, 105].
Not surprisingly, ketamine also enhances the monoamine

system, including serotoninergic and dopaminergic neurotrans-
mission [88, 107] while sleep deprivation primarily induces
dopamine neurotransmission [108, 109]. Thus, both treatments
alter the expression of genes related to the dopaminergic synapse,
including the G-Protein Subunit Gamma 10 (Gng10, which is part
of the heterotrimeric G proteins, involved in intracellular signaling)
and the dopamine receptor 5 (D5R), among others [95].
Metabotropic glutamate (mGlu) are receptors coupled to G
proteins and are important for glutamate binding, acting as
glutamatergic agonizts. Among the eight mGlu receptor subtypes,
data supports the mGlu2/3 receptor as a potential therapeutic
target for depression [110] although mGlu5 is thought to be
essential for the rapid antidepressant actions of both sleep
deprivation and ketamine [111]. LY341495, an antagonist of
presynaptic mGlu2/3 activates VTA neuron firing via the mTOR
pathway to increase dopaminergic tone [112]. LY341495 acts as a
rapid-acting antidepressant in animal models of depression and is
synergistic with ketamine [109, 113–115].
The LHb receives GABAergic inputs from the vLGN//IGL that are

stimulated by light inputs from M4 type mRGCs, inducing anti-
depressive-like effects in mice [116]. As mentioned above, the LHb
is involved in the circadian machinery and may play a role in
antidepressant responses [33, 117–119]. This structure controls
dopaminergic and serotonergic systems, integrating several brain
functions, including motivation, reward and aversion, cognitive
and circadian functions [34]. Interestingly, susceptible mice to

stress-induced depression exhibit blunted diurnal firing within
cells projecting from the LHb to the DRN [120]. Moreover,
enhanced bursting in the LHb has been linked to suppression of
downstream aminergic reward centers. In a rodent model of
depression, ketamine inhibits the burst-type firing in the LHb,
consequently disinhibiting dopaminergic, serotonergic, and/or
glutamatergic neurons of the reward system [119].
The mitogen-activated protein kinase (MAPK/ERK) pathway mod-

ulates synaptic plasticity and brain processes such as mood, learning
and memory [121, 122]. Inhibition of the MAPK/ERK pathway blocks
the antidepressant effects of several compounds including ketamine
in mice [123]. In the mouse ACC, rapid-acting antidepressants
ketamine and sleep deprivation down-regulate genes of the MAPK
phosphatase family (MKPs, also known as DUSPs), which operate as
the main negative regulators of MAPK signaling [124, 125]. DUSP1
undergoes fast turnover and functions in the spatiotemporal
regulation of axonal organization [126]. Specifically, ketamine
decreases Dusp1, Dusp5, Dusp6, and Dusp8 gene expression, while
SD represses Dusp2 and Dusp27 [95]. Accordingly, whole-genome
expression profiling of postmortem brain tissue, demonstrates that
DUSP1 is overexpressed in subjects with MDD while preclinical
studies show that that stress-induced depression in mice up-regulates
Dusp1 in the ACC [124, 127, 128]. Circadian transcriptome analysis has
shown that these genes, with the exception of Dusp8, are expressed
in a circadian manner across tissues [95]. Importantly, DUSP1 and
PER1 promoters, share the cAMP-responsive element (CRE) and the
E-box element, showing similar circadian expression profiles [129]. Of
relevance is that binding of BMAL1, CLOCK, and NPAS2 to their target
genes is also repressed during sleep deprivation in mice [130].
The circadian system plays a contributory role in mediating

synaptic plasticity via GSK3β, a kinase that operates as a potent
inhibitor of mTOR. GSK3β regulates multiple components of the
circadian clock, including BMAL1 phosphorylation [131, 132] as well as
modulating clock protein rhythms in the SCN [131, 133]. Inhibition of
GSK3β potentiates antidepressant responses to ketamine [134] in
mice. GSK3β also regulates the circadian expression of BMAL1 in
hippocampal CA1, contributing to the modulation of diurnal changes
in synaptic strength or long-term potentiation (LTP) and synaptic
plasticity [132]. Clinically, a specific polymorphism of GSK3β
(rs334558C+) has been associated with severe insomnia in patients
with major depressive episode [135]. Taken together, these observa-
tions support the notion that ketamine and sleep deprivation, at least
in part, commonly act via neurotransmitter systems and interestingly
through the circadian clock.

Circadian clock and neurogenesis
Mechanisms of action of sustained antidepressant responses
lasting one or more weeks, are thought to be attributed to
processes associated with neurogenesis rather than synaptogen-
esis [136, 137]. Since the half-life (t1/2) of ketamine is about 3–4 h
[69] and the integration of newly functional neurons takes several
days, it is conceivable that ketamine stimulates neurogenesis
which in turn could play a role in sustained antidepressant effects
[138–141]. On the other hand, given that relapse often occurs on
the night following SDT, the role of neurogenesis seems less clear
although bright light is capable of promoting neurogenesis [142],
which could, in part, explain the long-lasting effect of the
combined therapies. For example, rats exposed to bright light
(10,000lux, 30min/day for 4 weeks) showed an increase in
neurogenesis in the subgranular zone of the hippocampal
dentate gyrus [142]. Conversely light deprivation in the Mongolian
gerbil suppresses neurogenesis and induces depressive-like
behavior [143].
Since its discovery in the 1960s, the presence of adult

neurogenesis is still a matter of debate. However, growing
evidence and the development of new technologies are allowing
new insights of this process [144]. An in vivo imaging study
confirmed that neural stem cells (NSCs) in adult mice can
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differentiate into neurons and/or transit-amplifying progenitors,
which in fact are capable of self-renewing and differentiating into
neurons [145].
Several brain alterations have been related to neurogenesis.

Reduced hippocampal neurogenesis is associated with psychiatric
disease including schizophrenia and depression [140, 146–148].
Moreover, monoaminergic or glutamatergic antidepressants show
significant effects on neurogenesis [140, 149].
The role of the circadian clock in the homeostasis of stem cells

and in the regulation of cellular development including differ-
entiation across tissue subtypes is supported by a number of
studies [150–153]. Decreased BMAL1 in mice shows deficits in
cognition [151, 154]. Reduced Cry2 expression in the DG of adult
mice is also associated with behavioral disorders of anxiety and
depressive-like behavior [154]. The circadian clock has been
implicated in controlling the expression of key regulators of
neurodevelopment to help synchronize the differentiation of
heterogeneous populations of cells. The signaling molecules
within the NOTCH pathway, an important component of the
neurodevelopmental signaling process [155], are under circadian
clock control [156–158]. Interestingly both ketamine and SD alter
the expression levels of transcripts of genes in the NOTCH
pathway (Fig. 2B), particularly in the ACC of sleep deprivation- and
ketamine-treated mice where Notch2 expression is reduced [95].
Importantly, as NOTCH2 preserves a state of latency on NSCs, its
loss of function induces proliferation and increases neurogenesis
in the hippocampus [159], as well as neuronal differentiation in
NSC progenitors [160]. Moreover, the Notch2 gene is expressed in
a circadian manner and contains an E-box within its promoter

[157]. Therefore, ketamine and SD would modulate neurogenesis
by regulating the circadian expression of NOTCH pathway
components. Accordingly, one night of SD in healthy human
male subjects leads to epigenetic modifications in components
of the NOTCH pathway, as observed in blood samples of the
subjects [161].
Another circuitry of interest as mentioned above is the TrkB-

dependent induction of the ERK pathway. It is hypothesized that
ketamine could induce antidepressant effects through its
enhancement of hippocampal neurogenesis acting via the ERK
pathway and its components [138]. Supporting this hypothesis,
ketamine increases neurogenesis in the dentate gyrus and in
ventral hippocampus in both acute and chronically stressed mice,
which can lead to depressive-like behavior. This was accompanied
by an induction of GluN2B subunit of NMDAR, GluA1 subunit of
AMPAR, as well as phosphorylation of mTOR [162, 163]. Likewise,
sleep deprivation (12 h sleep deprivation in rodents) was shown to
increase neurogenesis in the hippocampus [164, 165] and increase
the levels of BDNF [96].
Further, the activation of the adenosine receptors A1R and A2B

expressed in NSC, induce stem cell proliferation acting on MEK/
ERK-AKT pathways [166]. Astrocytes participate in the antide-
pressant effects of both ketamine and SD in mice [59, 167, 168].
Ketamine, in a chronic unpredictable stress model in rats, acts on
astrocytes by modulating glutamate transporter 1 (GLT1) expres-
sion, consequently increasing astrocyte plasticity via the
BDNF–TrkB pathways and concomitantly decreasing apoptosis
of astrocytes [169]. Importantly, evidence suggests that astro-
cytes, as a part of the neurovascular system [170], are capable of

Fig. 2 Implication of the circadian clock in the regulation of neural signaling and behavior. A Proposed mechanisms of action of ketamine
and sleep deprivation on the glutamatergic synapse. (1) ketamine and sleep deprivation activate astrocytes, which induces the exocytosis of
adenosine, stimulating the P2 × 7 (ATP-gated P2X receptor cation channel family) receptor and releasing glutamate (GLU) into the intraneuronal
space. Adenosine also binds A1R in NSCs inducing its proliferation via MEK/ERK-AKT pathways [59, 166–168]. Astrocytes might further receive
humoral signals acting as zeitgebers from blood vessels thereby contributing to circadian neuronal activity [170, 221]. (2) Ketamine blocks
NMDA receptors at the inhibitory GABAergic interneuron, leading to disinhibition of glutamatergic transmission [75]. (3) In turn, glutamate
triggers the release of BDNF at postsynaptic neurons leading to stimulation of the TrkB-AKT-mTOR and subsequent synaptic protein synthesis
[67, 78, 79]. Inhibition of GSK3β (which is controlled by the circadian clock) contributes to the activation of mTOR [132, 222–225]. Dopamine also
contributes to plasticity via the AKT-GSK3 pathway [226]. B Neuronal plasticity might be further enhanced by the inhibition (or phase-shift) of
the BMAL1-CLOCK recruitment to Per2 Dusp1, Notch2, or Homer1 promoters [95]. Per2 functions as a scaffold to recruit TSC1, Raptor, and mTOR
suppressing mTOR activity [227], Dusp1 negatively regulates the MAPK pathway by dephosphorylation of ERK1/2 [127]. The transcriptional
reduction of Dusp1 might disinhibit ERK1/2 which in turn blocks the TSC2 complex resulting in the induction of mTOR-mediated protein
synthesis. Also, ERK1/2 activates the CREB-mediated transcription of bdnf, which indirectly induces protein synthesis by blocking the TSC2
complex via AKT. The transcriptional reduction of Notch1 promotes the neurogenesis involved in neural stem cell (NSC) maintenance [159].
Homer1 transcription is further modulated by CREB and participates in the synaptic plasticity-induced by sleep deprivation and ketamine
[60, 228]. These mechanisms would be operating in different brain areas related to mood reward, and cognitive demanding tasks such as
memory, attention, and decision-making such as the mPFC, hippocampus, striatum, ACC, and other brain regions.
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computing peripheral signals and consequently receiving infor-
mation from internal and external zeitgebers through their
internal clocks, which then allows them to respond by modulat-
ing neuronal functions (Fig. 2A). Future studies may provide
further details on the contributions of the astrocytic molecular
clock on brain circadian synchronization/deregulation related
to MDD.

Additional issues relevant to mood disorders,
pathophysiology, and treatment
Circadian versus non-circadian factors underlying rapid antidepressant
effects. Although this review focuses primarily on the circadian
interactions involving ketamine and SDT, non-circadian factors are
also considered important contributors to the acceleration of
antidepressant actions. For example, subanesthetic ketamine alters
the distribution of cholesterol within astrocytes resulting in the
modulation of downstream glutamatergic processes thought to be
important to ketamine’s antidepressant effects (e.g., NMDA, AMPA,
and mTOR [171]). Likewise, Reelin signaling has attracted attention as
a putative mechanism of action of ketamine. In mice, genetic deletion
of Reelin, a glycoprotein, was shown to block both ketamine-
mediated depressive-like behavior and synaptic potentiation via
modulation of the basal activity of the NMDA receptor [172]. Finally,
micro-RNAs (mi-RNAs) in postmortem brains of MDDs and BP patients
are reported to be down-regulated [173]. The importance of mi-RNAs
is that they can exert a broad range of effects by binding to hundreds
of target genes including those regulating synaptogenesis and
neurotransmitters. Evidence that ketamine may exert its antidepres-
sant actions via mi-RNAs comes from a study in a mouse model of
depressive-like behavior whereby ketamine reversed the down-
regulation of miR-98-5p in the hippocampus and prefrontal cortex,
while an antagonist of miR-98-5 blocked ketamine’s antidepressant
effects [174].

Conventional antidepressants share mechanisms of action with
ketamine and sleep deprivation but have a delayed response. Tradi-
tional antidepressants and anti-manic compounds (e.g., lithium,
valproic acid) share overlapping mechanisms with ketamine and
sleep deprivation by promoting neurogenesis and synaptic plasticity
[11, 175–178]. In animal models of depression, antidepressant effects
of ketamine and SDT can take place in a matter of minutes to hours
[104, 105, 179]. It is not yet known whether other classes of
antidepressants promote neurogenesis within a similar time-frame.
Further, it might be predicted that melatonin agonizts would have
antidepressant properties as they phase-shift circadian rhythms and
elicit depressive-like effects in mice. However, clinical data do not
support melatonin as effective [180, 181] although the reason(s) for
the lack of clinical response is not known.

Circadian interventions can decrease switches into hypomania/
mania in BP following SDT. A relatively small percentage of
bipolar patients are at risk for switches into hypomania (5.83%)
and mania (4.85%) following SDT, comparable to the rate of
switches associated with other classes of antidepressants [182].
Two strategies for decreasing switches is to administer bright light
therapy following SDT in mid-day rather than early morning [183]
and second, to block blue light [184]. It is suggested that mid-day
bright light has a weaker effect on phase advancing melatonin
rhythms than morning bright light [185, 186]. Blocking blue light
(wavelength 400–500 nm associated with daylight, dampens
ipRGCs signals [187]. Indeed, randomized placebo-controlled trials
showed that blue-blocking sunglasses significantly decreased the
incidence of switches [184, 188].

Relationship between circadian phase-specific phenotype and
efficacy of rapid-acting antidepressants. To date, there is no
consistent answer as to whether “circadian phase-specific”
phenotypes show greater efficacy to fast-acting antidepressants

[21]. Although ketamine phase advances activity rhythms in
ketamine responders, it is premature to infer that responders are
phase-delayed [189]. There is much to be learned by measuring
circadian parameters (e.g., rhythmic changes in metabolites, gene
expression, activity, sleep, core body temperature, mood) as well
as from questionnaires (e.g., Morningness-Eveningness (MEQ),
Munich Chronotype (MCTQ)] to help clarify whether altered
chronotypes are an essential factor in the therapeutic response to
rapid-acting antidepressants. Predictive models incorporating
circadian factors, as seen with ketamine, for example, could
provide important insights [190]. Advances in machine learning
offer unique opportunities to identify key variables relevant to
treatment outcomes [191–193].

Altered circadian rhythms in responders vs. non-responders to
ketamine and SDT. To date, identification of biological signatures
and circadian patterns associated with response to rapid
antidepressants is not yet known. To our knowledge there are
no studies that address the efficacy of ketamine nor SDT as a
function of circadian phenotypes (i.e., delayed or advanced
rhythms, shorter or longer periods). Treatment-resistant depres-
sion (failure to respond to two or more traditional antidepressants)
may define a particular circadian phenotype. The same may also
be true for sleep deprivation responders although more research
is needed. Moreover, there is little data differentiating circadian
phenotypes of MDD and bipolar patients in terms of response to
ketamine or SDT. More research is needed to further identify the
circadian variables affecting biological rhythms.

Genome-wide association studies (GWAS). GWAS studies have
identified variations in circadian rhythm phenotypes associated
with either bipolar or MDD [194, 195]. In BP, none of the canonical
clock genes were overrepresented [196]. In contrast, a GWAS
study of rapid-cycling BP patients (European Americans and
African Americans) showed SNP-based heritability and identified
the SNP rs683813 (mapped closed to BMAL2 (a paralog of BMAL1))
[197]. Data in MDD showed an association at the genome-wide
levels for CRY1 (rs2287161), NPAS2 (rs11123857) with the
strongest association in a SNP located near the CRY1 gene [198].
Additional molecular evidence from GWAS studies for circadian
abnormalities is supported by genetic and transcriptomic data
showing an association between circadian gene polymorphisms
and MDD. These include CRY2 (rs10838524), VIPR2 (rs885861),
TEF (rs738499), and SIRT1 (rs10997875) [22, 23, 198, 199]. More-
over, carriers of the CRY1 (rs2287161), NPAS2 (rs11123857), and
VIPR2 (rs885861) SNPs are three times more likely to suffer from
MDD [198].

Mechanistic links between the circadian clock and MDD: key
strategies. Homeostasis requires an integration of circadian
signaling across cells, tissues and organs achieved through direct
and indirect transcriptional processes. Though the core-clock
genes are ubiquitously rhythmic, transcripts are tissue-specific to
biological processes [200]. In cortex, synaptic structure and
function is driven by two waves of daily oscillations in synchrony
with the sleep–wake cycle. Transcriptomic analyses of mouse
forebrain synaptoneurosomes showed that transcripts and pro-
teins accumulate in anticipation of the rodent active phase (dark)
whereas mRNAs associated with metabolism, intracellular signal-
ing and translation precede the resting phase (light). When sleep
pressure is high as with sleep deprivation a major portion of the
circadian proteome is eradicated [201]. In parallel, loss of sleep,
dynamically induces a dampening of synaptic strength in
forebrain via phosphorylation [202]. Taken together, these studies
provide further support for a role of cortical synaptic remodeling
as a mode of action for the antidepressant effects of sleep
deprivation. As reviewed above, ketamine can induce rapid
changes in synaptic remodeling, possibly through glutamatergic
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interactions [81, 103, 106, 111]. A strategy would be to stabilize
the modifications in synaptic remodeling with additional treat-
ments to prolong the antidepressant responses associated with
rapid-acting antidepressants. To our knowledge there are no
studies that have applied bright light therapy and sleep phase
advance to ketamine responders. Additionally, it is not known
whether administration of subanesthetic ketamine would help
stabilize responses to SDT. If these two interventions converge on
similar synaptogenic signaling pathways, the combined effect
might help sustain improvement beyond weeks to months.
Rhythmic signals from single cells to synchronization of tissue

involve the coupling of period and phase between individual
oscillators. The coupling of cellular oscillators (“tissue clock”) with
tissue oscillators comprise an organismal clock [39, 203] that is
essential to maintaining physiological homeostasis. This also
encompasses entrainment to intrinsic and extrinsic signaling (e.g.,
neurotransmitters, metabolites, nutrients, humoral, and environ-
mental factors [39–41]. This can be achieved by multiple molecular
regulatory systems including circadian control on mi-RNAs [204],
epigenetic chromatin remodeling [205], transcriptional [206], post-
transcriptional [200], translational, and posttranslational modifica-
tions that impinge at cellular, tissue, and system levels. Especially
advantageous are the “omic” technologies (e.g., transcriptomics,
proteomics, metabolomics) [207], which are currently being applied
to circadian research [200, 208–210]. Studies of the circadian
proteome have helped to characterize rhythmic signaling pathways
[211]. Thus, analyzing the circadian variations (acrophase, amplitude
and mesor) and their effects on various biological processes, could
help identify processes linking the circadian clock to rapid-acting
antidepressants. Additionally, they could provide insight to under-
stand how rapid-acting antidepressants can modulate those
rhythmic processes involved to mood regulation at molecular,
cellular, physiological and behavioral levels (Fig. 1B). The integration
of several lines of research could help identify a biological signature
to evaluate homeostasis and to assist clinicians in determining
optimal treatments.

Gender-relevant circadian phenotypes. An estimated 20–30% of
MDD patients are hypothesized to have a “circadian rhythm
depression” disorder. Gender differences in this subgroup show
that females have shorter intrinsic circadian periods and higher
plasma melatonin and cortisol levels [212]. Gender differences
were also identified in postmortem nonpsychiatric brain tissue
showing that males had almost twice as many significant rhythmic
transcripts in the DLPFC while females had nearly four times as
many rhythmic transcripts in the anterior cingulate (ACC) [213].
The significance of these findings is not yet known although
gender-specific machine learning models are being applied to
predict responses to SSRI classes of antidepressants [214].

CONCLUDING REMARKS
Despite the widespread use of traditional antidepressants, suicide
rates in the US have significantly increased from 30,000 to 46,000
deaths per year from 1999 to 2017 [215] and increased to 48,344
in 2020 [216], reflecting the limitations of monoaminergic-based
treatments. Epidemiological, clinical and experimental evidence
over the past 50 years has clearly established a causal link
between circadian disruptions including sleep disturbances,
hormonal secretions, core body temperature and mood in a
subset of MDD and BPD patients [6, 8–13]. This coincides with
modern lifestyle “social zeitgebers” which are frequently associated
with sleep disorders, increased stress, and circadian disruptions
[27, 217]. Considering that maladaptation to the environment may
increase the risk for psychiatric disorders [218], it is conceivable
that these disorders could be associated with circadian desyn-
chronization affecting high brain function and mood [25]. The
antidepressant actions of non-pharmacological chronotherapies

such as bright light therapy, sleep phase advance, and SDT
support a circadian hypothesis as do emerging findings on the
modulation of the circadian clock and its pathways by the
pharmacological actions of ketamine (Fig. 2) [94, 95, 219]. It is not
yet known whether depressed patients with dysregulated
circadian rhythms are more likely to respond to fast-acting
antidepressants such as ketamine or to SDT.
A limitation to the circadian hypothesis is that there are no

definitive genes and/or pathways that are known to be directly
correlated with a rapid response to sleep deprivation or to
ketamine. Rather, most of the data is inferred, based upon a
relatively large number of studies in rodent models of depressive-
like behavior that are predominantly focused on ketamine and
less so, on sleep deprivation. The animal data and clinical
observations should motivate researchers to continue to obtain
information relevant to this investigative area. Finally, this is an
exciting time for the scientific community to understand in
greater depth the pathophysiological basis of depressive illness
and to consequently, improve prophylactic and therapeutic
treatments.
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