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Learning From Data: Recognizing Glaucomatous
Defect Patterns and Detecting Progression From

Visual Field Measurements
Siamak Yousefi, Member, IEEE, Michael H. Goldbaum, Madhusudhanan Balasubramanian, Felipe A. Medeiros,

Linda M. Zangwill, Jeffrey M. Liebmann, Christopher A. Girkin, Robert N. Weinreb, and Christopher Bowd∗

Abstract—A hierarchical approach to learn from visual field
data was adopted to identify glaucomatous visual field defect pat-
terns and to detect glaucomatous progression. The analysis pipeline
included three stages, namely, clustering, glaucoma boundary limit
detection, and glaucoma progression detection testing. First, cross-
sectional visual field tests collected from each subject were clus-
tered using a mixture of Gaussians and model parameters were
estimated using expectation maximization. The visual field clus-
ters were further estimated to recognize glaucomatous visual field
defect patterns by decomposing each cluster into several axes. The
glaucoma visual field defect patterns along each axis then were
identified. To derive a definition of progression, the longitudinal
visual fields of stable glaucoma eyes on the abnormal cluster axes
were projected and the slope was approximated using linear re-
gression (LR) to determine the confidence limit of each axis. For
glaucoma progression detection, the longitudinal visual fields of
each eye on the abnormal cluster axes were projected and the slope
was approximated by LR. Progression was assigned if the progres-
sion rate was greater than the boundary limit of the stable eyes;
otherwise, stability was assumed. The proposed method was com-
pared to a recently developed progression detection method and to
clinically available glaucoma progression detection software. The
clinical accuracy of the proposed pipeline was as good as or better
than the currently available methods.
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I. INTRODUCTION

MACHINE learning techniques have been widely used
in biomedical applications [1]–[14]. Recent advances

in data analysis and a significant growth in available database
size have promoted classification methods that are capable of
identifying previously hidden clusters and patterns in avail-
able datasets. In particular, unsupervised machine learning tech-
niques can mathematically describe patterns in data without the
use of prior class knowledge or heuristics [15]–[17]. Reveal-
ing these patterns can serve as a fundamental step toward more
specific mining and learning tasks [18]. Such learning tasks
recently have been applied to the detection and monitoring of
glaucoma [9], [19]–[21].

Glaucoma is an optic neuropathy that is the second leading
cause of blindness in the world [22]–[24]. Glaucoma manage-
ment is dependent on identifying disease-related functional or
structural defects and monitoring their progression over time.
Recognition of glaucoma-related visual field defects (i.e., func-
tional defects) is an aspect on which clinicians have relied since
the mid-1800s [25]–[28]. For over a century, glaucoma spe-
cialists have accumulated knowledge to describe patterns of
glaucoma-related visual field defects [29], [30]. Increased ac-
ceptance of Standard Automated Perimetry (SAP) testing about
25 years ago standardized visual field testing for glaucoma.
Current SAP software includes a statistical analysis package
and provides the clinician with information about visual func-
tion in the form of measurements of retinal sensitivity to light at
52 different test points (for 24-2 stimuli) across the central 24◦

of the visual field [25], [31]. Individual patient results also are
compared to a normative database that provides the clinician an
age-adjusted probability of abnormality for each test point.

A number of commercially available progression detection al-
gorithms are included in the SAP software, such as progression
by visual field index (VFI) [32] and guided progression anal-
ysis (GPA) [33]. These are statistical methods that use linear
classification methods to represent the rate and magnitude of
change (for VFI) or use variance analysis to identify change
outside normal limits (for GPA), to classify eyes as progressing
or stable. Recent advances in unsupervised classification tech-
niques provide an alternative approach for glaucoma-related
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progression detection from SAP. For instance, machine learn-
ing and data mining techniques have been used to recognize
glaucoma-related SAP visual field defect patterns and detect
progression of glaucoma-related visual field defects [9], [19],
[20], [34].

In the current study, we describe the performance of a
Gaussian mixture model [35], [36] and expectation maximiza-
tion (GEM) methods for 1) clustering eyes as glaucomatous
or healthy and 2) discriminating between eyes with known
glaucomatous progression and stable eyes. We compare the
progression-detection performance of GEM to that of several
other algorithms, including SAP software-based commercially
available techniques (e.g., VFI and GPA). Results also are
compared to those from a previously described unsupervised
learning-based progression detection algorithm, progression of
patterns (POP), which is based on change over time of patterns
revealed using the variational Bayesian independent compo-
nent analysis mixture model (VIM) [34], [37], [38]. We hy-
pothesize that change in GEM-defined patterns of defect would
perform as well as or better at detecting known glaucomatous
change than other techniques. If our hypothesis is confirmed,
change in GEM-defined patterns might be a better candidate for
glaucoma progression detection from SAP data than change in
VIM-defined patterns, because computational requirements to
identify patterns are significantly less using GEM than VIM, and
tracking change in VIM-defined patterns (i.e., POP) already has
been shown to outperform some commercially available pro-
gression algorithms [19].

II. METHODS

In this section, we first describe the instruments used to collect
data, data acquisition, and the assessment of study participants.
We then explain the mathematical derivations for modeling the
data using GEM. We elaborate on the framework and implemen-
tation of the glaucoma progression-detection pipeline and the
performance metrics employed. Next, we describe the cluster-
ing, boundary limit detection, and progression-detection testing
steps. Finally, we report and discuss our results.

A. Instruments

Color photograph pairs were simultaneously obtained
through maximally dilated pupils using a stereoscopic cam-
era (Kowa nonmyd WX3D , software version VK27E, Kowa
Optimed Europe Ltd.). SAP-measured visual field sensitivity
was tested at 52 points [54 points, with 2 blind-spot points
excluded; see Fig. 1(b)] using the 24-2 SITA test strategy
(Humphrey Field Analyzer II, Carl Zeiss Meditec Inc., Dublin,
CA, USA). Fig. 1 (left) shows the optic disk region and peripap-
illary retina of a glaucomatous eye. Fig. 1 (right) displays the
24-2 SAP visual field measurements as absolute sensitivities in
decibels at the available 52 test points that are uniquely specified
by their angular location from fixation in the superior, inferior,
nasal, or temporal zones.

Fig. 1. (Left) sample optic disk photograph image, (right) absolute sensitivities
(in dB) of SAP visual points tested using the 24-2 system.

B. Data Acquisition and Assessment

All participant eyes were recruited from the University of
California San Diego (UCSD)-based Diagnostic Innovations in
Glaucoma Study (DIGS) and the African Descent and Glau-
coma Evaluation Study (ADAGES) [39]. ADAGES is a mul-
ticenter study that includes UCSD, University of Alabama at
Birmingham, and New York Eye and Ear Infirmary. Both stud-
ies follow the tenets of the Declaration of Helsinki, Health In-
surance Portability and Accountability Act guidelines and the
study site Human Research Protection Programs have approved
all methodology. Written informed consent was obtained from
all study participants.

Each study participant underwent a comprehensive oph-
thalmic evaluation, including review of medical history, best
corrected visual acuity, slit-lamp biomicroscopy, intraocular
pressure measurement with Goldmann applanation tonometry,
gonioscopy, dilated slit-lamp fundus examination, simultaneous
stereoscopic optic disk photography, and SAP visual field exam
at each visit.

The current overall goals are to cluster glaucomatous visual
fields into recognizable defect patterns, to establish a method
of data representation, and to detect glaucomatous progression.
Here, we explain how we created the reference standards for
the clustering assessment and progression-detection steps. To
create a gold standard for clustering assessment, all eyes were
classified as abnormal (glaucomatous) or healthy based on the
SAP software-provided glaucoma hemifield test (GHT) and pat-
tern standard deviation (PSD). Eyes were considered abnormal
if the instrument software defined GHT was outside of normal
limits or if PSD ≤ 5% of normal, on two consecutive tests [40].
Healthy eyes had both GHT and PSD within normal limits. 939
eyes from 677 subjects were classified as abnormal and 1 146
eyes from 721 subjects were classified as healthy.

To create a reference standard for progression assessment,
all eyes were classified as progressed or stable by evaluation of
images of the optic disk. Optic disk images were chosen because
they differed from the visual measurements being analyzed for
progression. Hence, glaucomatous progression was based on
structural evidence so as not to bias the detection of SAP-related
visual field progression. Eyes showed progression or stability
based on serial analysis of optic disk stereoscopic photographs.
The baseline and each follow-up photograph were assessed for
progressive glaucomatous optic neuropathy (PGON) by two
expert-trained observers viewing digitized image pair on a 21-in
or larger computer monitor. PGON was defined as a decrease
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TABLE I
DEMOGRAPHIC INFORMATION OF SUBJECTS USED FOR CLUSTERING

TABLE II
DEMOGRAPHIC INFORMATION OF SUBJECTS AND FOLLOW-UP VISITS USED FOR PROGRESSION DETECTION

in the neuroretinal rim width, or the appearance of a new or
enlarged retinal nerve fiber layer defect in paired stereoscopic
images. Observers were masked to the patient identification and
diagnosis. A third observer adjudicated any disagreement in
assessment between the first two observers [41]. 76 eyes from
70 subjects were identified as progressed by PGON (24 eyes
also were labeled “likely progression” by SAP GPA). A total
of 414 SAP visual field measurements were collected from this
group. The mean number of follow-up visits was 5.5, and the
mean follow-up time was 3 years.

Stable eyes were tested using SAP over a short period of time
with the assumption that any change in measurements was due
to variability in function of diseased ganglion cells or in atten-
tiveness of the patient and not due to disease-related progression
(this is because disease-related progression in adequately treated
glaucoma eyes generally occurs over years, not weeks).

Stable glaucoma was simulated in a set of 91 eyes from 48
subjects that had been identified as glaucomatous at baseline
with repeatable SAP defects, as defined earlier. Stable eyes were
tested once a week, providing an average of 4.5 consecutive
tests for each eye over an average of 4.3 weeks. A total of 428
SAP visual field measurements were collected from eyes in this
group.

Table I shows the demographic information of the subjects in
the abnormal and healthy visual field groups. Table II shows the
demographic information of the subjects in the progressed and
stable groups. The mean deviation (MD) and PSD of each group,
global indices that indicate the deviation of a visual field from
a mean of normal visual field, also are listed in both Tables.

C. Data Modeling Using Gaussian Mixture
Model-Expectation Maximization

Assume we have n samples of data and that each sample
has d dimensions. The goal is to model the given data with a

c-component Gaussian mixture model. Let Y = [Y1 , . . . , Yd ]
T

represent the d-dimensional Gaussian random variable and let
y = [y1 , . . . , yd ]

T represent a particular outcome of Y . Then,
the probability distribution function of a c-component finite
Gaussian mixture model can be written as [35], [36]

p (y|θ) =
c∑

m=1

αm p (y|θm ) (1)

where α1 , . . . , αc are weights of each mixing distribution, and
each θm is the set of parameters defining the mth mixing dis-
tribution component. Therefore, the complete set of model pa-
rameters can be written as {θ1 , . . . , θc , α1 , . . . , αc} .

Assume the data samples, Y =
{
y(1) , . . . ,y(n)

}
are inde-

pendent and identically distributed. Then, we can write the log-
likelihood of the c-component Gaussian mixture model as

log p (Y|θ) = log
n∏

i=1

p
(
y(i) |θm

)
=

n∑

i=1

log
c∑

m=1

αm p
(
y(i) |θm

)

(2)
with constraints on the weighting coefficients as αm ≥ 0,m =

1, . . . , c and
c∑

m=1
αm = 1.

The main approaches below can be followed to find the pa-
rameters of this model. The maximum likelihood (ML) estimate
can be written as

θ̂ML = arg max log p (Y|θ) (3)

The maximum a Posteriori (MAP) criterion can be written as

θ̂MAP = arg max {log p (Y|θ) + log p (θ)} (4)

where p (θ) is the prior on the parameters.
It is well known that neither ML nor MAP estimates can

be found analytically. The expectation maximization (EM) is
the proper choice for computing the parameters in ML or MAP.
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Fig. 2. Glaucoma progression detection pipeline.

Using EM in an iterative procedure, the local maximum of ML or
MAP can be found. Assume that Z =

{
z(1) , . . . , z(n)

}
indicate

which Gaussian mixture component produced each data sample.

Therefore, each label is a binary vector z(i) =
[
z

(i)
1 , . . . , z

(i)
c

]
,

where z
(i)
m = 1 and z

(i)
q = 0 for q �= m, means that the sample

y(i) was generated by the mth Gaussian mixture component.
Adding membership data to the model, we can write

log p (Y, Z|θ) =
n∑

i=1

c∑

m=1

z(i)
m log[αm p(y(i) |θm )]. (5)

Then, the Expectation step can be written as [42]

Q
(
θ, θ̂ (t)

)
≡ E[ log p (Y, Z|θ) |Y, θ̂ (t)] = logp (Y,W|θ)

(6)
where W = E[Z|Y, θ̂ (t)] and {t = 0, 1, 2, . . .} represents a
time sequence.

Because the elements of Z are binary, we can write

w(
m i) ≡ E[z(i)

m |Y, θ̂(t)] = Pr[z(i)
m = 1|Y(i) , θ̂(t)]

=
α̂m (t)p(y(i) |θ̂m (t))

∑c
j=1 α̂j (t)p(y(i) |θ̂j (t))

. (7)

In the case of MAP, the maximization step can be written as

θ̂ (t + 1) = arg max
{

Q
(
θ, θ̂ (t)

)
+ log p (θ)

}
. (8)

The EM algorithm is iterated until reaching a convergence
criterion.

III. GLAUCOMA PROGRESSION DETECTION PIPELINE

The pipeline used for glaucoma progression detection is com-
posed of three stages: clustering, glaucoma boundary limit de-
tection, and glaucoma progression detection testing (see Fig. 2).
In Fig. 2, the clustering stage is shown at the top, the boundary
limit detection in the middle, and the progression detection test-
ing at the bottom. The axes, which make up the output of the
top stage, are the input to the second stage. A different dataset
was used to complete each stage. We used a dataset of abnormal

and within normal limits (i.e., healthy) SAP visual fields (refer
to Table I) for the clustering stage, a dataset of stable glaucoma
visual fields (refer to Table II, column 2) for the boundary limit
detection stage, and we used a dataset containing time sequences
of SAP visual fields of PGON eyes (i.e., those designated as pro-
gressing by optic disc assessment) in the progression-detection
testing stage (refer to Table II, column 3). We will explain each
stage in more detail in the subsequent sections.

A. Implementation and Performance Metrics

The GEM data modeling introduced in the previous sec-
tion essentially combined multivariate Gaussian components
to model the visual field data points. Number of samples, n,
was 2 085 and the number of dimensions, d, was 53 (52 SAP
absolute sensitivity values and age). Clusters were assigned by
selecting the component that maximized the MAP based on the
EM-estimated parameters. Principal component analysis (PCA)
was utilized to decompose each cluster into several axes. To
identify a globally optimal GEM model that represents glau-
coma category and visual field defect patterns, we generated
several GEM models and selected a model that provided the
best sensitivity at near 95% specificity. We chose the number
of clusters in our GEM models, c, as three to reflect the three
broad categories of visual field namely, normal, early, and ad-
vanced glaucoma. All stages of the model were implemented
in MATLAB (Mathworks, Natick, MA, USA). The following
performance metrics were utilized to assess the accuracy of the
clustering stage.

1) True Positives (TP), which are positive instances correctly
classified as positive, 2) False Positives (FP), which are negative
instances incorrectly classified as positive, 3) True Negatives
(TN), which are negative instances correctly classified as nega-
tives, and 4) False Negatives (FN), which are positive instances
incorrectly classified as negatives.

Specificity is defined as the proportion of all those without
disease correctly identified as negative.

Specificity =
TN

TN + FP
.

Sensitivity is defined as the proportion of all those with dis-
eases correctly identified as positive.

Sensitivity =
TP

TP + FN
.

We assessed the performance of the clustering stage using
the reference standard dataset (abnormal and normal SAP vi-
sual fields) and the sensitivity/specificity performance metrics
defined previously. To assess the relative performance of the
entire pipeline, we compared the outcome of our method to
GPA [33], linear regression (LR) of the VFI, and LR of the MD.
GPA indicates visual field change from baseline by evaluating
all test points and indicates “likely progression” for the full field
if visual field change (greater than the variability observed in
two baseline measurements) in three or more of the same points
is repeatable in three consecutive exams [33]. The VFI and MD
are global indices provided for each individual test. We also
compared the performance of GEM with that of the previously
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Fig. 3. Performance of all trained GEM models.

described VIM-based method [19]. We will provide the details
of the assessments in the subsequent sections.

B. Clustering Stage

The absolute visual field sensitivity values from the 52 peri-
metric locations (54, excluding 2 blind spot locations) and age
were used as input to GEM for data modeling. Age was included
because both glaucomatous and normal visual fields expressed
as absolute sensitivity are affected by age, and age was used in
the previous unsupervised learning studies [10], [34], [43]. The
unsupervised clustering was performed using the GEM model
to detect glaucomatous visual field defects. Using the 2 085
SAP visual fields (cross sectional) as input, GEM modeled c
categories of glaucoma stages (i.e., c clusters) from the data and
assigned each of these visual fields to the best fitting cluster.
The initiating variable for the learning process was the number
of mixing Gaussians, their mean and variance, and the number
of clusters, c, which ranged from c = 2–5. Validation was done
after learning the clusters by observing the distribution of abnor-
mal and normal fields in each cluster and the GEM model with
nearly 95% specificity and the highest sensitivity was selected
from 600 trained GEM models. Fig. 3 shows the specificity
versus sensitivity for 600 trained GEM models.

From our assessment of sensitivity-specificity tradeoff among
the 600 training GEM models, we found that three clusters pro-
vided a better separation of glaucoma and healthy fields. These
three clusters were categorized into normal cluster N, moder-
ate glaucoma cluster G1, and advanced glaucoma cluster G2
depending on the centroid of the raw threshold sensitivities of
these clusters (normal fields have higher threshold values than
glaucomatous fields). In Fig. 4, we show 2-D scatterplots of
these 53-D clusters for visualization. Fig. 4 (top) shows the
scatter plot of the superior hemifield (i.e., all visual field lo-
cations above the middle horizontal meridian shown in Fig. 1)
average threshold versus the inferior hemifield (all visual field
locations below the middle horizontal line as in Fig. 1) average
threshold for all eyes.

As can be seen from this figure, the eyes in different clusters
are organized from top right to the bottom left. The clinical

Fig. 4. 2-D Scatter plot of features. (Top) average of superior hemifield versus
average of inferior hemifield. (Bottom) MD versus PSD.

interpretation of this organization is discussed in Results and
Discussion section. Fig. 4 (bottom) shows the scatter plot of
MD versus PSD (two global clinical indices of visual function)
for all eyes. As can be seen from this figure, three clusters have
been organized from high to low MD and PSD values.

We decomposed all of the visual fields comprising each clus-
ter into different axes using PCA. The visual fields associated
with each axis define the patterns of visual defect that we are
seeking. Within each cluster, the relative contribution of each
axis was assessed based on its respective eigenvalue. Only axes
with significant contributions (high eigenvalues) were retained
in a cluster. The number of axes in clusters N and G1 was 2
each, and the number of axes in cluster G2 was 5.

To organize the visual field loss patterns from mild to ad-
vanced, the visual field patterns are represented as axes through
each cluster centroid. Clinicians typically rely on the total devi-
ation (TD) or pattern deviation (PD) plots supplied by the HFA
Statpac analysis (Carl Zeiss Meditec, Inc., Dublin, CA, USA).
We used simulated TD plots in our analysis to display the pat-
terns of visual defects in relation to normal eyes. The simulated
TD plot is a 52-D vector obtained by subtracting absolute sensi-
tivities at the centroid of the normal cluster N from the absolute
sensitivities at the centroid of the glaucomatous clusters, and
then, representing field defects as plots at –2, 0 (cluster cen-
troid), and +2 standard deviation (SD) along each of the axes.
The numerical TD-like plots were further converted into color
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Fig. 5. VF patterns represented by the centroid of each GEM cluster. Increased red saturation indicates increased deterioration of the visual field. The top left
pattern represents the visual fields the cluster N, the top middle showing early visual field deterioration represents cluster G1 , and the top right showing mild to
advanced visual field deterioration represents cluster G2 . The bottom figure is the color-coding legend.

representations to aid in visualization. The −26 to +26 values
were displayed in equal steps of color from red to green, with
−26 as pure red and +26 as pure green.

Fig. 5 (first row) shows the generated mean patterns of each
cluster after TD simulation.

The centroid of the first cluster (see Fig. 5 left) has zero
dB MD at all points and is composed mostly of normal visual
fields (cluster N), the centroid of the second cluster (see Fig. 5
middle) deviates −2.6 dB on average from the normal mean
and is composed mostly of abnormal visual fields (cluster G1),
and the centroid of the third cluster deviates −9 dB on average
from the normal mean (see Fig. 5 right) and is composed only
of abnormal visual fields (cluster G2).The color coded legend
used to display the TD simulated plot patterns is shown in Fig. 5
(second row).

We created the patterns along each axis by adding to or sub-
tracting from the cluster centroid, 2 standard deviations along
that axis direction (i.e., ± 2 SD). Fig. 6 shows the visual field
patterns at +/–2 SD along each cluster axis within each clus-
ter. Using the distance between each 52-D visual field and each
of the axes within each of the three clusters, we assigned each
visual field to its closest axis within the closest cluster.

For further examination, the visual fields were projected on
to their respective assigned axes and the visual fields assigned to
each axis were sorted depending on their projection magnitudes
from the cluster centroid.

Sorting the visual fields from negative to positive depicts the
earliest visual field defects to the most advanced ones. The visual
fields were noted for their resemblance to the generated fields
on the axis, to the similarity of other visual fields assigned to the
same axis, and for the consistency in increasing severity as the
visual fields were located further in the positive direction along
the axis. This procedure will be discussed in Section IV.

C. Glaucoma Boundary Limit Detection Stage

We performed glaucoma boundary limit detection by pro-
jecting the longitudinal sequence of visual fields of each stable
eye in the 53-D space onto each of the seven predefined GEM
glaucoma axes as identified by the clustering stage (refer to
Section II-B and Table II to recall stable group definition and
demographic information). We then permuted the visual field
sequence of each stable eye to maximize the number of slopes
used to determine the percentile limit (PL) for stable eyes on
each axis. For an eye with five consecutive visits, we gener-
ated 5!(= 120) longitudinal sequences of VFs, and then, we
projected each sequence on the axis. The temporal interval be-
tween visits for each stable eye was about one week; however,
we reset this interval to one year to approximate the limits of
stability of eyes and to be in agreement with the convention that
glaucoma patients are commonly followed at intervals between
six months to one year. Next, we approximated the slope of
each longitudinal series of projected visual fields by a LR. Due
to the intervisit variability of the visual fields, the longitudinal
sequence of visual fields from some stable eyes have a positive
slope, indicating improvement, while others have a negative
slope, suggesting deterioration.

The 95th single tail percentiles toward the direction of dete-
rioration for all seven axes for detecting glaucoma progression
were then calculated. Single tail was used, because we were in-
terested only in significant deterioration and were not interested
in significant improvement. Because eyes in the stable group
presumably showed no disease related progression, the vari-
ability in this group was used to define the maximum variability
that indicated no change. Fig. 7 demonstrates the histograms
of all the approximated slopes after projecting the longitudinal
visual fields of the stable eyes on each axis of clusters G1 and
G2 .
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Fig. 6. VF patterns (axes and +/–2SD) in three clusters N, G1, and G2 generated by GEM. The representation simulates total deviation plots generated at −2/+2
standard deviation units on each axis. Increased red saturation indicates increased deterioration of the visual field.

Table III lists the 95th PL for glaucoma progression detection
after projecting the longitudinal visual field of stable eyes on
axes of clusters G1 and G2 (identified at the clustering stage),
and then, approximating the slopes by an LR model. The 95th
PL of the empirical histogram of the slopes for each axis alone
indicates that if we project the visual field of an eye and it falls
above this limit, the eye is stable, otherwise, the eye is classified
as progressed at 5% level of significance.

D. Glaucoma Progression Detection Testing Stage

For progression detection, we projected the longitudinal se-
ries of visual fields on to each glaucoma axis (axes determined
at the clustering stage), and then, we approximated the average
progression rate (slope) of each sequence along the glaucoma

axes using an LR model. For each eye, if the approximated slope
passes the 95% PL of that axis (the line falls below the stable
cutoff limit), the eye was classified as progressed; otherwise,
the eye was classified as stable. The progression detection stage
essentially uses GEM to detect POP during glaucoma progres-
sion, therefore, we call the entire pipeline GEM-POP. We have
shown the outcome of the proposed GEM-POP for four example
eyes in Fig. 8. The eye in Fig. 8 (top left) provided ten visual
field tests collected from 2000 to 2006, the eye in Fig. 8 (top
right) provided seven visual field tests collected from 2003 to
2007, the eye in Fig. 8 (bottom left) provided 11 visual field tests
collected from 2000 to 2007, and the eye in Fig. 8 (bottom right)
provided ten visual field tests collected from 2001 to 2007. The
orange circles indicate the severity after projecting the 53-D
data onto the first axis of cluster G2 . The blues circles indicate
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Fig. 7. Histogram of the projected slopes. Top row shows the histogram of the slopes after projecting the stable group’s longitudinal visual fields on axis 1 and 2
of the cluster G1 , middle row represents the histogram of the slopes after projecting the stable group’s longitudinal visual fields on axis 1, 2, and 3 of cluster G2 ,
and bottom row shows the histogram of the slopes after projecting the stable group’s longitudinal visual fields on axis 4 and 5 of cluster G2 .

TABLE III
95% PERCENTILE LIMIT OF STABLE EYES FOR EACH AXIS

the estimated mean slope of projected values by LR (through
the orange circles). Note that the y-intercept of all severity lines
is zero for these comparisons. We also adjusted the curve of
actual projected values accordingly, to start from zero severity
at baseline. The gray line indicates the 95% PL for the slopes
of the first axis of cluster G2 . This cutoff limit was determined
using the percentile boundary limit detection stage utilizing the
stable eyes described in the previous step. If the linear model
approximating the slope fell below the gray line (progression
zone), then the eye was classified as progressed, otherwise, the
eye was classified as stable. Therefore, the eyes in Fig. 8 (top
row) are classified as progressed, because the blue line for both
falls in the progression zone and the eyes in Fig. 8 (bottom row)

are classified as stable, because the blue line for both falls in the
stable zone.

Even though the slope of the blue line that indicates the change
in severity of glaucoma is negative (suggests deterioration) in
the two eyes displayed at the bottom Fig. 8, the change is not
significantly negative; hence, the eyes are classified as stable.
This indicates that the rate of deterioration is the factor indica-
tive of progression. For assessing the GEM-POP performance,
we used longitudinal SAP visual fields from eyes with known
progressing glaucoma, which will be discussed in more detail
in the next section.

IV. RESULTS AND DISCUSSION

We selected the best model out of 600 models, generated
by the clustering stage, which contained three clusters. The MD
value (global index of deviation from normal visual field) of each
cluster approximates the clinical assessment of disease severity.
Cluster N was mostly composed of normal visual fields with
an average mean defect (MD) of −0.53 ± 1.3 SD, Cluster G1



2120 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 7, JULY 2014

Fig. 8. gray line indicates the 95th percentile limit for progression rate, the orange circles represent the actual projected visual field values on the first axis of
cluster G2 , and the blue circles are the linear regressed line approximating the projected visual field values on the first axis of cluster G2 .

was mostly composed of early glaucoma visual fields with an
average MD of −2.3 ± 1.6 SD and Cluster G2 was composed
of mild to advanced glaucoma visual fields with an average MD
of −8.7 ± 6.4 SD.

Cluster N was composed of 1 237 visual fields (1102 normal
and 135 abnormal fields), Cluster G1 was composed of 530
visual fields (44 normal and 486 abnormal), and Cluster G2 was
composed of 318 visual fields (0 normal and 318 abnormal).
The specificity was 96% for placing normal fields in Cluster N,
and the sensitivity was 87% for placing abnormal visual fields
in either Cluster G1 or G2 . Because the structures of Cluster N
and Cluster G1 were represented by two axes, and the structure
of Cluster G2 was represented by five axes, all visual fields
patterns were characterized by a total of nine principal axes.

We characterized the patterns at points on an axis on the posi-
tive and negative sides (± 2 SD) of the cluster mean, generating
18 patterns.

Most of the normal fields were represented by two axes in
Cluster N, and most of the glaucomatous fields were represented
by seven axes in Clusters G1 and G2 ; resulting in 14 patterns
of abnormal visual fields. As can be seen in Fig. 5 (left), the
simulated TD plot for the first cluster’s (N) centroid resulted
in 0 dB at all test locations, and the generated fields at −2

and +2 SD on axis 1 (see Fig. 6, first and second rows) were
uniformly mildly depressed (−2 dB) or above normal (+2 dB),
respectively. The generated fields at −2 SD and +2 SD of axis 2
were within ±1 dB at each hemifield. The simulated TD plot for
the second cluster’s (G1) centroid (From Fig. 5 middle) resulted
in average −2.6 dB, and the generated fields at all locations
on both axes were between 0 and −7 dB (see Fig. 6, third and
fourth rows). From Fig. 5 (right), the simulated TD plot for the
third cluster’s (G2) centroid resulted in about −9 dB, and the
generated fields at all locations on all five axes were between
−1 and −22 dB (see Fig. 6, fifth and sixth rows).

The clustering stage assigned most of the normal eyes to axes
1 and 2 of cluster N based on the minimum distance of the
visual field from each axis. From the total eyes in the normal
cluster, 849 eyes were assigned to the first axis and 139 eyes
were assigned to the second axis of the normal cluster. From the
total eyes in cluster G1 , 76 eyes were assigned to the first axis
and 31 eyes were assigned to the second axis. From the total
eyes in cluster G2 , 158 eyes were assigned to the first axis, 5
eyes to the second axis, 44 eyes to the third axis, 41 eyes to the
fourth axis, and 40 eyes were assigned to the fifth axis.

In addition to the fact that age is a significant risk factor
for glaucoma, baseline age in this study was also significantly
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Fig. 9. VF absolute sensitivity values and TD simulated patterns for three eyes in abnormal clusters assigned to the first axis of that cluster. Projecting the VF
of each eye on the first axis, and then, sorting the values from the most negative to the most positive, calculated the severity. The VF thresholds and TD simulated
values for eyes corresponding to the most negative, mid, and most positive projected severities are placed from left to right, respectively.

different between normal and abnormal eyes (p < 0.01;
Table I). There is a possibility that age might affect the clus-
tering outcome significantly. To evaluate the effects of age on
the clustering outcome, we also assessed the performance of the
clustering step excluding age. The best clustering model without
age was 96% specific and 86.4% sensitive (versus 96% and 87%
with age, respectively). Therefore, it is evident that the cluster-
ing outcome is not significantly affected by age. From machine
learning perspective, this indicates that the spatial VF data with-
out age information contains sufficient diagnostic information
to maintain a high discriminative/diagnostic power.

To examine the individual visual fields associated with each
axis, we projected the visual fields associated with an axis and
sorted them by their projection on (i.e., distance along) that
axis. The sorted visual fields from negative to positive indicated
the earliest field defects to most advanced field defects. Fig. 9
shows the visual field patterns of sample eyes along the first
axis of each cluster. Fields are shown as absolute sensitivities
(top) and simulated TD plots (bottom) from three sample eyes
(from left to right) from the first axis of each cluster. Note that
the GEM clustering stage generates seven glaucoma axes, as
explained earlier. If we define progression detection based on
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TABLE IV
95TH PERCENTILE LIMIT OF STABLE EYES TO REACH OVERALL 95%

SPECIFICITY ON ALL AXES

any one axis that indicates progression, GEM-POP has seven
chances to detect progression; in contrast, GPA, MD, and VFI
each have only one chance to detect progression.

To compensate for this advantage for GEM-POP, we adjusted
the specificity of each axis upwards to achieve an overall speci-
ficity of 95%. This compensation resulted in larger cutoff values
for stability for the individual axes than those listed in Table III.
We minimized the effect of differences among the algorithms
by equating for specificity prior to determining progression. Ta-
ble IV lists the adjusted 95th PL for each axis to reach overall
95% specificity on stable eyes.

To test the performance of our proposed framework, we an-
alyzed 76 progressed eyes (refer to the progressed column of
Table II). We projected the longitudinal SAP visual fields of
all eyes on all seven axes of clusters G1 and G2 , and we then,
computed the approximated slopes by LR for each axis. Then,
for each eye, we compared the slope of the linear fit to the 95th
percentile limit for stable eyes (refer to Table IV) on each axis.
If at least one of the axes showed progression, we classified the
eye as progressed; otherwise, we classified the eye as stable. To
further analyze the effectiveness of GEM-POP, we compared
its performance for identifying known progressing eyes to LR
of three available visual field diagnostic indices, MD, and VFI.
Table V lists the progression detection outcomes of GEM-POP,
GPA, MD, and PSD.

Similar to GEM-POP, we defined the 95th percentile limits
of stability based on the permutation distribution of the stable
eyes and defined progression by MD and VF.

We also compared the GEM-POP outcome to the recently de-
veloped VIM progression of patterns (VIM-POP) method [19],
for the same eyes and for the same follow-up duration, and found
that GEM-POP performed slightly but not significantly better
than VIM-POP (sensitivity for VIM-POP was 26.6% compared
to 28.9% for GEM-POP).

The percentage of correctly identified known progressing
eyes (sensitivity) is somewhat low for all methods. There are
several explanations for this finding. First, structural change
(used as the reference standard for progression in this study)
and functional change (based on SAP) do not necessarily occur
at the same time [44]. Second, it is often difficult to detect actual
change in VFs from noise due measurement error and random
variation. This can be alleviated partly by modeling spatial cor-
relation within visual fields, while considering the relationship
between the spatial arrangements of the visual fields and the
anatomy of the eye. We have not considered spatial dependence
in this paper; however, it could be investigated in future work.
Third, progression detection may be less than ideal due to the
lack of a ground truth reference standard.

TABLE V
PROGRESSION DETECTION PERFORMANCE COMPARISON

In GEM-POP, the clustering stage uses a mixture of Gaus-
sians to model the data, to identify the clusters and to decompose
each cluster to several axes based on PCA. In VIM-POP, cluster
identification and ICA axis decomposition is performed within a
single step, making implementation very complex and creating a
computationally complex model. Creating a progression detec-
tion environment using GEM-POP takes minutes on a standard
PC, while creating such an environment using VIM-POP takes
several days. It is worth mentioning that GPA and LR of MD and
VFI all use linear statistical methods to detect progression that
lack the inherent benefits of machine learning-based methods.

In addition, we have shown that the clustering stage capable of
effectively extracting useful features from high-dimension data
space (e.g., pointwise visual thresholds) can improve the sensi-
tivity of detecting progression compared to selective 1-D global
indices such as MD and VFI. In contrast to global indices, GPA
uses high-dimensional data for analysis. Therefore, the compar-
ison of GEM-POP with GPA further emphasizes the strengths of
GEM-POP including its strengths of extracting useful features
in the clustering stage.

The future direction of this study can be devoted to assessing
the glaucoma progression detection rate using other ophthalmic
data.

V. CONCLUSION

A pipeline for recognizing glaucomatous visual field defect
patterns and identifying glaucomatous progression was demon-
strated. The visual field data were modeled using a mixture
of Gaussians and the model parameters were estimated us-
ing expectation maximization. Then, the visual field data were
clustered successfully into one normal and two glaucoma clus-
ters (each representing disease severities). The relatively good
performance of our clustering stage confirms its relative ef-
fectiveness in structuring data. Each cluster was decomposed
to several axes using PCA to identify glaucomatous progres-
sion. Glaucoma cutoff limits were calculated on all identi-
fied glaucoma axes and were used to detect progression. A
dataset of progressing glaucomatous eyes was used to assess
the performance of the entire glaucoma progression pipeline
and the outcome of our method was compared to commercially
available glaucoma progression detection software algorithms
and a recently published algorithm for progression detection.
Overall, progression detection based on the Gaussian mixture
model using expectation maximization identified significantly
more known progressing eyes than all but one commercially
available SAP progression detection method. Progression de-
tection based on change in GEM-POP defined axes performed
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slightly better than progression detection using VIM-POP, while
being far less computationally complex. The run time for cluster-
ing and axis identification using GEM-POP is a small fraction
of the run time required to perform the same tasks using the
methodology on which VIM-POP is based.
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