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Introduction 
This symposium explores the role of placeholder 
structures—systems of words, non-linguistic symbols, or 
procedures—in the construction and manipulation of 
numerical concepts. The structure supplied by a placeholder 
system – like the count list in English – critically constrains 
the potential for creating and manipulating conceptual 
content. 

A great deal of empirical work has explored the role of 
placeholders in numerical cognition, in large part by 
investigating how children learn number word meanings 
when exposed to Arabic numerals and corresponding count 
routines (for review see Carey, 2009). One contribution of 
this work has been to suggest that learning a count list 
creates an important structure for constructing new 
numerical concepts. For example, learning to count is a 
critical precursor to acquiring large exact numerical 
concepts like “77”, and how such concepts are related (e.g., 
that 78 is greater than 77, by exactly one). According to 
some, this learning is guided by a semantic induction, 
whereby children realize that each successive numeral in the 
count list denotes a quantity of 1 more than the number that 
came before it. 

Beyond these studies, relatively little work has tested the 
role of placeholder structures outside the Arabic numeral 
system. As a result, little is known about the role that this 
particular structure plays in numerical development, and 
whether the use of alternative systems might result in 
different conceptual outcomes.  Perhaps the best evidence 
that placeholder structures are critical to constructing 
numerical concepts comes from fieldwork in the Amazon, 
where studies of the Piraha and Munduruku have made clear 
that learning to count is important to acquiring at least some 
numerical concepts (Gordon, 2004; Frank et al, 200; Pica et 
al.). However, between the Piraha and English-speaking 
adults who use Arabic numerals lies a vast array of potential 
intermediate systems. At least some of these systems have 
been tested in nature by humans, and are used today. This 
symposium explores the role of placeholders systems to 
numerical development, the effects of structural variations, 
and how different modalities like gesture and vision are 
used to create alternatives to the Arabic numeral system, 
with different consequences for cognition. 
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Specifically, the symposium will include four distinct talks, 
each touching on different systems of numerical 
representations. Each talk will discuss how placeholder 
structures guide and constrain learning, whether by 
facilitating the association of symbols with quantities, 
guiding inductive inferences, or facilitating operations that 
are unique to a particular structure.  

Number word meanings and the count routine 
What role does a placeholder system like counting play as 
children learn number word meanings? In this talk, Barner 
will explore the idea that counting provides one of several 
verification procedures that children acquire when learning 
number words. Acquiring these procedures does not alone 
result in conceptual change, but instead lays the groundwork 
for learning about quantity and the logical relations between 
numbers. In particular, Barner will discuss how learning 
about the structural relationship between words in the count 
list may allow children to derive the concept of exactness, 
without a radical conceptual change, but instead drawing on 
well-attested pragmatic inferences. Barner also explores the 
so-called “Cardinal Principle induction” and whether it 
involves a conceptual change, or whether it is instead 
another example of procedural learning. 

Number knowledge in a finite counting system 
In this talk, Frank presents research examining a linguistic 
number representation used by a group of indigenous 
speakers of the language Momu (also known as Fas), 
spoken in the northern part of Papua New Guinea near the 
Indonesian border. The Momu count list has been reported 
to have a simple pair-based compositional structure that can 
be glossed as “one” (1), “two” (2), “two and another” (3), 
“two two” (4), “two two and another” (5), and “two two 
two” (6). The Momu count list is a fascinating case study of 
the relationship of placeholders to numerical competence.  

Most Momu speakers had difficulty completing exact 
quantity matching tasks, failing to use linguistic number to 
track the quantity of objects presented by an experimenter. 
Even more surprising, Momu speakers did not agree on the 
structure of the Momu count list. Some speakers were able 
to count recursively to ten using the pair-based structure 
described above, while others claimed that the system was 
finite and bounded at "two and another" (3). The 
participants that did best on the matching tasks used the 
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pair-based linguistic strategy, but not all participants that 
counted recursively applied the count in the matching tasks.  

Momu is thus a case of dramatic linguistic and conceptual 
heterogeneity. Unlike English, where conceptual knowledge 
is deep and uniform across speakers, and unlike the 
Amazonian examples with essentially no exact number 
system, Momu speakers are on the cusp of knowledge: they 
know what they do not know, but do not have routines or 
strategies to complete even simple matching tasks.  

The origin of numbers as summary symbols: 
Evidence from home sign and Nicaraguan Sign 

Language 
Remembering a list of 9 items is harder than remembering a 
list of 6, but remembering the number “9” is no more 
difficult than remembering the number “6”. As a result, 
numerals allow us to represent multiple individuals without 
adding costs to memory as a function of set size. This talk, 
by Spaepen, asks whether finger representations are 
summary symbols for entire sets (like “6”) or for the 
individuals within that set (like 6 separate items). 

Five signers of Nicaraguan Sign Language (NSL) and 4 
unschooled hearing adults were tested using a modified digit 
span task, in which any one span only contained two 
numbers in an ABA pattern. There were 3 types of trials: 
patterns using 2 and 3 (e.g., 2, 3, 2), patterns using 4 and 5 
(e.g., 4, 4, 5), and patterns using 8 and 9 (e.g., 9, 8, 8). Both 
groups performed equally well on all trial types, suggesting 
that both spoken words and conventionalized finger 
representations of number can act as summary symbols. 
Nicaraguan homesigners (deaf individuals who have no 
access to conventional linguistic input, spoken or signed, 
and who develop gestures systems to communicate with the 
hearing people around them) were tested on the same task 
and performed significantly worse on the 8 and 9 trials than 
on the other two trial types.  

The NSL signers’ performance reveals that finger 
representations can be summary symbols of the numbers 
they represent, and therefore can be placeholders for exact 
number concepts during development. However, when 
gestures for number are not learned in a rote list during 
language development, finger gestures represent individuals 
in the set, not whole sets. Because of this, homesigners’ 
gestures may be used as placeholders, as they are not 
symbols that mean “seven,” but rather symbols that mean 
“one one one one one one one.”  

The role of gesture in supporting visual 
representations of number 

Mental abacus calculation is one of the most efficient 
methods for solving arithmetic problems mentally. Rather 
than physically moving the beads on an abacus, mental 
abacus experts memorize the operations necessary to move 
the beads and keep track of the current state of an imaginary 
abacus using visuospatial working memory (Stigler, 1984; 
Hatano, 1977). The abacus serves to represent the aspects of 

number necessary to compute basic arithmetic, while 
allowing these computations to be carried out by rote, rather 
than depending on detailed conceptual representations of 
each step. While performing mental abacus, nearly all 
abacus users move their hands as though they were 
manipulating an actual abacus. Past research has found that 
performance suffers when abacus users are not permitted to 
use their hands (Frank & Barner, under review; Hatano, 
1977). Thus, gesture appears to play a critical role in 
creating and sustaining mental abacus structures. In this 
talk, Brooks will present work that explores the precise 
relationship between gesture and the structure of mental 
abacus computations. 

A series of studies of mental abacus students in Gujarat 
Province, India, investigated the relationship between 
gesture and mental abacus. In addition to showing a 
powerful overall motor interference effect, this work shows 
an effect of an individual’s default gesture size on the 
degree to which their performance suffered on the 
interference task. Children who spontaneously produced 
larger gestures when solving mental abacus problems 
showed a greater decline in performance when they were 
not permitted to gesture. In a second study, manipulating the 
size of a child’s gestures led to changes in mental abacus 
performance: in general, instructing children to imagine a 
small abacus, and to gesture accordingly, led to better 
accuracy and reaction time compared to when children were 
instructed to imagine a large abacus. Further, the data 
suggest that preference for a smaller abacus size may be 
mediated by the size of gestures children produce 
spontaneously.  

While research presented in this symposium and 
elsewhere (Carlson, Avraamides, Cary, & Strasberg, 2007) 
has demonstrated the important role of gestures as 
placeholders during counting, this work illustrates the 
dynamic role gesture can play in supporting and shaping 
complex computational systems in the visual domain.  
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