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Abstract

Animal models provide preclinical tools to investigate the causal role of genetic mutations and 

environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and 

humanized knock-in mice, and more recently knockout rats, have been generated for many of the 

de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid 

neurodevelopmental disorders. Mouse models incorporating genetic and environmental 

manipulations have been employed for preclinical testing of hypothesis-driven pharmacological 

targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In 

this review, we summarize rodent behavioral assays relevant to the core features of autism, 

preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the 

translational value of rodent models of autism.

Keywords

Autism; Mice; Rats; Genes; Mutant models; Social behavior; Sociability; Repetitive behavior; 
Cognition; Ultrasonic vocalization; Pharmacological treatment; Mouse; Preclinical; Translational; 
Clinical trials; Face validity; Construct validity; Predictive validity

1 Introduction

Autism spectrum disorder (ASD) includes common, impairing neurodevelopmental 

disorders that are present from early childhood and occur in approximately 1 % of the 

population (Kim et al. 2011; Elsabbagh et al. 2012). To receive an ASD diagnosis, one must 

exhibit symptoms from two core domains: (1) social interaction and social communication; 

and (2) restricted repetitive patterns of behaviors, interests, and activities. (American 

Psychiatric Association 2013). Associated symptoms, appearing in varying percentages of 

individuals, include intellectual disability, executive dysfunction, anxiety, seizures, attention 

deficits and hyperactivity, hyper- and hyporeactivity to sensory stimuli, and sleep disruption. 

The current standard of care for children is early intensive behavioral intervention (Rogers et 
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al. 2012; Lord and Jones 2013). Early intensive behavioral intervention is highly effective in 

teaching young children to overcome their social challenges, although it does not work for 

all, and its benefits wane with the appearance of age-related challenges in middle childhood 

and adolescence. Further, these behavior therapies are expensive and time-intensive, and not 

uniformly widely available. There is an unmet need for medical therapeutics that can be 

given in combination with a behavioral intervention or alone. No approved medical 

treatments exist for reducing or preventing the diagnostic symptoms of autism. Efficacious 

medications that effectively treat ASD symptoms, and specifically target social deficits, are 

currently under investigation.

The decision to use the term ASD in DSM-5 reflects the current thinking about the 

heterogeneous causes and clinical presentations of autism. A large number of de novo single 

gene mutations and copy number variants (CNVs) are associated with autism, each in a 

small number of individuals (Parikshak et al. 2013; Coe et al. 2014; Pinto et al. 2014). 

Environmental risk factors have been implicated, including parental age (Kong et al. 2012) 

and atypical maternal autoantibodies (Braunschweig et al. 2013). Analogous to “cancers,” 

there may be multiple “autisms,” to be defined by clustered genetic mutations with common 

mechanisms and treated with different classes of therapeutics. No definitive biomarkers have 

yet been identified across all diagnosed cases. Intensive searches are underway to define 

abnormalities in neurophysiology, neuroanatomy, brain chemistry, immune markers, and 

other potential biological abnormalities that may stratify individuals with autism, and offer 

outcome measures for future clinical trials (Ecker et al. 2013).

Rodent models offer preclinical tools to understand the role of genetic mutations and 

environmental factors in producing the diagnostic and associated symptoms of autism. 

Knockout (KO) and humanized knock-in mice have been generated for many of the 

mutations and CNVs detected in ASD and comorbid neurodevelopmental disorders such as 

fragile X syndrome and tuberous sclerosis (Silverman et al. 2010b; Ey et al. 2011; Baudouin 

et al. 2012; Zoghbi and Bear 2012; Gross et al. 2015). Several of these genetic mouse 

models are in use for the preclinical testing of pharmacological targets to treat the core 

symptoms of autism (Spooren et al. 2012; Silverman and Crawley 2014; Vorstman et al. 

2014; Gross et al. 2015).

One fundamental conundrum is defining mouse behavioral assays with high relevance to the 

diagnostic symptoms of autism, which is a uniquely human disorder (Crawley 2004). 

Modeling ASD in rodents is challenging in that the clinical phenotype is heterogeneous and 

encompasses a wide range of behaviors. Researchers focused on developing animal models 

based on ASD-related behaviors benefit greatly from participating in clinical observations to 

obtain a comprehensive understanding of the clinical phenotypes found in individuals with 

ASD. We have been fortunate to observe diagnostic interviews of children with autism at the 

University of California Davis MIND Institute. Knowledge gained through these sessions 

and from lectures and conversations with many generous colleagues working with children, 

adolescents, and adults with autism guided our thinking in the development of analogous 

behavioral assays to evaluate mouse models of autism. This chapter presents state-of-the-art 

assays for mouse social and repetitive behaviors and reviews the preclinical progress in 
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evaluating hypothesis-driven pharmacological interventions, employing these behavioral 

assays in selected mouse models of autism.

2 Animal Models to Understand the Causes of Autism

The causes of autism are under intense investigation. Evidence supporting a large number of 

risk genes and CNVs at chromosomal loci is strong. Twin and family studies suggest that the 

genetic heritability of ASD is very high, ranging from 50 to 90 % (Ritvo et al. 1985; Smalley 

et al. 1988; Hallmayer et al. 2011; Miles 2011; Nordenbaek et al. 2014; Sandin et al. 2014). 

Genetic causes, primarily de novo mutations, have been identified in approximately 20–

30 % of ASD cases, with no identified gene mutation in the majority of ASD cases (Miles 

2011; Devlin and Scherer 2012; Murdoch and State 2013). Of the known genetic 

abnormalities associated with ASD, at least 5 % are caused by single gene mutations (Lim et 

al. 2013; De Rubeis et al. 2014; Iossifov et al. 2014), and at least 10 % are due to CNVs that 

cause structural variation, including duplications, deletions, inversions, and translocations 

(Marshall et al. 2008; Rosenfeld et al. 2010; Matsunami et al. 2013; Poultney et al. 2013). A 

remarkable preponderance of genetic mutations in ASD code for proteins mediating synaptic 

functions, such as those coding for the synaptic protein families SHANK (Durand et al. 

2007), CNTNAP (Alarcon et al. 2008; Arking et al. 2008; Bakkaloglu et al. 2008), NLGN 

(Jamain et al. 2003; Laumonnier et al. 2004; Yan et al. 2005a; Talebizadeh et al. 2006; 

Lawson-Yuen et al. 2008), and NRXN (Kim et al. 2008). Examples of CNVs associated with 

ASD include chromosomal loci 15q11-q13 (Christian et al. 2008), 16p11.2 (Fernandez et al. 

2010), and 22q11.21, and the UBE3A, NRXN1, and CNTN4 genes (Fernandez et al. 2008; 

Kim et al. 2008; Glessner et al. 2009; Roohi et al. 2009). A subset of single gene mutations 

associated with ASD are responsible for other neurodevel-opmental disorders, including 

FMR1 in fragile X syndrome, TSC in tuberous sclerosis, and MECP2 in Rett syndrome.

Genetic and environmental risk factors identified in ASD have led to the development of 

many useful model systems. The best animal models display all three types of validity: 

construct, face, and predictive (Crawley 2004). The initial development of a new animal 

model may determine the extent to which construct validity leads to face validity in these 

models, and offers predictive validity. Construct validity requires that the animal model is 

generated with the same underlying biological cause, e.g., a genetic mutation, 

neuroanatomical abnormality, or environmental factor implicated in ASD. Face validity 

requires that symptoms displayed in the animal model are analogous to the human 

symptoms, such as social deficits and repetitive behaviors that define ASD. Predictive 

validity requires that treatments that are efficacious for treating the human syndrome are 

similarly efficacious in reversing symptoms in the animal models, such as improving social 

deficits or reducing repetitive behaviors. As no drug treatment has been approved for the 

effective treatment of the diagnostic symptoms of autism, predictive validity cannot yet be 

determined in animal models of ASD.

Construct validity in mouse models of autism has most frequently addressed risk genes by 

generating targeted mutations in the syntenic genes in the mouse genome. The number of 

different genetic mutations identified in ASD, each in only a few individuals (De Rubeis et 

al. 2014; Iossifov et al. 2014; O’Roak et al. 2014), suggests that each of these mutations may 
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be worthwhile to explore in mice with homologous mutations (Abrahams and Geschwind 

2008; Silverman et al. 2010b; Ey et al. 2011; Spooren et al. 2012; Silverman and Crawley 

2014; Wohr 2014). More recently, technological advances have enabled the development of 

genetically modified rats. Knockout rats (Engineer et al. 2014; Hamilton et al. 2014), as well 

as other species with sophisticated social behavioral repertoires, such as voles (Bales and 

Carter 2003a; Modi and Young 2012) and non-human primates (Bauman et al. 2014), 

provide additional research tools to determine how specific gene abnormalities, 

neurotransmission, neuroanatomical correlates, and environmental influences contribute to 

autism-relevant phenotypes across species.

In addition to the genetically modified rodent models of ASD, several inbred mouse strains 

incorporate face validity as ASD models, because they display robust and well-replicated 

social deficits and repetitive behaviors. These inbred strains are considered to be models of 

idiopathic autism, as their ASD-relevant behaviors are not caused by known genetic 

mutations. In assays of sociability, discussed below, the inbred strains A/J, BALB/cByJ 

(BALB), BTBR T+Itpr3tf/J (BTBR), C58/J (C58), and 129S1/SvImJ mice exhibited lack of 

sociability, as compared to inbred mouse strains with high sociability, such as C57BL/6J 

(B6) and FVB/NJ mice (Brodkin 2007; Moy et al. 2007; Yang et al. 2007; McFarlane et al. 

2008; Moy et al. 2008b). Additionally, several mouse strains, such as BTBR and C58, also 

display overt motoric stereotypies or repetitive behaviors, including jumping, digging, and 

high levels of self-grooming and marble burying (Bolivar et al. 2007; Moy et al. 2007; 

Panksepp et al. 2007; McFarlane et al. 2008; Moy et al. 2008b; Yang et al. 2009; Pobbe et al. 

2010; Ryan et al. 2010; Silverman et al. 2010a; Wohr et al. 2011a; Yang et al. 2012a; Burket 

et al. 2013; Fairless et al. 2013; Silverman et al. 2013; Han et al. 2014). Of these, BTBR has 

been the most extensively characterized and well-replicated for ASD-related behaviors. In 

addition to abnormal sociability and repetitive behaviors, BTBR mice deposit fewer scent 

marks and emit fewer ultrasonic vocalizations (USVs) during social interactions, display an 

unusual repertoire of call categories during their USVs, exhibit a lower number of complex 

calls (Scattoni et al. 2008; Roullet et al. 2010; Scattoni et al. 2010), and are impaired on 

social transmission of food preference (McFarlane et al. 2008). These inbred strains add to 

the genetic mouse models, along with the rat, vole, and non-human primate models of ASD, 

which are available to evaluate therapeutics.

3 Mouse Behavioral Assays Relevant to the Diagnostic and Associated 

Symptoms of Autism

3.1 Social Tests

Several behavioral assays have been developed to assess various aspects of sociability in 

rodents. Like humans, both mice and rats are social species that display a wide repertoire of 

social behaviors, engaging in intraspecies reciprocal social interactions, parenting and 

mating behaviors, and scent marking and aggressive behaviors (Carter et al. 1992; Miczek et 

al. 2001; Terranova and Laviola 2005; Arakawa et al. 2008; Silverman et al. 2010b; 

Kaidanovich-Beilin et al. 2011). Behavioral phenotyping can utilize many of these species-

specific behaviors to address whether preclinical animal models exhibit social deficits 

relevant to those seen in ASD.
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Reciprocal social interactions—When placed together in a confined arena, juvenile and 

adult pairs of mice will engage in reciprocal social interactions, participating in various 

types of social sniffing and physical play (Terranova and Laviola 2005; McFarlane et al. 

2008; Silverman et al. 2010b). Depending on the testing parameters, juvenile or adult mice 

of either the same sex or opposite sex can be evaluated in dyads. Additionally, genetically 

modified mice can be tested with partners of the same or different genotypes. Types of social 

partner investigation include nose-to-nose sniffing, nose-to-body sniffing, and nose-to-

anogenital sniffing. Interactions include front approach, following, chasing, physical contact 

such as crawling over and under each other, wrestling, and pushing past each other. Because 

the complex interactions of these reciprocal social interactions cannot be fully captured by 

automated software, individual social behaviors are typically scored by investigators using 

event-recording software. Several ASD-relevant genetic mouse models have been evaluated 

using this paradigm and were found to exhibit reduced reciprocal social interactions, 

including Engrailed2 (En2) null mutants (Cheh et al. 2006; Brielmaier et al. 2012), 

conditional Pten mutants (Kwon et al. 2006), Shank3 heterozygotes (Bozdagi et al. 2010; 

Yang et al. 2012b), and Tsc1 heterozygotes (Goorden et al. 2007; Tsai et al. 2012). Reduced 

reciprocal social interactions are also seen in two inbred strains, BTBR and BALB (Bolivar 

et al. 2007; Panksepp et al. 2007; Yang et al. 2007; McFarlane et al. 2008).

3-chambered social approach—A well-characterized automated test of sociability is 

our simplified three-chambered social approach task, which offers a high-throughput 

approach for assessing sociability (Nadler et al. 2004; McFarlane et al. 2008; Yang et al. 

2011; Silverman et al. 2012, 2013). In this task, a subject mouse is assessed for its 

exploration of a novel mouse (e.g., a novel social stimulus) versus a novel object. The novel 

mouse is typically confined by an inverted wire pencil cup, which allows for visual, auditory, 

olfactory, and some tactile stimuli between the novel mouse and the subject mouse. An 

identical inverted wire pencil cup serves as the novel object, either alone or with an 

inanimate object inside. Mice that display species-typical sociability will spend more time in 

the side chamber with the novel mouse than in the side chamber with the novel object. 

Sociability is further defined more specifically by more time sniffing the novel mouse than 

sniffing the novel object. Chamber time is calculated automatically in a photocell-equipped 

apparatus, where beam breaks count chamber entries as a measure of locomotor activity. 

Videotracking systems can perform the same functions by defining zones around the cup or 

similar container (Ahern et al. 2009; Silverman et al. 2015). Many lines of mice with 

targeted mutations in risk genes for autism, as well as inbred strains, have been evaluated in 

the three-chambered social approach task (Moy et al. 2006; Moy and Nadler 2008; Moy et 

al. 2009; Silverman et al. 2010b; Patterson 2011; Qiu et al. 2012; Jiang and Ehlers 2013). 

Many genetic models of ASD were reported to exhibit low sociability in this assay including 

GABAA receptor Gabrb3 KO mice (DeLorey et al. 2008), conditional Pten KO mice (Kwon 

et al. 2006), haploinsufficient Pten mutant mice (Page et al. 2009; Clipperton-Allen and Page 

2014), Ube3a triplication mice (Smith et al. 2011), Cntnap2 KO mice (Penagarikano et al. 

2011), 15q11–13 duplication mice (Nakatani et al. 2009), and 17p11.2 duplication mice 

(Molina et al. 2008). In addition, BTBR, BALB, and C58 mice display low levels of 

sociability in the social approach assay (Brodkin et al. 2004; Brodkin 2007; Moy et al. 2007; 
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Yang et al. 2007; McFarlane et al. 2008; Moy et al. 2008b; Yang et al. 2009; Ryan et al. 

2010; Silverman et al. 2010a, 2012a, 2013).

Partition test—The partition task is another straightforward assay for assessing sociability 

in mice, utilizing a perforated partition to separate a subject mouse from a target mouse. 

Similar to social approach, the subject mouse is exposed to visual, auditory, and olfactory 

stimuli from the target mouse, but the two mice do not physically interact. Social interest is 

represented by the time spent near the partition by the subject mouse. Paylor and coworkers 

often conduct the partition test first and then remove the partition to evaluate reciprocal 

social interactions in a habituated environment (Spencer et al. 2005).

Social recognition and social memory can be evaluated through the sequential use of 

different social partners in the partition task and in the three-chambered social approach 

apparatus (Moy et al. 2007; Arakawa et al. 2008). Given that mice are novelty-seeking, the 

subject mouse displays recognition of social novelty if it approaches and spends more time 

at the partition near the novel mouse as compared to the partition near the familiar mouse 

(Kudryavtseva 2003; Spencer et al. 2011). Similarly, in the three-chambered social approach 

task, social recognition is demonstrated if the subject mouse spends more time with a second 

novel mouse than with the previously novel but now familiar mouse. Adding delay periods 

of minutes or hours between presentations of the same and novel partners permits evaluation 

of social memory (Bielsky and Young 2004). Several genetically modified mice that 

exhibited reduced reciprocal social interactions or low sociability in three-chambered social 

approach also displayed a lack of preference for social novelty. Others were normal on social 

approach but failed on preference for social novelty (Moy et al. 2006; Moy and Nadler 2008; 

Moy et al. 2009; Silverman et al. 2010b; Patterson 2011; Qiu et al. 2012; Jiang and Ehlers 

2013), including Fgf17 KO mice (Scearce-Levie et al. 2008), Gabrb3 KO mice (DeLorey et 

al. 2008), and Nlgn4 KO mice (Jamain et al. 2008). Other genetic mouse models, such as 

Nlgn3 KO mice (Radyushkin et al. 2009), demonstrated reduced social novelty, but did not 

have deficits in other aspects of sociability. Qualitatively divergent findings on social 

approach versus social recognition and social memory in several models reinforce the 

interpretation that sociability is distinct from social recognition memory, especially in the 3-

chambered assay.

Visible burrow—Mice will typically form colonies that include shared nests composed of 

underground burrow and tunnel complexes (Lloyd 1975; Bouchard and Lynch 1989). Large 

visible burrow systems are enclosures that capitalize on the mouse social structure to 

investigate social interactions in a seminatural habitat using a series of tunnels, burrows, and 

a large open surface area (Blanchard et al. 1995, 2001). Compared to the social B6 strain, 

BTBR mice participate in fewer interactive behaviors, such as huddling and following, in the 

visible burrow system while spending more time alone and engaging in increased self-

grooming (Pobbe et al. 2010).

Social transmission of food preference occurs when a subject mouse, after interacting with 

a cagemate that recently consumed a novel food, eats more of that novel food (Galef 2003; 

Wrenn et al. 2003; Wrenn 2004; Ryan et al. 2008). In addition to low sociability in several 
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social tasks, BTBR mice also exhibit reduced social transmission of food preference 

(McFarlane et al. 2008).

Social dominance is measured in a tube task. Mice of two different genotypes with 

approximately similar body weights are placed in opposite ends of a long, narrow plastic 

tube. A socially dominant mouse is characterized as the mouse that advances past the 

halfway point of the tube or pushes the opposing mouse out of the tube. Tube test deficits in 

social dominance have been detected in mice with mutations in Dvl1 (Lijam et al. 1997; 

Long et al. 2004), the serotonin transporter (Kerr et al. 2013), Fmr1 (Spencer et al. 2005) 

and others, while 17p11.2 duplication mice exhibited increased dominant behavior in this 

assay (Molina et al. 2008).

Assessment of sociability in two or more cohorts of animals using multiple assays increases 

the strength of findings, by generating a more complete behavioral profile, assessing 

generalizability, and evaluating robustness and replicability. Robust, easily replicated social 

deficits in mutant lines of mice can then serve as primary preclinical models for the 

development of novel therapeutics.

3.2 Social Communication

Communication impairments are a hallmark of autism (Lord et al. 2000; Kim et al. 2014b). 

Depending on the intellectual ability of the individual, communication deficits can manifest 

as the absence of speech, language delay, the use of odd prosody and intonation, stereotyped 

speech, perseverative phrases, and difficulties with language pragmatics such as those 

involved in initiating and maintaining appropriate and meaningful conversations (Rapin and 

Dunn 2003).

Rodents communicate primarily through olfactory pheromones. However, mice and rats also 

emit vocalizations in the ultrasonic range during social interactions, and also in non-social 

contexts (Chabout et al. 2012). Extensive research has been done to identify components of 

rodent USVs that might be analogous to human language communication. The utility of 

USV emissions for modeling aspects of social communication deficits in autism is being 

extensively investigated by several laboratories. Determining whether mouse USV calls have 

a communication function during specific types of social interactions is a work in progress.

Mouse and rat pups emit USVs when separated from the mother and the nest (Ehret 2005). 

Pup USVs reliably elicit maternal retrieval (D’Amato et al. 2005; Fischer and 

Hammerschmidt 2011; Okabe et al. 2013) and are therefore thought to represent a 

communicatory signal emitted by pups at an age when they solely depend on the dam for 

thermoregulation and feeding. Separated pups emit even more USVs after a brief reunion 

period with the mother, followed by a second separation. This phenomenon, called 

“maternal potentiation”, has been found in both mice and rats and has been used as a 

measure of attachment (Shair et al. 2014). Mouse pups with a null mutation in the μ-opioid 

receptor gene (Orpm−/−) emitted fewer USVs when separated from the mother and did not 

exhibit maternal potentiation, reflecting deficits in attachment (Moles et al. 2004). In mice, 

pup call numbers peak between postnatal days (PND) 7 and 9 and diminish around the age 

of hearing onset (PND12) (Ehret 2005; Adise et al. 2014), suggesting that pup USVs are 

Kazdoba et al. Page 7

Curr Top Behav Neurosci. Author manuscript; available in PMC 2016 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



produced by innate mechanisms without a requirement for auditory feedback. It may be 

reasonable to suggest that pup USVs are a useful measure of physical development, 

reactivity to stress, anxiety, and attachment. However, since pup calls are likely more 

analogous to infant crying, quantitative and qualitative components of pup USVs are less 

likely to serve as a useful proxy for human language communication.

Juvenile and adult mice emit USVs during same-sex social interactions (Maggio and 

Whitney 1985; D’Amato and Moles 2001; Panksepp et al. 2007; Scattoni et al. 2011; 

Hammerschmidt et al. 2012). Pretest social isolation is usually a prerequisite for eliciting 

USVs in same-sex pairs. Currently, there is no practical method to differentiate calls from 

the two interacting animals. In juveniles, emission of USVs was positively correlated with 

social behaviors during juvenile social interaction (Panksepp et al. 2007), suggesting that 

USVs may be an affiliative component of the juvenile social repertoire. Adult mice emit 

large numbers of calls during same-sex interactions, following a short period of isolation. 

Female mice with null mutations in the Shank2 gene emitted fewer calls as compared to 

wild-type females (Poultney et al. 2013). Adult male and female mice with null mutations of 

Neuroligin4 emitted similar numbers of calls as compared to the wild-type controls (Ey et al. 

2012). Calls emitted by the resident female during the resident–intruder paradigm have been 

used as a measure of social memory (D’Amato and Moles 2001).

Male–female social interactions have the advantages of not requiring pretest social 

isolation and a greater certitude that most calls are emitted by the male (Whitney et al. 1973; 

White et al. 1998; Wang et al. 2008; Sugimoto et al. 2011). The number of USVs emitted by 

a subject male in the presence of an estrus female has been widely used as an assay for 

social communication in mouse genetic models of autism (Ey et al. 2012; Yang et al. 2012b; 

Sowers et al. 2013).

Fresh female urine and other social odors are similarly effective in eliciting USVs from 

adult male mice (Nyby et al. 1977; Whitney and Nyby 1979; Byatt and Nyby 1986; Holy 

and Guo 2005; Hoffmann et al. 2009; Malkesman et al. 2010; Roullet et al. 2011; Wohr et al. 

2011b). Playback studies indicate that female mice prefer male USVs over pup USVs, 

artificial control sounds, or silence (Hammerschmidt et al. 2009; Shepard and Liu 2011) and 

prefer vocalizing males over devocalized males (Pomerantz et al. 1983), suggesting that 

male USVs may have a role in facilitating courtship. Recent evidence indicates that male 

mice exhibit abrupt changes in call repertoires when the female stimulus mouse was 

removed (Hanson and Hurley 2012; Yang et al. 2013), suggesting that vocal flexibility may 

reflect the ability to detect sudden changes in salient social cues.

Distinct call categories have been cataloged within the highly complex structures of USVs 

(Holy and Guo 2005; Scattoni et al. 2011). The pioneering study by Holy and Guo (2005) 

catalyzed recent research on categorical analysis of mouse USVs. Most investigators classify 

calls by visually inspecting spectrograms of recorded USVs. Currently, there is no consensus 

on the number of categories or the definition of each category, with the number of categories 

ranging from three (Hammerschmidt et al. 2012) to fifteen (Mahrt et al. 2013). Recent 

electrophysiological recording studies have demonstrated that neurons in the mouse auditory 
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midbrain respond differently to different call types (Mayko et al. 2012), highlighting the 

importance of categorizing calls in a manner that is biologically meaningful to mice.

Are USVs in adult mice relevant to human language? Recent studies indicate that call 

patterns are similar between deaf mice and hearing controls (Hammerschmidt et al. 2012; 

Mahrt et al. 2013) and that cross-fostering failed to change strain-specific call patterns 

(Kikusui et al. 2011), suggesting that mouse USVs are not acquired through auditory 

feedback. It may be more reasonable to suggest that USVs are an important indication of 

responsivity to social stimuli during social interactions, but are not highly analogous to 

communicatory functions of complex human language.

3.3 Motor Stereotypies, Repetitive Behaviors, and Restricted Interests

The second ASD diagnostic symptom domain includes motor stereotypies, repetitive 

behaviors, insistence on sameness, and restricted interests (American Psychiatric 

Association 2013). Motor stereotypies in ASD include hand flapping and toe walking. 

Stereotypies in mice are species-typical behaviors such as circling and jumping, which 

occur with frequencies considerably higher than typical levels. Behavioral stereotypies can 

be assessed in the home cage or observed in an empty cage, by a trained investigator using 

an event recorder (Crawley 2012). Many genetic models of autism exhibit motor 

stereotypies. For instance, Nlgn4 KO mice exhibited increased circling behavior (El-Kordi et 

al. 2013) and C58 mice exhibited high levels of jumping behavior (Moy et al. 2008b; Ryan 

et al. 2010; Silverman et al. 2012). Gabrb3 KO mice showed high levels of circling 

behaviors (Homanics et al. 1997; DeLorey et al. 2008).

Repetitive self-grooming in mice has face validity to repetitive behaviors in ASD, such as 

assembling the same puzzle or playing one video game repeatedly. Normal patterns but 

unusually long bouts of self-grooming have been demonstrated in several mutant mouse 

models of autism, including Shank3 (Peca et al. 2011), Cntnap2 (Penagarikano et al. 2011), 

Neurexin1α (Etherton et al. 2009), and Neuroligin1 (Blundell et al. 2010). High levels of 

self-grooming have been well-replicated in the BTBR mouse model of idiopathic autism 

(Yang et al. 2007; McFarlane et al. 2008; Yang et al. 2009; Pobbe et al. 2010; Silverman et 

al. 2010a; Amodeo et al. 2012, 2014b; Zhang et al. 2015), while the BALB inbred mouse 

line does not display repetitive self-grooming (Silverman et al. 2010b). Recent work in 

transgenic rats reported perseverative chewing behavior in Fmr1 KO rats (Hamilton et al. 

2014). Higher levels of marble burying are considered to reflect a repetitive behavior 

(Thomas et al. 2009). Marble burying relies on the species-typical burying of small objects 

placed into the cage. Higher marble burying was detected in BTBR (Amodeo et al. 2012; 

Silverman et al. 2012) and several mutant models (Silverman et al. 2010b), including Tsc2 
KO mice (Reith et al. 2013) and monoamine oxidase (MAO) A and A/B KO mice (Bortolato 

et al. 2013).

Versions of open field holeboard exploration are under development to model autism-

relevant restricted interest/perseverative behaviors. Unusual hole board exploration was 

reported in BTBR and NMDA receptor (Grin1) mutant mice using olfactory cues (Moy et al. 

2008a), and in MAO A and A/B knockout mice without olfactory cues (Bortolato et al. 

2013).
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Cognitive rigidity in autism has been modeled in several rodent models of autism. Morris 

water maze reversal learning assesses the ability of a mouse trained to locate a hidden 

platform in a pool of water to inhibit its previously learned navigation responses and learn a 

new platform location. Mice first learn the location of a hidden platform in a large pool of 

opaque water over the course of several days. After mice reach a criterion level of 

performance (i.e., latency under 15 s), the hidden platform is moved to the opposite side of 

the pool so that attempts to find the platform in the previous location must be suppressed and 

a new goal-directed behavior emerges for successful escape from the water. Two other 

versions of maze reversal are available: spontaneous alternation on a Y-maze, where 

reduced numbers of alternations between the two arms might represent perseverative 

behavior, and rewarded T-maze reversal, where the rewarded response shifts from the 

initial location of a food reinforcement located at one end of the T to the other end of the T. 

Other related tasks include extinction of fear conditioning, where a discrete cue previously 

paired with an aversive footshock is presented continuously without a footshock pairing, 

until the species-typical freezing response is attenuated. Deficits on some of these reversal 

tasks have been reported in BTBR (Moy et al. 2007; Yang et al. 2012a), 15q11-13 

duplication (Nakatani et al. 2009), MAO A and A/B KO mice (Bortolato et al. 2013), and in 

eIF4E overexpressing mice (Santini et al. 2013). Similar to results of Morris water maze 

reversal tasks, MAO A and A/B KO mice also had decreased alternations in a forced-choice 

alteration T-maze (Bortolato et al. 2013) and BTBR showed deficits in water T-maze 

reversal (Guariglia and Chadman 2013).

Intellicages offer a home cage approach to test conditioned place preference learning and 

reversal, which showed a significant reversal-specific effect of valproic acid (VPA) in B6 

mice, but not BALB mice (Puscian et al. 2014). Further, a set-shifting assay (Birrell and 

Brown 2000) showed a compound discrimination reversal deficit in Reeler heterozygous 

mice (Macri et al. 2010). An assay which employed alternation learning, followed by non-

alternation learning, followed by reversal learning, used an H-shaped maze to demonstrate 

that tryptophan hydroxylase 2 mutants showed perseveration when the reinforcement 

contingencies changed (Del’Guidice et al. 2014).

The five-choice serial reaction time task (5-CSRTT) affords a robust measure of 

perseveration. The subject mouse pokes its nose into one of five holes at the front of an 

operant chamber, based on a stimulus presentation located in one of the five possible 

locations. Perseverative behavior is defined as choosing the previously rewarded stimulus 

location instead of choosing the currently active location. Mice with mutations in genes 

coding for the muscarinic acetylcholine receptor M1 and the NMDA receptor subunit Grin1 

displayed perseverative deficits in 5-CSRTT (Bartko et al. 2011; Finlay et al. 2014). Despite 

the broad range of autism-relevant phenotypes displayed by BTBR mice, BTBR did not 

show perseverative behavior as assessed by the 5-CSRTT (McTighe et al. 2013).

3.4 Associated Symptoms

In addition to the core deficits associated with an autism diagnosis, there are several 

associated symptoms that commonly occur as comorbid conditions. A recent meta-analysis 

found that around 40 % of individuals with an ASD had elevated and clinically relevant 
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symptoms of an anxiety disorder (van Steensel et al. 2011). Specific phobias were the most 

common anxiety disorder, occurring in approximately 30 % of autistic individuals, while 

obsessive–compulsive disorder and social anxiety disorder/agoraphobia occurred in 17 % of 

autistic individuals (van Steensel et al. 2011). Common rodent behavioral tasks for the 

assessment of anxiety-like behaviors are the elevated plus-maze and light ↔ dark 

exploration. These tasks rely on the conflict between the tendency of mice to explore a novel 

environment versus avoidance of brightly lit open areas. Mice generally enter and spend less 

time in the two open arms of an elevated plus-maze as compared to the two enclosed maze 

arms. Mice generally spend less time in the brightly lit compartment of the light ↔ dark 

apparatus and make fewer transitions between the brightly lit and dark compartments. 

Anxiolytic drugs selectively increase the number of open arm entries and time in the open 

arms in the elevated plus-maze, and increase time in the light compartment and number of 

transitions between compartments in the light ↔ dark apparatus, confirming predictive 

validity (Crawley 1985; Cryan and Sweeney 2011). Other less widely used tests that detect 

effects of anxiolytic drugs include the operant-based Geller-Seifter and Vogel conflict 

assays, vocalizations emitted by pups separated from their dams to model separation anxiety 

(Insel et al. 1986), and marble burying, which has been described as a model of obsessive–

compulsive disorder (Thomas et al. 2009).

Seizure disorders are very common in autism. At least 20 % of individuals who meet the 

diagnostic criteria for autism experience seizures (Volkmar and Nelson 1990). Several 

genetic mouse models of autism recapitulate aspects of the increased seizure susceptibility, 

including mice with mutations in Synapsin1 (Greco et al. 2013), En2 (Tripathi et al. 2009), 

Cntnap2 (Penagarikano et al. 2011), Tsc1 (Meikle et al. 2007) and Tsc2 (Zeng et al. 2011), 

Gabrb3 (DeLorey et al. 2011; Homanics et al. 1997), and Fmr1 (Chen and Toth 2001).

Intellectual disability is present in approximately 30–40 % of ASD subjects (Matson and 

Shoemaker 2009; Perou et al. 2013). Learning and memory deficits have been demonstrated 

in several mouse models of autism, often along with electrophysiological abnormalities 

detected in hippocampal slice assays. Water maze and fear conditioning deficits were 

reported in mice with mutations in Pten, Tsc1, Shank3, Cntnap2, En2, and in the BTBR 

inbred strain, among others (Upchurch and Wehner 1988; The Dutch-Belgian Fragile et al. 

1994; D’Hooge et al. 1997; Paradee et al. 1999; Goorden et al. 2007; Moy et al. 2007; 

MacPherson et al. 2008; Baker et al. 2010; Penagarikano et al. 2011; Brielmaier et al. 2012; 

Sperow et al. 2012; Yang et al. 2012a, b; Scattoni et al. 2013).

Sleep disorders are common in children with ASD. As many as two-thirds of autistic 

individuals may have some kind of sleep disorder (Richdale 1999). Sleep patterns and 

circadian rhythms have not been extensively reported in mouse models of autism. Mutant 

mice lacking Cadps2, located in the 7q autism susceptibility locus, showed an aberration in 

intrinsic sleep-wake cycle maintenance (Sadakata et al. 2007). Fmr1 KO mice demonstrated 

abnormal circadian activity patterns, which may suggest alterations in sleep–wake cycle 

stability (Baker et al. 2010). Gbrb3 KO mice exhibited differences in activity-rest neural 

activity as assessed by EEG (DeLorey et al. 1998).
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Attention deficits and hyperactivity are a commonly associated symptom of autism. 

Several mutant mouse models of autism display higher exploratory locomotion in the open 

field test, including Fmr1 (Kramvis et al. 2013), Cntnap2 (Penagarikano et al. 2011), 

ProSAP1/Shank2 (Schmeisser et al. 2012), and a 16p11.2 deletion (Portmann et al. 2014).

Sensory symptoms, including under-and over-responsivity to sensory stimuli, are frequently 

found in those with ASD (Rogers and Ozonoff 2005). Idiosyncratic overreaction to a sudden 

loud noise can be tested in mice by assessing response to acoustic stimuli at various decibel 

levels. An increased response to sensory stimuli was observed in Fmr1 mice (Chen and Toth 

2001). Reduced acoustic startle was reported in several other mutant mouse models of 

autism including Gabrb3 (DeLorey et al. 2011), EphrinA (Wurzman et al. 2014), and female 

Mecp2 heterozygotes (Samaco et al. 2013). Idiosyncratic underreaction to painful stimuli 

can be assessed in mice with hot plate or tail flick thermal stimuli. Genetic models of autism 

have revealed increased sensitivity in these nociceptive tasks in Gabrb3 KO mice (DeLorey 

et al. 2011).

Mouse behavioral assays described above have proven useful in phenotyping genetic mouse 

models of autism. Approaches to develop ideal models of ASD may utilize multiple species 

to ensure that the same outcomes are present across species, to best advance the potential for 

an integration of systems neuroscience with the human syndrome. Successful multiple 

species approaches will contribute to fast-forwarding our progress to develop effective 

mechanism-based therapeutics. Mouse models provide relatively low cost, high-throughput, 

valid phenotypes in various behavioral assays relevant to the diagnostic symptoms of ASD.

Comparative studies utilizing rodent vole models are another powerful approach for 

modeling social behavior relevant to ASD. Prairie and pine voles (Microtus ochrogaster and 
Microtus pinetorum, respectively) are a monogamous species living in highly social burrows 

(Carter and Getz 1993; Carter et al. 1995). In contrast, montane and meadow voles 

(Microtus montanus and Microtus pennsylvanicus, respectively) are non-monogamous and 

often live in social isolation. Differences in oxytocin peptide and receptor binding have been 

reported between these species of vole and are functionally related to their differences in 

social behavior (Winslow et al. 1993; Young et al. 2002). Carter, Bales, and colleagues have 

reported both facilitation and deleterious effects of oxytocin administration in voles in the 

partner preference pair bonding assay. These effects were both sexually dimorphic and 

developmentally specific (Bales and Carter 2003a, b; Carter et al. 2009; Bales et al. 2013). 

Intranasal oxytocin paradigms developed in the vole have recently been examined in mouse 

models, with reports of either adverse or minimally beneficial behavioral outcomes, 

dependent on length of exposure (Bales et al. 2014; Huang et al. 2014). Novel pharmacology 

using vole models recently illustrated that d-cycloserine, a partial agonist of the N-methyl-

D-aspartate (NMDA) glutamate receptor that enhances receptor activation in the presence of 

glutamate, dose dependently enhanced partner preference in female prairie voles (Modi and 

Young 2011).

Rats have sophisticated behavioral repertoires which make this rodent species excellent for 

modeling the nuances of complex social behavior. Recent advances in genetic technologies 

allow for manipulation of rat gene expression. Two genetic models with relevance to ASD 
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have been generated. One example is a rat knockout of the Fmr1 gene, which is associated 

with fragile X syndrome. Behavioral phenotyping revealed that Fmr1 KO rats have low 

levels of social play behavior and higher levels of a repetitive block chewing (Hamilton et al. 

2014). Other genetic ASD-relevant rat KO models are the neuroligin-3 (Nlgn3) null and the 

neurexin-1α (Nrxn1-α) KO rats model. Nlgn3 KO rats display reduced juvenile social play 

(Hamilton et al. 2014), while Nrxn1-α KO rats exhibit hyperactivity, exaggerated startle 

responses, and impairments in latent inhibition and spatial-dependent learning (Esclassan et 

al. 2015). Genetic rat models of autism offer a new set of tools for evaluating 

pharmacological interventions.

Several studies suggest a role for environmental factors, in combination with genetic 

susceptibility, in the etiology of ASD. An impressive population-based Danish study in 2013 

outlined prenatal exposure to the anticonvulsant VPA, but not to other anti-seizure 

medications, nearly tripled the risk of ASD (Christensen et al. 2013). The larger study 

confirmed an earlier smaller report that exposure to VPA during gestation increased relative 

risk for ASD and maladaptive ASD-related behavioral dysfunction in children born to 

women who took VPA to treat their epilepsy (Bromley et al. 2008). Mouse models exposed 

to gestational VPA recapitulate selective behavioral and electrophysiological deficits 

analogous to those seen in the clinic (Wagner et al. 2006; Gandal et al. 2010; Mehta et al. 

2011). Similarly, rats exposed to VPA in utero show increased frequency of motor 

stereotypies in adolescence, reduced social exploration, and low levels of juvenile rough and 

tumble play supporting the validity of this model (Schneider and Przewlocki 2005). 

Although the mechanisms underlying the link between VPA and autism are not fully 

understood, prenatal exposure to VPA alters GABA and monoamine systems, induces a loss 

of specific subsets of neurons, and acts through epigenetic mechanisms via histone 

deacetylase inhibition (Bambini-Junior et al. 2014).

Excitatory–inhibitory imbalance is a prominent hypothesis for the etiology of ASD. 

Pharmacological interventions that shift the balance closer to normal are under 

consideration. Acute exposure to the glutamate antagonist, MPEP, reduced marble burying 

phenotypes in offspring of dams treated with VPA, but did not alleviate anxiety-like 

behavior (Mehta et al. 2011). GABAergic neurons switch from excitatory to inhibitory 

during key developmental processes. This sequence was reported to be absent in 

hippocampal CA3 neurons of offspring of VPA-treated rat dams (Tyzio et al. 2014). 

Moreover, VPA-treated offspring emitted low numbers of isolation-induced pup USVs. 

Bumetanide pretreatment to dams rescued the GABA developmental impairments and 

restored call emissions in VPA rodent offspring (Tyzio et al. 2014).

The first non-human primate model of ASD involved the bilateral removal of the medial 

temporal lobe of young rhesus macaque monkeys. Normal infant monkeys develop strong 

affiliative bonds. Lesioned subjects displayed atypical dyadic social interactions at 2 and 6 

months and exhibited aberrant stereotypies (Bachevalier 1994; Bachevalier et al. 2001). 

Other lesion studies produced selective amygdala lesions in 2-week-old macaques. By 6–8 

months of age, the lesioned animals demonstrated substantial fear behaviors during dyadic 

social interactions while maintaining much of the age-appropriate repertoire of social 

behavior (Prather et al. 2001).
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Other reported non-human primate models of ASD have tested the hypothesis that exposure 

of the fetal brain to maternal autoantibodies during gestation increases ASD risk. Rhesus 

monkeys exposed to human immunoglobulin collected from mothers of multiple children 

diagnosed with ASD consistently demonstrated increased whole-body stereotypies and 

hyperactivity across multiple testing paradigms (Martin et al. 2008). In extended studies, 

these monkeys consistently deviated from species-typical social norms by more frequently 

approaching familiar peers in a social approach paradigm (Bauman et al. 2013).

Oxytocin administration in rhesus macaques was reported to significantly increase plasma 

oxytocin concentrations when administered using the aerosol or intranasal routes (Modi et 

al. 2014). Social perception in the dot-probe task in monkeys receiving intranasal oxytocin 

detected selectively reduced attention to negative facial expressions, but not neutral faces or 

nonsocial images (Parr et al. 2013). This first pharmacological report using non-human 

primates provides promising evidence for oxytocin-based compound efficacy in clinical 

populations.

4 Evaluating Pharmacological Therapeutics in Animal Models with High 

Construct Validity and Strong Face Validity for ASD

Clinical trials for ASD core symptoms are challenged by the heterogeneity of the disorder, 

which can limit study design parameters and statistical power for outcome measures. 

Currently, there are no pharmacotherapies approved by the US Food and Drug 

Administration specifically for social interaction, communication deficits, and repetitive 

behaviors. The only FDA-approved pharmacological treatments for autism are the 

antipsychotics risperidone and aripiprazole, which treat the associated irritability symptoms 

of aggression, self-injury, and temper tantrums. Greater than 50 % of children diagnosed 

with ASD in the USA are using at least one psychoactive drug (Spencer et al. 2013), as 

prescribed for irritability (Siegel and Beaulieu 2012), or given off-label. Risperidone, which 

modulates dopamine and serotonin systems, had a significant effect on stereotyped behavior 

in children with ASD (McCracken et al. 2002; McDougle et al. 2005; Chavez et al. 2006), 

although this was not seen in all studies (Ghaeli et al. 2014). Risperidone studies that 

included behavioral scales measuring aspects of sociability, such as social relationships and 

language, had large effect sizes, but failed to reach statistical significance (McDougle et al. 

2005). Other studies that utilized additional behavioral scales, such as the Aberrant Behavior 

Checklist Social Withdrawal subscale and the Childhood Autism Rating Scale (CARS), 

found that risperidone treatment was effective compared to placebo (Scahill et al. 2013; 

Ghaeli et al. 2014). The lack of consistency for risperidone’s effects on aspects of social 

behavior may be due to clinical heterogeneity within the studies’ ASD subject population, 

differences in treatment duration, as well as differences in the tools used for sociability 

outcome measures. Treatment studies with antidepressants, such as selective serotonin 

reuptake inhibitors (SSRIs) and tricyclic antidepressants, have yielded mixed results on 

improvement of repetitive behaviors. For example, SSRI treatment with fluoxetine or 

citalopram did not produce a clinically significant improvement on repetitive behaviors in 

children (Hollander et al. 2005; King et al. 2009). However, additional studies with 

fluoxetine and fluvoxamine demonstrated improvement on repetitive thoughts, repetitive 
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actions, and scores of an obsessive–compulsive scale in adults (McDougle et al. 1996; 

Hollander et al. 2012), suggesting that SSRI treatment approach may depend on the age of 

individuals with ASD.

As described in Table 1, additional classes of compounds have been evaluated for their 

efficacy in treating ASD core symptoms, although large-scale, randomized, double-blind, 

placebo-controlled trials are lacking. Administration of oxytocin, a neuropeptide involved in 

social pair bonding, social memory, and affiliative behaviors (Gimpl and Fahrenholz 2001), 

increased social awareness and emotional recognition in both neurotypical individuals and 

those with ASD in pilot studies (Hollander et al. 2007; Bartz and Hollander 2008; Rimmele 

et al. 2009; Bartz et al. 2010; Guastella et al. 2010). Interestingly, functional neuroimaging 

results from a randomized, double-blind cross-over study in children with ASD found that 

brain structures associated with sociability (e.g., striatum, posterior cingulate, and premotor 

cortex) showed greater recruitment after intranasal oxytocin administration, suggesting that 

this neuropeptide enhanced the saliency of social stimuli (Gordon et al. 2013).

STX209 (Arbaclofen), a selective GABAB agonist thought to stimulate inhibitory 

neurotransmission, was evaluated as a treatment for fragile X syndrome, a 

neurodevelopmental disorder with a high incidence of ASD comorbidity (Berry-Kravis et al. 

2012). Although there were no statistically significant differences in the primary outcome 

(Aberrant Behavior Checklist-Irritability subscale), male subjects were noted as having 

positive improvements on several global measures including socialization scores. 

Additionally, in a study with individuals with ASD, Arbaclofen was well tolerated and 

improved scores on social responsiveness, social withdrawal, and clinical global impression 

scales (Erickson et al. 2014a).

D-cycloserine, a partial agonist of the ionotropic glutamatergic NMDA receptor, has been 

evaluated in one single-blind, placebo-controlled trial, where the majority of children with 

ASD treated with D-cycloserine improved their scores on the Autistic Behavior Checklist 

Lethargy and Social Withdrawal subscale (Posey et al. 2004). Memantine, an NMDA 

receptor antagonist approved for Alzheimer’s disease, has been assessed in several open 

label studies and retrospective reports. Some studies found that more than half of clinical 

responders had improvements in Clinical Global Impression scores or language and social 

behaviors (Chez et al. 2007; Erickson et al. 2007), although not all studies found similar 

effects (Owley et al. 2006; Niederhofer 2007). Open label studies with children with ASD 

using cholinesterase inhibitors suggest that there may be some improvement in expressive 

language, parent reports, and CARS scores (Niederhofer et al. 2002; Chez et al. 2004; 

Nicolson et al. 2006).

Many of these early clinical trials were based on hypotheses generated from mouse models. 

Of particular interest is Rubenstein’s proposed excitatory inhibitory imbalance, which arose 

from electrophysiological assays in mutant mouse models (Rubenstein 2010). Both forward 

translation, to discover new pharmacological targets using mouse models, and back 

translation, to test compounds in mutant mouse models of ASD that are used off-label or 

have moved into clinical trials, are described below and in Table 1.
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Drugs that increase GABAergic inhibition have been tested in several mouse models of 

autism. Using Fmr1 mice, in which mGluR5 expression and AMPA receptors are elevated 

and dendritic spines are abnormal, r-baclofen corrected basal protein synthesis, reduced 

AMPA receptor internalization and increased spine density in Fmr1 KO mice (Henderson et 

al. 2012). In the few studies that evaluated classical benzodiazepines, reduction in repetitive 

behaviors was reported in BTBR mice treated with clonazepam (Han et al. 2014), which also 

showed efficacy in social and cognitive deficits in Scn1 heterozygous mice, a mouse model 

of Dravet’s syndrome that exhibits ASD symptoms (Han et al. 2014). Further, acute 

intraperitoneal administration of r-baclofen reduced repetitive self-grooming and improved 

sociability in BTBR mice, and reduced stereotyped vertical jumping in C58 mice (Silverman 

et al. 2015).

Another strategy to reduce excitatory neurotransmission is to inhibit mGluR receptors with 

negative allosteric modulators. The mGluR antagonist MPEP was evaluated in the BTBR 

mouse model. Acute MPEP treatment reduced repetitive behaviors, including self-grooming 

and marble burying (Silverman et al. 2010a), and improved cognition in BTBR (Seese et al. 

2014), and demonstrated anti-epileptic effects in Fmr1 mice (Yan et al. 2005b). The mGluR5 

receptor inverse agonist CTEP showed efficacy in ameliorating cognitive deficits, signaling 

abnormalities, and dendritic spine deficits in the Fmr1 KO mouse (Michalon et al. 2012). 

The mGluR5 negative allosteric modulator GRN-529 rescued social deficits and repetitive 

self-grooming in BTBR mice and reduced stereotyped jumping in C58 mice (Silverman et 

al. 2012).

A large number of novel pharmacological targets are being tested in mouse models. Table 1 

provides a partial summary of compounds tested in various mouse models. Some of these 

strategies have been evaluated in clinical investigations. Others may be under consideration. 

Well-replicated results with a compound that reverses autism-relevant phenotypes, both 

behavioral and biological, in multiple animal models, may contribute to decisions about 

pursuing a clinical trial for ASD.

5 Conclusions

The summary above and in Table 1 provides descriptions of behavioral assays relevant to the 

symptoms of autism, representative results of behavioral phenotypes in many rodent models, 

and drug treatment outcomes in several mouse models of autism. Initial hypotheses for 

pharmacological targets derived from animal studies that documented (1) elevated excitatory 

neurotransmission or excess mGluR5 receptors, (2) reduced GABAergic inhibitory 

physiology, circuitry, or interneurons in genetic mouse models of autism, along with (3) 

oxytocin modulation of social behaviors and growth factors that mediate brain development. 

Preclinical findings of improvements by drug treatments in mouse models of fragile X and 

autism have led to a small number of clinical trials. Unfortunately, the Arbaclofen trial by 

Seaside Therapeutics did not detect significant improvement in its primary outcome 

measures, and the mGluR5 antagonist trial by Roche was terminated due to lack of initial 

efficacy. Central questions at present include (a) whether the animal results did not 

incorporate sufficient predictive validity and (b) whether the clinical trials were not 
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optimally designed in terms of dose, age, treatment regimen, patient population, or outcome 

measures.

Many concerns have been raised about the predictive usefulness of results from animal 

models in the discovery of treatments for neuropsychiatric disorders (Markou et al. 2009; 

Belzung 2014). The autism field is similarly facing this dilemma. Our view is that animal 

studies must incorporate a high level of validity and reproducibility. Assays in rodents can 

be designed to maximize face validity, for maximal analogy to the behavioral and biological 

symptoms of autism. However, results from animal studies need to be interpreted cautiously, 

without exaggeration or hyperbole about relevance to the diagnostic symptoms. 

Requirements for replication of positive results in two cohorts of mice would greatly 

increase the strength of findings. Preclinical drug studies may be most predictive when 

dose–response relationships have been explicated, acute and chronic treatment regimens 

have been tested, and clinically relevant routes of administration have been used in two or 

more species. These expectations represent a great deal more effort than is often invested in 

early preclinical studies with animal models. More complete preclinical data may be needed 

to provide the confidence needed to move forward into a clinical trial.

In the autism field, where no pharmacological interventions have definitively improved the 

core diagnostic symptoms of social interaction and communication deficits and repetitive 

behaviors, early failures are to be expected. Without a gold standard therapeutic, mouse 

models cannot be tested a priori for predictive validity. The process will be iterative. 

Pharmacological target discovery is benefitting from mouse models with mutations in 

synaptic genes and signaling pathways identified in individuals with autism, especially in 

cases where the gene codes for a protein in a biological pathway which is susceptible to 

pharmacological intervention with available compounds. Back translation, to test 

compounds that are being used clinically for phenotypic reversal in animals, will help to 

establish whether a mutant rodent model is sufficiently predictive. The current trend for 

autism symposia and consortia to mix clinical and basic researchers working on 

pharmacological interventions is encouraging, to promote this iterative discovery process.

One major hurdle is the need for simple, real-life outcome measures of appropriate social 

interaction, social communication, and repetitive behaviors to use as discrete endpoints for 

human drug trials. Gold standard instruments for the diagnostic assessment of ASD are 

complex and expensive, limiting their usefulness for large-scale multi-site clinical trials of 

new medications. Simplified, shortened rating scales are in use and under development.

Another major hurdle is the behavioral heterogeneity which characterizes ASD, which 

presents a huge challenge for both clinical trials and preclinical animal models. One strategy 

would be to stratify the ASD population based on behavioral subgroups with specific 

associated symptoms, e.g. seizures, aggression, anxiety, repetitive behaviors, language skills, 

or IQ. Another strategy is to employ proposed biomarkers, e.g., EEG gamma activity (Bosl 

et al. 2011; Rojas and Wilson 2014), or delayed auditory responses (Edgar et al. 2014). 

Parsing ASD symptoms into more tractable endophenotypes would further allow the use of 

animal models to illuminate genetic underpinnings and relevant molecular pathways. Both 

behavioral and biomarker subcategorization of the ASD behavioral spectrum would be 
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valuable for preclinical drug discovery, to provide sufficiently robust cross-species 

biological phenotypes to complement behavioral phenotypes and permit rigorous preclinical 

evaluation of pharmacological interventions.

In conclusion, we return to our initial discussion of construct, face, and predictive validity in 

animal models. Collaboration of clinical and basic science researchers will be required at 

each level. Progress in the refinement of construct validity will require both clinical 

observation and genetics research to hasten the identification of strong risk genes for ASD 

and endophenotypes with relevance to its symptoms. To improve the face validity of animal 

models, basic scientists need to discuss the meaning of species-typical behaviors in rodents 

and non-human primates with clinical scientists working with individuals with ASD. In this 

way, there will be better assurance that the behaviors selected and assessed in animal models 

are relevant to humans with ASD. At the level of predictive validity, the first step will be the 

discovery of hypothesis-driven compounds that improve endophenotypes in both rodents and 

humans, particularly through the use of simpler, more real-life single outcome measures of 

appropriate social interaction and repetitive behaviors. While effective medical treatments 

for autism are greatly needed, the knowledge base about the most relevant pharmacological 

targets is currently at an early stage. Appropriate choices of animal model constructs, assays 

with strong face validity, and rigorous analysis of drug effects will contribute to the 

maturation of therapeutic development.
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