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Abstract

Soil organic carbon (SOC) can be defined by measurable chemical and 
physical pools, such as mineral-associated carbon, carbon physically 
entrapped in aggregates, dissolved carbon, and fragments of plant detritus. 
Yet, most soil models use conceptual rather than measurable SOC pools. 
What would the traditional pool-based soil model look like if it were built 
today, reflecting the latest understanding of biological, chemical, and 
physical transformations in soils? We propose a conceptual model—the 
Millennial model—that defines pools as measurable entities. First, we discuss
relevant pool definitions conceptually and in terms of the measurements that
can be used to quantify pool size, formation, and destabilization. Then, we 
develop a numerical model following the Millennial model conceptual 
framework to evaluate against the Century model, a widely-used standard 
for estimating SOC stocks across space and through time. The Millennial 
model predicts qualitatively similar changes in total SOC in response to 
single factor perturbations when compared to Century, but different 
responses to multiple factor perturbations. We review important conceptual 
and behavioral differences between the Millennial and Century modeling 
approaches, and the field and lab measurements needed to constrain 
parameter values. We propose the Millennial model as a simple but 
comprehensive framework to model SOC pools and guide measurements for 
further model development.
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Introduction

Changes to inputs or outputs of soil organic carbon (SOC) can affect land 
carbon (C) storage, and can alter the function of terrestrial ecosystems and 
their ability to serve as a source or sink of C (Schimel 1995). Researchers use
mathematical representations to estimate current distributions and future 
changes in SOC, incorporating knowledge and assumptions about soil 
biogeochemical processes. Current earth system models apply soil models 
that assume first-order kinetic exchanges among conceptual pools defined 
by empirical turnover times (Todd-Brown et al. 2011, 2013). These models 
reflected the cutting edge of C cycle science in the 1970s and 1980s (e.g., 
based on Century and RothC; see review by Manzoni and Porporato 2009). 
Such models are still of great utility as they capture many essential 
dynamics, are mathematically simple, and run efficiently over large spatial 
and temporal scales. However, first-order and empirical representations lack 
the mechanisms to predict SOC response to global change perturbations 
such as centennial-scale warming, drought, priming, and CO2 or N 
fertilization (Sierra et al. 2012; Grant 2013; Sulman et al. 2014; Todd-Brown 
et al. 2014; Zaehle et al. 2014). Further, these models predict divergent SOC 
stocks under global change scenarios, and do not reproduce current global 
SOC patterns (Todd-Brown et al. 2013; Wieder et al. 2013). Most earth 
system models (ESMs) use a soil model consisting of one to three SOC pools 
(Jenkinson and Coleman 2008; Koven et al. 2013; Luo et al. 2015). Pools in 
these models are operationally defined based on their presumed chemical 
composition and turnover times (Parton et al. 1987). Advances in 
spectroscopy, microscopy, and isotopic labeling, however, have provided a 
better understanding of the chemical and physical characteristics of SOC 
(Feng et al. 2016; Chenu and Plante 2006). These new approaches have 
provided additional evidence that diverse SOC compounds can have similar 
turnover times (Kleber et al. 2011). As a result, chemical composition is 
recognized as only one of several factors contributing to the turnover times 
of SOC pools (Schmidt et al. 2011). Other factors protecting SOC from 
decomposition include the physical structure of soil and chemical 
associations with soil minerals (von Lützow et al. 2007; Cotrufo et al. 2013; 
Lehmann and Kleber 2015). Recent studies have called for a new generation 
of soil biogeochemical models that better represent the chemical and 
physical mechanisms controlling SOC turnover (Schmidt et al. 2011; Todd-
Brown et al. 2013; Luo et al. 2015; Wieder et al. 2015a, b).

A growing number of soil models consider an explicit microbial biomass pool 
that affects the decomposition rate of SOC (Schimel and Weintraub 2003; 



Allison et al. 2010; German et al. 2012). These models often require greater 
numbers of parameters and equations, but may have an improved ability to 
predict responses to novel environmental conditions, e.g., global change 
scenarios (Wieder et al. 2013; Hararuk et al. 2013). Questions remain about 
the feasibility of applying microbial models to global SOC predictions 
(Bradford et al. 2016). Nevertheless, it is timely to rethink how we model key
soil processes in light of new emphasis on the nature of SOC and 
decomposition pathways.

If we were to start over and develop a mathematical model for SOC based on
current understanding of soil C pools, it would reflect the biological, 
chemical, and physical knowledge of soils gained in the last decades. The 
model would classify organic C into categories defined by measurable 
chemical and physical properties, such as mineral-associated C, C physically 
entrapped in aggregates, dissolved C, and fragments of plant detritus. A 
model based on measurable pools would represent explicit processes 
regulating the transfers of C between pools, in contrast to models based on 
imposed turnover times. For example, if SOC is occluded within aggregates, 
the processes that determine whether C is decomposed to CO2, preserved, or
transformed include those that regulate aggregate turnover such as slaking, 
freeze–thaw, and tillage. In this approach, the factors that cause aggregate 
formation and destruction would be simulated to the extent possible, rather 
than simply assigning the C within aggregates as part of a pool defined by a 
conceptually- or empirically-derived first-order decay constant. Thus, starting
with measurable pools and transformations of SOC would allow us to define 
the rate-limiting processes for each pool and to build a model that 
incorporates an expanded suite of the most important driving processes in 
soil—biological, chemical, and physical.

The Millennial model

Herein we describe a conceptual model that retains the tractability of 
Century but is more directly testable because it is based on measureable soil
pools. We then develop a numerical model (Appendix) following the 
Millennial conceptual model, and evaluate this model against the Century 
model to illustrate potential differences between the two model structures. 
Last, we discuss what measurements are needed to constrain the Millennial 
model and the empirical challenges related to those measurements.

Definitions of SOC pools for the Millennial model

The Millennial model has five measurable soil C pools: particulate organic 
matter (i.e., free fragments of plant detritus; POM), low molecular weight C 
(i.e., root exudates and the by-products of exoenzyme activity; LMWC), 
aggregate C, mineral-associated organic matter (MAOM), and microbial 



biomass carbon (Fig. 1). In the following section, we define each pool 
conceptually and in terms of the measurements that can be used to quantify 
pool size, formation, and destabilization.

Particulate organic matter

POM is material that retains identifiable characteristics of its source material.
POM is derived primarily from plant material, but also from dead insects, 
fungi, and detritus generated through fragmentation and decomposition of 
litter, and from breakup of pre-existing soil aggregates (Segoli et al. 2013; 
Cotrufo et al. 2015). POM can be measured using an operationally-defined 
size and/or density separation (Six et al. 2006; Six and Paustian 2014). POM 
may become associated with soil aggregates, but is broadly defined by 
limited association with soil minerals. POM can be chemically altered by 
microbial activity, leaching, and UV exposure (Baker and Allison 2015).

Low molecular weight carbon

LMWC refers to generally mono- or oligomeric, soluble products of microbial 
decomposition and plant inputs such as root exudates and leaf leachate. 



LMWC concentrations measured by an elemental analyzer are typically 
higher in surface soil horizons, but preferential flow from biological activity 
(e.g., rooting and invertebrate activity), physical forces (e.g., erosion, cracks,
and fractures formed by freeze–thaw), leaching (advection), or management 
practices (e.g., plowing) may enable vertical transport (Gerke 2006; Boddy et
al. 2007). LMWC can be removed from solution during transport by becoming
adsorbed to soil minerals or consumed by microbes (Kaiser and Kalbitz 2012;
Jardine et al. 2006). The pore structure of soils, however, may limit microbial 
and enzyme access to LMWC (Young and Crawford 2004; Zhuang et al. 2008;
Smith et al. 2017). Sorption of LMWC can vary according to its functional 
groups (Jagadamma et al. 2012).

Aggregate C

We define soil aggregates as three-dimensional arrangements of organic 
matter and minerals where the forces holding them together are stronger 
than the forces attracting them to other aggregates (Martin et al. 1955). 
Aggregate structures form when microbial residues and organic binding 
agents attract soil particles, often in the presence of structural support and 
chemical residues provided by plant roots and fungal hyphae (Jastrow et al. 
1998; Young and Crawford 2004). Aggregates range in size from silt-sized 
objects < 20 μm to microaggregates (53–2000 μm) to large 
macroaggregates (2000–8000 μm) (Plante et al. 2006; Virto et al. 2008). 
These operationally-defined size classes can exist in a hierarchical network 
(e.g., microaggregates within macroaggregates) in the soil, and tend to be 
more stable as size decreases and layers of protection increase (Tisdall and 
Oades 1982; Dexter 1988). SOC in aggregates can be protected from 
decomposition when the pore network limits diffusion of gases or nutrients 
(Sexstone et al. 1985; Horn et al. 1994; Ranjard and Richaume 2001; Young 
et al. 2008), isolates substrates from extracellular enzymes (Mayer 1994; 
Ekschmitt et al. 2005; Allison 2006; Allison and Jastrow 2006), or limits 
access of grazing organisms (Mayer 1994; Ranjard and Richaume 2001). 
Aggregate formation and disruption occurs as a natural part of soil formation
and carbon cycling, whereby physical or chemical processes (e.g., drying, 
wetting, freeze–thaw, tillage, electrostatic interactions) interact with 
biological mechanisms (e.g., microbial exudation, root and hyphal 
entanglement) to build and destabilize aggregates over time (Six et al. 2000;
Denef et al. 2002; Pronk et al. 2012).

Mineral-associated organic matter

MAOM is protected from microbial decomposition (and transport) through a 
variety of sorption mechanisms, such as surface complexation, cation 
bridging, and hydrophobic interactions (Sollins et al. 1996; Kaiser et al. 1996;



Kleber et al. 2007; Torn et al. 2009). MAOM typically refers to the heavy 
mineral soil fraction isolated by density fractionations or the fine soil 
particles measured by size fractionation. Across a wide variety of soil types 
and geographical locations, MAOM accounts for a large proportion (50–85%) 
of the total SOC stock in bulk soil (Sollins et al. 2009; Marin-Spiotta et al. 
2009; Heckman et al. 2014; Cai et al. 2016), and in most soils SOC in MAOM 
has a longer mean turnover time than other measurable soil fractions such 
as aggregates and POM (Feng et al. 2016; Marin-Spiotta et al. 2009; 
Jagadamma et al. 2013; Torn et al. 1997).

The formation of MAOM is regulated by adsorption of compounds such as 
LMWC and microbially-derived products to mineral surfaces (Kalbitz and 
Kaiser 2008; Lehmann and Kleber 2015). Microbially-derived products may 
be preferentially adsorbed onto soil minerals compared to other compounds 
(Sollins et al. 2009; Rumpel et al. 2010; Cotrufo et al. 2015). Layering of 
organic compounds on soil minerals may also impart protection (Wershaw 
1986; Kleber et al. 2007). Factors that influence the formation and stability 
of MAOM include OM chemistry, soil texture, structure, the physico-chemical 
properties and abundance of soil minerals, pH, the ionic strength of soil 
water, temperature, and moisture (Jardine and McCarthy 1989; Kothawala et 
al. 2009; Mayes et al. 2012; Feng et al. 2015).

Microbial biomass

Microbial biomass herein is defined as the mass of C contained within soil 
microbial cells. Microbial biomass can be estimated using a variety of 
methods, such as substrate-induced respiration, chloroform fumigation, 
phospholipid fatty acid analysis, and quantitative PCR (Anderson and 
Domsch 1978; Vance et al. 1987; Båth and Anderson 2003; Junicke et al. 
2014). Microbial biomass controls the flow of C in soils through uptake of C 
and nutrients for microbial growth, the release of waste products, and 
microbial turnover. Specifically, microbes produce extracellular enzymes to 
decompose SOC, and they release CO2 through maintenance and growth 
respiration (Schmidt et al. 2011). Necromass can be transferred to LMWC, 
aggregate C, and MAOM pools (Cotrufo et al. 2013; Kallenbach et al. 2016). 
Given the significantly different turnover rates of these carbon pools, the 
relative fraction of these allocations could determine how long necromass C 
will remain in the soil.

Microbial biomass is not a large pool, typically < 5% of SOC (Fahey et al. 
2005; Fontaine et al. 2007; Abramoff and Finzi 2016), but microbial activity 
has a disproportionate effect on C cycling. As such, microbial activity largely 
controls the SOC response to global change. Global change is proposed to 
affect microbial functions in a number of ways. Particularly, soil warming 



may (1) increase the activity of microbial predators, (2) alter the proportion 
of C taken up that is allocated to growth [carbon use efficiency (CUE)], (3) 
shift microbial community composition, (4) accelerate protein turnover, and 
(5) increase microbial metabolic activity (Steinweg et al. 2008; Frey et al. 
2013; DeAngelis et al. 2015). Beyond soil temperature, other factors that 
may affect growth rates and turnover times include the size of microbial 
biomass, soil moisture, soil texture, microbial biomass C:N:P ratio, soil pH, 
and supply of substrates such as litter, root turnover, root exudates, and SOC
(Grant 2001; Manzoni et al. 2014; Sinsabaugh et al. 2014b; Tang and Riley 
2015).

Major differences between the Millennial and Century models

The Century model has been a standard for estimating soil C stocks across 
space and through time for three decades (Parton et al. 1987, 1995; Paustian
et al. 1992; Bonan et al. 2013). For this reason, we compare the conceptual 
organization of the Millennial model to that of the Century model. The 
Century and Millennial models both transfer C between several solid-phase C
pools and a LMWC pool, modifying rates of transfer based on edaphic and 
climatic factors. The ‘active’ pool in Century represents material with short 
turnover times (6 months–1 year) and is often conceptualized as live 
microbial biomass and microbial products, the ‘slow’ pool is defined by 
having an intermediate turnover time (10–50 years) and is thought to be 
chemically-resistant or physically-protected, and the ‘passive’ pool, with the 
longest turnover time (100–1000 years), is considered chemically or 
physically-stabilized (e.g., charcoal or bound to clay particles). The transfer 
of C between pools is controlled by constant maximum specific decay rates 
that can be set to site-specific values. Turnover rates are then empirically 
modified by environmental factors (e.g., temperature, moisture, pH, 
aeration) and soil physical properties (e.g., sand, silt, and clay content). 
Implicitly, Century considers SOC to be stabilized by physico-chemical 
interactions such as humification and adsorption to clay particles. The result 
is a direct transfer of C from the active or slow pools to the passive pool. The 
proportion of C allocated to the passive pool from the active pool compared 
to the slow pool has increased over time, reflecting accumulating evidence 
(e.g., Cotrufo et al. 2013, 2015) of the role of microbes and labile C in 
forming protected C. Dissolved organic C (DOC) in Century is formed as a 
linear function of sand content and the amount of water flowing through the 
organic horizon, but it cannot be stabilized and eventually leaches out of the 
system.

In the Millennial model, the soil pools—POM, LMWC, aggregate C, MAOM, and
microbial biomass—are based on measurable components of SOC, and 
transfers between pools are conceptualized as transfers that would occur in 



nature. For example, C transfers between pools do not result in CO2 loss 
unless they are mediated by microbial activity. POM can become associated 
with aggregate C, or transformed into LMWC by microbial biomass. LMWC 
can be taken up by microbial biomass and transformed to CO2, sorbed to 
minerals or leached away. LMWC and microbial necromass are the main 
sources of C in MAOM. Rather than a linear transfer from POM to aggregate C
to MAOM, both POM and MAOM can reversibly bind to aggregate C. Because 
microbes mediate or transfer mass between all of the C pools, we would 
expect this model to have several significant differences in dynamics, and 
the potential to generate a wider range of feedbacks in responses to climate 
perturbations, when compared to a first-order model.

Several recent models have explicitly represented the microbial 
decomposition of soil organic matter. These models all have different 
approaches to microbial decomposition and soil C protection. For example, a 
model by Wang et al. (2013) used the Michaelis–Menten equation, with 
enzymes produced by an explicit pool of microorganisms, to estimate 
production of DOC from both POM and MAOM, while allowing the latter to 
dynamically sorb to soil minerals. Ahrens et al. (2015) also used a saturating 
sorption isotherm, but used microbial biomass instead of enzyme 
concentration to simulate decomposition and predict the vertical age profile 
of SOM. A third model by Tang and Riley (2015) used equilibrium 
approximation kinetics to represent both enzymatic decomposition and 
sorption to minerals, while Dwivedi et al. (2017) used a surface complexation
model to estimate sorption. Other models do not use sorption to minerals but
represent soil C cycling in new ways. For example, Wieder et al. (2015a, b) 
introduced microbial functional groups to constrain the decomposition rates 
of two litter and soil pools, while Sistla et al. (2014) included multiple 
substrate and enzyme functional groups. Sulman et al. (2014) tracked three 
substrate pools (simple, chemically resistant, and dead microbes) allocated 
between protected and unprotected fractions. In this model, decay rate was 
a saturating function of the microbe:substrate ratio, and protected SOM was 
a composite of aggregate C and MAOM.

None of the models above explicitly simulated soil aggregates or aggregate 
C. In contrast, Segoli et al. (2013) explicitly simulated soil aggregate 
dynamics, hierarchically nesting four size classes. Aggregation was driven by
litter decomposition and microbial production, albeit with first-order kinetics 
and omitting other soil organic matter pools. To our knowledge, no existing 
model matches our conceptualization of the pools both necessary and 
minimally sufficient to meet the emerging consensus on biological, chemical,
and physical controls on SOC, though the key pools and fluxes are well 
represented across recent models when considered together. The Millennial 



model expands on these recently developed models not by including all of 
their features, but by focusing on the processes that control our five C pools, 
such as microbial decomposition, mineral sorption, and aggregation.

Model comparison

We developed a numerical model following the Millennial model conceptual 
framework to illustrate potential behaviors of such a model structure. We 
describe the five C pools of the Millennial model and the rate of transfer 
between them in a series of ordinary differential equations defined in the 
Appendix. To illustrate key conceptual and structural differences between 
the Millennial model and the Century model, we compared predicted SOC 
stocks using both models across a gradient of clay content and in response 
to global change scenarios. We used the same parameter values for both 
models when possible (Table 3), and adjusted a subset of parameters (Table 
3, “Calibrated”) in the Millennial model to better match the steady-state SOC
stocks predicted by the Century model. The purpose of this fitting was to 
perturb both models from a similar initial condition in order to focus on the 
different perturbation responses between the two models. We ran the 
Millennial model and Century for 2000 years after an initial spin-up of 4000 
years, using identical soil temperature, moisture, and plant inputs (Table 1). 
The soil temperature and moisture forcing was a global average derived from
the Community ESM (Oleson et al. 2013). The carbon input is representative 
of mid-high latitudes. All input files are available at https://github.com/email-
clm/Millennial, along with the model code. One year of input forcing was 
repeated for the number of years of the model simulation. The initial soil C in
each of the five soil C pools was set to 1 g m−2 prior to spin-up. In the first set
of scenarios, we compared steady-state C pools in soils with different clay 
content (10, 20, 30, 40, 50, 60, 70, 80%), reflecting a gradient in the sorption
capacity of soil. Second, we compared the equilibrium size of soil C pools 
after 2000 years following temperature, moisture, and substrate 
perturbations. The initial values for the soil C pools in the perturbation 
scenarios were derived from the end of the 4000-year spin-up scenario at 
40% clay. We chose the following perturbations to represent common global 
change scenarios (Melillo et al. 2011; Suseela et al. 2012; Lajtha et al. 
2014a) used for model sensitivity analysis (Sierra et al. 2015; Wang et al. 
2016), 5 °C warming (W), double C input (I), 50% of the original soil moisture
content (D), 5 °C warming and double C input (WI), and 5 °C warming and 
50% soil moisture (WD).



Comparison of Millennial and Century model runs

Sensitivity to clay content

The Millennial and Century models had similar amounts of C in analogous 
pools. The majority of C in the Millennial model at steady state was in the 
MAOM pool, similar to Century’s passive pool (Fig. 2a, b). Aggregate C in the 
Millennial model was 14–20% of total SOC, similar to Century’s slow pool. In 
the Millennial model, LMWC, microbial biomass, and POM represented < 6% 
of total C, similar to the active pool in Century. In the simulations, a greater 
proportion of C inputs were stabilized as MAOM in the 80% clay compared to 
the 20% clay soil, because of the larger sorption capacity of the 80% clay 
soil.

There were, however, several differences between the Millennial and Century
model outputs. First, the Millennial model uses nonlinear functions based on 
experiments to predict the relationship between the maximum sorption 
capacity (Qmax) and clay content, imposing maximum carbon storage 
capacity in the MAOM pool (Mayes et al. 2012; Wang et al. 2013; Riley et al. 
2014; Ahrens et al. 2015; Dwivedi et al. 2017), whereas in Century, the C 
stored in each pool changes proportionally with forcings such as clay content
and plant inputs. As a result, SOC approaches a maximum value as soil clay 



content increased in the Millennial model (Fig. 2a) whereas the size of these 
pools increased proportionally with clay content in the Century model (Fig. 
2b). Second, the Millennial model reached an equilibrium C stock more 
quickly than did Century (Fig. 3a, b). This reflects the faster transfer of C 
inputs to the dominant SOC pool (MAOM) in the Millennial model than to the 
dominant pool (passive C) in Century.



Response to single factor climate and environmental forcings

The models made different SOC predictions in single factor climate and 
environmental forcing simulations (Figs. 4a, b, 5a, b). Century accumulated 
more C in response to doubled input than did the Millennial model. Georgiou 
et al. (2017) demonstrated that soil C accumulation in a first-order model 
was proportional to plant inputs, but a microbial model was insensitive to 
plant inputs because of the concomitant increase in microbial growth and 
respiration that removes some of the added plant inputs via respiration. This 
feedback between plant inputs and biomass growth may explain why 
increased C input has a smaller effect on SOC pools in the Millennial model 
compared with the Century model. The Millennial results are consistent with 
experiments which demonstrate that increased plant inputs and SOC 
responses are not linearly related (Lajtha et al. 2014a, b). It is notable that 
some of the added C remained in the POM pool rather than becoming 
incorporated into a physically or chemically protected pool, making it 
theoretically more vulnerable to remineralization.

Warming by 5 °C decreased SOC in both models (Fig. 4a, b). The 
temperature sensitivity of decomposition in the Millennial model is greater 
than in the Century model and thus it lost more SOC in response to the 
warming perturbation (Fig. 4a). The Millennial model uses the same scalar 
for temperature sensitivity as Century, but also uses a temperature-sensitive
microbial CUE (Table 3) that increases the respiratory loss of SOC with 
warming.

Both models gained SOC with a 50% decrease in field moisture content (Fig. 
4a, b). The Millennial model gained more SOC than the Century model 
compared to the control treatment (Figs. 4, 5). The Millennial model may be 
somewhat more sensitive to drought because the water scalar affects 



multiple microbial processes such as decomposition and uptake, as well as 
physical processes such as sorption and aggregate formation. Neither model 
is coupled to a model of plant productivity; thus, feedback effects on SOC 
simulated here only reflect soil processes. Given the sensitivity of SOC to 
plant inputs in the Century model, it is likely that the negative effect of 
drought on plant productivity would reduce SOC. In the Millennial model, this
effect may be dampened because plant inputs are less important to SOC 
concentrations than are the internal biophysical processes (e.g., microbial 
growth, enzyme production, sorption).

Response to dual-factor climate and environmental forcings

In contrast to the single-factor perturbations, the interaction of warming with
double-litter inputs or drought resulted in fundamentally different SOC 
responses in the two models. When warming was coupled with double inputs 
or decreases in soil moisture, the Millennial model lost SOC relative to the 
control simulations, whereas the Century model gained SOC compared to the
control. In Century, doubled plant inputs and drought strongly increased 
SOC, while warming moderately decreased SOC—thus, the strong effect of 
plant inputs and soil moisture resulted in a net SOC increase (Figs. 4, 5). In 
the Millennial model, warming had the strongest effect, ultimately 
decreasing SOC to a greater extent than the positive effect on SOC of plant 
inputs and drought. It is notable that the two models had the same sign of 
change in SOC stock with regards to single-factor variation in clay content, 
temperature, soil moisture, and double inputs. Yet, when simultaneous 
perturbations were applied, the direction of the SOC trend diverged. The 
unique features of the Millennial model—the use of a temperature-sensitive 
CUE, and nonlinear responses to increases in plant inputs—are likely 
responsible for the different responses compared to Century. We cannot say 
which model simulation was most accurate, and in fact, the answer is likely 
dependent on local edaphic conditions. Few large-scale field manipulations 
have been able to test more than one forcing factor (Norby and Luo 2004; 
Castro et al. 2010; Hanson et al. 2016). But the divergence observed here 
clearly demonstrates the sensitivity of future predictions of the SOC sink to 
different model formulations (e.g., Todd-Brown et al. 2013).

What are the costs of process-rich models?

Including measurable SOC pools in the Millennial model adds realism to C 
fluxes and transformations, while increasing flexibility to respond to climate 
and environmental forcing factors. However, this added realism has costs. 
For example, replacing the empirical equations in Century with the more 
mechanistic ones in the Millennial model increases the number of model 
equations and parameters. The additional costs may be partly offset by 
defining pools and fluxes that are potentially measurable, thus providing 



empirical constraints to at least some of the additional parameters that can 
be measured (but see section below on measurement challenges).

Any formulation of the Millennial model including the one we present above, 
is more complex than Century, and requires more knowledge to develop 
equations and define parameters. For example, the microbial pool is 
explicitly used to estimate POM decay, LMWC assimilation, respiration, and 
MAOM sorption, requiring kinetic parameters instead of the simpler rate 
coefficients used in Century. Estimates of these parameters in our numerical 
model (Table 3) were derived from studies completed since Century was 
developed, or were calibrated to constrain model behaviors within reported 
bounds. Including additional processes, or developing existing processes to 
be more mechanistic, would similarly require more equations, parameters, 
and constraints.

No model can capture every biological process, and the Millennial model 
omits some important controls. For example, decomposition is constrained 
by both energetic and stoichiometric relationships between microorganisms 
and nutrients (Sinsabaugh and Shah 2012), but we have only considered C in
the Millennial model. Including only C can increase model sensitivity to 
parameters affecting carbon flow that would realistically be constrained by 
other nutrients. Moreover, many model parameters are not constants, but 
variables that change in ways that could dampen model responses. A good 
example is CUE. Including temperature-dependent CUE can result in large 
differences in SOC predictions after warming compared to fixed-CUE models 
(Wang et al. 2013; Wieder et al. 2013). Yet the relationship between 
temperature and CUE used in this and other models is based on few studies 
(Devêvre and Horwáth 2000; van Ginkel et al. 2000; Steinweg et al. 2008), 
and relationships between CUE and other attributes of the environment, 
resources, and microbial community are areas of active research (Geyer et 
al. 2016; Sinsabaugh et al. 2017).

Although the Millennial model is necessarily more mechanistic than Century 
in calculating flows between pools of soil C, it remains empirical with regard 
to underlying biochemical and physiological processes. For example, 
microbial biomass is a surrogate, in part, for the actions of extracellular 
enzymes catalyzing substrate degradation (Burns et al. 2013). Adding 
specific classes of extracellular enzymes to the Millennial model would 
provide context to more mechanistically evaluate the influence of substrate 
quality or nutrient availability on patterns of C flow (Moorhead et al. 2012; 
Averill 2014). It would also add several equations describing dynamics of 
additional pools, require many parameters, and the need to balance enzyme 
production, turnover, and activity with comparable substrate and microbial 
dynamics (Sinsabaugh et al. 2014a, b).



The desired temporal and spatial scale of model predictions and scale of 
model formulation can guide the necessary level of mechanistic 
representation. Adapting models for problems at different scales also 
requires consideration of mathematical complexity, parameter choice, and 
feedback control. Some processes such as microbial growth and enzymatic 
depolymerization operate on sub-hourly-to-daily timescales. While these 
short-term processes may be important for long-term trends, it may be 
computationally intractable to represent these processes in models that run 
over timescales of decades to centuries (Fig. 6). Further, it may not be 
necessary to represent these processes if they can be seasonally averaged 
or otherwise collapsed into relationships between responses and their 
drivers, creating a simplified model of response variables related to empirical
observations (Todd-Brown et al. 2011). For example, Xu et al. (2014) derived
an index of cumulative microbial activity from readily available climate data 
that was then used in conjunction with substrate C:N to estimate the ratio of 
microbial biomass C to substrate C for locations where microbial biomass 
observations were not available. Wieder et al. (2013) used Michaelis–Menten 
kinetics to model decay rate as a function of microbial biomass, which could 
be estimated according to Xu et al. (2014), to generate soil C pools closer to 
observations than predictions from Century-based models (DAYCENT and 
CLM4CN; Thornton et al. 2007). These examples demonstrate how fine-scale 
microbial models can be used to generate scalable relationships between 
easily observed variables (e.g., soil C:N) and key model parameters (e.g., 
microbial biomass) for use in ESMs. Thus one of the practical advantages of 
developing new fine-scale microbial models is the transfer of knowledge from
a modern representation of decomposition to large spatial and temporal 
scales via their application in an ESM. Of course, the transfer must retain 
sufficient mechanistic representation such that the ESM makes reasonable 
projections under novel environmental conditions.



Measurability of pools

The Millennial model represents a hypothesis about what biological, 
chemical, and physical soil processes are important to C cycling. Exploring 
this hypothesis through simulations can provide guidance for prioritizing 
measurements of soil pools, transfer rates, and environmental factors. 
Models currently use a wide variety of data for fitting and validation, 
including microbial biomass measurements from laboratory incubations 
(Wang et al. 2013), litter decomposition and soil C pool measurements 
(Wieder et al. 2014, 2015a, b), total soil C and protected C (Sulman et al. 
2014), laboratory measurements of aggregate C (Segoli et al. 2013), and 
field measurements of heterotrophic respiration (Abramoff et al. 2017). 
Estimates of soil C pools and factors affecting them such as litter 
decomposition, heterotrophic respiration, and clay content can be measured 
in the field either directly or by proxy (Bailey et al. 2017; Table 2). However, 
the Millennial model also requires new parameters governing process 
equations that are challenging to measure, especially regarding aggregate 
dynamics and MAOM. These processes have only been considered in a 
handful of models due to a lack of observational data (Albalasmeh and 
Ghezzehei 2013; Segoli et al. 2013; Wang et al. 2013; Ahrens et al. 2015; 
Tang and Riley 2015).



It is relatively straightforward to quantify the proportion of soil mass or soil C
in aggregates, but it is far more challenging to estimate the rate of 
aggregate formation and decay (Table 2). Most studies measure the turnover
of the carbon in aggregates at the time of sampling rather than the turnover 
of the physical structure of the aggregates themselves (e.g., Jastrow et al. 
1996; Six et al. 1998; Liao et al. 2006). Carbon dynamics can be decoupled 
from the turnover rates of the physical structures (O’Brien and Jastrow 2013;
McCarthy et al. 2008) and there can be a large range of SOC ages within a 
single aggregate or group of aggregates, leading to dramatic overestimation 
of aggregate turnover times (Jastrow et al. 1996). Approaches for estimating 
aggregate turnover that are independent of soil C such as labeling with rare 
earth elements, controlled laboratory studies, or observation after 
disturbance in the field tend to find shorter turnover times, but the results 
also depend on the time interval of observation (De Gryze et al. 2006) or 
experimental treatment (O’Brien and Jastrow 2013; Denef et al. 2002; 
Crawford et al. 2012; Blankinship et al. 2016) making it difficult to 
generalize. Therefore, aggregate C parameters are the most uncertain of the
Millennial model parameters, though the physically-based definition of 
aggregates makes them potentially measurable.

MAOM is difficult to measure consistently because there is no standard 
fractionation procedure, either in terms of pre-treatment of samples or 
threshold values for solution density and soil particle size. Different methods 
estimate widely diverging turnover times for MAOM, ranging from 24 ± 7 
years using incubations, 166 ± 44 years using 13C labeling, and 709 ± 121 
years using 14C labeling (Feng et al. 2016). Studies that define MAOM using a
density fraction tend to estimate longer turnover times (e.g., 30–4500 years; 
Heckman et al. 2014; Hall et al. 2015) than studies that estimate MAOM 
using a size fraction (e.g., 18–665 and 24–1280 years for the silt and clay 
size fractions, respectively; O’Brien et al. 2013). Given the potential value of 
the Millennial model and the importance of the turnover times of modeled 
pools, we contend that research effort should be directed toward robust 
assays and protocols that will provide consistent estimates of aggregate and 
MAOM turnover time in the field.

Conclusion

We developed a soil modeling framework that reflects current understanding
about the biological, chemical, and physical mechanisms controlling the 
formation and destabilization of soil carbon and is based on the principle of 
measurable model pools. This framework emphasizes how limited access of 
microbial decomposers to soil C imparts stability to SOC, in contrast to the 
Century model which defines decomposition rates empirically as a function 
of environmental factors. We created a numerical model based on this 



framework and identified areas of consistency with the Century model, 
including similar predictions of SOC as a function of clay content, 
temperature, soil moisture, and plant inputs. Because the Century model is 
the standard by which other models are judged, we are encouraged by the 
observed consistency. However, the Millennial model exhibited distinct 
nonlinear responses due to the choice of functions affecting SOC in the soil 
pools, e.g., the Michaelis–Menten equation for depolymerization, and the 
sorption equation for stabilization of LMWC on MAOM. More importantly, the 
two models diverged regarding the direction of SOC stock change (sink vs. 
source) when more than one environmental or climate forcing factor was 
imposed at the same time. It is uncertain whether the Millennial or Century 
formulation is more consistent with observations, but the variation in model 
behavior points to the importance of understanding underlying pool 
transformations.

While the accuracy of the Millennial model is untested, it is our intent that 
the underlying modeling framework represents the current conceptual 
understanding of soil C, and therefore has the potential to be developed into 
a model that skillfully represents a variety of global change processes, 
including climate and land use change. The mechanistic C transformations 
enable predictions of SOC under novel environmental conditions, and 
measurable pools make the model more testable in theory. In practice, the 
model demonstrates the need for field and laboratory measurements of rates
of aggregate and mineral-associated C formation and decay. Nevertheless, 
we propose that the Millennial model offers a new, independent path for 
improving understanding and predictions of soil responses to anthropogenic, 
environmental, and climatic forcing factors by representing measurable soil 
C pools and transfer processes in a transparent and parsimonious model 
structure.
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Appendix: Model description

The equations we have chosen below reflect one possible mathematical 
expression of the Millennial conceptual model, but there are many possible 
numerical models for different applications. For example, decomposition of 
POM is here represented by a double Monod relationship, limited by both 
POM and microbial biomass, but for an application where competition 
between chemical species is particularly important, for example, ECA 
kinetics could be used instead (Tang 2015). Similarly, we chose temperature 
and moisture scalars to minimize steady-state differences between Millennial
and Century for the purpose of model comparison, but for dynamic 
predictions one could apply Arrhenius temperature sensitivity and one of 
several semi-mechanistic moisture functions (Davidson et al. 2012; Manzoni 
et al. 2014).

The system of equations below is modeled on the conceptual figure (Fig. 1), 
tracking the size of and transfers between five C pools: POM, LMWC, 
aggregate C, MAOM, and microbial biomass. The change in POM (P) stock 
with time is governed by the balance between plant C input and aggregate C
breakdown, aggregate C formation, and decomposition,

where F i is aboveground plant litter, root litter and root exudates, p i is the 
proportion of C input allocated to POM (1/3 of inputs to POM and 2/3 of 
inputs to LMWC after Oleson et al. 2013), p a is the proportion of C in 
aggregate breakdown allocated to POM, F a is aggregate C breakdown, F pa is
aggregate carbon formation from POM, and F pl is decomposition of POM into
LMWC. Decomposition of POM is governed by a double Michaelis–Menten 
equation,

where V pl is the maximum rate of POM decomposition, K pl is the half-
saturation constant, B is the microbial biomass carbon, and K pe is the half-
saturation constant of microbial control on POM mineralization. The terms S t 

and S w refer to the temperature and moisture scalar, respectively, and are 



taken from DAYCENT, the daily time-step version of the Century model 
(Parton et al. 1998), to minimize differences in temperature and moisture 
effects between the Century and Millennial models due to choice of scalar,

where T is the current temperature, T ref is the reference temperature, t 1 is 
the x-axis location of the inflection point (°C), t 2 is the y-axis location of the 
inflection point, t 3 is the distance from the maximum point to the minimum 
point, and t 4 is the slope of the line at the inflection point. For the water 
scalar, RWC is the relative water content calculated as the fraction of field 
capacity, and w 1 and w 2 are empirical parameters. The temperature scalar 
is an arctangent function that predicts a decline in temperature sensitivity 
with increasing temperature and the water scalar depends on RWC, where 
the maximum effect on biological activity occurs at field capacity (volumetric
water content = 0.35, RWC = 1.0) (Parton et al. 2010).

The formation of aggregate C (A) from POM follows Michaelis–Menten 
dynamics,

where V pa is the maximum rate of aggregate formation, K pa is the half-
saturation constant of aggregate formation, and A max is the maximum 
capacity of C in soil aggregates. Soil aggregate C breakdown is partitioned to
POM and MAOM,

where k b is the rate of breakdown.

The change in LMWC (L) depends on LMWC input, the leaching rate, 
decomposition of POM, adsorption to minerals, and microbial uptake. In a 
multilayer version of the Millennial model LMWC would also depend on 
leaching input, but in this single layer version we assume that the leaching 
input is included in the LMWC input,



and where k l is the leaching rate, F lm is the adsorption of LMWC to MAOM, 
and F lb is the uptake of LMWC by microbial biomass. Adsorption of LMWC to 
minerals is controlled by a Langmuir saturation function,

where K lm is the binding affinity that is adjustable based on the pH. Q max is 
the maximum sorption capacity (mg C kg−1 dry soil) that is converted to C 
density (g C m−2) by multiplying soil bulk density (BD = 1350 kg m−3), 
assuming a 1 m soil profile. The parameters c 1 and c 2 are the coefficients 
for computing Q max from the clay content in percent, derived from Mayes et 
al. (2012). The Langmuir function parameters were derived from 
measurements of DOC sorption on over 200 soils in the eastern US. The 
measurements demonstrate a nonlinear saturation with respect to DOC 
concentrations in soils, and several recent models have used approaches 
that also impose a mechanism for DOC saturation on mineral surfaces (Wang
et al. 2013; Riley et al. 2014; Ahrens et al. 2015; Dwivedi et al. 2017).

Microbial uptake of LMWC is a function of microbial biomass and LMWC 
concentration, temperature, water, and temperature-dependent CUE,

where Vlm is the potential uptake rate of LMWC. F gr is microbial growth-
related respiration, Klb is the half-saturation constant for microbial activity, 
CUEref is the reference CUE, and CUET is the CUE dependence on 
temperature. Tae-ref and T are the reference and current temperature, 
respectively. Both MAOM and POM can be incorporated into the aggregate C 
pool,



where F ma is the carbon flow from MAOM to aggregate C, V ma is the 
maximum rate of aggregate formation, and K ma is the half-saturation 
constant of aggregate formation. MAOM is formed by adsorption of LMWC 
and microbial necromass, and is affected by transfer into and out of the 
aggregate C pool,

where F bm is the carbon flow from microbial biomass to MAOM, namely 
adsorption of necromass, and k mm is the adsorption rate of microbial 
biomass. In this particular iteration of the Millennial model, we assume that 
adsorbed microbial biomass is no longer alive, but by allowing adsorbed 
microbial biomass to take up LMWC and perform growth and maintenance, 
one could modify the model to accommodate the assumption that live 
microbial biomass can sorb to minerals, or even to other microbes (i.e., 
biofilms). Microbial biomass changes as a result of uptake, adsorption to 
minerals, and loss via maintenance,

where F mr is the maintenance respiration of microbial biomass, and k m is the 
microbial turnover rate (Table 3).





References

Abramoff RZ, Finzi AC (2016) Seasonality and partitioning of root allocation 
to rhizosphere soils in a midlatitude forest. Ecosphere.  
https://doi.org/10.1002/ecs2.1547 

Abramoff RZ, Davidson EA, Finzi AC (2017) A parsimonious modular 
approach to building a mechanistic belowground carbon and nitrogen model.
J Geophys Res Biogeosci 122:2418–2434  

Ahrens B, Braakhekke MC, Guggenberger G et al (2015) Contribution of 
sorption, DOC transport and microbial interactions to the 14C age of a soil 
organic carbon profile: insights from a calibrated process model. Soil Biol 
Biochem 88:390–402

Albalasmeh AA, Ghezzehei TA (2013) Interplay between soil drying and root 
exudation in rhizosheath development. Plant Soil 374:739–751



Allison SD (2006) Soil minerals and humic acids alter enzyme stability: 
implications for ecosystem processes. Biogeochemistry 81:361–373

Allison SD, Jastrow JD (2006) Activities of extracellular enzymes in physically 
isolated fractions of restored grassland soils. Soil Biol Biochem 38:3245–3256

Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to 
warming dependent on microbial physiology. Nat Geosci 3:336–340

Anderson JPE, Domsch KH (1978) A physiological method for the quantitative
measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

Averill C (2014) Divergence in plant and microbial allocation strategies 
explains continental patterns in microbial allocation and biogeochemical 
fluxes. Ecol Lett.  https://doi.org/10.1111/ele.12324

Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a 
pH gradient using physiological and PLFA-based techniques. Soil Biol 
Biochem 35:955–963

Bailey VL, Bond-Lamberty B, DeAngelis K et al (2017) Soil carbon cycling 
proxies: understanding their critical role in predicting climate change 
feedbacks. Glob Change Biol 00:1–11

Baker NR, Allison SD (2015) Ultraviolet photodegradation facilitates microbial
litter decomposition in a Mediterranean climate. Ecology 96:1994–2003

Blankinship JC, Fonte SJ, Six J, Schimel JP (2016) Plant versus microbial 
controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 
272:39–50

Boddy E, Hill P, Farrar J, Jones D (2007) Fast turnover of low molecular weight
components of the dissolved organic carbon pool of temperate grassland 
field soils. Soil Biol Biochem 39:827–835

Bonan GB, Hartman MD, Parton WJ, Wieder WR (2013) Evaluating litter 
decomposition in earth system models with long-term litterbag experiments: 
an example using the Community Land Model version 4 (CLM4). Glob Change
Biol 19:957–974

Bradford MA, Wieder WR, Bonan GB et al (2016) Managing uncertainty in soil
carbon feedbacks to climate change. Nat Clim Change 6:751–758

Burns RG, DeForest JL, Marxsen J et al (2013) Soil enzymes in a changing 
environment: current knowledge and future directions. Soil Biol Biochem 
58:216–234



Cai A, Feng W, Zhang W, Xu M (2016) Climate, soil texture, and soil types 
affect the contributions of fine-fraction-stabilized carbon to total soil organic 
carbon in different land uses across China. J Environ Manag 172:2–9

Castro HF, Classen AT, Austin EE et al (2010) Soil microbial community 
responses to multiple experimental climate change drivers. Appl Environ 
Microbiol 76:999–1007

Chenu C, Plante AF (2006) Clay-sized organo-mineral complexes in a 
cultivation chronosequence: revisiting the concept of the “primary organo-
mineral complex”. Eur J Soil Sci 57:596–607

Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The Microbial Efficiency-
Matrix Stabilization (MEMS) framework integrates plant litter decomposition 
with soil organic matter stabilization: do labile plant inputs form stable soil 
organic matter? Glob Change Biol 19:988–995

Cotrufo MF, Soong JL, Horton AJ et al (2015) Formation of soil organic matter 
via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–
779

Crawford JW, Deacon L, Grinev D et al (2012) Microbial diversity affects self-
organization of the soil–microbe system with consequences for function. J R 
Soc Interface 9:1302–1310

Davidson EA, Samanta S, Caramori SS, Savage K (2012) The Dual Arrhenius 
and Michaelis–Menten kinetics model for decomposition of soil organic 
matter at hourly to seasonal time scales. Glob Change Biol 18:371–384

De Gryze S, Six J, Merckx R (2006) Quantifying water–stable soil aggregate 
turnover and its implication for soil organic matter dynamics in a model 
study. Eur J Soil Sci 57:693–707

DeAngelis KM, Pold G, Topçuoğlu BD et al (2015) Long-term forest soil 
warming alters microbial communities in temperate forest soils. Front 
Microbiol 6:104

Del Grosso SJ, Parton WJ, Mosier AR et al (2005) Modeling soil CO2 emissions 
from ecosystems. Biogeochemistry 73:71–91

Denef K, Six J, Merckx R, Paustian K (2002) Short-term effects of biological 
and physical forces on aggregate formation in soils with different clay 
mineralogy. Plant Soil 246:185–200

Devêvre OC, Horwáth WR (2000) Decomposition of rice straw and microbial 
carbon use efficiency under different soil temperatures and moistures. Soil 
Biol Biochem 32:1773–1785



Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage 
Res 11:199–238

Dwivedi D, Riley WJ, Torn MS, et al (2017) Mineral properties, microbes, 
transport, and plant-input profiles control vertical distribution and age of soil 
carbon stocks. Soil Biol Biochem 107:244–259

Ekschmitt K, Liu M, Vetter S et al (2005) Strategies used by soil biota to 
overcome soil organic matter stability—why is dead organic matter left over 
in the soil? Geoderma 128:167–176

Fahey TJ, Siccama TG, Driscoll CT et al (2005) The biogeochemistry of carbon
at Hubbard Brook. Biogeochemistry 75:109–176

Feng W, Klaminder J, Boily J-F (2015) Thermal stability of goethite-bound 
natural organic matter is impacted by carbon loading. J Phys Chem A 
119:12790–12796

Feng W, Shi Z, Jiang J et al (2016) Methodological uncertainty in estimating 
carbon turnover times of soil fractions. Soil Biol Biochem 100:118–124

Fontaine S, Barot S, Barré P et al (2007) Stability of organic carbon in deep 
soil layers controlled by fresh carbon supply. Nature 450:277–280

Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil 
microbial efficiency and its feedback to climate. Nat Clim Change 3:395–398

Georgiou K, Abramoff RZ, Harte J et al (2017) Microbial community-level 
regulation explains soil carbon responses to long-term litter manipulations. 
Nat Commun 8:1223

Gerke HH (2006) Preferential flow descriptions for structured soils. Z 
Pflanzenernähr Bodenkd 169:382–400

German DP, Marcelo KRB, Stone MM, Allison SD (2012) The Michaelis–Menten
kinetics of soil extracellular enzymes in response to temperature: a cross-
latitudinal study. Glob Change Biol 18:1468–1479

Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon 
use efficiency: accounting for population, community, and ecosystem-scale 
controls over the fate of metabolized organic matter. Biogeochemistry 
127:173–188

Grant RF (2001) A review of Canadian ecosystem model—ecosys. In: 
Modeling carbon and nitrogen dynamics for soil management, p 173–264.  
https://doi.org/10.1201/9781420032635.ch6



Grant RF (2013) Modelling changes in nitrogen cycling to sustain increases in
forest productivity under elevated atmospheric CO2 and contrasting site 
conditions. Biogeosciences 10:7703–7721

Hall SJ, McNicol G, Natake T, Silver WL (2015) Large fluxes and rapid 
turnover of mineral-associated carbon across topographic gradients in a 
humid tropical forest: insights from paired 14C analysis. Biogeosciences 
12:2471–2487

Hanson PJ, Gill AL, Xu X et al (2016) Intermediate-scale community-level flux 
of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a 
global context. Biogeochemistry 129:255–272

Hararuk O, Obrist D, Luo Y (2013) Modelling the sensitivity of soil mercury 
storage to climate-induced changes in soil carbon pools. Biogeosciences 
10:2393–2407

Heckman K, Throckmorton H, Clingensmith C et al (2014) Factors affecting 
the molecular structure and mean residence time of occluded organics in a 
lithosequence of soils under ponderosa pine. Soil Biol Biochem 77:1–11

Horn R, Taubner H, Wuttke M, Baumgartl T (1994) Soil physical properties 
related to soil structure. Soil Tillage Res 30:187–216

Jagadamma S, Mayes MA, Phillips JR (2012) Selective sorption of dissolved 
organic carbon compounds by temperate soils. PLoS ONE.  
https://doi.org/10.1371/journal.pone.0050434

Jagadamma S, Megan Steinweg J, Mayes MA et al (2013) Decomposition of 
added and native organic carbon from physically separated fractions of 
diverse soils. Biol Fertil Soils 50:613–621

Jardine PM, McCarthy JF (1989) Mechanisms of dissolved organic carbon 
adsorption on soil.  
https://doi.org/10.2136/sssaj1989.03615995005300050013x

Jardine PM, Mayes MA, Mulholland PJ et al (2006) Vadose zone flow and 
transport of dissolved organic carbon at multiple scales in humid regimes. 
Vadose Zone J 5:140–152

Jastrow JD, Miller RM, Boutton TW (1996) Carbon dynamics of aggregate-
associated organic matter estimated by carbon-13 natural abundance. Soil 
Sci Soc Am J 60:801

Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting 
biological mechanisms to soil aggregate stabilization in restored prairie. Soil 
Biol Biochem 30:905–916



Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. 
Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413

Junicke H, Abbas B, Oentoro J et al (2014) Absolute quantification of 
individual biomass concentrations in a methanogenic coculture. AMB 
Express.  https://doi.org/10.1186/s13568-014-0035-x

Kaiser K, Kalbitz K (2012) Cycling downwards—dissolved organic matter in 
soils. Soil Biol Biochem 52:29–32

Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM 
fractions to forest soils. Geoderma 74:281–303

Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon 
storage in forest mineral soils. Z Pflanzenernähr Bodenkd 171:52–60

Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-
derived soil organic matter formation and its ecophysiological controls. Nat 
Commun 7:13630

Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral 
interactions in soils: self-assembly of organic molecular fragments into zonal 
structures on mineral surfaces. Biogeochemistry 85:9–24

Kleber M, Nico PS, Plante A et al (2011) Old and stable soil organic matter is 
not necessarily chemically recalcitrant: implications for modeling concepts 
and temperature sensitivity. Glob Change Biol 17:1097–1107

Kothawala DN, Moore TR, Hendershot WH (2009) Soil properties controlling 
the adsorption of dissolved organic carbon to mineral soils. Soil Sci Soc Am J 
73:1831–1842

Koven CD, Riley WJ, Subin ZM et al (2013) The effect of vertically resolved 
soil biogeochemistry and alternate soil C and N models on C dynamics of 
CLM4. Biogeosciences 10:7109–7131

Lajtha K, Bowden RD, Nadelhoffer K (2014a) Twenty years of litter and root 
manipulations in a temperate deciduous forest: Insights into soil organic 
matter dynamics and stability. Soil Sci Soc Am J 78:261–269

Lajtha K, Townsend KL, Kramer MG et al (2014b) Changes to particulate 
versus mineral-associated soil carbon after 50 years of litter manipulation in 
forest and prairie experimental ecosystems. Biogeochemistry 119:341–360

Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. 
Nature 528:60–68



Liao JD, Boutton TW, Jastrow JD (2006) Storage and dynamics of carbon and 
nitrogen in soil physical fractions following woody plant invasion of 
grassland. Soil Biol Biochem 38:3184–3196

Luo Y, Ahlström A, Allison SD et al (2015) Towards more realistic projections 
of soil carbon dynamics by earth system models. Glob Biogeochem Cycles.  
https://doi.org/10.1002/2015gb005239

Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: 
theory and models across scales. Soil Biol Biochem 41:1355–1379

Manzoni S, Schaeffer SM, Katul G et al (2014) A theoretical analysis of 
microbial eco-physiological and diffusion limitations to carbon cycling in 
drying soils. Soil Biol Biochem 73:69–83

Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic 
matter dynamics during 80 years of reforestation of tropical pastures. Glob 
Change Biol 15:1584–1597

Martin JP, Martin WP, Page JB et al (1955) Soil aggregation. Adv Agron 7:1–37

Mayer LM (1994) Relationships between mineral surfaces and organic carbon
concentrations in soils and sediments. Chem Geol 114:347–363

Mayes MA, Heal KR, Brandt CC et al (2012) Relation between soil order and 
sorption of dissolved organic carbon in temperate subsoils. Soil Sci Soc Am J 
76:1027–1037

McCarthy JF, Ilavsky J, Jastrow JD et al (2008) Protection of organic carbon in 
soil microaggregates via restructuring of aggregate porosity and filling of 
pores with accumulating organic matter. Geochim Cosmochim Acta 72:4725–
4744

Melillo JM, Butler S, Johnson J et al (2011) Soil warming, carbon–nitrogen 
interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–
9512

Moorhead DL, Lashermes G, Sinsabaugh RL (2012) A theoretical model of C- 
and N-acquiring exoenzyme activities, which balances microbial demands 
during decomposition. Soil Biol Biochem 53:133–141

Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric
CO2 and global warming in a multi-factor world. N Phytol 162:281–293

O’Brien SL, Jastrow JD (2013) Physical and chemical protection in hierarchical
soil aggregates regulates soil carbon and nitrogen recovery in restored 
perennial grasslands. Soil Biol Biochem 61:1–13



O’Brien SL, Jastrow JD, McFarlane KJ et al (2013) Decadal cycling within long-
lived carbon pools revealed by dual isotopic analysis of mineral-associated 
soil organic matter. Biogeochemistry 112:111–125

Oleson KW, Lawrence DM, Bonan GB et al (2013) Technical description of 
version 4.5 of the Community Land Model (CLM). NCAR Tech. National Center
for Atmospheric Research, Bounder

Parton WJ, Schimel DS, Cole CV et al (1987) Analysis of factors controlling 
soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 
51:1173–1179

Parton WJ, Scurlock JMO, Ojima DS et al (1995) Impact of climate change on 
grassland production and soil carbon worldwide. Glob Change Biol 1:13–22

Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land 
surface submodel: description and testing. Glob Planet Change 19:35–48

Parton WJ, Hanson PJ, Swanston C et al (2010) ForCent model development 
and testing using the Enriched Background Isotope Study experiment. J 
Geophys Res.  https://doi.org/10.1029/2009jg001193

Paustian K, Parton WJ, Persson J (1992) Modeling soil organic matter in 
organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 
56:476–488

Plante AF, Conant RT, Paul EA et al (2006) Acid hydrolysis of easily dispersed 
and microaggregate-derived silt- and clay-sized fractions to isolate resistant 
soil organic matter. Eur J Soil Sci 57:456–467

Pronk GJ, Heister K, Ding G-C et al (2012) Development of biogeochemical 
interfaces in an artificial soil incubation experiment; aggregation and 
formation of organo-mineral associations. Geoderma 189–190:585–594

Ranjard L, Richaume A (2001) Quantitative and qualitative microscale 
distribution of bacteria in soil. Res Microbiol 152:707–716

Riley WJ, Maggi F, Kleber M et al (2014) Long residence times of rapidly 
decomposable soil organic matter: application of a multi-phase, multi-
component, and vertically resolved model (BAMS1) to soil carbon dynamics. 
Geosci Model Dev 7:1335–1355

Rumpel C, Eusterhues K, Kögel-Knabner I (2010) Non-cellulosic neutral sugar 
contribution to mineral associated organic matter in top- and subsoil 
horizons of two acid forest soils. Soil Biol Biochem 42:379–382

Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change
Biol.  https://doi.org/10.1111/j.1365-2486.1995.tb00008.x



Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on 
microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol 
Biochem 35:549–563

Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic 
matter as an ecosystem property. Nature 478:49–56

Segoli M, De Gryze S, Dou F et al (2013) AggModel: a soil organic matter 
model with measurable pools for use in incubation studies. Ecol Model 263:1–
9

Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement 
of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am
J 49:645–651

Sierra CA, Trumbore SE, Davidson EA et al (2012) Predicting decadal trends 
and transient responses of radiocarbon storage and fluxes in a temperate 
forest soil.  https://doi.org/10.5194/bg-9-3013-2012

Sierra CA, Trumbore SE, Davidson EA et al (2015) Sensitivity of 
decomposition rates of soil organic matter with respect to simultaneous 
changes in temperature and moisture. J Adv Model Earth Syst 7:335–356

Sinsabaugh RL, Shah JJF (2012) Ecoenzymatic stoichiometry and ecological 
theory. Annu Rev Ecol Evol Syst 43:313–343

Sinsabaugh RL, Belnap J, Findlay SG et al (2014a) Extracellular enzyme 
kinetics scale with resource availability. Biogeochemistry 121:287–304

Sinsabaugh RL, Follstad Shah JJ, Findlay SG et al (2014b) Scaling microbial 
biomass, metabolism and resource supply. Biogeochemistry 122:175–190

Sinsabaugh RL, Moorhead DL, Xu X, Litvak ME (2017) Plant, microbial and 
ecosystem carbon use efficiencies interact to stabilize microbial growth as a 
fraction of gross primary production. N Phytol.  
https://doi.org/10.1111/nph.14485

Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a tundra system to 
warming using SCAMPS: a stoichiometrically coupled, acclimating microbe–
plant–soil model. Ecol Monogr 84:151–170

Six J, Paustian K (2014) Aggregate-associated soil organic matter as an 
ecosystem property and a measurement tool. Soil Biol Biochem 68:A4–A9

Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic 
matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am 
J 62:1367–1377



Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and 
microaggregate formation: a mechanism for C sequestration under no-tillage
agriculture. Soil Biol Biochem 32:2099–2103

Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions 
to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555

Smith AP, Bond-Lamberty B, Benscoter BW et al (2017) Shifts in pore 
connectivity from precipitation versus groundwater rewetting increases soil 
carbon loss after drought. Nat Commun.  https://doi.org/10.1038/s41467-
017-01320-x

Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of 
soil organic matter: mechanisms and controls. Geoderma 74:65–105

Sollins P, Kramer MG, Swanston C et al (2009) Sequential density 
fractionation across soils of contrasting mineralogy: evidence for both 
microbial- and mineral-controlled soil organic matter stabilization. 
Biogeochemistry 96:209–231

Steinweg JM, Plante AF, Conant RT et al (2008) Patterns of substrate 
utilization during long-term incubations at different temperatures. Soil Biol 
Biochem 40:2722–2728

Sulman BN, Phillips RP, Oishi AC et al (2014) Microbe-driven turnover offsets 
mineral-mediated storage of soil carbon under elevated CO 2. Nat Clim 
Change 4:1099–1102

Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil 
moisture on the temperature sensitivity of heterotrophic respiration vary 
seasonally in an old-field climate change experiment. Glob Change Biol 
18:336–348

Tang JY (2015) On the relationships between Michaelis–Menten kinetics, 
reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation 
kinetics and quadratic kinetics. Geosci Model Dev Discuss 8:7663–7691

Tang J, Riley WJ (2015) Weaker soil carbon–climate feedbacks resulting from 
microbial and abiotic interactions. Nat Clim Change.  https://doi.org/10.1038/
nclimate2438

Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence 
of carbon–nitrogen cycle coupling on land model response to CO2 fertilization
and climate variability. Glob Biogeochem Cycles.  
https://doi.org/10.1029/2006gb002868

Tisdall J, Oades J (1982) Organic matter and water-stable aggregates in soils.
J Soil Sci 33:141–163



Todd-Brown KEO, Hopkins FM, Kivlin SN et al (2011) A framework for 
representing microbial decomposition in coupled climate models. 
Biogeochemistry 109:19–33

Todd-Brown KEO, Randerson JT, Post WM, et al (2013) Causes of variation in 
soil carbon simulations from CMIP5 Earth system models and comparison 
with observations

Todd-Brown KEO, Randerson JT, Hopkins F et al (2014) Changes in soil 
organic carbon storage predicted by Earth system models during the 21st 
century. Biogeosciences 11:2341–2356

Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) 
Mineral control of soil organic carbon storage and turnover. Nature 389:170–
173

Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and 
turnover of organic matter in soil. In: Biophysico-chemical processes 
involving natural nonliving organic matter in environmental systems. Wiley, 
Hoboken, p 219–272

van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon 
dioxide concentration: effects of increased carbon input in a Lolium perenne 
soil on microorganisms and decomposition. Soil Biol Biochem 32:449–456

Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for 
measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

Virto I, Barré P, Chenu C (2008) Microaggregation and organic matter storage
at the silt-size scale. Geoderma 146:326–335

von Lützow M, Kögel-Knabner I, Ekschmitt K et al (2007) SOM fractionation 
methods: relevance to functional pools and to stabilization mechanisms. Soil 
Biol Biochem 39:2183–2207

Wang G, Post WM, Mayes MA (2013) Development of microbial-enzyme-
mediated decomposition model parameters through steady-state and 
dynamic analyses. Ecol Appl 23:255–272

Wang YP, Jiang J, Chen-Charpentier B et al (2016) Responses of two nonlinear
microbial models to warming and increased carbon input. Biogeosciences 
13:887–902

Wershaw RL (1986) A new model for humic materials and their interactions 
with hydrophobic organic chemicals in soil–water or sediment–water 
systems. J Contam Hydrol 1:29–45



Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are 
improved by modelling microbial processes. Nat Clim Change 3:1–7

Wieder WR, Grandy AS, Kallenbach CM, Bonan GB (2014) Integrating 
microbial physiology and physio-chemical principles in soils with the 
MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 
11:3899–3917

Wieder WR, Allison SD, Davidson EA et al (2015a) Explicitly representing soil 
microbial processes in Earth system models. Glob Biogeochem Cycles 
29:1782–1800

Wieder WR, Grandy AS, Kallenbach CM et al (2015b) Representing life in the 
Earth system with soil microbial functional traits in the MIMICS model. Geosci
Model Dev Discuss 8:2011–2052

Xu X, Schimel JP, Thornton PE et al (2014) Substrate and environmental 
controls on microbial assimilation of soil organic carbon: a framework for 
Earth system models. Ecol Lett 17:547–555

Young IM, Crawford JW (2004) Interactions and self-organization in the soil–
microbe complex. Science 304:1634–1637

Young IM, Crawford JW, Nunan N, et al (2008) Chapter 4 Microbial 
Distribution in Soils: Physics and Scaling. In: Advances in Agronomy. 
Academic Press, pp 81–121

Zaehle S, Medlyn BE, De Kauwe MG et al (2014) Evaluation of 11 terrestrial 
carbon–nitrogen cycle models against observations from two temperate 
Free-Air CO2 Enrichment studies. N Phytol 202:803–822

Zhuang J, McCarthy JF, Perfect E et al (2008) Soil water hysteresis in water-
stable microaggregates as affected by organic matter. Soil Sci Soc Am J 
72:212–220


	Response to dual-factor climate and environmental forcings
	What are the costs of process-rich models?



