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ARTICLE

Deep learning-based electrocardiographic
screening for chronic kidney disease
Lauri Holmstrom1,2,3,4,10, Matthew Christensen1,4,10, Neal Yuan5, J. Weston Hughes6, John Theurer1,4,

Melvin Jujjavarapu7, Pedram Fatehi8, Alan Kwan 1, Roopinder K. Sandhu1, Joseph Ebinger1, Susan Cheng1,

James Zou 6,9, Sumeet S. Chugh1,2,4,11 & David Ouyang 1,4,11✉

Abstract

Background Undiagnosed chronic kidney disease (CKD) is a common and usually asymp-

tomatic disorder that causes a high burden of morbidity and early mortality worldwide. We

developed a deep learning model for CKD screening from routinely acquired ECGs.

Methods We collected data from a primary cohort with 111,370 patients which had 247,655

ECGs between 2005 and 2019. Using this data, we developed, trained, validated, and tested a

deep learning model to predict whether an ECG was taken within one year of the patient

receiving a CKD diagnosis. The model was additionally validated using an external cohort

from another healthcare system which had 312,145 patients with 896,620 ECGs between

2005 and 2018.

Results Using 12-lead ECG waveforms, our deep learning algorithm achieves discrimination

for CKD of any stage with an AUC of 0.767 (95% CI 0.760–0.773) in a held-out test set and

an AUC of 0.709 (0.708–0.710) in the external cohort. Our 12-lead ECG-based model

performance is consistent across the severity of CKD, with an AUC of 0.753 (0.735–0.770)

for mild CKD, AUC of 0.759 (0.750–0.767) for moderate-severe CKD, and an AUC of 0.783

(0.773–0.793) for ESRD. In patients under 60 years old, our model achieves high perfor-

mance in detecting any stage CKD with both 12-lead (AUC 0.843 [0.836–0.852]) and 1-lead

ECG waveform (0.824 [0.815–0.832]).

Conclusions Our deep learning algorithm is able to detect CKD using ECG waveforms, with

stronger performance in younger patients and more severe CKD stages. This ECG algorithm

has the potential to augment screening for CKD.
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Plain language summary
Chronic kidney disease (CKD) is a

common condition involving loss of

kidney function over time and results

in a substantial number of deaths.

However, CKD often has no symp-

toms during its early stages. To

detect CKD earlier, we developed a

computational approach for CKD

screening using routinely acquired

electrocardiograms (ECGs), a cheap,

rapid, non-invasive, and commonly

obtained test of the heart’s electrical

activity. Our model achieved good

accuracy in identifying any stage of

CKD, with especially high accuracy in

younger patients and more severe

stages of CKD. Given the high global

burden of undiagnosed CKD, novel

and accessible CKD screening stra-

tegies have the potential to help

prevent disease progression and

reduce premature deaths related

to CKD.
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A lmost 700 million individuals globally have chronic kid-
ney disease (CKD), an important but often unrecognized
cause of morbidity and early mortality1. The initial pre-

sentation of CKD is usually asymptomatic and without overt
clinical manifestations especially in the early stages of the disease.
Recently, the Global Burden of Diseases, Injuries and Risk Factors
Study (GBD) estimated that CKD accounts for 4.6% of total
mortality worldwide, with a 41.5% increase between 1990 and
20171. Delayed diagnosis and limited patient recognition of the
condition contribute significantly to the burden of morbidity2,3.
Early detection can potentially change the disease trajectory. The
most common causes of CKD, such as hypertension and diabetes,
can be reversible or treatable, and early diagnosis is crucial for
avoiding renal replacement therapy4,5. There are few methods to
cheaply or non-invasively screen for CKD, with conventional risk
calculators lacking specificity and requiring both serum and urine
laboratory testing6.

Electrocardiograms (ECGs) are inexpensive, non-invasive,
widely available, and rapid diagnostic tests frequently obtained
during routine visits, prior to exercise, during preoperative eva-
luation, and for patients at increased risk of cardiovascular dis-
ease. Deep learning algorithms (DLA) have recently been applied
to medical imaging and clinical data to achieve high precision,
and to identify additional information beyond the interpretation
of human experts7,8. Deep learning analysis of ECG waveforms
has had potentially promising performance in prognosticating
outcomes9, identifying subclinical disease10,11, and identifying
systemic phenotypes not traditionally associated with ECGs12,13.
Given the prior success in identifying occult arrhythmias14,15,
ventricular dysfunction10, anemia13, and age12, DLA applied to
screening ECGs could potentially identify patients who would
benefit from further evaluation for kidney disease.

The high prevalence of concomitant cardiovascular disease and
the well-established changes that accompany electrolyte
abnormalities suggest that the ECG is also altered in the setting of
CKD and that discrete electrocardiographic signatures could be
identifiable with deep learning techniques. Patients with CKD
have a disproportionate accumulation of cardiovascular risk
factors, such as diabetes and hypertension, as well as subclinical
cardiovascular changes such as left ventricular hypertrophy,
myocardial fibrosis, and diastolic dysfunction16. It is not fully
clear at which stage CKD patients start to develop manifest car-
diovascular changes. However, recent studies have reported that
in addition to coronary artery disease and left ventricle hyper-
trophy, patients with early-stage CKD may already have an
increase in diffuse myocardial fibrosis on cardiac MRI as well17. It
is hence likely that already early-stage CKD associates with non-
specific ECG signals. In addition to myocardial remodeling, CKD
associates with a variety of electrolyte abnormalities that also
cause widespread ECG abnormalities (e.g., decreased T-wave
amplitudes in hypokalemia, large-amplitude T-waves, and pro-
longed QRS duration in hyperkalemia, and QTc prolongation in
hypocalcemia)18. Prior work has shown such patterns are
detectable on ECG waveforms, contributing to the AI-ECG
detection of hyperkalemia, which might augment a model’s ability
to detect CKD19,20. However, given the relative infrequency of
overt abnormalities, likely not the primary feature analyzed in
detecting CKD. Given such observations, it may be possible that
asymptomatic CKD presents with subtle ECG alterations that are
not visible to the human eye.

To overcome current limitations in screening for occult CKD,
we designed, trained, and validated a deep learning model to
predict CKD, including end-stage renal disease (ESRD), by ana-
lysis of waveform signals from a single 12-lead and 1-lead ECG.
Incorporating both structured information from medical diag-
noses as well as laboratory data, we assessed the ability of our

model to evaluate the entire spectrum of kidney disease. To
further evaluate our model, we validated its performance using
corresponding data from a separate healthcare system.

Methods
Data sources and study population. We retrospectively identified
64,308 ECGs among 7816 patients between 2005 and 2019 which
were linked to a diagnosis of CKD within a 1-year window at
Cedars-Sinai Medical Center. We also identified 183,290 ECGs
among 103,554 patients between 2008 and 2019 with no CKD
diagnoses at any point, which were used as matched negative
controls. Study cohorts included both ambulatory and in-hospital
patients. If a patient had multiple ECGs taken within a year of a
CKD diagnosis, each ECG-CKD pair was considered an indepen-
dent case during model training, but only one was used in the test
datasets. The study population from Cedars-Sinai Medical Center
was randomly split 8:1:1 into training, validation, and test cohorts
by patient such that the multiple ECGs from the same patient were
limited to one cohort. In addition, we identified 896,620 ECGs
among 312,145 patients at Stanford Healthcare from 8/2005 to 6/
2018, which were used for external validation (Fig. 1).

ECGs from Cedars-Sinai Medical Center were obtained from
MUSE Cardiology Information System (GE Healthcare), and the
model used the original ECG waveforms stored for training the
model in CKD prediction. In external validation at Stanford
University, ECGs were stored using the Phillips TraceMaster
system, and were independently used as input examples for
external validation. The ECG waveform data were acquired at a
sampling rate of 500Hz and extracted as 10 second, 12 × 5000
matrices of amplitude values. ECGs with missing leads were
excluded from the study cohort. Associated clinical data for each
patient was obtained from the electronic health record. The data on
medical diagnoses was extracted from the electronic health records
using International Classification of Diseases (ICD) 9/10th edition
codes, which are listed in Supplementary Table 1. Demographic
and clinical characteristics (e.g., age, gender, BMI, cardiovascular
disease) were also extracted from the electronic health records. The
institutional review boards of Cedars-Sinai Medical Center and
Stanford Healthcare approved the study protocol (Cedars Protocol
1506 and Stanford Protocol 43721). Informed consent was waived
for analysis of de-identified retrospective data.

AI model design and training. We designed a convolutional
neural network, for ECG interpretation with potential for clinical
data integration to predict the primary outcomes of chronic kidney
disease and end-stage renal disease (Fig. 2). The model was trained
to predict outcomes with the input of one 12-lead ECG obtained
within 1 year of diagnosis. Please see Supplementary information
for additional details on model training. If the same patient had
multiple ECGs, each was considered an independent case. Models
were trained using the PyTorch deep learning framework. The
model was initialized with random weights and trained using a
binary cross-entropy loss function for up to 100 epochs with an
ADAM optimizer and an initial learning rate of 1e-4. Early stop-
ping was performed based on the validation dataset’s area under
the receiver operating curve. Local Interpretable Model-agnostic
Explanations (LIME)15,21 was used with 1000 samples per study to
identify relevant features in the ECG waveform by iteratively ran-
domly perturbing 0.5% of the waveform and identifying which
changes most impacted model performance.

Statistical analysis. All analyses were performed on the held-out
test dataset, which was never seen during model training. The
performance of the model in predicting the primary outcomes
was mathematically assessed by the area under the curve (AUC)
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of the receiver operating characteristic (ROC) curve. After model
derivation and training, primary and secondary analyses were
performed on trained models using the held-out test cohort.
Secondary sensitivity analyses were limited to procedures per-
formed in patients with diabetes, hypertension, male, and age
greater or lower than 60 years old. We computed two-sided 95%
confidence intervals using 1000 bootstrapped samples for each
calculation. Statistical analysis was performed in R and Python.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Primary cohort characteristics. In total, we identified 17,860
patients with a CKD diagnosis at Cedars-Sinai Medical Center
(7.8% of the total patient sample), among which 7816 had an
ECG taken within a 1-year window of CKD diagnosis. Our pri-
mary cohort consisted of a total of 247,655 ECGs, of which
221,974 were randomized to the training set (for both training
and validation) and 25,681 to the testing set. Of the primary
cohort ECGs, 74.3% had no serum creatinine or eGFR estimation
within 30 days and 50.7% of ECGs had no serum creatinine or
eGFR estimation at any point in the EHR, however this does not
capture outside hospital or paper clinic records of laboratory
testing that might have been used in the diagnosis of CKD. The
mean age of the primary cohort was 61.3 ± 19.7 years and 48%
were female. Demographic and clinical characteristics are pre-
sented in Table 1. Demographics and clinical characteristics
according to age group are presented in Supplementary Table 2.

Model performance in the primary cohort. Our 12-lead ECG-
based model achieved discrimination of any stage CKD with an
AUC of 0.767 (95% CI 0.76–0.773). The model performance was
consistent across the range of CKD stage, with our model

achieving an AUC of 0.753 (0.735–0.770) in discriminating mild
CKD, AUC of 0.759 (0.750–0.767) in discriminating moderate-
severe CKD, and AUC of 0.783 (0.773–0.793) in discriminating
ESRD. In all cases, negative examples were defined as ECGs
without CKD diagnoses.

Given the increased prevalence of wearable technologies,
particularly devices that include single lead ECG information, we
trained an additional deep learning model with information from
only single lead ECG information to simulate the DLA’s
performance with single-lead wearable information. With 1-lead
ECGwaveform data, DLA achieved an AUC of 0.744 (0.737–0.751)
in detecting any stage CKD, with sensitivity and specificity of 0.723
(0.723–0.723) and 0.643 (0.643–0.643), respectively.

Since early detection of CKD is crucial to prevent disease
progression and complications in older age, we tested the
performance of our model in younger patients (<60 years of
age). 12-lead and 1-lead ECG-based DLAs were able to detect any
stage CKD with AUCs of 0.843 (0.836–0.852) and 0.824
(0.815–0.832) among patients under 60 years of age, respectively.

We also tested the performance of our model separately among
diabetic, hypertensive, older patients, who are generally con-
sidered as high-risk subgroups. 12-lead based model detected
CKD with an AUC of 0.747 (0.707–0.783) among diabetic
patients, an AUC of 0.711 (0.696–0.725) among patients with
hypertension, and an AUC of 0.706 (0.697–0.716) among patients
greater than 60 years old. When the model was trained with 12-
lead ECG waveform, age, sex, diabetes, and hypertension, the
model achieved similar discrimination of any stage CKD in the
held-out test set with an AUC of 0.79 (0.781–0.798). Detailed
results for 1-lead and 12-lead ECG-based DLA performance in
the held-out test set are presented in Tables 2 and 3, while AUC
curves are illustrated in Supplementary Fig. 1.

The model performed similarly in detecting CKD in subset
populations of patients with albuminuria, patients with correspond-
ing laboratory testing and documented eGFR, and in both
ambulatory and in-hospital patients (Supplementary Table 3).

247,655 ECG recordings among 111,370 pa�ents 

Positive patients 
•CKD diagnosis within 1 year of ECG 

 
• 64,308 ECGs among 7,816 pa�ents 

Negative patients 
•No CKD diagnosis at any �me  

 
•183,290 ECGs among 103,554  pa�ents  

80:10:10 Train:Valida�on:Test split 

Training dataset 
 
•197,434 ECGs from 89,064 
pa�ents 
•7,306 posi�ve pa�ents and 
81,758 nega�ve pa�ents 

Testing dataset 
 
•25,681 ECGs from 11,132 
pa�ents 
•933 posi�ve pa�ents and 
10,199 nega�ve pa�ents 

Validation dataset 
 
•24,490 ECGs from 11,126 
pa�ents 
•897 posi�ve pa�ents and 
10,229 nega�ve pa�ents 

Primary cohort External validation cohort 

896,620 ECG recordings among 312,145 pa�ents 

Positive patients 
•CKD diagnosis within 1 year of ECG 

 
• 108,306 ECGs among 18,002 pa�ents 

Negative patients 
•No CKD diagnosis at any �me  

 
•788,314 ECGs among 294,143 pa�ents  

External validation dataset 
 

Fig. 1 Study subject selection. Our primary cohort consists of 111,370 patients and 247,655 ECGs between 2005 and 2019 from Cedars-Sinai Medical
Center. The primary cohort was randomly split 8:1:1 into training, validation, and test cohorts. We also used 896,620 ECGs among 312,145 patients at
Stanford Healthcare from 8/2005 to 6/2018 as external validation cohort. CKD Chronic kidney disease.
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In patients with both a CKD diagnosis and eGFR estimated to be less
than 60mL/min, the AUC was 0.754 (0.737–0.771), and this
performance was similar in patients with hyperkalemia with an AUC
of 0.741 (0.698–0.787) and without hyperkalemia with an AUC of
0.758 (0.747–0.768). The model also performed well in patients with
known albuminuria, with an AUC of 0.734 (0.723–0.745) and had
similar performance regardless of the positive to negative ratio in the
training set (Supplementary Table 4).

Electrocardiographic features in CKD. To understand the key
features of relevance for our deep learning model to be able to
detect CKD, we performed two sets of experiments to evaluate the
ECG parameters that are important for identifying CKD. We
found statistically significant differences in all available ECG
variables (heart rate, PR interval, P wave duration, QRS duration,
QTc interval, P-wave axis, R-wave axis, T-wave axis) between
CKD stages (Supplementary Table 5).

Secondly, we used LIME to identify which ECG segments were
particularly used in the identification of CKD. Supplementary
Fig. 2 shows examples of LIME-highlighted ECG segments in 12-
lead and 1-lead ECG waveforms taken from correctly recognized
CKD and healthy control patients in the held-out test set. In
both examples, the LIME-highlighted ECG features focused
mostly on QRS complexes and PR intervals. In addition, QRS
complexes and PR intervals in limb leads were most frequently
highlighted, potentially denoting CKD-associated electrophysio-
logic alterations.

External validation cohort characteristics. The external valida-
tion cohort consisted of a total of 896,620 ECGs among 312,145
patients. The prevalence of mild CKD was 1.2% while 3.6% had
moderate-severe CKD, and 0.9% had ESRD. The mean age of the
external validation cohort was 56.7 ± 18.7 years and 50.4% were
female. The proportion of Caucasians was 47.5%, while 3.6%
were black, 12.3% were Asians, and 36.6% had other or unknown
race. Demographic and clinical characteristics are presented in
Table 1.

Model performance in the external validation dataset. In the
external validation dataset, our 12-lead and 1-lead models’ per-
formances were comparable to the primary cohort. 12-lead ECG-
based model achieved an AUC of 0.709 (0.708-0.710) in dis-
criminating any stage CKD. 1-lead ECG-based model detected
any stage CKD with an AUC of 0.701 (0.700–0.702).

Consistent with the primary cohort in which our model achieved
higher CKD detection accuracy among younger patients, 12-lead
and 1-lead ECG-based models achieved AUCs of 0.784
(0.782–0.786) and 0.777 (0.775–0.779) in detecting any stage CKD
among subjects under 60 years of age, respectively. Detailed results
for 1-lead and 12-lead ECG-based DLA performance in the external
validation cohort are presented in Supplementary Tables 6 and 7.

Discussion
In the present study, we investigated the performance of a
deep learning model to detect CKD using ECG waveforms.
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Fig. 2 Schematic illustration of deep learning model training, testing, and validation. We designed a convolutional neural network for ECG interpretation
with potential for clinical data integration. The model was trained to predict CKD with the input of one 12-lead ECG within 1 year of CKD diagnosis. CKD
Chronic kidney disease.
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Our 12-lead ECG-based model had good accuracy in identifying
any stage CKD and higher accuracy in detecting CKD in patients
under 60 years of age. Accuracy also improved along with the
worsening CKD stage. These results were validated in a separate
health care system, that also showed good discrimination accu-
racy for the presence of any stage CKD in the whole study
population and higher discrimination accuracy among patients

under 60 years of age. While 12-lead ECGs are widely available
in the healthcare unit settings, rapid adoption of wearable tech-
nology has also introduced opportunities for large-scale data
collection outside of formal healthcare settings. Our 1-lead ECG-
based DLA showed good discrimination accuracy for CKD in
young patients, suggesting artificial intelligence may possess
significant potential in widescale screening in this patient

Table 1 Demographic and clinical characteristics in the internal and external dataset.

Characteristic Internal training and validation datasets External validation dataset

Total Training Test
Number of patients 111,370 100,233 11,137 312,145
Number of ECGs 247,655 221,974 25,681 896,620
Demographics
Age, years 61.3 ± 19.7 61.3 ± 19.6 61.5 ± 19.9 56.7 ± 18.7
Female, n (%) 53,476 (48.0%) 48,133 (48.0%) 5,343 (48.0%) 139,235 (50.4%)
BMI, kg/m2 26.7 ± 16.6 26.7 ± 18.2 26.6 ± 7.2 27.6 ± 6.6
Caucasian, n (%) 67,253 (60.4%) 60,550 (60.4%) 6,703 (60.2%) 148,367 (47.5%)
Black, n (%) 15,323 (13.8%) 13,751 (13.7%) 1,572 (14.1%) 11,191 (3.6%)
Asian, n (%) 6,135 (5.5%) 5,558 (5.5%) 577 (5.2%) 38,229 (12.3%)
Other/unknown race, n (%) 22,659 (20.3%) 20,374 (20.3%) 2,285 (20.5%) 114,358 (36.6%)
Clinical characteristics, n (%)
Hypertension 25,446 (26.4%) 22,623 (26.4%) 2,823 (26.3%) 110,311 (35.3%)
Diabetes Mellitus 8,728 (7.8%) 6,970 (7.8%) 914 (8.2%) 14,152 (4.5%)
Cardiovascular disease 15,719 (14.1%) 12,561 (14.1%) 1,577 (14.2%) 34,582 (11.1%)
Heart Failure 9,604 (8.6%) 7,634 (8.6%) 995 (8.9%) 20,167 (6.5%)
Proteinuria 1,007 (0.9%) 795 (0.9%) 110 (1.0%) 2,086 (0.7%)
Anemia 11,933 (10.7%) 9,537 (10.7%) 1,194 (10.7%) 18,653 (6.0%)
Chronic kidney disease, n (%)
Mild (Stage 1–2) 864 (0.8%) 782 (0.8%) 82 (0.7%) 3,727 (1.2%)
Moderate-severe (Stage 3–5) 3918 (3.5%) 3515 (3.5%) 403 (3.6%) 11,335 (3.6%)
ESRD 3034 (2.7%) 2722 (2.7%) 312 (2.8%) 2,940 (0.9%)
eGFR*, ml/min/1.73m2

<15 1,744 (7.0%) 1,531 (7.0%) 213 (7.7%)
15-29 1,789 (7.2%) 1,563 (7.1%) 226 (2.0%)
30-60 5,477 (22.1%) 4,831 (22.0%) 646 (23.3%)
>60 15,575 (62.9%) 13,904 (63.3%) 1,671 (60.3%)
Potassium (mmol/L)
>5.5 2,356 (2.7%) 2,075 (2.7%) 281 (2.9%)
<=5.5 85,573 (97.3%) 76,106 (97.3%) 9,467 (97.1%)

Continuous variables are presented as mean±standard deviation. *within a month of ECG (data available from 24,585 patients). BMI Body mass index, eGFR estimated glomerular filtration rate, ESRD End-
stage renal disease.

Table 2 Performance of the 12-lead ECG-based deep learning algorithm in the internal dataset.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

12-lead ECG models
Any stage CKD 0.767 (0.76–0.773) 0.699 (0.699–0.699) 0.698 (0.698–0.698) 0.443 (0.443–0.443) 0.871 (0.871–0.871)
Mild CKD 0.753 (0.735–0.77) 0.75 (0.75–0.75) 0.644 (0.644–0.644) 0.064 (0.064–0.064) 0.987 (0.987–0.987)
Moderate-severe CKD 0.759 (0.75–0.767) 0.785 (0.785–0.785) 0.598 (0.598–0.598) 0.271 (0.271–0.271) 0.936 (0.936–0.936)
ESRD 0.783 (0.773–0.793) 0.704 (0.704–0.704) 0.726 (0.726–0.726) 0.237 (0.237–0.237) 0.953 (0.953–0.953)
High Risk Subgroup analyses
for any stage CKD
Diabetic patients 0.747 (0.707–0.783) 0.699 (0.699–0.699) 0.682 (0.682–0.682) 0.906 (0.906–0.906) 0.342 (0.342–0.342)
Hypertensive patients 0.711 (0.696–0.725) 0.648 (0.629–0.668) 0.662 (0.644–0.68) 0.638 (0.618–0.658) 0.672 (0.653–0.691)
Age > 60 years 0.706 (0.697–0.716) 0.604 (0.604–0.604) 0.701 (0.701–0.701) 0.397 (0.397–0.397) 0.844 (0.844–0.844)
Male 0.764 (0.755–0.772) 0.727 (0.727–0.727) 0.666 (0.666–0.666) 0.485 (0.485–0.485) 0.849 (0.849–0.849)
Female 0.756 (0.745–0.768) 0.699 (0.699–0.699) 0.680 (0.680–0.680) 0.351 (0.351–0.351) 0.902 (0.902–0.902)
Screening cohort (age <60)
Any stage CKD 0.843 (0.836–0.852) 0.761 (0.761–0.761) 0.787 (0.787–0.787) 0.57 (0.57–0.57) 0.899 (0.899–0.899)
Mild CKD 0.795 (0.766–0.823) 0.702 (0.702–0.702) 0.748 (0.748–0.748) 0.075 (0.075–0.075) 0.989 (0.989–0.989)
Moderate-severe CKD 0.854 (0.842–0.865) 0.792 (0.792–0.792) 0.787 (0.787–0.787) 0.373 (0.373–0.373) 0.959 (0.959–0.959)
ESRD 0.842 (0.831–0.853) 0.746 (0.746–0.746) 0.791 (0.791–0.791) 0.394 (0.394–0.394) 0.945 (0.945–0.945)

AUC area under the receiver operating characteristics curve, CI Confidence interval, CKD Chronic kidney disease, ESRD End-stage renal disease, PPV positive predictive value, NPV negative
predictive value.
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population. One-lead ECGs could also increase screening rates in
high-risk patients (Supplementary Figs. 3 and 4). However, the
integration of artificial intelligence in electronic devices requires a
more detailed evaluation of accuracy in a real-life setting.

Low awareness of CKD and limitations in current screening
measures highlight the urgency of novel screening strategies to
increase detection rates of early-stage CKD. Being non-invasive
and often obtained in the clinic, ECGs are often the first line of
clinical evaluation. In our healthcare system, 74% of ECGs
obtained did not have laboratory testing of kidney function
within 30 days. Previous studies have demonstrated that the cost-
effectiveness of CKD screening is highly dependent on patient
risk factor profile and CKD probability, and there has been debate
on whether CKD screening should be targeted only to high-risk
patients, or also extend to patients without risk factors for
CKD22–25. Although screening high-risk patients is guideline-
recommended, testing rates remain low as only about 20% of
high-risk patients receive guideline-recommended assessment in
the U.S.26. Consequently, most of the high-risk patients are likely
to be unaware of underlying CKD2,3. Moreover, a substantial
proportion of all CKD patients are not high-risk patients and
hence not recommended to be screened regularly, which further
highlights the need for novel screening methods.

Our model performed better at detecting CKD in younger
patients, whereas detection accuracy was lower in older and high-
risk patients. Reasons for this observation are not fully clear but
may be due to the fact that younger patients in general have fewer
comorbidities, meaning that any detected ECG abnormalities may
be especially meaningful and specific. Although older age is a
well-known risk marker for CKD, the prevalence of CKD in
younger patients is also notably high in the U.S. (8–10% in <65
years)3. Remarkably, however, awareness of underlying CKD is
also very low in younger patients, as only about 8% are aware of
the disease3. Given the availability of effective low-risk CKD
treatments and the reversibility of CKD, there are substantial
potential benefits for detecting and treating CKD, especially in the
young. A recent paper by Kwon et al.27 also used data from ECG
waveforms in addition to age and sex to develop a DLA to detect
changes in eGFR, which can include both patients with acute
kidney injury (e.g., dehydration, pharmacotherapy, urinary tract
obstruction) as well as chronic kidney disease. Their model
achieved a slightly higher performance with an AUC of 0.86–0.91,
however reaffirms the overall conclusion that renal abnormalities

can be detected by CKD within large cohorts across multiple
international sites.

The strengths of our study include the large cohort of patients
undergoing ECG recording across a decade and the use of state-
of-the-art deep learning architectures. We also used two separate
approaches to understand the key features of relevance for our
deep learning model. While previous studies have reported that
patients with CKD have high rates of P wave abnormalities,
prolonged PR interval, QTc prolongation, QT dispersion, and left
ventricle hypertrophy28–31, in the present study CKD was asso-
ciated with skewed P-, R-, and T-wave axes in addition to pro-
longed QRS, PR, and QTc intervals. However, a few limitations
warrant consideration. Our study is retrospective, and study
populations are derived from two large academic medical centers
situated in dense urban metropolitan areas using ICD-9 codes. By
prioritizing priority codes, we sought to avoid incidences of acute
rather than chronic kidney injury, however we cannot exclude the
possibility that some of the study subjects without CKD diagnosis
in electronic health records have an undiagnosed disease, as
especially mild-stage CKD can often be undiagnosed, particularly
using an ICD9 code-based adjudication. In the subset with both
ICD-9 code adjudication of CKD as well as laboratory testing, the
ICD-9 codes were consistent with the calculated eGFR, however
only a minority of patients were able to be linked to data
regarding microalbuminuria.

Validation in prospective general population cohorts in out-
patient settings is required to confirm an ECG-based DLA’s
ability to recognize patients with CKD. Although the prevalence
of CKD was low in our training cohort with ECGs, and this
prevalence not directly comparable to epidemiological cohorts
with CKD (as ECGs are more commonly obtained in patients
without CKD), we show that our disease definitions is consistent
with laboratory testing and documented eGFR (Supplementary
Table 8) and that our deep learning approach is relatively
insensitive in model accuracy to disease prevalence in the training
set (Supplementary Table 4). The prevalence of hypertension
diagnosis may be underestimated in the internal cohort, however
our model performed similarly well in internal and external test
cohorts with different prevalences of hypertension.

By 2030, the UN’s Sustainable Development Goals are to
reduce premature mortality related to non-communicable dis-
eases by a third. Given the high prevalence of asymptomatic
CKD, serious consequences of untreated disease, presence of

Table 3 Performance of the 1-lead ECG-based deep learning algorithm in the internal dataset.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

1-lead ECG models
Any stage CKD 0.744 (0.737–0.751) 0.723 (0.723–0.723) 0.643 (0.643–0.643) 0.41 (0.41–0.41) 0.871 (0.871–0.871)
Mild CKD 0.746 (0.728–0.764) 0.735 (0.735–0.735) 0.66 (0.66–0.66) 0.066 (0.066–0.066) 0.987 (0.987–0.987)
Moderate-severe CKD 0.735 (0.726–0.744) 0.732 (0.732–0.732) 0.618 (0.618–0.618) 0.267 (0.267–0.267) 0.924 (0.924–0.924)
ESRD 0.757 (0.748–0.767) 0.738 (0.738–0.738) 0.647 (0.647–0.647) 0.202 (0.202–0.202) 0.953 (0.953–0.953)
High Risk Subgroup analyses
for any stage CKD
Diabetic patients 0.663 (0.625–0.707) 0.819 (0.819–0.819) 0.457 (0.457–0.457) 0.868 (0.868–0.868) 0.367 (0.367–0.367)
Hypertensive patients 0.684 (0.668–0.699) 0.658 (0.639–0.677) 0.614 (0.594–0.633) 0.61 (0.589–0.629) 0.662 (0.641–0.68)
Age > 60 years 0.681 (0.671–0.691) 0.679 (0.679–0.679) 0.588 (0.588–0.588) 0.35 (0.35–0.35) 0.849 (0.849–0.849)
Male 0.742 (0.733–0.75) 0.747 (0.747–0.747) 0.612 (0.612–0.612) 0.455 (0.455–0.455) 0.848 (0.848–0.848)
Female 0.735 (0.723–0.747) 0.672 (0.672–0.672) 0.681 (0.681–0.681) 0.342 (0.342–0.342) 0.894 (0.894–0.894)
Screening cohort (age <60)
Any stage CKD 0.824 (0.815–0.832) 0.812 (0.812–0.812) 0.705 (0.705–0.705) 0.506 (0.506–0.506) 0.91 (0.91–0.91)
Mild CKD 0.819 (0.791–0.844) 0.771 (0.771–0.771) 0.758 (0.758–0.758) 0.085 (0.085–0.085) 0.991 (0.991–0.991)
Moderate-severe CKD 0.828 (0.816–0.84) 0.814 (0.814–0.814) 0.713 (0.713–0.713) 0.313 (0.313–0.313) 0.96 (0.96–0.96)
ESRD 0.82 (0.808–0.831) 0.82 (0.82–0.82) 0.693 (0.693–0.693) 0.328 (0.328–0.328) 0.955 (0.955–0.955)

AUC area under the receiver operating characteristics curve, CI Confidence interval, CKD Chronic kidney disease, ESRD End-stage renal disease. PPV positive predictive value. NPV negative
predictive value.
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effective low-risk treatment, and detectable preclinical state with
inexpensive and simple diagnostic tests, CKD represents a good
target for large-scale population screening and harbors the
potential for reducing premature mortality related to non-
communicable diseases. In addition to the high mortality and
morbidity due to CKD, treatment costs for CKD are also high and
have increased during the last decades32. Especially, the increas-
ing number of patients requiring renal replacement creates
challenges for health care systems worldwide, and the shortage of
sufficient replacement services may cause at least 2 million pre-
mature deaths annually33. Therefore, widely available, inexpen-
sive, and effective CKD prevention and management strategies
are warranted to enable equal opportunities in reducing CKD-
related disability-adjusted life years.

Conclusions
Our ECG-based deep learning model was able to detect CKD with
good discrimination accuracy in multiple study populations and
with particularly high accuracy in patients under 60 years of age.
These results suggest that deep learning-based ECG analysis may
provide additional value in detecting various CKD stages, espe-
cially in younger patients. The clinical significance of this study
lies in the potential enhancement of screening methods for the
early detection of CKD, which is crucial to enable early treatment
and prevent disease progression.

Data availability
All analytical methods applied for the deep learning algorithm are included in this
published article, supplementary files. The patient data is not publicly available due to
potentially identifiable nature of the associated data. De-identified data is available from
the corresponding author on reasonable request.

Code availability
Code is available at https://github.com/ecg-net/CKDscreening34.
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