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Although there has been considerable progress toward an understanding 

of the  processes of photosynthesis i n  recent  years, the  a d ~ a n e e s  have been 

followed ra ther  olosely by symposia, monographs and reviews of the  subject  

matter, pa r t i cu la r ly  during the  last  th ree  y a w s ,  (l,2,3 ,4, 5, 697,8) 

I n  view of the eomprehensfve coverage it wodd appear t h a t  the presenk 

spec i a l  i n t e r e s t  t o  the  authors and some with which they are especia l ly  

workers of t h e i r  proposal f o r  +&e existence of a Light. indaced o,xy&er~ 

absorption ( and corresponding carbon dioxide evolutior;. ) whi.;h x r  ELXW- T. 

t o  t h r ee  or four 5mes  the n e t  oxygen evolution by the same Light ;  an<. 

2) the discovery of the ea r ly  particxipati oa of ? an6 5 carbon sugars f~ 

carbon dioxide reduetien in photosynthesis together with some o b s e r v a t i ~ x s  

on the k i n e t i  es of t he  metabolic transf o r ~ a t i o n s  , 

1 - The work described in t h i s  paper was spcnsozed by the  U o  So Atcrnfc 
Energy Co~m.~ssion,  

2 - Lt, ,  USER, Office of Naval Research Unit Not One, University of 
California,  Berkebq-, The s p b i o n s  sontained herein are the  p r j w t e  
ones of the  wr i t e r  and are no t  t j o  be construed. a s  o f f i c i a l  03: reflect=- 
fng the views of t,he Nay. Department o r  the  n a v d  service at l=geo 

3 - Fellowship of the Swiss Foundation: "StLftzang f b  Stipendfen auf dem 
Gebiete der Chemieon 



W l e  it is  true tha t  a considerable laumber of s ignif icant  publications 

have appeared i n  other aspects of photosynthesis ( the HiU reaction and. i t s  

coupling with carbon dioxide reduction (9,l0,ll,l2,l3,l&,l5,l6,l?,l8,,l9~ i 

photochemistry of chlorophyll and related synthetic materials as  m d e l  reac- 

t ions  in r e l a t ive ly  simple defined physical system8 (20~21~22~23); %reuzsfea 

of l i g h t  energy within the pigment sys tem (24,25) ) it i s  f e l t  tha t  they 

represent confirmation and extension of ideas which have already been dis- 

cussed i n  a var iety of ea r l i e r  reviews and tha t  a re-evaluation of  them 

might very well  be postponed u n t i l  a l a t e r  time, 

THE ONE-QU ANTUM PROCESS 

I n  the  course of studies on the maximum possible obtainable efficiency 

of photosynthesio, Warburg and h i s  associates, using the gas exchange method 

tha t  commonly bears h i s  name, had ooaasion t o  shorten the alternating l i g h t  

and dark periods between which the net gain of oxygen or loss  of carbon 

dioxide i s  determined down t o  periods a s  short as  one minute of iUmtination 

al ternat ing with one minute of darkness, Under these eipcumstances, the 

apparent effieiency of owgen production during the one-min~te i l l m i n a t i o n  

rose t o  & value which, when expressed i n  terms of the number of moPecuPes 

of oxygen produced per quantum of l i g h t  absorbed, approached one, (26,27,28) 

A% the same time, the apparent gas absorption i n  the one-minute dark inter- 

v a l  increased t o  values of the order of ten times t h a t  normally observed 

for  dark resp i ra t ion  over long periods of time, This l a t e r  enhaneed oqygen 

absorption observed immediately following the illumination period is  s u p  

posed t o  be going on during the  illumination as well, thus leading t o  %he 

suggestion t h a t  a t  a31 times under these optimum conditions, oxygen i s  

actual ly  b e h g  produced a t  a r a t e  corrsspondfng t o  one mole per quantun 



abso~'bed, but tha t  2/,1-314 of this oxygen produced i s  re-absorbed i n  a 

light-enhanced back reaction leaving the net oxygen production observable 

f o r  long periods corresponding t o  an efficiency of the order of 1/& mole- 

cule of oxygen per quantum absorbed, All the above observations, which 

r e fe r  t o  molecules of oxygen evolved i n  the l f g h t  and absorbed in the 

dark, are  supposed t o  be pertinent as w e l l  t o  molecules of carbon dioxide 

absorbed i n  the l i g h t  and evolved i n  the dark.& 

I n  l a t e r  publications (34335)9 Warburg was able t o  observe the gas 

exchanges immediately fallowing the application of the measured l i g h t  

&d immediately following the cessation of the measured LLlurnination and 

to plot  these changes as a function of t h e ,  making observations a t  one- 

minute intervals., A typical r e s u l t  i s  shown i n  Fiwe b (35)  Ira $his 

experiment, the unmeasured white l i g h t  i s  applied t o  an extent whieh jus t  

balances the oxygen evolution and %he carbon dioxide absorption by photo- 

synthesis ~ 5 t h  the carbon dioxide evolution and oxygen absorption by 

4, - b a c t i ~ i l l y  all of these observations were made by the PBtwo-vesseP 
meth~d,~'  a r e l a t ive ly  new desmfption of whieh i s  to  be found in %he 
papers by Warburg and Bwk (29) and Burk, Schade, Hunter and Warbug (301, 
Since most, cf the  observations were sn Cuore l la ,  whose physio%ogical 
PH range f s  of  the ordep of Lrc,5, the actual  resswe ehanges observed 
when the experiments are perfcpmed in t h i s  $ r a g e  me due t o  the 
difference fn  sahbfBi-by i n  the medfm between oxnTen and carbon dioxide, 

using a pair  of f ~ e s s e f s  whose geometry with respect t o  the algae and 
l i g h t  are ident ica l  except for %he gas volwne above the algae suspensions, 
it becomes posslble t o  determhe, on the eompapfso~? of the observed 
pressure ehanges i n  the two d i f fe rent  vessels, the ratdo of olbygen 
over carbon dioxide whether it be i n  l i g h t  or dark, Having determined 
th is ,  the *b~e~'g~E?d pressure' change i n  a single vessel can then be con- 
verted intc moles of oxygen gvolved (absorbed) and moles of carbon 
df oxide absorbed (evolved), 1% should be pointed out here tha t  there 
i s  a r e d  difference of opinion a s  t o  the va l id i ty  of the observations 
made by t h i s  method and these questions have been l i s t e d  and discussed 
a t  some length (31932933)8 



resp i ra t ion  so tha t  the manometers show no changes i n  pressures with time, 

Pressure changes are  then brought about by the additional illumination 

with a measured beam of green l igh t ,  Taking the  data  a t  face value, it, 

i s  evident tha t  what i s  represented i n  Figure 1 is  a t ransient  phenomenon 

with a logarithmic approach t o  a steady s ta te ,  Warburg has chosen t c  

in t e rp re t  t h i s  r e su l t  i n  terms of a primary photochemical reaction yield- 

ing  molecular oxygen with a quantum requirement of one, accompanied by 

the proportional generation of a substance c (substances] which reacts  

with a f rac t ion  E of the generated molecular oxygen, with a s p e e i f i ~  

reaet ion velocity k, I n  qual i ta t ive  terms, then, the f a l l i n g  off of the 

increase i n  pressure curve (Figure 1 )  i s  supposed t o  be due t o  the 

building up of the back reaction substance co. This he has expressed i n  

algebraic terms in the foUowing way: 

Le t  

Ia = absorbed l i g h t  in tens i ty  per minute, expressed as 

mmo3 Qzlayita/min, uni t  vole 

t = t h e  of illumination by the measured l i g h t  (min,) 

x = evolved O2 i n  time t by l i g h t  I,, in 

/unit vol. 2 

& =  the fract ion of the O2 evolved by the l i g h t  reaetion which 

reac ts  backo 

e = concentpation of the substance control l ing the reverse reaction 

expressed i n  terms of back-reacting O2 a s  

nrm.3o2/u"it vol. 

k = sp0 r a t e  const. of the back reaction (min"P1 



If the l i g h t  i n t e n s i t i e s  a re  so  adjusted t h a t  the quantum requirement f o r  

0, A in the  l i g h t  reaction,  9, i s  1 then (since Ia = + do2 ( l i g h t  react .  ) /d t )  

then 

+ dc/dt = a, - kc 

integrated 

~c/(EI,  - kc) = d t  

- l /k  l n  (&I, - kc) = t + oonst. 

When t = 0 e = 0 Const, = -  l /k lnEI ,  

~n ~I,/(EI, - kdJ = k t  

€1, = ek t  KI, - kc) 

a a e - k t  = &Ia - kc 

c = E I a  (1 - e-W/k  

When t >>> 1, as ta t ion  = €Ia/k 

Further ( if  p = 1 )  

dx/dt = Ia - kc 

Substc (2) i n t o  (3) t o  eliminate c 

dx/dt = I, - €1, ( 1  - Ckt) 

W i t h  the  boundary conditions 

t = Q, dx/dt = I, 

t >>> 1, dxld t  = I, (1 - & )  

Eqo ( 4 )  gives on in tegrat ion 

x = I, (1 - + €1, (1 - e-kt)/k 

wtth the  boundary conditions 

t = 0,  x = 0 giving t >>> 1, x = I, ( 1  - E )t + €I& 

If the  quant-m requirement i s  exp l i c i t l y  re ta ined 

x = I, p (I - E I t  + epIa ( 1  - Ck">/k (6) 



It i s  thus c lear  t h a t . t h e  i n i t i a l  s l o p  of the oxygen evolution curve 

should represent, according t o  t h i s  picture, the quantum requirement of 

the primary photochemical oxygen evolution while the i n i t i a l  slope of 

the absorption curve following the cessation of illumination should 

correspond t o  the quantum requirement of the continuous production of the 

back-reaction substance c,  This l a t t e r ,  by the defini t ion of c, 

should be equal t o  the former, There i s  some question as  t o  the general 

va l id i ty  of the observation i t s e l f  (31,32,33) and t h i s  i s  especially 

t rue  where very rapid observations are necessaryo The question ime- 

dia te ly  a r i ses  as  t o  how nearly the components of the gas phase are i n  

equilibrium with the gaseous components of the solution and with the 

gaseous components within the green c e l l s  themselves, It i s  clear tha t  

if oxygen comes t o  equilibrium i n  these systems somewhat more rapidly 

than does carbon dioxide, a r e su l t  such as tha t  given i n  Figure 1 would 

ensue, Fwthemom, t h i s  difference i n  r a t e  might occur i n  the trans- 

f e r  between the gas phase and the l iquid medium o~ between the l iquid 

medium and the &Teen c e l l  in te r ior  where presumably the gasses are 

ultimately generated or absorbedo 

However, even accepting the existence of t h i s  t ransient  approach t o  

a steady s t a t e  associated with a change i n  l i g h t  intensi ty  as  significant 

f o r  the chemistry of the green c e l l  i t s e l f ,  the interpretat ion given $y 

Warburg i s  not unique but only one of a number s f  possible views even on 

a quantitative basiso The s t r iklng s imi lar i ty  between the data presented 

and the t ransient  appearing i n  the e l ec t r i ca l  c i r c u i t s  cannot be oTer- 

looked, In  f a c t  there hbs been reported repeatedly, evidence for ~ a @ i l l a -  

toA-y t ransients  i n  both carbon dioxide and oqgen evolution a s  well as 



fluorescence, the  most recent of which i s  t h a t  of Van der Veen (36). 

One of t he  simplest of such c i r c u i t s  would be a p a r a l l e l  arrangement 

of a res i s tance  and a capacitor-resistanceo The change i n  l i g h t  inten- 

s i t y  would correspond t o  a change i n  impressed po ten t ia l  and the gas 

flow would correspond t o  the charge flow, I n  chemical terms, the 

res i s tance  would correspond t o  t h e  specif ic  r a t e  constants of a s e r i e s  

of react ions ,  while the  capacitance would correspond t o  the  s i ze  of the  

rese rvo i r s  involved i n  the equilibrium, which was sh i f ted  and maintained 

by a change i n  the steady s t a t e ,  It might be worthwhile t o  actual ly  

out l ine  one such case i n  a s  general terms as possible, 

A l i k e l y  system having some of the above elements is shown diagram- 

matically i n  Figure 2 where the  equilibrium between M m-d A + O2 would 

correspond t o  the  terminal o q g e n  evolving reaction,  Defining corres- 

ponding terms i n  s imilar  u n i t s  t o  those used i n  the  preceding derivation 

l e t  

I, be the  amount of l i g h t  (number of quanta) absorbed by the photo- 

chemical apparatus (represented by the box Pea,)  where it i s  

converted i n t o  some chemical form (reduced and oxidized species)o  

a be the  propor t ional i ty  const& between the number of quanta 

absorbed and the  number of molecules (Q) of some species which 

r e a c t s  with the  species M t o  produce molecular oxygen with a 

r a t e  constant  of uni ty  (u = l)c 

r be the  constant r a t e  of the  reverse reac t ion  i n  the  f i n a l  equili- 

brium with molecular oxygen (a lso  with carbon dioxide), 

$ be t he  propor t ional i ty  constant  between the number of quanta 

absorbed and the  steady ne t  rate of formation of Ma 





conclusion t o  be drawn from the  da ta  as presented by Warburg, I n  f ac t ,  

there  ex i s t  two pieces of independent experiaentak evidence which would 

seem actual ly  t o  weelude such a poss ib i l i ty ,  The system of fornard and 

reverse  regbetions as proposed by Warburg i s  represented i n  i t s  simplest 

form i n  Figure 3, 

Thus, f o r  every four moiecules of molecu.lap oxygen which ape produced 

by t he  photochemical reac t ion  three  a r e  supposed t o  be reabsorbed by the  

photosynthetic system i n  a dark reaction,  Similarly, f o r  every four 

molecules of carbon dioxide which ape absorbed i n  t he  photochemical reae- 

t i o n  three ape re-evolved i n  this same dark react ion,  Since the  photo- 

chemical react ion i s  supposed t o  have a quantum requirement of unity it 

is  c l ea r  t h a t  t'ne quantum requirement for the n e t  produetion of molecules 

of oxygen w i l l  be approximately four,  Such a system would lead t o  a very 

rap id  exchange between the  oxygen atoms of t he  gaseous molecular oxygen 

and t h a t  contained in csmbinatian with the l i v i n g  organism a s  water and i n  

other  combined forms, The same a e c e l e ~ a ~ e d  exchange would be expected 

between the carbon atoms of the  gaseous carbon dioxide ard. those incar- 

porated i n  the  photosynthetic arganisms, The number of molecules exchanged 

(oxygen o r  carbon d i o x k k )  due to tihis t ~ p e  of reac t ion  d o n e  shudd  be 

approximately. three  times t he  ne t  number of oxygen maleculas produoedo I", 

i s  pcssible t o  determine whether or not such p)?,otochemical$y a z c e l e ~ a t e d  

exchanges take place and, i n  f ac t ,  both of these isotopic  t e s t s  have been 

applied, although not on t h e  sane s;~stems, 

Thus, i f  the  organism i s  placed i n  contact  with gassoas mcJeeiLa~ 

oxygen labeled with 018 and the r a t e  of change of the specif ic  isotopic 

content  of the  gas i s  determined 22 the  dark and compared with tha t  which 



occurs upon illumination, it should be possible t o  detect an accelerated 

r a t e  of disappearance of labeled oxygen from the gas phase, since any 

labeled oxygen atom which i s  recombined i n  tlre organism w i U  b s o  diluted 

by the large amount of unlabeled oxygen i n  the organism as not to  reappea  

i n  the gas phase, In effect ,  t h i s  means tha t  the photochemi@ally pro- 

duced oxygen would have no label ,  whereas that  which i s  being reabsorbed 

would, of course, have the l abe l  from the gaseous phase, Experiments of 

t h i s  s o r t  have been done by Brown, Nier and Van Norman (373 on a variety 

of organisms including Chlorella, I n  no case was there any evidense of 

an increased r a t e  of disappearance of 0'' from the gas phase under the 

influence of l i g h t o  

The corresponding experiment with labeled carbon dioxide using GX 

labeled C02 has been done by Weigl and Calvin (38) on barley leaq~eso  Here, 

also, there i s  no evidence of accelerated di lut ion of the residual carbon 

dioxide with nan-labeled carbon from the organism under the influence 04" 

l i g h t ,  In  f ac t ,  the only ef fec ts  reported i n  each case wepe Pahibfto,ry 

effects  on both of the ra tes  mentioned, 

The eonc%us;fons which were drawn by the authors o f  each of these above- 

mentioned experiments were weakened & the suggestion tha t  upon f3dWna- 

t i o n  the oxygen which i s  absorbed i n  the respiratory reaction never escapes 

from the c e l l s  a f t e r  i t s  photosynthetic production, and the carbon dioxLde 

evolved i n  therespf ra to~y,  or "BackP', reaction never escapes from the cells 

pr ior  t o  i t s  photosynthetic incorporation, This cr i t ic ism i s  Sncompatibh 

with the assumption tha t  the curves i n  Figure 1 are significant.  I n  ~ r d e r  

t h a t  these curses, which are manometric changes with time, should correa- 

p ~ n d  t o  the r a t e s  of chemical processes within the photosyathetic srganfsms, 

it w a s  necessary to assune a complete equilibration betweec %he gas phase 

and the molecular oxygen and carbon dioxide within the cell wallD 



It thus appears t h a t  the t m n s i e n t  phenomena observed by Warburg are  

be t t e r  accounted fo r  i n  terms of s h i f t s  of equ i l i b r i a  or steady s t a t e s  

r a the r  than i n  terms of an increased back peactlon from the  gas phase. 5 

It i s  a l so  c l ea r  t h a t  w-der some eireumstmces it should be possible t o  

observe, f o r  shor t  periods of time, r a t e s  of oxgrgen evolution or carbon 

dioxide absorption which would correspond t o  the  apparent quantum 

requirements, even l e s s  than one (apparent quantum y ie ld  greater  than 

uni ty) .  This i s  in no w a y  t o  be construed as a v io la t ion  of t he  

Einste in  law of photochemicLL squivdance,  Without doubt there is  a 

primary photochemical a c t  somewhere i n  the photosynthetic apparatus 

which involves t he  transformation of electromagnetic t o  chemical energy 

with a quantum requirement of one, i o e o ,  f o r  every quantum absorbed one 

photochemical equ iTdent  of a reac t ion  w i U  be brought about with con- 

com5tant storage of chemical energy, There %s, of course, no require- 

ment t h a t  there  be any uni tary  r e l a t i onsh ip  between quanta and molecules 

of gas observed maxornetrfcaliy, 

This implied re la t ionsh%p between the  number of quanta which might be 

required i n  the overa l l  energy balance f o r  the  production of oxygen and 

tk e absorption of carbon dioxide and the mechanism by which t h i s  i s  

achieved has l e d  very ef ten in %he past  t h i r t y  years  t o  attempts t o  f ind 

ways of s t o r i ng  e l ec t romgne t i e  energy in that form, since it w a s  very 

ear ly  c l ea r  t h a t  the amount of energy required t o  achieve the overa l l  

r eac t ion  of photosynthesis correspondecl t 9  t h a t  contained i n  a t  l e a s t  four 

5 - This includes the  p o s s i b i l i t y  t h a t  they will be due t o  di f ferences  i n  
the  spec i f ie  r a t e s  of passage of o q g e n  and oarbcn dioxide through t he  
s e l l  w a l l , ,  I t  is, hmever2 unl ikely  t h a t  d i f ferences  i n  the  r a t e  of 
establishment of equilibria between the ~ e d i u m  and the  gas can be ca l led  
upon t o  account f o r  it, a s  independent experiments i n  the authorss  
laboratory conC" r UXK~O 



quantao Mith the growth of our knowledge of the way i n  which biochemical 

systems manipulate and convert energy from one form in to  another, eogo,  

the conversion of chemical energy t o  mechanical energy i n  muscle, has 

come the rea l iza t ion  tha t  the accumulation of the necessary calories to  

perform the overall  reaction of photosynthesis might be done b e t t e ~  chemi- 

cal ly ,  It would appear tha t  t h i s  is the predominant conception a t  present 

as it has been expressed i n  a wide variety of ways by many authors in 

many placeso It would be f u t i l e  a t  t h i s  point t o  t r y  t o  review the hfs- 

tory of the development of t h i s  idea i n  all i t s  ramifications (510 Among 

the f i r s t  of such suggestions was tha t  of Ruben (39 )  and a lso  of Lipmann (40 )  

t ha t  energy required t o  c a r q  out the overall  photosynthetic reaction r i g h t  

be transported, a t  l e a s t  i n  pert ,  through high energy phosphate, This has 

even been cmr ied  t o  the extreme with the suggestion tha t  there might be a 

1:l correspondence between quanta absorbed and individual high energy phos- 

phate Ponds formed, e,g., the terminal phosphate bond of ATPo This idea 

has been c r i t i c i zed  on the basis  of i t s  enormous inefficiency (approxi- 

mately 40 kcal, quanta being used t o  produce a s ingle  12 kcalo bond) and 

almost cer tainly r ight ly  so, The other a l ternat ive,  namely, the subdi~rL- 

sion of a quanta in to  two or three parts,  has been rejected on the basis  of 

lack of precedent ( 4 1 ,  This is, however, probably due to  the expl ic i t  

or implici t  attempt t o  perform the subdivision while the energy i s  i n  

electromagnetic form or i n  the form of electronic excitation, This df f f i -  

culty disappears i f  the conversion t o  chemical energy takes place a t  the 

40 kcal, level,  or thereabouts, and i t s  subdivision occurs thereafter,  

In  re la t ive ly  recent years a number of proposds have appeared con- 

cerning some of the more or l e s s  specif ic  methods by which energy might 

be converted and brought t o  bear upon the  oxygen l ibera t ion  reactions a d  



the  carbon d i ~ x i d e  reduction reac t f  om,  Xith the confirmation ( ~ ~ 4 . 3 ~ 4 4 , )  

of the  idea  t h a t  the reduction of carbon dioxide was separable6 from the 

primary photochemical a c t  and was i n  i t s e l f  a completely dark react ion (t!&) 

and the  discovery t h a t  the e a r l i e s t  i s o h b l e  intermediate of carbon dioxide 

incorporation by photosynthesis was phosphoglyceric acid, it became possible 

t o  suggest spec i f i c  pat terns  by which high energy phosphate might play a 

par t ,  I t  was c l e w  t h a t  the i n i t i a l  carboxylation react ion leading t o  

phosphoglyceric acid required the  presence of a phospbaoleylated intermediate 

of r e l a t i v e l y  high energy leve l ,  This was presumed t o  have been formed 

e i t h e r  d i r e e t l y  or ind i rec t ly  through some oxidation reac t ion  (not neces- 

s a r i l y  involving oxygen d i r ec t l y  ) , 

It was therefore proposed (47) t h a t  p a r t  of the i n i t i a l l y  produced 

reduced carbon be passed through a reoxidation cycle and thus have some 

of t h e  redused energy or iginat ing from the  l i g h t  react ion converted in to  

high energy phosphate. The passage of an e lect ron from a high reducing 

po ten t ia l  t o  2 lokrer one on i ts w a y  t~ molecular owgen produces high 

energy phosphateo EvFdence t h a t  such react ions  might play a p a r t  in photo- 

synthesis  has been recent ly  added t o  the l i t e r a t u r e  (4$)o 

These, and many other such suggestions, a r e  all pa r t  of the  same 

general coneept2,on cf the  1~earmgmenLo.f chemical energy i n  dark reac- 

t i ons  i n  preparation f a r  the iwo reacbionns which can be observed mano- 

metr ical ly  i n  photosy~thes i s ,  v iz , ,  the evolution of molecular oxygen and 

the  absorption of molecbilar carbon diorzde, I t  i s  in the r e i t e r a t i o n  and 

6 - B u i n g  the  past  yeaz there  has h e n  discovered what appears t o  be a 
chemieal I f  ght production fal lowing i U d n s t i o n  of green p lan t s  (45) 
and a l s o  of i so la ted  chloroplas ts  (46) Thi s has a l i f e t ime  of the  
same order of magnitude. a s  the  gls tored reducing power" (43 )  and is 
quenched by carbon dioxide in much the  same way, Therefore, it seems 
t h a t  a t  l e a s t  pet of the i n i t i a l  path of entry  and conversion of the 
photon i s  revers ible .  



emphasis of these ideas thaz the importance of the re~smt Warkg pubh- 

cations seems t o  l i e ,  irrespective of whether or not %he one p n t m  

process has been obsemed manometrically, or even whether it w i u  ever 

be, 

Such a r e l a t ion  between dark reaetion$&@alving %he a o c d a t f o n  and 

red is t r ibut ion  of energy and the gas exchange observable as a result. of 

photochemical processes would necessarily have t o  be conaidered En any 

determination of the o v e r d l  e f f i o i e n ~ y  of the  green plzulte i n  the  energy 

conversion process, p a ~ $ i ~ u l a r l y  when %Ms datern&nat%on %a made via ca gas 

exchange measurement, The efficiency of the energy canversion on the basis 

a£ the amoum-t; cf carbon dioxide ineorpsrated must depend very shapLy on 

the f a t e  of the  carbm dioxide, s h o e  the energy requl-red t o  reduce omboa, 

dioxide t o  the l e v e l  of formic acid i s  eansiderabby l e s s  than tha t  required 

t o  reduce it t o  the lend of formaldehyde and th i s ,  i~ %-ax, i s  l e s s  than 

t ha t  required t o  reduce it t o  the leve l  of m@thancLo On the &her hand, 

the. erzergy required t o  produce a mole of s q g e n  from water i s  very nearly 

independent of the fate of the hy&agen a tom invo1ved i n  the  reaction 

4 

and is approximately 115 k e d o u  Therefore, measurement of  oagrger, evclsad 

provides the preferable -ometric m%t f o r  t he  d e t e r d m t i m  o f  the eff%- 

cfency of energy conversion, 



However, the  sowee af t he  esergy required f o r  t h i s  oxygen evolution 

might not  be en t i r e ly  t he  inmediately absorbed and measured l i gh t ,  If 

somg f r ac t i on  of the energy transformed In the  resp i ra to ry  reactions 

were used i n  preparing intermediates f o r  t he  oxygen evolution r e a c t i o ~ ,  

it i s  e lea r  t h a t  t h i s  resp i ra to ry  energy (measured by the amount of 

oxygen absorbed i n  t.he dark period) should not  be subtracted from the 

observed o q g e n  evolution i n  a l i g h t  period f o r  the determination of an 

eff ic iency,  If the  measwed l igh t ,  i s  of such i n t ens i t y  and under such 

coriditions as t o  merely decrease the r a t e  of oxygen absorbed the  actual  

r a t e  of energy transformation i n t o  a chemical form i s  s t i l l  negative; 

t h a t  is,  no energy i s  being s tored bOt. r a the r  it is being expended, If 

we t r y  t o  use the  difference between the  pate of oq-gen absorption i n  

t he  dark and t he  s d b e r  r a t e  of absorption i n  the l i g h t  as the r a t e  of 

energy storage due t o  t he  l i g h t  i t s e l f ,  the  result might very well b 

completely erroneouso Some &own f r ac t i on  of t he  energy being 

expended might act .ualQ be in the  oolzapsc? of transformation and u t i l i za -  

tior f o r  the preparation of eompomds (intermediates) mking  it possi- 

ble t o  evolve molecular o-qgen from them by the  addi t ion of some energy 

directly from +,.be neasured Eght .  absorbed, Even i f  the  l i g h t  i n t ens i t i e s  

condit icns aTe such as t o  l ead  t o  m a c t u d  evolution of oxygen it 

wodd s t i l l  be e r r o r  t o  sub ta ra~ t  from t h a t  evolution the  apparent 

amount of oqger,  absorbed i n  the  dark e i t h e r  j u s t  before or j u s t  a f t e r  

t he  i l l d n a t i o z l  period, This  would be t,me i rsespeet ive  of whether t h i s  

so-called dark r e sp i r a t i on  i s  affected by l i g h t  or  not ;  t ha t  is, whether 

t he  dsk resp i ra t ion ,  as observed j u s t  p r i o r  kc, or j u s t  succeeding an 

S11uminatfon period, proceeds a% exactly the  same! rate or a t  some changed 

r a t e  dminb the 2lllumiaation period, 



I f  it proceeds a t  the same r a t e  then the energy so generated, or some 

f rac t ion  of it, may h used t o  prepare intermediates f o r  oxygen evolution, 

If there i s  an i n t r i n s i c  inhibi t ion or acceleration of t h i s  process by 

l igh t ,  then t h i s  same energy i s  being stored. Since the fract ion of t h i s  

Itrespiration generatedt' energy which may contribute t o  oyggen evolution 

i s  not known and may approach unity, it thus becomes impossible t o  deter- 

mine accurately the efficiency of the energy conversion process from a 

gas exchange experiment alone when the net oxygen evolution is  not very 

large compared t o  the dark respiration, The possible error from t h i s  

source is, of course, t ha t  percentage of the t o t a l  oqygen evolution which 

corresponds t o  the respiratory oxygen absorbed, 

When the efficiency i s  determined by d i f fe rent ia l  additioo of l i g h t  

and measurement of the corresponding additional oxygen evolution, even i f  

the idti al s t a t e  i s  one i n  which there i s  no net ozygen absorption (due 

t o  compensating l i g h t  1, t h i s  possible contrikmtion of respiratory energy 

t o  the oxygen evolution reaction has not been considered or corrected for ,  

The f rac t ion  of the energy from the compensating l i g h t  which may be coopera- 

t i ng  i n  the oxygen evolution almost certainly i s  dependent upon the difi'eren- 

t i a l l y  added l igh t ,  The experimental r e s u l t  consequent upon t h i s  argument 

seems t o  have been observed by Kok (49) and others, I n  these observations 

the value of 6 udo2/dtu / L  i s  dependent upon t h e  value of I part icular ly 

a t  i n t ens i t i e s  around the compensation point, 8 

CARBON Ml3TAJ3OLISM 

In  the course of studies designed t o  give more specif ic  information 

about the sequence of compounds involved i n  the incorporation of carbon 

Er - A t  very' high l i g h t  in t ens i t i e s  the value (efficiency) f d l s  off due ts 
other l imitat ions upon the rzte of energy u t i l iza t ion ,  



dioxide i n t o  p lan t  substances two new early products of t h i s  incorporation 

have been uncovered, These a r e  ce r t a in  phosphates of the seven- d five- 

carbon sugars, sedoheptulose and ribulose,  respect ively  (50,51,52, 52) An 

examination of the  k ine t ics  of t h e i r  appearance together with a number of 

other compounds i n  what purported t o  be a steady s t a t e  photosynthetic 

system has been made (541, Their appearance i n  the  f i r s t  few seconds of 

photosynthesis, the  lack of any configurational  re la t ionsh ip  between them 

and the  usual  u l t imate  products, hexoses (glucose, fructose and sucrose), 

together with preliminary information suggesting t h a t  the labeled carbon 

atoms appear somewhere i n  the very rapidly  turning cycle f o r  the reganera- 

t i o n  of the  two-carbon carbon dioxide acceptor which ult imately leads  tr, 

phosphoglycaric acido This re la t ionsh ip  i s  i l l u s t r a t e d  i n  Figure ko 

Ample precedent already e x i s t s  f o r  the f i s s i o n  of a ketopentose, such 

a s  r ibulose,  between carbon atoms two and three,  giving a two-carbon frag- 

ment and a three-carbon fragment (55s56)0 I n  a s imilar  manner, 2-ketoheptoses, 

such a s  sedoheptulose, would y i e l d  a two-carbon fragment (possibly phospho- 

g7ycolal) and a five-carbon fragment leading t o  the  ketopentose, The ques- 

t i o n  of the source of the  seven-carbon heptose must then be answered, The 

r a the r  obvious pos s ib i l i t y  of i t s  formation by the  condensation of a four- 

and three-carbon piece presents i t s e l f ,  and we are again faced with the  

problem of t h  character  and i den t i f i c a t i on  of the  four-carbon fragment 

which would be involved, The problem of the  i den t i f i c a t i on  and character  

of t h i s  four-carbon fragment among the ear ly  products of steady s t a t e  

photosynthesis s t i l l  remains as it did i n  all e a r l i e r  schemes, 

However, the re  i s  indicat ion from paper chromatography of the presence 

of a phosphorylated erythronic acid  among ear ly  products of photosynthesis, 

Since t h i s  compound is  never present i n  very l a rge  concentrations, a t  l e a s t  



mder  the conditions we have so f a r  used f o r  examination, it would indi- 

cate a very small steady s t a t e  reservoir of t h i s  compound. This i s  true 

a l so  of the corresponding sugar phosphate, vie., phosphoerythrose, which 

i s  thought t o  reac t  with t r io se  phosphate t o  give a sedoheptulose phos- 

phate. It should be pointed out t h a t  i n  the regeneration of tlie two- 

carbon uni t  it i s  possible t o  bypass ent i rely the need fo r  e i ther  four- 

or seven-carbon un i t s  as well a s  a second carboqlation reactionO9 This 

i s  done by using the recently revived ' (58,591 routs of Dickens (60) from 

glucose t o  ribulose v i a  3-keto gluconic acid and a decarboqlation, How- 

ever, there would be no net  gain i n  reduced carbon i n  such a cycle and 

other ports of carbon dioxide entry would have to  be provided. 

The dotted arrow leading from t r iose  d i rec t ly  to  erythronic acid 

would correspond t o  the reductive carboxylation of dihydroxyacetone 

HOCH2-GO-C5OH + COP 2 f d  -HOCI$-CHOH-CHOH-C02H 

which i s  exactly analagous t o  the reductive ~ c a r b o x y l a t i o n  of pyruvic 

acid leading t o  malic acid, The existence of enzymes capable of perform- 

i n g  the l a t t e r  react ion has been demonstrated, Figure 4, of course, i s  

designed t o  represent only the transformations occurring i n  the carbon 

skeletcn, It awaits fur ther  def ini t ion by more extensive kinet ic  studies 

as well as  isolat ions a d  degradations which are ye t  t o  be performed, 

It i s  interest ing t o  note and specif ical ly  point out here the further 

development of tlie basic idea of a very close interweaving of the wide 

variety of m e t a b l i c  reactions, some of which might be conceived as  being 

primarily associated with photosynthesis while others are usually, or more 

often, associated with respiratory and other biosynthetic transformations, 

9 - The des i r ab i l i t y  of avoiding the second czrboxylation reaction i n  
photosynthesis w a s  suggested by Gaffron and h i s  co-workers some years 
ago (57)* 



It i s  c l e w ,  f o r  example, how it might be possible for the  products 0% 

carboa reduct ion formed i n  the  closed cycle, shorn absre, ' o  enter  into 

the  t r i cmboqy l i c  as id  cycle and thus produce high energy phosphate by 

already known meehmism, It should be remembered t h a t  not showr, in 

Figure 4 a r e  t h e  compounds giving the  =.educing power which would be 

required t a  d r ive  such a cycle and which haye t h e i r  primabry or igin  in 

the  photochemical apparatuso Ht i s  a l s o  c l ea r  t h a t  a change i n  the rate 

of m y  om of the  react ions  shown would affect the  s t a t i o n q  s t a t e  eon- 

csntra$ions of almost every compsmd shown there ,  

It i s  the  deve l apen t  of such a conoeptfon as t h i s ,  not  only f o r  the  

e u b o n  dioxide cycle but f o r  the  oxygen evolution cycle a s  well, i n  

spec i f i c  ehemiod terns, which we ?eel sure wfhk ultimately lead t o  the 

c l ea r  understanding of the  enmnous varis%y of observations on photo- 

synthet ic  organisms md systems i n  general whfch was reported since the  

character  of t he  pBe~-c\mn~)n was first r e ~ o g n i z e d ~  
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Division of Riotosynthesis in to  Light 
Reaction and Back Reaction. 

100 of wet ~acked  c e l l s  ( ~ h l o r e l l z )  
suspended i n  7 ml. water. Temperature = 
20° G, l i g h t  in tens i ty  of rceasured l i g h t  
17.3 d &uanta/nin. o r  2.8 x 10-3 watts 
a t  546 qua Par t ia l  pressure of carbon 
dioxide = 0.109 atom, 
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