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Computer Algebra and Algorithms for Unbiased Moment 
Estimation of Arbitrary Order

Inna Gerlovinaa,b, Alan E. Hubbarda

aUniversity of California, Berkeley, Division of Epidemiology and Biostatistics, Berkeley, CA 
94720, USA

bUniversity of Caifornia, San Francisco, Department of Medicine, 1001 Potrero Ave, San 
Francisco, CA 94110

Abstract

While unbiased central moment estimators of lower orders (such as a sample variance) are easily 

obtainable and often used in practice, derivation of unbiased estimators of higher orders might be 

more challenging due to long math and tricky combinatorics. Moreover, higher orders necessitate 

calculation of estimators of powers and products that also amount to these orders. We develop a 

software algorithm that allows the user to obtain unbiased estimators of an arbitrary order and 

provide results up to the 6th order, including powers and products of lower orders. The method 

also extends to finding pooled estimates of higher central moments of several different populations 

(e.g. for two-sample tests). We introduce an R package Umoments that calculates one- and two-

sample estimates and generates intermediate results used to obtain these estimators.

Keywords

Combinatorics; empirical moments; higher-order approximations; pooled estimates

1. Introduction

Most data analysis methods rely on estimating unknown quantities such as characteristics of 

an underlying distribution or an effect of a treatment. From a variety of possible estimators 

of an unknown true parameter, the ones that are typically chosen have certain desirable 

properties - e.g. consistency, efficiency, or unbiasedness. When the sample size is moderate 

or small, finite sample behavior of an estimator - such as bias, variability, and mean squared 

error (MSE) - is particularly relevant and is therefore often given special consideration. In 

addition, when estimation is conducted across multiple samples or studies (pooled 

estimators), bias may become an important issue.

Moments of a distribution are the most basic building blocks of statistical analysis and their 

estimates are present in some form in virtually any practical application. A sample average is 

an estimate of the mean (first moment). Estimates of the variance (second central moment) 
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are routinely used in statistical inference; they are present in all studentized statistics, of 

which the most common example is an ordinary t-statistic. Higher moments and their 

estimates, while not as widely used, can be important in various statistical applications and 

inferential procedures; they also comprise cumulants and their scaled versions (skewness, 

kurtosis). They are often used in signal processing, financial modeling, and many other areas 

(for a list of applications see for example [1]). Methods that employ higher order statistics 

might utilize data in a more efficient way and offer greater insight into the distribution of 

interest thus providing additional refinement in inference, for example through the use of 

higher-order approximations to the distribution of a test statistic - such as empirical 

Edgeworth expansions [2-4]. These methods would require higher-order moment estimation 

and warrant considerations about estimators’ finite sample properties; since moderate or 

small sample analysis would benefit from such higher-order approaches, unbiased estimates 

could prove particularly useful.

Naïve estimators mk = n−1∑i = 1
n (Xi − X)k, k = 2, 3,… of central moments μk are biased - 

that is, E(mk) ≠ μk. The first unbiased estimator was introduced for variance by Friedrich 

Bessel; it is obtained by multiplying m2 by a factor n/(n–1), thus often called Bessel’s 

correction. That estimator is a part of an ordinary t-statistic and therefore plays a role in 

Student’s t-distribution; it corresponds to the degrees of freedom in chi-squared distribution 

that arises from ∑i = 1
n (Xi − X)2 χn − 1

2  when X is a standard normal random variable. The 

corresponding standard deviation estimator, however, is still biased (though the bias is 

reduced) and underestimates the true parameter. Interest to unbiased moment and cumulant 

estimation has a long history, which led to theoretical advances and various strategies to be 

able to obtain higher-order estimators. The work of R.A. Fisher (1928) [5] provided basis for 

much of this research, particularly on cumulants; for central moments, unbiased estimators 

up to fourth order (or “weight” in some literature) have been published by Harald Cramér in 

1946 [6]; the results were later expanded for more complex settings (e.g. including weights 

[7]).

Whereas derivation of unbiased moment estimators in general is straightforward, higher 

order calculations involve long algebra and require obtaining nontrivial coefficients; brute-

force calculations of these coefficients become unfeasible fairly quickly. Having 

observations from different populations or categories, requiring pooled estimators, 

compounds the problem. Unlike second and third central moments, where naïve biased 

moment estimators differ from unbiased ones by a constant factor that does not depend on 

data, subsequent orders require calculation of combinations (integer powers and products) of 

lower moments that amount to the same order, which in turn creates systems of equations to 

be solved. With computer algebra, manipulating long algebraic expressions and solving 

reasonably large systems of linear equations is no longer an issue; the challenge can then be 

condensed to finding an expectation of the form E(X
j1X2

j2
X3

j3
⋯), where 

Xj = n−1∑i = 1
n Xi

j, of an arbitrary order and length, written in terms of sample size and true 

central moments of the distribution of X. Thus a software algorithm that solves this problem 

and computer algebra can provide the machinery needed to obtain one-sample and multi-

sample pooled estimates of any order, limited only by available processing power.
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General order solutions for many problems formulated in the course of unbiased estimation 

history, including cumulant and moment estimation, are provided in mathStatica [8], an add-

on package for the proprietory computer algebra system Mathematica. Still, given many 

potential uses for such estimates, there is a need for open-source software and easy to use 

tools, accessible to a wide range of researchers, that could be seamlessly incorporated into 

data analysis. Multi-sample pooled estimation, which has not received much attention in 

higher-order statistics pursuit (and is not included in mathStatica), can have many practical 

applications, especially in two-sample settings (e.g. comparing treatment and control 

groups). In addition, open access to the code and algorithms that are used in generating 

arbitrary order estimates can be used for obtaining other statistical results, e.g. Edgeworth 

expansions. We introduce an R package Umoments [9], which provides pre-programmed 

functions that calculate one- and two-sample estimates up to sixth order, either from data or 

from naïve biased estimates, as well as algorithms and tools for generating general order 

estimators.

In this paper, we break down the procedure of obtaining unbiased moment estimators of an 

arbitrary order, as well as estimators of products and powers of moments (also referred to as 

generalized h-statistics [10]) such as μikμjl⋯; an analogous procedure is provided for multi-

sample pooled estimators. Additionally, this direct approach is illustrated in the Sage and 

Jupyter https://github.com/innager/unbiasedMoments templates. Next we describe the 

algorithm that generates an expression for expectation of raw (non-central) sample moments 

and their powers and products, thus automating the challenging part of the derivation. 

Results section provides a full set of one-sample unbiased estimators up to sixth order (or 

“weight” in some literature); two-sample pooled estimators can be found in Umoments 
package but orders four and higher are too long to include in the paper. Results are followed 

by a quick overview of Umoments package functions; we conclude with a discussion about 

practical applications of these estimators.

2. Procedure in General

2.1. One-sample estimates

For simplicity, we can consider a mean-zero random variable without any loss of generality. 

Let Xi,…,Xn be a sample of independent identically distributed random variables with E(X) 

= 0 and central moments μk (mean μ1 = 0, variance μ2), in this case equal to raw moments; 

X = 1
n ∑i = 1

n Xi. We also adopt the following useful notation:

Xj = 1
n ∑

i = 1

n
Xi

j

mk = 1
n ∑i = 1

n (Xi − X)k - naïve biased central moment estimators

M (·) - unbiased estimator of an expression inside the parentheses (for quantities such as 

central moments and their powers and products), e.g. E M(μ3
2) = μ3

2.
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The steps to obtain unbiased estimators of a general order are straightforward:

(1) for a desired order, list all the moment combinations for that order (example provided 

below);

(2) expand their naïve biased estimators (remove the brackets);

(3) take expectations and represent the results in terms of moments μk and sample size n; 

this will produce an equation or a system of equations;

(4) solve this equation or a system of equations for true moments.

As an illustration, we go through these steps for M(μ3), an unbiased estimator of a third 

central moment:

m3 = 1
n ∑

i = 1

n
(Xi − X)3 = 1

n ∑
i = 1

n
Xi

3 − 3
n ∑

i = 1

n
Xi

2X + 3
n ∑

i = 1

n
XiX

2 − 1
n ∑

i = 1

n
X3

E(m3) = E(X3) − 3E(XX2) + 3E(X3) − E(X3) = μ3 − 3
nμ3 + 2

n2μ3

μ3 = n2

(n − 1)(n − 2)E(m3)

M(μ3) = n2

(n − 1)(n − 2)m3

(1)

Steps 2 and 4 are trivial and are performed using computer algebra. Calculation of any 

unbiased moment estimator of a given order involves all the combinations (powers and 

products of moments) of that order, which means that for fourth and higher orders there will 

be a system of equations rather than a single equation (recall that μ1 = 0). For example, 

estimators of seventh order will include M(μ7), M(μ2μ5), M(μ2
2μ3) and M(μ3μ4) (step 1); step 

2 will correspondingly expand m7, m2m5, m2
2m3 and m3m4 producing four equations. Since 

the equations need to be solved for a given order’s combinations of true moments, not 

individual moments, and all the equations in the system are linear in that order, it makes 

sense to treat these combinations as single variables, thus solving a system of linear 

equations.

Step 3 is more challenging but the problem can be reduced to finding an expression for 

E X
j1X2

j2
X3

j3
⋯  since any term from the right hand side of step 2 equations can be written 

in that form - e.g. 1
n5 ∑i = 1

n ∑j = 1
n ∑k = 1

n ∑l = 1
n ∑m = 1

n XiXj
4Xk

2Xl
2XmX3 = X5X22

X4. A 

general solution to this problem is provided in Umoments package [9] that generates 

expressions for these expectations using combinatorics. This algorithm is explained in detail 

in section 3.
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2.2. Pooled estimates

A simple extension of the method can be used to obtain unbiased estimators of central 

moments for samples that contain observations from several populations or categories. We 

demonstrate the procedure on a two-category estimation, which extends trivially to any 

number of categories.

For a sample X1,…,Xnx, Y1,…,Yny, X ⊥ Y, let

mxk = 1
nx

∑
i = 1

nx
(Xi − X)k,

myk = 1
ny

∑
i = 1

ny
(Y i − Y )k, and

mk =
∑i = 1

nx (Xi − X)k + ∑i = 1
ny (Y i − Y )k

nx + ny
= nxmxk + nymyk

nx + ny
,

(2)

where mk is a two-sample analog of the naïve biased estimator described previously. Note 

that pooled estimation implies an assumption of equality of estimated central moments 

between distributions of X and Y : μxk = μyk = μk, k = 2,3,…. Using this assumption, 

independence of X and Y, and one-sample results from step 3 in section 2.1, we extend step 

3 of the roadmap to incorporate two variables and obtain expectations.

Example: obtain two-sample pooled estimate of the third central moment. Using one-sample 

result (1), get

E(m3) =
nxE(mx3) + nyE(my3)

nx + ny
=

nx2ny + nxny2 − 6nxny + 2nx + 2ny
nxny(nx + ny) μ3

= 1 −
2(3nxny − nx − ny)

nxny(nx + ny) μ3,

which yields

M(μ3) = nxny(nx + ny)
nx2ny + nxny2 − 6nxny + 2nx + 2ny

m3 . (3)

For this particular example, the result matches one-sample case if nx = ny. That is not true in 

general, however. All the higher orders involve powers and products of lower moments that 

need to be expanded before taking expectations, affecting the systems of equations. For 

example,

E m2
2 = E

nxmx2 + nymy2
nx + ny

2
=

nx2E(mx2
2 ) + 2nxnyE(mx2)E(my2) + ny2E(my2

2 )

(nx + ny)2
.

Gerlovina and Hubbard Page 5

Cogent Math Stat. Author manuscript; available in PMC 2020 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Generating Expressions for Expectations

To derive general order expectations of naïve moment estimators and their powers and 

products, one needs to find expectations E X
j1X2

j2
X3

j3
⋯ . To build up to this, we first 

describe the procedure for generating E Xk , which easily extends to E XkX2l
 and then to 

the general case that involves an arbitrarily long product of Xi
ji

.

3.1. Generate E Xk

E(Xk) = 1
nk ∑

i1 = 1

n
∑

i2 = 1

n
⋯ ∑

ik = 1

n
E Xi1Xi2⋯Xik (4)

To find (4), we need to consider all the different combinations of ordered indices i1, i2,…,ik; 

ij = 1,…,n for each j. There are nk such combinations but many combinations yield the same 

E(Xi1 ⋯ Xik) - for example, 

E(X2X2X2X2X2X5X5X1X1) = E(X4X3X4X6X6X3X6X6X6) = μ2
2μ5. Combinations that 

produce the same expectation form a set that we will call a grouping (similar to “partitions” 

and “augmented symmetric functions” in some terminology), and the problem therefore 

reduces to considering all the groupings (each producing a distinct expectation) and 

calculating their coefficients, which are the number of combinations in each set. Each 

product Xi1⋯Xik can be broken into smaller products, or groups, of X‘s with the same 

indices such as {Xij :ij = c}, c = 1,…,n. The number of groups ranges between 1 (when all 

the indices are the same: i1 = i2 = … = ik) and k (when all the indices are different: i1 ≠ i2 ≠ 

⋯ ≠ ik); sizes of these groups determine E(Xi1⋯Xik). Thus each grouping is fully 

characterized by the number of groups and the group sizes.

Let d denote the number of groups in one grouping G and a1,…,ad - the numbers of X‘s in 

each group, ∑u = 1
d au = k; set of group sizes is unordered, so assigning indices to a‘s is 

arbitrary (e.g. decreasing). In the example above: k = 9, d = 3, a1 = 5, a2 = 2, and a3 = 1. If 

∑u = 1
d I(au = 1) > 0 (at least one group is of size 1), E(Xi1 ⋯ Xik) = 0 since E(X) = 0 and 

there is no need to calculate a coefficient for this grouping, which is important in terms of 

computational efficiency; otherwise E(Xi1⋯Xik) = ∏u = 1
d μau. Adding a subscript g to 

indicate a grouping G, we get

E Xk = ∑
allg

Cg ∏
u = 1

dg
μag, u, (5)

where Cg is the coefficient for G, i.e. the number of combinations that yield {ag,u}.
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Cg = (n)d
k!

ag, 1!ag, 2!⋯ag, d!sg, 1!sg, 2!⋯, (6)

where (n)d = n(n–1)⋯(n–d+1) and sg’s are the numbers of the same sized groups if there are 

any - e.g. for group sizes a1 = a2 = 5, a3 = a4 = 4, and a5 = a6 = a7 = 2, we will get s1 = 2, s2 

= 2, and s3 = 3 (from these we can gather that k = 24, d = 7, and E(X1⋯Xk) = μ5
2μ4

2μ2
3). In 

this particular setting, Cg/(n)d is analogous to the partition coefficient described in the 

literature [5, 11]. Going back to our original example (group sizes {5, 2, 2}) - there is only 

one sg: sg,1 = 2; the coefficient for that example is Cg = n(n − 1)(n − 2) 9!
5!2!2!2! .

One way of arriving at the expression for Cg could be the following: there are 
(n)d

sg, 1!sg, 2!⋯

ways to pick (unordered) indices that satisfy given group sizes (set {ag,u}) and 

k!
ag, 1! ag, 2! ⋯ ag, d! =

k
ag, 1

k − ag, 1
ag, 2

⋯
ag, d − 1 + ag, d

ag, d − 1
 ways to place these indices on k 

positions (a multinomial coefficient).

Our software generates expressions for E Xk  for a given k using the method described 

above. To find all the possible groupings, we impose an ordering on them and use it to 

generate each consecutive grouping when the previous one is given, thus moving through a 

complete set of groupings from to {a1 = k} to {a1 = a2 = … = ak = 1}. For example, in an 

agglomerative order, a grouping {5, 2, 2} is preceded by {5, 2, 1, 1} and followed by {5, 3, 

1}.

The smallest number of groups is d = 1, which produces an order of n
nk = 1

nk − 1  (the highest 

order in the range); the largest d with a non-zero contribution to E(Xk) is k
2  (when the 

indices of X appear in pairs and there are no unpaired indices; when K is odd, one of the 

groups is of size 3), and the order it produces is 1

n
k
2

.

3.2. Generate E XkX2l

E XkX2l
= 1

nk + l ∑
i1 = 1

n
⋯ ∑

ik = 1

n
∑

j1 = 1

n
⋯ ∑

jl = 1

n
E(Xi1⋯XikXj1

2 ⋯Xjl
2 ) (7)

To generate expressions for (7), we extend the algorithm described in 3.1 for equation (4). 

Now groups consist of X‘s and X‘s with the same indices: {Xis, Xjt
2 : is = jt = c}, c = 1,…,n, 

and are thus described not by a single number (group size) but by a pair (a, b), where a is the 

number of i‘s and b is the number of j‘s in the group. Consequently, a grouping in this 

version is characterized by a set of pairs {(au, bu)}, u= 1,…,d; ∑u = 1
d au = k, ∑u = 1

d bu = l and 

its definition is different from the one in 3.1 since for given k and l there can be different 
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groupings that yield the same expectation, e.g. groupings {(2,3),(3,0),(1,1)}, {(4,2),(1,1),

(1,1)}, and {(0,4),(3,0),(3,0)} will all produce E(Xi1⋯Xi6Xj1
2 ⋯Xj4

2 ) = μ3
2μ8. Analogously to 

the original version, if ∑u = 1
d I(a = 1, b = 0) > 0 (at least one pair in the grouping is (1,0)), 

E(Xi1⋯XikXj1
2 ⋯Xjl

2 ) = 0; otherwise E(Xi1⋯XikXj1
2 ⋯Xjl

2 ) = ∏u = 1
d μau + 2bu. Note that to 

account for all the possible groupings in this case, permutations need to be used, adding 

another layer to computational complexity.

Coefficient Cg for a grouping G is calculated in a similar way to 3.1 (equation (6)) with a 

few adjustments:

Cg = (n)d
k! l!

ag, 1!ag, 2!⋯ag, d!bg, 1!bg, 2!⋯bg, d!sg, 1!sg, 2!⋯, (8)

where sg,1,sg,2,… are the numbers of the groups with same values for a and b.

In this case the order ranges from 1
nk + l − 1 , when i1 = … = ik = j1 = … = jk (d = 1), to 1

n
k
2

, 

when all indices is appear in pairs if k is even (“extra” index joining one of the groups if k is 

odd), and all the jt‘s are different from is‘s and each other (d = k
2 + l).

3.3. General Case

The procedure in section 3.2 easily generalizes to finding E X
j1X2j2

X3j3
⋯Xmjm

 for an 

arbitrary m, with groups described by a “tuple” of length m and a grouping being a 

collection of such tuples. Coefficients Cg for groupings G are calculated similarly to (8), 

accounting for all the elements in each tuple.

4. Results (up to 6th order)

Below are the results generated with our software (SymPy code that produces these results is 

in a https://github.com/innager/unbiasedMomentsJupyter notebook):
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M(μ3) = n2
(n − 1)(n − 2)m3

M(μ4) = − 3n(2n − 3)
(n − 1)(n − 2)(n − 3)m2

2 +
n n2 − 2n + 3

(n − 1)(n − 2)(n − 3)m4

M(μ2
2) =

n n2 − 3n + 3
(n − 1)(n − 2)(n − 3)m2

2 − n
(n − 2)(n − 3)m4

M(μ5) = − 10n2
(n − 1)(n − 3)(n − 4)m2m3 +

n2 n2 − 5n + 10
(n − 1)(n − 2)(n − 3)(n − 4)m5

M(μ2μ3) =
n2 n2 − 2n + 2

(n − 1)(n − 2)(n − 3)(n − 4)m2m3 − n2
(n − 2)(n − 3)(n − 4)m5

M(μ6) = 15n2(3n − 10)
(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m2

3 −
15n n3 − 8n2 + 29n − 40

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m2m4

−
40n n2 − 6n + 10

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m3
2 + n(n4 − 9n3 + 31n2 − 39n + 40)

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m6

M(μ2μ4) = − 3n2(2n − 5)
(n − 1)(n − 3)(n − 4)(n − 5)m2

3 + n(n4 − 9n3 + 53n2 − 135n + 120)
(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m2m4

+
4n n2 − 5n + 10

(n − 1)(n − 3)(n − 4)(n − 5)m3
2 −

n n2 − 3n + 8
(n − 2)(n − 3)(n − 4)(n − 5)m6

M(μ3
2) = −

3n2 3n2 − 15n + 20
(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m2

3 +
3n 2n3 − 5n2 − 5n + 20

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m2m4

+
n n4 − 8n3 + 25n2 − 10n − 40

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m3
2 −

n n2 − n + 4
(n − 2)(n − 3)(n − 4)(n − 5)m6

M(μ2
3) =

n2 n2 − 7n + 15
(n − 1)(n − 3)(n − 4)(n − 5)m2

3 −
3n n2 − 5n + 10

(n − 1)(n − 3)(n − 4)(n − 5)m2m4

−
2n 3n2 − 15n + 20

(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)m3
2 + 2n

(n − 3)(n − 4)(n − 5)m6

For two-sample pooled estimators up to 6th order, refer to the Umoments package [9] and a 

https://github.com/innager/unbiasedMoments Sage worksheet.

5. Umoments R Package

Umoments contains a set of pre-programmed functions that calculate one-sample and pooled 

two-sample unbiased moment estimates, both up to sixth order. This functionality is 

primarily useful for data analysis. The estimates can be calculated either directly from the 

sample or from naïve biased estimates, in which case sample size n needs to be provided. 

For two-sample estimation, input should also include labels indicating which observation 

belongs to which sample/category, or both nx and ny for sample sizes. Below are some 

examples.

Two-sample pooled estimates from the data up to sixth order (note that smp is a data vector, 

and treatment is a vector of labels that separates it into two categories):

> uMpool(smp, treatment, 6)

M2 M3 M2pow2 M4 M2M3 M5 M2pow3

1.6443027 1.5188515 2.4878505 6.9794503 2.0615514 17.0989234 3.5236856

M3pow2 M2M4 M6
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0.6674177 9.4046220 56.6016025

Unbiased estimate of μ3
2 from naïve biased 2nd, 3rd, 4th, and 6th moment estimates:

> uM3pow2(m[2], m[3], m[4], m[6], n)

[1] -10.00696

Other functions in the package can be used to obtain higher-order estimators, pooled 

estimators across multiple (3 or more) samples, and other statistical results.

Generate E X3X32
X4  for a sample X1…Xnx (the output is a string that could be used as a 

code chunk, fed into a computer algebra system, or converted into latex):

> one_combination(c(3, 0, 2, 1), "n_x") [1] "
( 1∗n_x∗mu13∧1 + 3∗n_x∗(n_x‐1)∗mu2∧1∗mu11∧1 + 3∗n_x∗(n_x‐1)∗(n_x‐2)∗

(n_x‐3)∗mu5∧1∗mu3∧2∗mu2∧1 + 6∗n_x∗(n_x‐1)∗(n_x‐2)∗(n_x‐3)∗mu4∧2∗mu3∧1∗mu2∧1 +
6∗n_x∗(n_x‐1)∗(n_x‐2)∗mu8∧1∗mu3∧1∗mu2∧1 + 9∗n_x∗(n_x‐1)∗(n_x‐
2)∗mu7∧1∗mu4∧1∗mu2∧1 +
3∗n_x∗(n_x‐1)∗(n_x‐2)∗mu6∧1∗mu5∧1∗mu2∧1 + 3∗n_x∗(n_x‐1)∗mu3∧1∗mu10∧1 + 1∗n_x∗
(n_x‐1)∗(n_x‐2)∗(n_x‐3)∗mu4∧1∗mu3∧3 + 3∗n_x∗(n_x‐1)∗(n_x‐2)∗mu7∧1∗mu3∧2 +
9∗n_x∗(n_x‐1)∗(n_x‐2)∗mu6∧1∗mu4∧1∗mu3∧1 + 6∗n_x∗(n_x‐1)∗(n_x‐2)∗mu5∧2∗mu3∧1 +
12∗n_x∗(n_x‐1)∗(n_x‐2)∗mu5∧1∗mu4∧2 + 7∗n_x∗(n_x‐1)∗mu9∧1∗mu4∧1 + 9∗n_x∗(n_x‐1)∗

mu8∧1∗mu5∧1 + 6∗n_x∗(n_x‐1)∗mu7∧1∗mu6∧1 ) ∕ n_x∧6"

Generate groupings for k=5 (see section 3.1):

> Umoments:::groups(5)

[[1]]

[1] 1 1 1 1 1

[[2]]

[1] 2 1 1 1

[[3]]

[1] 2 2 1

[[4]]

[1] 3 1 1

[[5]]

[1] 3 2

[[6]]
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[1] 4 1

[[7]]

[1] 5

For further details and examples refer to package vignette and documentation [9].

6. Discussion

The difference between unbiased and biased estimators depends on the sample size and 

might be considerable for small samples; also, for fixed sample size, it is relatively greater 

for higher orders. At the same time, variability of the estimators is an important factor to be 

considered in this bias-variance trade-off, especially in connection with sample size n and 

the order of the estimators as variability increases with higher orders (which might be offset 

by the lower contribution/weight of these orders in certain methods) and smaller samples. 

Another question is the relationship between n and the maximal order that could reasonably 

be used in a method; besides purely algebraic restrictions on a sample size given the order, 

apparent from the expressions for unbiased estimators (n⩾k for k‘th order estimators), there 

might be another underlying stricter relationship that needs to be explored, either 

theoretically or numerically.

While unbiased estimators of products and integer powers of moments are possible to 

obtain, that is not the case with ratios and roots. Of course, such biased estimators, like a 

square root s of sample variance s2 = 1
n − 1 ∑i = 1

n (Xi − X)2 or skewness estimator, are widely 

used in practice. Adding to the complexity is the fact that since unbiased estimator of the 

ratio cannot be obtained, simplifying expressions should also be questioned - consider, for 

example, scaled sixth cumulant:

λ6 =
κ6
μ2

3 =
μ6 − 15μ2μ4 − 10μ3

2 + 30μ2
3

μ2
3 =

μ6
μ2

3 − 15
μ4
μ2

2 − 10
μ3

2

μ2
3 + 30

For a closest estimate, it is natural to consider the ratio of an unbiased cumulant estimator 

M(κ6) and an unbiased scaling factor M(μ2
3). Then, is 

M(μ2μ4)

M(μ2
3)

 preferable to 
M(μ4)
M(μ2

2)
 for the 

second term?

This example also provides an illustration for another important consideration that should 

factor into a decision of which estimators to use - variability of the denominator in 

studentized statistics. In λ6, sixth cumulant κ6 is scaled by μ2
3; to substitute for this unknown 

quantity, a variety of estimators can be used: m2
3, [M(μ2)]3, or M(μ2

3), to name a few. While 

expression for M(μ2) (and thus its cube) contains m2 only, the expression for M(μ2
3) includes 

m4 and m6 as well. These higher-order quantities may be highly variable, especially in the 

small sample, and therefore the whole ratio becomes highly sensitive to the small values of 

estimates in the denominator that can inflate λ6 dramatically, increasing variability of the 
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ratio to the point of unusability. Therefore it might be advisable in certain cases, e.g. with 

considerably skewed distributions, to perform some numeric exploration to determine if it 

might be indeed preferable to use lower-order estimators, naïve biased or unbiased, in place 

of parameters in denominators because of their relative stability (“power of mean” instead of 

“mean of power”).
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Public Interest Statement

Higher-order statistics are increasingly used in various research fields and data analysis, 

and central moment estimates are useful for many approaches. Derivation of higher-order 

unbiased central moment estimators has long been a challenging task; software made the 

general order solution possible. This paper describes a direct approach to obtaining 

estimators of any order, including multi-sample pooled estimators. It also introduces an 

open source R package Umoments, which calculates one- and two-sample estimates up to 

6th order and contains machinery to obtain even higher order estimates, including a 

combinatorial algorithm that can be used for solving other problems and assist in long 

derivations (e.g. Edgeworth expansions).
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