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Abstract 

Background: Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. 

However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on 

airway cells, including decreased viability and function. We hypothesize that repetitive, chronic 

inhalation of EV will diminish airway barrier function, leading to inflammatory protein release 

into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury 

and dysfunction.  

Methods: C57BL/6 and CD-1 mice underwent nose-only EV exposure daily for 3-6 months, 

followed by cardiorenal physiologic testing. Primary human bronchial epithelial cells were 

grown at an air-liquid interface and exposed to EV for 15 minutes daily for 3-5 days prior to 

functional testing. 

Results: Daily inhalation of EV increased circulating pro-inflammatory and pro-fibrotic proteins 

in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-

fold), and EGF (25-fold). Pro-inflammatory responses were recapitulated by daily EV exposures 

in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to 

infection (227 vs 37 pg/mL, respectively; p<0.05). Chronic EV inhalation in vivo reduced renal 

filtration by 20% (p=0.017). Fibrosis, assessed by Masson’s trichrome and Picrosirius red 

staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; p<0.05), heart 

(2.75-fold, C57BL/6 mice; p<0.05) and liver (1.77-fold in CD-1; p<0.0001). Gene expression 

changes demonstrated pro-fibrotic pathway activation. EV inhalation altered cardiovascular 

function, with decreased heart rate (p<0.01), and elevated blood pressure (p=0.016). 

Conclusions: These data demonstrate that chronic inhalation of EV may lead to increased 

inflammation, organ damage, and cardiorenal and hepatic disease. 
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Introduction 

Electronic cigarettes (e-cigs) became widely available in 2004-2007 (12). They are the newest 

tobacco products on the market, and work by heating and aerosolizing propylene glycol (PG; 

1,2-Propanediol), glycerin (Gly; 1,2,3-Propanetriol) and nicotine. The product inhaled is 

commonly referred to as e-cig vapor (EV). EV has components in common with cigarette smoke, 

chief among these nicotine, which can directly cause endothelial dysfunction (56). Some EV also 

contains acrolein, formaldehyde and nitrosamines, which are also commonly found in cigarette 

smoke. This commonality raises the concern of shared toxicities between cigarettes and e-cigs 

(17, 19). The finding that low-tar and smokeless tobacco products may be linked to systemic 

inflammation and increased cardiovascular disease, further suggests that some of the components 

of tobacco do not need to undergo combustion in order to be damaging to human health (9, 58). 

While the lungs are one of the primary sites of ill effects of cigarette smoke (emphysema and 

lung cancer), tobacco smoke has significant effects on many other organs, including kidneys, 

heart, brain and gastrointestinal tract, via induction of endothelial damage and systemic 

inflammation (2, 56, 60). 

 

Many human e-cig users pick up the vaping habit as an attempt to help them quit smoking, 

however some studies and meta analyses to date suggest that e-cig use reinforces the nicotine 

addiction and decreases the odds of quitting (25, 39). Our own work has demonstrated that 

chronic inhalation of EV leads to activation of classic nicotine addiction pathways in the central 

nervous system (1), which suggests that e-cig users will likely continue using these nicotine 

delivery devices for years to come. Clinical signals of adverse effects on human health due to 

long-term use by e-cig users, such as emphysema, cardiovascular disease, and renal dysfunction, 
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may not, however, be evident for 20-50 years or until they are exacerbated by pathophysiological 

challenges. 

 

One mechanism by which chronic inhalation of chemicals causes disease is through disruption of 

the airway epithelial barrier (13, 18, 59, 68). Normal airways have a solid barrier facilitated 

through the existence of tight-junctions between epithelial cells. Isolated cases of eosinophilic 

pneumonia (76), lipoid pneumonia (54), acute lung injury and acute respiratory distress 

syndrome (ARDS; personal communication with Jennifer McCallister, OSU) have been reported 

in e-cig users, demonstrating that short-term exposure to EV may lead to acute epithelial damage 

and pro-inflammatory responses within the lungs. We hypothesized that chronic EV inhalation 

would alter the permeability of epithelial surfaces and increase exposure of parenchymal cells to 

EV components, leading to damage and inflammation, that promote acute and chronic diseases 

by recurrent inflammatory signaling driving a systemic pro-inflammatory state.  

 

Our prior studies with EV utilized established in vitro models, and demonstrated negative effects 

on antimicrobial function of lung cells - alveolar macrophages, epithelial cells, and neutrophils 

(32). Other groups have also found adverse effects on airway cells in vitro (79), lung function in 

vivo (51), and increased susceptibility to infection in vivo (75). In our lab, we also found 

significant cell death (cytotoxicity) of EV on all mammalian cell lines evaluated (32). Cell death 

commonly activates inflammatory pathways (and vice versa) and can produce tissue changes 

leading to pathology. Finally, we have published that EV exposure in vitro can induce double-

stranded DNA breaks, a serious effect that can lead to malignant conversion (81). 
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In the current studies, we explored the hypothesis that exposure to the most common components 

of EV (PG, Gly, and nicotine) alters barrier function of airway epithelium, leading to release of 

inflammatory proteins into the systemic circulation. Using our in vivo animal model of chronic 

EV inhalation (32), we assayed serum for evidence of pro-inflammatory effects of EV inhalation, 

and organs for downstream effects of these pro-inflammatory signals. We specifically evaluated 

cardiorenal function, as it is known that inhalation of combustible cigarette smoke is detrimental 

to both cardiac and renal function (30, 63, 74). One group recently published adverse effects of 

intraperitoneal injection of e-liquid daily for one month on rat kidney function (28). We sought 

to confirm these findings using a physiologic exposure to EV, in which e-liquid is placed into a 

tank, attached to a battery, and the e-liquid is heated and vaporized, producing EV which is 

inhaled through our nose-only system into the airways. The reason for using this more complex 

type of exposure is that heating and vaporization of e-liquid alters the chemical composition, and 

can create toxins such as formaldehyde and acrolein; these toxins may cause adverse effects 

directly on airway and endothelial cells which the other components of EV do not (34, 72, 77).  

 

The following in vivo and in vitro studies were designed and undertaken to evaluate whether e-

cig use leads to inflammation. We present here the effects of daily, chronic inhalation of EV 

containing nicotine on airway permeability, airway inflammatory response to bacterial infection, 

the systemic inflammatory milieu, downstream organ function and tissue fibrosis. Informing e-

cig users, physicians, businesses and policy makers of the potential risks of these new devices 

may lead to the production of safer devices, new policies to limit access to adults, and safer use 

patterns by the vaping community – and thus decreased adverse effects on human health overall. 
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Materials and Methods 

E-cigarettes 

E-liquid consisting of 50% propylene glycol (PG), 50% glycerin (Gly; also referred to as 

vegetable glycerin, VG), and 24 mg/mL nicotine was used, as it was a common solution used by 

the general population in 2014, at the time of study design. All e-liquids were mixed in the lab 

after purchase from a popular online vendor (Xtreme Vaping). E-liquid was placed in a standard 

tank (1.8 Ohm) and was attached to a rechargeable lithium ion battery (3.4 V). All e-cig 

components were purchased from commercial vendors (FastTech, Vapor Authority, and Xtreme 

Vaping), to maintain relevance to human e-cig users. All exposures were designed to model 

firsthand EV exposure, with animals and human cells exposed to EV generated from devices 

used by actual e-cig users (Figure 1A), and generated with the same pneumatic pressure and puff 

topography as human e-cig vapers.  

 

Primary human bronchial epithelial cell permeability assay  

Primary normal human bronchial epithelial cells (NHBEs) were purchased from Lonza (donors 

have no reported history of smoking or known lung conditions). The cells were grown according 

to the manufacturer’s established protocols as mentioned previously (52). In brief, the cells were 

resuspended in growth media (Lonza) and seeded onto cell culture inserts (0.4 μm pore size; 

Costar), coated with type I rat tail collagen (BD Biosciences). Cells were maintained in B-ALI 

differentiation media (Lonza) with inducers for 3 weeks in the basal chamber for differentiation 

into mucociliary cells. Trans-epithelial electrical resistance (TEER) was measured using the 

Voltohmeter on days 14 and 21, and demonstrated epithelial confluency via increasing electrical 
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transmittance in all wells. When the TEER values reached a plateau, starting on day 21, NHBE 

cells were transferred to an exposure chamber and EV or Air was introduced for 15 minutes daily 

for 2-5 days. Each EV breath (50 mL) was produced by pneumatic activation of the e-cig via a 

60 mL syringe (Figure 1B), with exhalation of the EV onto the apical surface of the NHBE cells, 

followed by 2 air breaths (50 mL apiece), to mimic the act of breathing. Because EV leaves a 

greasy residue on exposed surfaces, after exposure, transwells were gently transferred to new 

wells containing fresh media (380 µL) at the basal interface, and were placed back at 37°C with 

5% CO2. NHBE barrier function, and specifically permeability due to interruptions in the 

junctional complex, was evaluated with and without infection with Pseudomonas aeruginosa 

(PSA; 1x106 CFU/well in 50 µL) PAO1 (16), by application of FITC-dextran, molecular weight 

3-5,000 (Sigma) to the apical surface for 15 minutes, followed by transfer of 50 µL from the 

lower transwell chamber to a flat-bottom 96-well plate. The amount of paracellular permeability 

was measured using a fluorescence plate reader with excitation of 490 nm and emission at 520 

nm. NHBE cells were either kept uninfected or were infected with PSA PAO1 (1x106 CFU/well 

in 50 µL) (5). After 2 hours of infection, basolateral supernatant was collected. NHBE cells were 

harvested either with RLT buffer (Qiagen) or with RIPA buffer and stored at -80°C for RNA and 

protein studies. 

 

ELISA and Western Blot 

The supernatants collected from NHBE cells were measured for IL-8/LIX using the Human IL-

8/CXCL8 Quantikine ELISA Kit (R&D systems) following the manufacturer supplied protocol. 

For Western Blots, cell lysates were prepared from NHBE cells with ice-cold RIPA buffer 

containing protease inhibitor (Roche) and phosphatase inhibitor (Sigma) cocktails. An equal 
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amount of protein (50 µg) was loaded in each lane of 8% SDS-PAGE and transferred onto 

nitrocellulose membrane (Bio-Rad). The membrane was blocked in 5% non-fat milk in TBST 

(Tris-buffered saline with 0.05% Tween-20), incubated with the tight junction protein antibody 

for zona occludins (ZO1) (Proteintech; 1:1000) and tubulin (Proteintech; 1:10,000) in 5% milk-

TBST for incubation overnight at 4°C. ZO1 was detected at a molecular weight of 195 kD, while 

tubulin was detected at a molecular weight of 55 kD. After imaging, blots were opened in 

ImageJ, converted to 8-bit files, background removed via adjustment of the threshold to Huang, 

and the integrated density of each band was measured. 

 

Animals 

Six to eight week-old female C57BL/6 and CD-1 (ICR) mice were purchased from Harlan 

(Envigo). Inbred C57BL/6 mice are known to be susceptible to emphysema and oxidative stress 

(29), while outbred CD-1 mice are resistant (14). Mice were acclimated to the individual, soft 

mesh restraints (SciReq) for 30 min daily for 2 days. Mice were then exposed to EV daily, for 5 

days per week, for 3-6 months, using the nose-only InExpose system (SciReq) as we previously 

described (32), using a flow rate of 2 L/minute and exposure time of 4 seconds of EV every 20 

seconds for 60 minutes daily (7). Because C57BL/6 mice are more susceptible to pathologic 

effects of smoke inhalation (emphysema), and more susceptible to disease in general, the 

duration of their chronic EV exposure was set at 3 months, while the hardy, emphysema resistant 

CD-1 strain was exposed to EV for 6 months. Mice in the air control group were placed in the 

same restraints, but inhaled room air only. Cheek bleeds were performed 30 min post-exposure, 

and serum cotinine concentration determined via ELISA (Calbiotech). Serum cotinine levels in 

C57BL/6 mice were 269 ng/mL +/- 15.6, and in CD-1 mice were 288 ng/mL +/- 39, post-EV 
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exposure for 60 minutes. C57BL/6 mice were exposed to EV or Air daily for 3 months. CD-1 

mice were exposed to EV or Air daily for 6 months. All mice were placed in pre-warmed cages 

for 30 minutes to recover after restraint. The last exposure was done the day of harvest, with 

mice being placed on a warming pad for heart rate and blood pressure measurements (15-30min 

post-exposure), followed by application of anesthesia, terminal intracardiac bleed and organ 

harvest. Animal experiments were conducted in accordance with the National Institutes of 

Health, Guide for the Care and Use of Laboratory Animals under protocols approved by the 

Institutional Animal Care and Use Committees at the University of California San Diego and the 

VA San Diego Healthcare System. 

 

Circulating pro-inflammatory cytokines 

Blood was placed at 4°C for 15 min, spun at 3,000 rpm for 15 min at 4°C, and plasma stored at -

80°C for measurement of total protein (BCA Total Protein Assay Kit; Pierce) and inflammatory 

cytokines via Mouse XL Cytokine Array (Proteome Profiler by R&D), according to the 

manufacturer’s instructions. In brief, for CD-1 mice, plasma samples were individually checked 

for protein concentration prior to pooling for proteome array, with equal volumes of plasma from 

individual mice combined into one sample (n = 6 for both groups). Individual plasma samples 

from C57BL/6 mice were run (n = 3 for both groups). Proteome films were blinded, scanned, 

uploaded to imageJ, background removed via threshold adjustment, and pixel density for each 

pair of cytokine dots quantified. Data is presented as a ratio of EV to Air. 

 

Renal Function  
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To determine glomerular filtration rate (GFR), the week prior to harvest, mice were exposed to 

EV or Air for 60min, and allowed to recover for 60 minutes. Mice were placed under inhaled 

isoflurane anesthesia and FITC-sinistrin (2 µl/g body weight) was injected retro-orbitally with a 

30G needle. Subsequently, the anesthetized mouse fully regained consciousness. Tail vein 

puncture was utilized to collect blood in 10 µL Na-Heparin Minicaps at the following times after 

injection: 3, 5, 7, 10, 15, 35, 56, and 75 minutes. Samples were analyzed for FITC-Sinistrin 

concentration using a NanoDrop 3300.  

 

Cardiac Function 

For the week prior to harvest, EV and Air mice underwent heart rate (HR) and blood pressure 

(BP) monitoring for 30 minutes after EV or Air exposure (n = 6 for all groups). HR and BP were 

obtained using a CODA Monitor, non-invasive BP system (Kent Scientific) as described 

previously (23, 42, 43). We concomitantly checked HR via pulse oximeter by PhysioSuite (Kent 

Scientific). 

 

Renal, cardiac and liver fibrosis evaluation 

Mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/mL) and euthanized, by 

a terminal intracardiac bleed. The right kidney, one lobe of liver and the base of the heart were 

then immediately dissected and placed in Z-fix at 4°C. After 48 hours all organs were moved to 

75% ethanol and submitted to the UCSD histology core for paraffin embedding. Collagen was 

detected in 5 µm sections first by Masson’s trichrome stain. All histology slides underwent 

quantification of fibrosis by calculating the mean percent fibrotic area in > 30 randomly acquired 

20x images using computer aided morphometry performed using a macro in ImageJ as 
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previously described (23, 31, 42, 43). Collagen deposition was also detected by 5 µm sections on 

Picrosirius red staining. All histology slides were blinded and underwent quantification under 

bright field microscopy by calculating a relative area of brightness at a set threshold (157,255), 

in relation to the area of 6 randomly acquired 10x images, computer aided morphometry 

performed using an ImageJ macro (https://imagej.nih.gov/ij/docs/examples/stained-

sections/index.html). All slides underwent these computer analyses in an identical fashion. 

Fibrotic area is presented relative to that of air controls. 

 

Quantification of fibrosis markers in renal and cardiac parenchyma 

After daily exposure to EV for 5 days per week, for four weeks (1 month), the left kidney and the 

apex of the heart from both CD-1 and C57BL/6 Air and EV mice were snap frozen and stored at 

-80°C. 30 mg of frozen left ventricular or renal tissues were homogenized in Trizol and total 

RNA was isolated using the RNeasy kit (Qiagen), followed immediately by cDNA synthesis 

using the First Strand cDNA synthesis kit (Qiagen), according to the manufacturer’s protocol. 1 

μg of total RNA was used for the initial reaction. cDNA was stored at -20°C, and was used for 

quantitative real-time polymerase chain reaction (qPCR) within 2 weeks.  

 

To quantify extracellular matrix gene expression in murine cardiac and renal tissues, species 

specific primers were purchased from Qiagen for Collagen 1a1 (Col1a1; PPM03845F), Collagen 

3a1 (Col3a1; PPM04784B), Collagen 4a1 (Col4a1; PPM05145A), Matrix metalloprotease 2 

(Mmp2; PPM03642C), Integrin beta 1 (Itgb1; PPM03668D), Fibrillin 1 (Fbn; PPM36411E), and 

Elastin (Eln; PPM36834B), in addition to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 
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PPM02946E) as a control. RT2 SYBR Green qPCR reaction mix (Qiagen) was used according to 

the manufacturer’s protocol, with an ABI 7500 Fast platform (Life Technologies). Determination 

of mRNA expression was computed by comparing the relative change in cycle threshold value of 

the target (ΔCt) from the internal control, GAPDH. Fold change in expression in EV tissues 

versus air controls was then calculated for each mRNA in each sample using expression = 2-ΔΔCt 

methodology (36). 

 

Statistical analyses:  

Data are presented as means ± Standard Error of the Mean (SEM). Data obtained were analyzed 

by t-test or by two-way ANOVA, where appropriate. Analyses were conducted using Graph Pad 

Prism 6 software. 

 

Results 

E-cigarette vapor inhalation increased the levels of circulating inflammatory cytokines  

We hypothesized that repetitive inhalation of EV leads to stress in or damage to pulmonary 

epithelial cells, which leads to the release of factors into systemic circulation. In mice inhaling 

one hour of EV daily, for 5 days per week, we found higher levels of several inflammatory 

cytokines in the circulation (significance was defined as a 20% change compared with Air 

control mice), and lower levels as well (Figures 2A-B). Proteins that changed in both strains of 

mice (*) are of particular interest since these changes were induced by chronic EV inhalation 

across genetically different backgrounds (Table 1). Proteins from the same family (such as 

metalloproteases MMP-9 and MMP-2) that had changes in quantity across the two strains are 

also demarcated (✢). Overall, the finding of changes in expression, production or secretion of 
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multiple inflammatory protein levels, both increases and decreases, suggests that chronic EV 

inhalation causes systemic immunomodulation. 

 

To begin to understand where the immunomodulatory signals originate we evaluated the 

inflammatory state of the lungs. Lungs from CD-1 mice were examined and had normal 

histopathology (Figure 3A). Within the bronchoalveolar lavage (BAL), dipeptidyl peptidase-4 

(DPPIV / CD26) was elevated 1.7-fold in EV mice versus controls (Figure 3B). DPPIV is an 

enzyme expressed on the surface of cells. It is an intrinsic membrane glycoprotein and has 

general immune regulation and signal transduction functions. DPPIV has been shown to 

modulate macrophage M1/M2 polarization (86) and modulate T-cell recruitment to the lungs 

(49, 71), while inhibition of DPPIV decreases T-cell mediated inflammation (73). DPPIV is 

thought to play a pathologic role in the development of liver, cardiac, and kidney fibrosis (3, 37, 

40, 69). 

 

Nicotine itself has effects on endothelial cell function. The nicotine metabolite cotinine was 

measured in all mice immediately after the final 60 minute EV or air exposure. C57BL/6 mice 

exposed to EV had an average plasma cotinine level of 268.8 ng/mL versus 25.6 ng/mL in Air 

controls, while CD1 female mice exposed to EV had an average of 287.9 ng/mL plasma cotinine, 

versus 3.1 ng/mL in Air controls.  

 

Short term daily exposure to e-cigarette vapor weakened human airway epithelium barrier 

function in vitro 
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One mechanism by which chronic inhalation of EV may lead to systemic inflammatory changes 

is by inducing inflammatory signals at the level of the airways. Exposure of the apical surface of 

confluent NHBEs to 15 minutes daily of EV for 2 and 5 days led to diminished barrier function 

with the passage of 48% and 46% more FITC-dextran from the apical surface down through the 

basal surface, respectively (8,070 vs 4,200 RFI at day 2, and 10,300 vs 5,600 RFI on day 5; p < 

0.01; Figure 4A). Further increase in permeability was observed in NHBEs following infection 

with Pseudomonas aeruginosa. Secretion of the pro-inflammatory neutrophil chemokine IL-8 by 

NHBEs increased 6-fold by ELISA quantification, following EV exposure, in the setting of 

bacterial super-infection (p < 0.05; Figure 4B). Tight junction proteins that function to keep the 

epithelium impermeable were evaluated by Western blot. The level of zona occludens 1 (ZO1) 

was lower in NHBEs after acute EV exposure (p = 0.024), suggesting changes in tight junctions 

induced by EV exposure (Figure 4C). Decreased tight junction proteins suggest that EV leads to 

reduced barrier function in the lungs, which in turn can allow greater passage of external factors 

(antigens and chemicals) into the lung parenchyma and bloodstream.  

 

Chronic exposure to daily e-cigarette vapor induced renal dysfunction and fibrosis in 

C57BL/6 mice 

To determine whether the circulating protein changes demonstrated above are associated with 

organ dysfunction we first evaluated renal function. Three months of daily EV inhalation 

induced a 20% reduction in glomerular filtration rate (GFR) in C57BL/6 mice as compared with 

experimental controls (p = 0.017; Figure 5A), as measured by FITC-sinistrin clearance. Using 

blinded evaluation of Masson’s trichrome stained renal parenchyma (Figure 5B), kidneys from 

EV exposed mice were found to have 87% more collagen in their parenchyma (evidence of renal 
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fibrosis) than did air controls (1.88-fold increase, p < 0.05; Figure 5C). Blinded evaluation of 

Picrosirius red stained renal parenchyma (Figure 5B) confirmed higher deposition of collagen in 

EV kidneys compared to air controls (1.62-fold increase, p = 0.034; Figure 5D). These data 

suggest that regular EV inhalation may have pro-fibrotic effects on kidney parenchyma, which 

could lead to decreased renal function after a relatively short duration of exposure.  

 

Long term e-cigarette exposure in outbred CD-1 mice also induced renal fibrosis 

When genetically diverse, and thus hardier, CD-1 mice were exposed to 1 hour daily of EV for 6 

months, they also developed renal fibrosis (Figure 6A). By trichrome staining, EV kidney 

parenchyma had a 3.2-fold increase in fibrosis compared with experimental controls (p = 0.022; 

Figure 6B). By Picrosirius red staining, EV kidney parenchyma had 2.14-fold higher collagen 

deposition compared to air controls (p < 0.01; Figure 6C). These data suggest that chronic 

inhalation of EV leads to activation of pro-fibrotic pathways systemically, impacting non-

pulmonary organs. Changes in pro-fibrotic gene expression were also observed at earlier times 

(Figure 6D-K). These data add confidence to our findings that fibrosis is stimulated by EV 

exposure since outbred CD-1 mice are genetically diverse, with higher likelihood of results being 

translatable to human subjects.  

 

Recent work in our lab has revealed that decreased tissue expression of miR-29b-3p is a 

mechanism of cardiorenal toxicity and organ fibrosis in chronic kidney disease and in response 

to combustible cigarette exposure (21, 22, 48). We found molecular evidence of early pro-

fibrotic changes in renal tissues of EV exposed mice at 1 month – lower expression of the anti-
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fibrotic miRNA miR-29b-3p (Figure 6D) and higher expression of collagen-1 within CD-1 renal 

parenchyma (Figure 6E). The expression of additional pro-fibrotic factors, Col3a1, Col4a1, 

Itgb1, and Fbn1, were all significantly increased in renal tissues from e-cigarette exposed 

animals (p < 0.05; Figs. 6F, 6G, 6I, and 6J). Extracellular matrix remodeling factor Mmp2 

trended up, but not significantly (Figure 6H). The fibrosis component Eln trended down (Figure 

6K). When we completed similar renal studies with our collaborators studying renal fibrosis in a 

cigarette smoke (CS) inhalation model, we found a similar fibrosis pattern (21). These data 

suggest that a shared component of EV and CS, such as nicotine, may be the etiologic agent in 

distant organ injury and fibrosis.  

 

Chronic e-cigarette vapor inhalation induced cardiac fibrosis and altered cardiovascular 

function 

Examination of cardiac tissue revealed a 2.75-fold greater level of fibrosis in hearts from CD-1 

mice exposed to EV for 6 months compared with controls (p < 0.001; Figures 7A-B). When we 

examined hearts after only 4 weeks of daily EV exposure, we found increased expression of 

collagen-3 (p < 0.05; Figure 7C), although levels of collagen-1 were not elevated (Figure 7D). 

These data extend our findings from kidney to heart and thus suggest global pro-fibrotic 

signaling induced by chronic EV inhalation. 

 

We evaluated cardiovascular function in the C57BL/6 mice exposed to EV for 3 months, and 

found decreased heart rates (HR), as compared with air controls (p < 0.01; Figure 7E). EV mice 

also tended to have more HR variability (oscillations between consecutive instantaneous HR; 
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Figure 7F). Systolic blood pressure (SBP) was increased in e-cigarette exposed mice (p = 0.016; 

Figure 7G) and diastolic blood pressure (DBP) trended up (p = 0.050; Figure 7H). These data 

demonstrate effects of daily EV inhalation on cardiac function, including blood pressure and 

heart rate, which could have a long-term impact on cardiac hypertrophy and function. 

 

Chronic e-cigarette vapor inhalation induced hepatic fibrosis 

The finding of multi-organ fibrosis suggests the presence of a circulating pro-fibrotic signal, and 

the possibility that other susceptible organs may be affected. Livers from CD-1 mice exposed to 

EV for 6 months were examined in a blinded fashion and consistently shown to have higher 

levels of fibrosis by collagen staining (Figure 8A-B). 
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Discussion 

E-cigarettes are considered by many to be safer than conventional cigarettes. While this is most 

likely the case in terms of carcinogenesis (81), conclusions as to their general safety have yet to 

be made. We present here, for the first time, evidence that chronic e-cigarette use negatively 

impacts multiple organs in mammals of different genetic backgrounds. Daily inhalation of EV 

made from PG, Gly and 24 mg/mL nicotine for 3 or 6 months led to fibrosis in heart, kidney, and 

liver tissues, with concomitant changes in cardiac and renal function. In vitro data suggest that 

toxic components of EV may be disrupting airway epithelium, triggering cells to secrete pro-

fibrotic proteins into circulating blood, leading to damage to multiple organs. Although all three 

organs affected in our studies had a similar pattern of fibrosis, gene expression changes were not 

identical. Kidney parenchyma had elevations in Col1a1 and Col3a1 at 1 month, while cardiac 

tissue only had elevation of Col3a1. The regulation of these two collagens in the myocardium is 

known to be via complex and diverse mechanisms (8, 57). Different organ systems are known to 

respond to stress and inflammation in different ways, and over different time frames (24). 

Myofibroblasts arise from stromal cells within each organ and are the primary sources of 

extracellular matrix protein production. Because myofibroblasts have organ-environment based 

differences in gene expression, which leads to functional heterogeneity, there are differences in 

the types of collagen deposited, and the timing thereof, for myofibroblasts from cardiac, renal 

and hepatic tissues. Although extensive research has been done on fibrosis, there is still much 

unknown about the multitude of cellular and molecular pathways in fibrosis induction, 

progression and termination. 

 

Increased levels of circulating inflammatory proteins due to chronic EV exposure 
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To determine potential pathways through which multi-organ fibrosis is incurred, inflammatory 

protein profiles were examined using plasma from two mouse strains (C57BL/6 – individual 

samples; CD-1 – pooled samples). We report here only proteins that were different by 20% or 

more in EV mice relative to Air controls, as changes of that magnitude have a greater likelihood 

of potential biologic effects. We focused on changes in circulating inflammatory proteins that 

occurred in both C57BL/6 and CD-1 strains, as activation of inflammatory pathways in disparate 

genetic backgrounds are more likely to be associated with the downstream organ damage and 

fibrosis that was found in our models.  

 

Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is commonly 

systemically elevated in the setting of inflammation (62). LIF was elevated in the circulation of 

EV mice, as compared with Air, with a 30.6-fold increase in C57BL/6 mice and a 6.3-fold 

increase in CD-1 mice (Table 1). LIF is involved with regulation of cell differentiation, 

proliferation, and survival, via activation of both the JAK/STAT3 and MAPK pathways, which 

increase the ability of tumor cells to invade. More importantly, LIF is produced by pulmonary 

cells, including epithelial, smooth muscle and innate immune cells, in response to stressful 

stimuli, including inhalation of air pollution and endotoxin (47), and is thought to confer 

protection (78), even in the setting of ARDS. Elevations of circulating LIF in our models 

suggests that inhalation of EV induces stress on pulmonary cells, leading to production and 

release of LIF as a protective response. Increased LIF also suggests increased autophagy, which 

may be an adaptive response to stress or lead to cell death, and LIF is known to increase EGF 

expression, which experienced a 24.6-fold increase in the plasma of C57BL/6 EV mice, and a 
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2.1-fold increase in the plasma of CD-1 EV mice (Table 1). Elevated LIF and EGF suggest that 

EV mice may have systemic increases in cell-proliferation signals. 

 

Angiopoietin 1 (Ang-1) was increased in EV plasma from C57BL/6 and CD-1 mice, compared 

with experimental controls (27-fold and 1.38-fold higher in EV versus Air, respectively). In 

human smokers, Ang-1 has been found to be elevated in the blood, before mild, moderate or 

severe COPD develops (45). This may be due to ongoing vascular remodeling secondary to 

damage by cigarette smoke inhalation. In a C57BL/6 mouse model of renal injury, Ang-1 was 

shown to be elevated in the setting of increased fibrosis (84). It has been demonstrated that 

increased production of Ang-1 by kidney cells can protect against further fibrosis (46, 70). In 

addition, other data show that the production of Ang-1 can decrease cardiac fibrosis in the setting 

of myocyte injury (15, 83). Thus, increased release of Ang-1 may also indicate that defensive, 

protective mechanisms are triggered as a result of renal or cardiac fibrosis in EV mice. Further 

studies are needed to determine the tissues from which Ang-1 is originating during EV 

inhalation. 

 

LIX was elevated 1.92-fold (92% increase) in C57BL/6, and 1.24-fold (24% increase) in CD-1 

mice. CXCL5 (LIX) is secreted by alveolar epithelial type II cells, and plays a role in recruitment 

of neutrophils and macrophages into the lungs (4, 35). LIX is known to be elevated in the setting 

of COPD, smoke exposure, and atherosclerosis (61). Thus, the increase in LIX may contribute to 

an influx of immune cells into the lung parenchyma, and suggests that further inhalation of EV 

may lead to disease. 
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Decreased levels of circulating inflammatory proteins due to chronic EV exposure 

MMP-3 has the capacity to degrade multiple components of the extracellular matrix (ECM). 

MMP-3 can degrade collagen III, IV, V, IX, elastin, laminin and fibronectin, and thus 

participates in clearance of fibrosis (tissue remodeling). MMPs in general are known to 

participate in numerous healing and pathologic processes, and changes in plasma levels have 

been correlated with disease progression and mortality. For example, MMP-3 is often elevated in 

the circulation of subjects with rheumatologic disease (44), diabetes (82), and cancer (38), but 

has been found to be lower in the setting of acute myocardial infarct, when activation of fibrosis 

helps stabilize infarcted cardiac tissue (64, 65). Increased levels of MMP-3 after acute MI are 

associated with increased adverse cardiac remodeling and death (41). Chronic inhalation of EV 

led to diminished circulating levels of MMP-3, with a 5.29-fold decrease in C57BL/6 mice, and 

an 8.42-fold decrease in CD-1 mice (Table 1). Studies have found that knocking out MMP-3 

leads to increased tumor growth and metastases, with reduced tumor infiltration of innate 

immune cells (55). Thus, diminished circulating MMP-3 in EV mice may indicate that organ 

injury due to chronic EV inhalation is occurring and is leading to activation of fibrosis pathways. 

But these lower levels of MMP-3 may also be evidence of increased risk of carcinogenesis.  

 

Chitinase 3-like 1 (YKL-40) was decreased 38.9-fold in C57BL/6, and 1.22-fold decreased in 

CD-1 mice. Chitinase 3-like 1 is also elevated in neutrophilic inflammation and is thought to be 

secreted more by pro-inflammatory macrophage phenotypes, and less so by anti-inflammatory 

macrophages (50). One hypothesis of why YKL-40 is diminished in the setting of chronic EV 
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inhalation is that the nicotine within the EV activated anti-inflammatory pathways (11), leading 

to a shift to anti-inflammatory monocytes in the circulation.  

 

WISP-1 is associated with pathologic processes including inflammation, tissue repair, and cancer 

(26). WISP-1 was decreased 2.15-fold in C57BL/6, and 1.49-fold decreased in CD-1 mice. 

However, the significance of these changes is unclear, as elevated circulating WISP-1 has been 

associated with renal fibrosis (85) and in cancer studies, WISP-1 levels tend to be elevated as 

well (53, 80). 

 

One of the limitations of our studies was the use of pooled plasma samples from CD-1 mice for 

the proteome array studies, as pooling of samples can mask biological variance. We focused on 

changes only found in both strains, to increase the likelihood of detecting changes associated 

with the organ fibrosis seen in both strains. Further studies will be needed to assess the biological 

importance of the differences found, and determine the mechanistic underpinnings. 

 

Relevance of our data to human e-cigarette vapers 

These studies were done with commercially purchased e-cigarette batteries, tanks and e-liquids, 

with puff topography for in vivo studies based off of current use patterns to best mimic human 

use. We included the most common ingredients found in e-liquids: PG, Gly and nicotine. Thus, 

humans using the same or similar devices (Vape pens) and e-liquids could be at risk for the 

effects seen in our models. However, because of the wide variety of e-cigarette devices and e-

liquids on the market, and the variability across batches, our findings from one brand may not be 
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relevant to e-cigarette users (vapers) of other types of e-cigarettes, e-cigarettes from other 

batches or other sources, or even the same devices but at different resistance or voltage (10). E-

cigarette researchers across the world are working to develop guidelines to increase consistency 

across studies, and increase our ability to compare e-cigarette studies to one another (33). 

 

Many investigators work primarily with male mice, as they tend to be more susceptible to organ 

damage. Therefore, the finding of multi-organ fibrosis in female mice could represent an 

important pre-clinical signal. Because there are many sex-related disparities in biomedical 

research, and in murine research in particular, the studies presented here will need to be 

replicated in male mice to determine whether the findings are relevant across sexes. C57BL/6 

mice are the most commonly used strain for basic science research, and many cigarette smoke 

exposure studies have been completed in this emphysema-susceptible strain (6, 67). Outbred CD-

1 mice are more genetically diverse and thus are a hardier strain. Because of their added genetic 

diversity, significant findings in CD-1 mice may be more relevant to human pathophysiology 

(Figures 1A, 4 and 5). The fact that we found organ fibrosis in both, genetically disparate, strains 

of mice, suggests that our results may have a greater likelihood of translatability to humans. 

 

The studies discussed here are limited in that they were done in mice, and there are many known 

disparities between murine and human inflammatory responses and disease pathology (66). 

Exposures were done for 1 hour daily, which is a limited pattern of e-cigarette use compared 

with that of humans, whom more commonly inhale EV for short periods of time throughout the 

day (20). Nonetheless the fact that changes were observed with only once daily exposure 

suggests that even larger changes in the same parameters might accompany multiple daily 
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dosing. Finally, this work was done with e-liquid containing all three of the ingredients found in 

most e-liquids – PG, Gly and nicotine – and thus we cannot discriminate between them in terms 

of which may be driving the pathology seen. Further research is needed to evaluate the potential 

effects of each individual component. 

 

Role of airway epithelium in systemic effects of e-cigarettes 

Airway cells, including bronchial epithelial cells, are the first line of defense and protect the host 

from toxic inhalants. Epithelial permeability is critical for tissue homeostasis (27). The use of e-

cigarettes causes modulation of innate immune homeostasis and alters inflammatory cytokine 

expression. The decreased expression of tight junction protein ZO1 and increased permeability 

of bronchial epithelial cells can give components of EV access to the systemic circulation, by 

which they can interact with other tissues to generate fibrosis, as observed clearly here. In 

addition, the decreased barrier function may allow greater passage of external antigens and 

inhaled chemicals into the body, increasing inflammation both locally in the lungs and 

systemically. The further worsening of EV exposed airway epithelial barrier function in the 

setting of infection suggests that vaping may allow easier entry for pathogens into the lung 

parenchyma and circulation. This may lead to increased rates of invasive bacterial infections in 

e-cig users. These studies were limited by the relatively acute ex vivo exposure over 3-5 days. 

Further studies are needed to determine whether tight junction and permeability changes persist 

in the chronic setting, in vivo. 

 

Perspectives and Significance 
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Our findings of multi-organ dysfunction and fibrosis induced by regular inhalation of EV 

produced by vape pens illustrate the need to expand clinical, epidemiological, and basic science 

research studies to include possible effects on organ systems outside of the pulmonary system. 

Our findings of significant pathophysiologic affects caused by inhalation of non-flavored EV 

give credence to the belief that there are toxic effects of EV components, beyond those of 

flavorings alone. The data presented here highlight the need to devote more resources to study 

these increasingly popular nicotine delivery devices.  
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Figure Legends 

 

Figure 1. Diagram of an electronic (e)-cigarette (A). For our in vitro model of firsthand EV 

exposure (B), the e-cigarette hooked up to rubber tubing and a 3-way stopcock, such that 

negative pressure is applied to the mouthpiece via pulling back the plunger on a 60mL syringe, 

generating fresh e-cigarette vapor (EV). The syringe is filled with 50mLs of EV each time, and 

the EV is subsequently exhaled through the side-port of the 3-way stopcock onto primary human 

airway epithelial cells. 

  

Figure 2. C57BL/6 (A) and CD-1 (B) mice exposed daily to EV for 3 and 6 months, 

respectively, had modulated levels of inflammatory proteins in the serum, consistent with 

an altered systemic inflammatory state. Sera were evaluated by 111-cytokine antibody array 

(Proteome Profiler Mouse XL Array; R&D), and graphed as a ratio of EV/Air for proteins that 

increased with EV exposure, and Air/EV for proteins that decreased with EV exposure. A. 

Changes in C57BL/6 serum protein levels caused by EV exposure are shown, with a 20% 

threshold in either direction, including large rises in Angiopoietin-1 and EGF in EV mice, and 

much decreased Chitinase 3-like 1 and MMP-3 in EV mice (n = 3 per group). B. Serum protein 

changes in CD-1 mice, including large increases in LIF (murine equivalent of IL-8) and EGF, 

and large decreases in MMP-3 and WISP-1 (n = 6 per group, pooled). *Protein changes occurred 

in both CD1 and C57BL/6 mice.  

 

Table 1. Circulating inflammatory proteins that changed in both C57BL/6 and CD-1 mice 

chronically exposed to EV. Proteins which were elevated in the plasma of EV mice are in blue, 

and proteins which decreased in the plasma of EV mice are in orange. 
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Figure 3. Mice that inhaled EV for an hour daily had inflammatory changes only at the 

protein level. A. Lung parenchyma was stained with H&E and Masson’s Trichrome stains. One 

lung slice per mouse, including large, medium and small airways, was evaluated by a blinded 

pathologist, and no pulmonary inflammation, emphysema or fibrosis was found in EV mice 

relative to Air controls (n = 6 per group). B. The airways of mice, as measured through BAL, had 

alterations in the inflammatory cytokine profile. BAL was pooled within EV and Air control 

groups (n = 6 within groups) and was evaluated by 111-cytokine antibody array (Proteome 

Profiler Mouse XL Array; R&D), and graphed as a ratio of EV/Air. BAL from EV mice had 

decreased levels of LIX (murine version of IL-8; 519-fold lower or approximately 0.2% of Air 

levels) and VCAM-1 (99-fold lower or 1% of Air levels). EV BAL had increased levels of 

DPPIV (1.7-fold or 58% higher than Air levels).  

 

Figure 4. Primary normal human bronchial epithelial cells (NHBEs) became leaky and 

pro-inflammatory with daily short 15 minute EV exposures for 2-5 days. A. EV treated 

NHBE cells tested for permeability with FITC-dextran had greater passage of small molecules, 

compared with controls exposed to Air only, on both day 2 and day 5 (p < 0.01; Mean +/- SEM; 

wells were run in triplicate). B. EV exposed NHBEs secreted more IL-8 than Air controls in 

response to bacterial infection (37 vs 227 pg/mL, respectively; p < 0.05; wells were run in 

triplicate). C. Protein quantification of Western blots of the tight junction protein zona occludins 

(ZO1) found 3.3-fold lower quantities in NHBEs after EV exposure, as compared with Air 

controls (p = 0.024; n = 3). Levels of loading control tubulin were similar across samples (p = 

0.99).  
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Figure 5. Chronic EV inhalation diminished cardiorenal function and induced renal 

fibrosis in C57BL/6 mice exposed to EV for 3 months. A. EV induced a 20% reduction in 

glomerular filtration rate (GFR) as compared with experimental controls (p = 0.017). B. 

Representative Masson’s trichrome 20x, Picrosirius Red 20x bright-field and 10x polarized light 

photomicrographs of renal tissue fibrosis. C. Fibrosis was quantified in kidneys from EV and Air 

mice, by blinded grading of kidney sections. EV kidneys had 87% (1.86-fold increase) more 

collagen versus experimental controls. When only the 10 sections with the highest levels of 

collagen staining were compared, EV kidneys still had 1.88-fold higher levels of fibrosis, 

compared with controls. D. Picrosirius red staining also demonstrated higher collagen content in 

EV exposed mice, relative to Air controls (1.62-fold increase, p = 0.034). Mean +/- SEM are 

shown, n = 5-6 per group, p < 0.05.  

 

Figure 6. Induction of kidney fibrosis also occurred in CD-1 mice exposed to EV for 6 

months. A. Kidney parenchyma stained with Masson’s Trichrome and Picrosirius Red stains. B. 

In CD-1 mice, daily EV inhalation for 6 months led to a 3.2-fold increase in renal fibrosis, 

assessed by Masson’s Trichrome stain, relative to air controls (Mean +/- SEM are shown; p = 

0.022). C. Picrosirius red staining also demonstrated 2.14-fold higher collagen content in EV 

exposed mice, relative to Air controls (Mean +/- SEM are shown; p < 0.01). D-K. To assess for 

the origin of fibrosis, genes associated with fibrosis and extracellular matrix pathways were 

evaluated after only 4-weeks of EV or Air exposure. Lower expression of the anti-fibrotic 

miRNA miR-29b-3p (D) and higher expression of collagen-1 within CD-1 renal parenchyma 

(E), suggest that fibrosis begins early in the course of daily EV inhalation. The expression of 

additional pro-fibrotic factors, Col3a1 (F), Col4a1 (G), Itgb1 (I), and Fbn1 (J), were all 
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significantly increased in renal tissues from e-cigarette exposed animals (p < 0.05). Extracellular 

matrix remodeling factor Mmp2 trended up, but not significantly (H). However, the fibrosis 

component Eln was not significantly different (K). *p < 0.05, n = 5-6 for all groups 

 

Figure 7. Chronic inhalation of EV induced cardiac fibrosis and altered cardiovascular 

function. A. Masson’s Trichrome stain of fixed cardiac ventricular tissue from CD-1 mice 

exposed to EV daily for 6 months. B. Quantitative analysis of EV relative to control determined 

that EV hearts had 2.75-fold greater level of collagen staining in ventricular tissue compared 

with controls (***p < 0.001). C-D. When tissues were harvested after only 4 weeks of EV 

exposure, cardiac tissues were found to have higher expression of collagen-3 mRNA (C), but 

normal expression levels of collagen-1 mRNA (D)(*p < 0.05). For figures A-D, n = 6 per group. 

E. In C57BL/6 mice, EV daily for 3 months led to decreased heart rates (HR), as compared with 

air controls (p < 0.01). F. HR were more variable in EV exposed mice, as indicated by greater 

standard deviation within beat-to-beat measurements of each mouse. G. Systolic blood pressure 

was increased in e-cigarette exposed mice (p = 0.016). H. Diastolic blood pressure trended up in 

EV mice (p = 0.050). For figures E-H, n = 19 for EV and n = 20 for Air controls.  

 

Figure 8. Chronic inhalation of EV led to hepatic fibrosis in CD-1 mice exposed to EV for 6 

months. A. Representative Masson’s Trichrome photomicrographs of fixed hepatic tissue. B. 

Quantitative analysis of EV relative to control determined that EV livers exposed to EV daily for 

6 months had 1.9-fold higher collagen deposition, relative to Air controls. Mean +/- SEM are 

shown, n=6 per group. ****p < 0.0001  
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Protein Fold change 

in C57BL/6

Fold change 

in CD-1

LIF 30.6 6.29

EGF 24.6 2.06

Angiopoietin-1 27 1.38

LIX 1.92 1.24

MMP-3 -5.29 -8.42

Chitinase 3-like 1 -38.9 -1.22

WISP-1 -2.15 -1.49

Table 1. Circulating inflammatory proteins that changed in both C57BL/6 and 

CD-1 mice chronically exposed to EV. Proteins which were elevated in the 
plasma of EV mice are in blue, and proteins which decreased in the plasma of EV 
mice are in orange.

Table 1
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