Title

Total Synthesis and Structural Revision of (+)-Muironolide A and Late Stage Derivatization of Cyclic Imine Toxins

Permalink

https://escholarship.org/uc/item/3cj8p8j9

Author

Young, Kyle
Publication Date
2017
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Santa Barbara

Total Synthesis and Structural Revision of (+)-Muironolide A and Late Stage Derivatization of Cyclic Imine Toxins

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry
by

> Kyle Young

Committee in charge:
Professor Armen Zakarian, Chair
Professor Bruce Lipshutz
Professor Liming Zhang
Professor Craig Hawker

The dissertation of Kyle Young is approved.

Bruce Lipshutz

Liming Zhang

Craig Hawker

Armen Zakarian, Committee Chair

June 2017

Total Synthesis and Structural Revision of (+)-Muironolide A and Late Stage Derivatization of Cyclic Imine Toxins

Copyright © 2017
by

Kyle Young

Acknowledgements

I would like to sincerely thank my mentor Professor Armen Zakarian for his guidance during my graduate program at UCSB. I have learned a tremendous amount and grown as a chemist during this tenure and I will always be grateful for your tutelage.

Thank you to my colleagues at UCSB, especially in the Zakarian group (past and present). We had very memorable times and I will never forget them.

I would like to thank Professor Bruce H. Lipshutz, Professor Liming Zhang and Professor Craig J. Hawker for serving on my committee.

My family has always given me support and affection and for this I am very thankful. I would especially like to thank my wife, Carol who is an amazing person. You have done so much for me and thank you for your kind love and support throughout the years. Finally, to my son, Ian who has given us so much joy in our lives.

Curriculum Vitae

Kyle Young
March 2017

Education

Bachelor of Science in Chemistry, University of Kansas, June 2008
Bachelor of Science in Chemistry, University of Regensburg, June 2008
Doctor of Philosophy in Chemistry, University of California, Santa Barbara, March 2017

Professional Employment

2000-2004: United States Army, Criminal Investigations Division (CID)
2008-2012: Novartis, Sandoz Inc., Scientist

Publications

1. Mailyan, A.; Young, K.; Chen, J.; Zakarian, A. Stereoselective Guanidylation of Unactivated Alkenes Directed by Hydroxy or Carboxy Groups. Org. Lett. ASAP
2. Young, K.; Xiao, Q.; Zakarian, A. Total Synthesis and Structural Revision of (+)Muironolide A. J. Am. Chem. Soc. 2015, 137, 5907-5910.
3. Young, K.; Xiao, Q.; Zakarian, A. Toward the Synthesis of Muironolide A: Synthesis and Structure of Heteroleptic Lanthanide-Terpyridine Complexes with 2-Oxo Amides. Eur. J. Org. Chem. 2015, 11, 2337-2341.
4. Xiao, Q.; Young, K.; Zakarian, A. An Efficient Synthesis of the Fully Elaborated Isoindolinone Unit of Muironolide A. Org. Lett. 2013, 15, 3314-3317.
5. 5. Rolfe, A.; Young, K.; Volp, K.; Schoenen, F.; Neuenswander, B.; Lushington, G. H.; Hanson, P. R. One-Pot, Three-Component, Domino Heck-aza-Michael Approach to

Libraries of Functionalized 1,1-Dioxido-1,2-benzisothiazoline-3-acetic Acids. J. Comb. Chem. 2009, 11, 732-738.
6. Rolfe, A.; Young, K.; Hanson, P. R. Domino Heck-aza-Michael reactions: a one-pot, sequential three-component approach to 1,1-dioxido-1,2-benzisothiazoline-3-acetic acid. Eur. J. Org. Chem., 2008, 31, 5254-5262.

Awards
Undergraduate Research Award, University of Kansas, 2006
Walter Guber Chemistry Award, University of Kansas, 2007
Kansas IDeA Network of Biomedical Research Excellence (K-INBRE) National
Institutes of Health (NIH) Award, University of Kansas, 2007
European Union Atlantis Program, University of Kansas, 2007-2008
Rickborn-Johnson Fellow, University of California, Santa Barbara, 2014
National Science Foundation Graduate Research Fellowship Program (NSF-GRFP),
University of California, Santa Barbara, 2015
Central Fellowship, University of California, Santa Barbara, 2016
Roche Bioscience Distinguished Teaching Fellowship, University of California, Santa Barbara, 2016
Sandra Lamb Memorial Award, University of California, Santa Barbara, 2016
Robert H. DeWolfe Graduate Teaching Fellowship in Organic Chemistry, University of California, Santa Barbara, 2016

Research Presentations

ISHC (International Society of Heterocyclic Chemistry), Santa Barbara, CA, 2015

ISCC (International Symposium of Carbanion Chemistry), (Poster), Rouen, France, 2016
The French-American Chemical Society (FACS XVI), (Poster), Santa Barbara, CA, 2016

Abstract

Total Synthesis and Structural Revision of (+)-Muironolide A and Late Stage Derivatization of Cyclic Imine Toxins by

Kyle Young

In the Zakarian group, we are interested in the synthesis and application of marine natural products. Elucidating the biological properties of marine natural products is often hampered by a lack of its availability from natural sources in meaningful quantities. Therefore, chemical synthesis remains the most viable option for the production of these molecules. The syntheses of marine natural products frequently open opportunities to develop new synthetic methods, which push the boundaries of current state-of-the-art bond constructions.

Herein, we report the total synthesis and structural revision of (+)-muironolide A. Asymmetric intramolecular Diels-Alder reaction and late stage macrolactonization were the key transformations used for the synthesis of muironolide A, which led us to the reassignment of its structure as (-)-C21-epi-muironolide A.

The second portion describes the late stage derivatization of pinnatoxin compounds. The ultimate goal for pinnatoxin derivatives is introducing ${ }^{18} \mathrm{~F},{ }^{13} \mathrm{C}$ and ${ }^{3} \mathrm{H}$ isotope labeling to probe cellular metabolism and biodistribution in biological systems. This

work builds upon a growing body of information that will provide an understanding of the full biological profile of the structurally complex pinnatoxin compounds.

The last portion of this thesis will focus on synthetic studies towards the synthesis of pteriatoxin A. A regioselective catalytic asymmetric dihydroxylation of pinnatoxin G is the featured method for the installment of the 1,2-diol moiety. Establishing this key step could secure a concise route for the total synthesis of pteriatoxin A.

Table of Contents

Acknowledgements iv
Cirriculum Vitae v
Abstract viii
List of Schemes xii
List of Figures xiv
List of Tables xv
List of Abbreviations xvi
Chapter 1: Total Synthesis and Structural Revision of (+)-Muironolide A
1.1 Introduction 2
1.2 Isolation and Characterization of Muironolide A. 3
1.3 Synthetic Studies Towards the Hexahydro-1 H -Isoindolinone Unit. 5
1.3.1 Molinski’s Studies Towards the Hexahydro-1H-Isoindolinone Unit 5
1.3.2 Mitchell's Studies Towards the Hexahydro-1 H-Isoindolinone Unit 7
1.3.3 Zakarian's Studies Towards the Hexahydro-1 H-Isoindolinone Unit. 8
1.4 Heteroleptic Lanthanide-Terpyridine Complexes with 2-Oxo Amides 13
1.5 Total Synthesis and Structural Revision of (+)-Muironolide A 17
Chapter 2: Late Stage Derivatization of Pinnatoxin Compounds
2.1 Background of Pinnatoxin and Cyclic Imine Toxins 29
2.2 Kishi’s Total Synthesis of (-)-Pinnatoxin A. 31
2.3 Zakarian's Total Synthesis of Pinnatoxin A 35
2.4 Binding Studies of Pinnatoxin A with Nicotinic Receptors (nAChRs) 42
2.5 Studies Towards ${ }^{18} \mathrm{~F},{ }^{13} \mathrm{C},{ }^{3} \mathrm{H}$ Isotope Labeled PnTX Derivatives 45
2.6 Kishi's Total Synthesis of Pteriatoxin A-C 52
2.7 Synthetic Studies Towards Pteriatoxin A 55
Experimental Procedures 61
References 348
List of Schemes
Scheme 1. Identification of CCK of $\mathbf{1}$ via Degradation, Synthesis and HPLC Traces 4
Scheme 2. Asymmetric Intramolecular Diels-Alder Using Organocatalyst 6
Scheme 3. Mitchell's Intermolecular Diels-Alder Approach 7
Scheme 4. Mitchell's Intermolecular Diels-Alder Reaction with Organocatalyst 7
Scheme 5. IMDA Strategy 8
Scheme 6. Synthesis of $\boldsymbol{E}-24$ IMDA Precursor. 9
Scheme 7. Highly Endo-Selective IMDA Reaction with $\boldsymbol{E}-\mathbf{2 4}$ 10
Scheme 8. Synthesis of Z-configured IMDA Precursor. 11
Scheme 9. Highly Exo-Selective IMDA Reaction with \boldsymbol{Z}-33 12
Scheme 10. Synthesis and X-Ray Structures of Ln-Terpyridine Complexes with β-Keto
Amide Ligands 16
Scheme 11. Retrosynthesis of (+)-Muironolide A. 18
Scheme 12. Synthesis of Eastern Fragment Starting From (+)- β-citronellene 19
Scheme 13. Synthesis of Chlorocyclopropyl Ketide (CCK) 21
Scheme 14. Lanthanum Catalyzed IMDA Reaction 21
Scheme 15. Separation of Diastereomers by Preparative HPLC 22
Scheme 16. Macrolactonization via Pathway A 23
Scheme 17. Synthesis of Alcohol 67 24
Scheme 18. Pathway B: Yamaguchi Protocol for Macrolactonization. 24
Scheme 19. Completion of the Synthesis of C21-epi-Muironolide A 25
Scheme 20. Synthesis of C22, C23-epi-Muironolide A. 26
Scheme 21. Completion of (+)-Muironolide A 27
Scheme 22. Bis-Ketalization to Form B,C,D-Rings 33
Scheme 23. Preparation of IMDA Precursor 34
Scheme 24. Completion of Synthesis of (-)-Pinnatoxin A 35
Scheme 25. Synthesis of Allylic Alcohol 110. 37
Scheme 26. Stereoselective Enolization with Chiral Lithium Amines 38
Scheme 27. Diastereoselective Ireland-Claisen Rearrangement 38
Scheme 28. Assembly of G-Ring and Completion of Aldehyde 101 39
Scheme 29. Efficient Enzymatic Resolution for Synthesis of Ketal Precursors 39
Scheme 30. Completion of Spiroketal Fragment 100 40
Scheme 31. Fragment Coupling and Ring Closing Metathesis 41
Scheme 32. Completion of Total Synthesis of Pinnatoxin A. 42
Scheme 33. Proposed Synthesis of $\left[{ }^{3} \mathrm{H}\right]$-PnTX-OH 146 47
Scheme 34. Synthesis of PnTX-OH and Selective Mono Tosylation. 48
Scheme 35. Synthesis of Pinnatoxin-Fluoride 48
Scheme 36. Synthesis of Pinnatoxin 2-Fluoropyridine 49
Scheme 37. Unoptimized Synthesis of Pinnatoxin Methyl Ester. 50
Scheme 38. Synthesis of Pinnatoxin Methyl Ester 51
Scheme 39. Synthesis of C33-C35 Fragments through Enzymatic Resolution 52
Scheme 40. Synthesis of PtTX A-C. 53
Scheme 41. Precedence for Asymmetric Corey-Chaykovsky Epoxidation 54
Scheme 42. Connon Procedure for Asymmetric Epoxidation 56
Scheme 43. Asymmetric Dihydroxylation of Pinnatoxin G. 57
Scheme 44. Catalytic Asymmetric Dihydroxylation of Pinnatoxin G 59
List of Figures
Figure 1. HMBC and NOESY Determination of Stereochemistry at C4, C5, C11, C14
and C17 3
Figure 2. Chlorocyclopropanes in Natural Products 4
Figure 3. Hexahydro-1H-Isoindolinone Unit of Muironolide A 5
Figure 4. Conformational Analysis of Double Bond Isomers 6
Figure 5. Rational for Endo-selective IMDA Reaction for E-Isomer 11
Figure 6. Rational for Exo-selective IMDA Reaction for Z-Isomer 12
Figure 7. Screening of Ligands for IMDA Reaction 14
Figure 8. Muironolide A and C21, C22 and C23-Diastereomers. 18
Figure 9. Three Key Starting Material Fragments 19
Figure 10. Macrolactonization Strategy: Pathway A and Pathway B 20
Figure 11. Pinnatoxins and Pteriatoxins 30
Figure 12. Kishi’s Synthetic Strategy for (-)-Pinnatoxin A 32
Figure 13. Zakarian's Retrosynthesis of Pinnatoxin A. 36
Figure 14. Pinnatoxins Tested for nAChRs Binding Studies. 43
Figure 15. Electrophysiology Experiment of Xenopus Oocytes with PnTX A. 44
Figure 16. Targets of Derivatives Accessed from Azido triol 46
Figure 17. Retrosynthesis of PrTX A via Cysteine Addition to Chiral Epoxide 56
Figure 18. Retrosynthetic Plan for the Synthesis of Pteriatoxin A 58

List of Table

Table 1. Lewis Acid Screening for IMDA Reaction.

List of Abbreviations

Abbreviation, symbol, or chemical formula	Term
9-BBN	9-borabicyclo[3.3.1]nonane
[α]	specific rotation
α	alpha
AcOH	acetic acid
aq.	Aqueous
AgBF_{4}	silver tetrafluoroborate
AgClO_{4}	silver perchlorate
AgOTf	silver triflate
AuCl_{3}	gold(III) chloride
β	beta
$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	boron trifluoride diethyl etherate
Bn	benzyl
BnBr	benzyl bromide
Boc	tert-butyl carbonate
$\mathrm{Boc}_{2} \mathrm{O}$	di-tert-butyl dicarbonate
br	broad
brsm	based on recovery of starting material
BrCCl_{3}	bromotrichloromethane
BSA	bis(trimethylsilyl)acetamide

Bu	butyl
$\mathrm{Bu}_{4} \mathrm{NI}$	tetrabutylammonium iodide
Bz	benzoate
BzCl	benzoyl chloride
${ }^{\circ} \mathrm{C}$	degrees Celsius
c	concentration
${ }^{13} \mathrm{C}$	carbon 13
calcd	calculated
CBz	benzyloxycarbonyl
CCl_{4}	carbon tetrachloride
CDCl_{3}	deuterochloroform
$\mathrm{C}_{6} \mathrm{D}_{6}$	deuterobenzene
$\mathrm{CD}_{3} \mathrm{OD}$	deuteromethanol
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	2,2,2-trifluoroethyl trifluoroacetate
$\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	Trifluoroacetic anhydride
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	dichloromethane
$\mathrm{CH}_{2} \mathrm{O}$	formaldehyde
$\mathrm{CH}_{3} \mathrm{CN}$	acetonitirile
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	1,2-dichloroethane
$(\mathrm{COCl})_{2}$	oxalyl chloride
CrO_{3}	chromium(III) oxide
CSA	camphorsulfonic acid
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	cesium carbonate

CuBr	copper(I) bromide
$\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{Br}$	copper(I) bromide dimethyl sulfide complex
CuCl	copper(I) chloride
$\mathrm{Cu}(\mathrm{OAc})_{2}$	copper(II) acetate
δ	chemical shift(s)
d (NMR)	doublet
d (time)	days
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	dichloroethane
DDQ	2,3-dichloro-5,6-dicyano-p-benzoquinone
DHP	dihydropyran
DIPEA	di-iso-propylethylamine
DIBAL	diisobutylaluminum hydride
DMAP	N,N-4-dimethylaminopyridine
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMSO	Dimethyl sulfoxide
DPPA	diphenyl phosphoryl azide
DPEphos	(Oxydi-2,1-phenylene)bis(diphenylphosphine)
dr	diastereoseomeric ratio
DTMP	2,6-di-tert-butyl-4-methylpyridine

| EDCI | 1-ethyl-3-(3-dimethylaminopropyl)-
 carbodiamidehydrochloride |
| :--- | ---: | ---: |
| ee enantiomeric excess | |

HMPA	hexamethylphosphoramide
$\mathrm{H}_{2} \mathrm{O}$	water
HOBt	N-hydroxybenzotriazole
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
Hünig's base	N, N-diisopropylethylamine
$\mathrm{h} v$	light
Hz	hertz
ImH	imidazole
i	iso
I_{2}	iodine
$i-\mathrm{Bu}_{2} \mathrm{AlH}$	diisobutylaluminum hydride
${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$	di-iso-propylamine
${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$	di-iso-propylethylamine (Hünig's Base)
${ }^{i} \mathrm{PrOH}$	isopropanol or (2-propanol)
IR	Infrared Spectroscopy
KCN	potassium cyanide
KHMDS	potassium hexamethyldisilazane
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
KOH	potassium hydroxide
J	coupling constant

LDA	lithium diisopropylamide
LiAlH_{4}	lithium aluminum hydride
LiBr	lithium bromide
LiBF_{4}	lithium tetrafluoroborate
LiCl	lithium chloride
LiDBB	lithium di-tert-butyl biphenyl
LiOH	lithium hydroxide
LiOOH	lithium peroxide
m	multiplet
M	molarity
m / z	mass/charge
$(\mathrm{M}+\mathrm{Na})$	molecular weight + sodium
MBz	para-methoxybenzoyl
mCPBA	Meta-chloroperoxybenzoic acid
Me	methyl
MeCN	acetonitrile
MeI	iodomethane
MeLi	methyl lithium
MeMgBr	methylmagnesium bromide
MeNO_{2}	nitromethane
MeO	methoxy

MeOH	methanol
MeReO_{3}	methyltrioxorhenium
$\mathrm{Me}_{2} \mathrm{CuLi}$	Gilman's reagent
$\mathrm{Me}_{2} \mathrm{~S}$	dimethyl sulfide
$\mathrm{Me}_{3} \mathrm{~S}^{+} \mathrm{I}^{-}$	trimethylsulfonium iodide
$\mathrm{Me}_{3} \mathrm{SiCl}$	trimethylsilyl chloride
$\mathrm{Me}_{3} \mathrm{SiOK}$	potassium trimethylsilanolate
$\left(\mathrm{MeSO}_{2}\right)_{2} \mathrm{O}$	methanesulfonic anhydride
mg	milligram(s)
Mg	magnesium
MHz	megahertz
$\mu \mathrm{L}$	microliter(s)
min	minute(s)
mL	milliliter(s)
mmol	millimole
mmHg	millimeters of mercury
MOM	methoxymethyl
MOMCl	chloromethyl methyl ether
MS	mass spectrometry
MsCl	methanesulfonyl chloride
MTO	methyltrioxorhenium
$\mathrm{Na}(\mathrm{AcO}){ }_{3} \mathrm{BH}$	sodium triacetoxyborohydride

NaBH_{4}	sodium borohydride
NaClO_{2}	sodium chlorite
$n-\mathrm{BuOLi}$	lithium n-butoxide
Na	sodium
NaH	sodium hydride
NaHCO_{3}	sodium bicarbonate
NaHMDS	sodium 1,1,1,3,3,3-hexamethylsilazane
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	sodium dihydrogen phosphate
NaHSO_{3}	sodium bisulfite
NaIO_{4}	sodium periodate
NaN_{3}	sodium azide
NaOAc	sodium acetate
NaOH	sodium hydroxide
$\mathrm{NaO}-t \mathrm{Bu}$	sodium tert-butoxide
$\mathrm{Na}_{2} \mathrm{~S}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	sodium sulfide hydrate
$\mathrm{Na}_{2} \mathrm{~S}_{8} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	sodium sulfide nonahydrate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NBS	N -bromosuccinimide
NFSI	N-fluorobenzenesulfonimide
$\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$	hydroxylamine hydrochloride
$n-\mathrm{BuLi}$	n-butyllithium
NIS	N -iodosuccinimide

NMO	N -methylmorpholine- N -oxide
NMP	N -methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
O_{3}	ozone
OsO_{4}	osmium(VIII) oxide
Pd / C	palladium(0) on charcoal
$\mathrm{Pd} / \mathrm{CaCO}_{3}$	palladium (0) on calcium carbonate Lindlar Catalyst
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium (0)
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	tris(dibenzylideneacetone)dipalladium (0)
$[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$	allylpalladium(II) chloride dimer
Ph	phenyl
$\mathrm{Ph}_{2} \mathrm{SiH}_{2}$	diphenylsilane
$\mathrm{Ph}_{3} \mathrm{As}$	triphenylarsine
$\mathrm{PhI}(\mathrm{OAc})_{2}$	(diacetoxyiodo)benzene
PhMe	toluene
$\left[\mathrm{Ph}_{3} \mathrm{P}\right]_{3} \mathrm{RuCl}_{2}$	dichlorotris(triphenylphosphine)ruthenium(II)
$\mathrm{Ph}_{3} \mathrm{SiOReO}_{3}$	triphenylsilyl perrhenate
PivCl	Pivaloyl chloride
PMe_{3}	trimethylphosphine
POCl_{3}	phosphorus(V) oxychloride
PPh_{3}	triphenylphosphine

$\mathrm{PPh}_{3} \mathrm{AuCl}$	chloro(triphenylphosphine)gold(I)
PMB	para-methoxybenzyl
PMP	para-methoxyphenyl
ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
PTSA	para-toluenesulfonic acid
p-ABSA	4-acetamidobenzenesulfonyl azide
p-Tol	para-tolyl
$p-\mathrm{TsOH}$	para-toluenesulfonic acid
PvCl	pivaloyl chloride
Py	pyridine
$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	chloro(1,5-cyclooctadiene)rhodium(I) dimer
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	rhodium acetate
rt	room temperature
(R)-(p-tolyl) 2_{2} BINAP	(R)-(-)-para-toluenesulfinamide
s	singlet
SO_{3}	sulfur trioxide
TBAF	tetrabutylammonium fluoride
TBAI	tetrabutylammonium iodide
t-BuLi	tert-butyl lithium
t-BuOH	tert-butanol
TBD	1,5,7-triazabicyclo[4.4.0]dec-5-ene

TBDPS	tert-butyldiphenylsilyl
TBDPSCl	tert-butyl(chloro)diphenylsilane
TBS	tert-butyldimethylsilyl
TBSCl	tert-butyldimethylsilyl chloride
TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxy, free radical
TES	triethylsilyl
TESCl	triethylsilyl chloride
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TiCl_{4}	titanium(IV) chloride
TIPS	triisopropylsilyl
TIPSCl	chlorotriisopropylsilane
TMS	trimethylsilyl
TMSCl	trimethylsilyl chloride
TMSCHN_{2}	trimethylsilyldiazomethane
Ts	4-toluenesulfonyl
TsCl	4-toluenesulfonyl chloride
Zn	Zinc
ZrCl_{4}	zirconium tetrachloride

Chapter 1: Total Synthesis and Structural Revision of (+)-Muironolide A

1.1: Introduction

In 2009, the Molinski group at the University of California, San Diego (UCSD) published a report of the isolation and characterization of muironolide A. ${ }^{1}$ Muironolide A, a secondary metabolite, was isolated from the marine sponge Phorbus sp . Muironolide A most likely arose from heterogeneous microbial interactions with the marine sponge. These types of associations provide a diverse array of natural products. For example, this same sponge also produced known metabolites such as phorboxazoles A and B and phorbaside A. ${ }^{2}$ State-of-the-art microcryobe NMR spectroscopy and degradation techniques were employed to elucidate the structure of muironolide A with only $90 \mu \mathrm{~g}$ of the material isolated from the natural source. From these structural studies, it was discovered that muironolide A possessed two unprecedented features: a hexahydro- $1 H$ isoindolone ring and a trichlorocarbinol ester. Other notable features include a 16membered macrocyclic diester and a chlorocyclopropane ketide (CCK). With exceedingly small amounts of sample available, some preliminary biological screening was performed, and muironolide A was shown to exhibit moderate activity towards HCT116 colon tumor cell line with $\mathrm{IC}_{50}=96.5 \mu \mathrm{~g} / \mathrm{mL}$ and antifungal activity against Cryptococcus neoformans $\mathrm{MIC}=16 \mu \mathrm{~g} / \mathrm{mL}$. In order to unveil the full biological profile of 1 (Figure 1), more material was required. Extraction from natural sources was not feasible. Since 2009, the authors of the original isolation have not encountered the marine sponge Phorbus. The only option to access additional supply of muironolide A was through total synthesis.

1.2: Isolation and Characterization of Muironolide A

Marine sponge Phorbus was encountered off the western coast of Australia near the Muiron islands. Extraction and HPLC purification afforded $90 \mu \mathrm{~g}$ of muironolide A. Microcryobe NMR spectroscopy, Fourier Transform Mass Spectrometry (FTMS), circular dichroism (CD) and synthesis/chemical degradation techniques were employed to elucidate its structure. FTMS result showed a molecular formula of $\mathbf{1}$ as $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{4} \mathrm{NO}_{5}$ and $m / z=5.92 .11869[\mathrm{M}+\mathrm{H}]^{+}$to reveal 10 double bonds. Carbon-13 NMR showed three ester or amide groups. Circular dichroism (CD) spectrum established the absolute configuration of muironolide A based on Harada-Nakanishi nonempirical rule.

Figure 1. HMBC and NOESY Determination of Stereochemistry at C4, C5, C11, C14 and C17.

muironolide A
The relative stereochemistry of the northern portion of the diester was established through key NOE signals shown in Figure 1. Strong NOE correlation was observed between H 11 and $\mathrm{H} 6\left(\mathrm{AB}\right.$ system $\left.J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right)$ positions of the γ-lactam. Also, H 14 and H17 NOE signals indicated a gauche-turn conformation of the macrocycle. The stereochemistry at C21 adjacent to the chlorocyclopropyl ketide (CCK) fragment could not be resolved through NMR spectroscopic methods. NOESY or J-based methods could not relay the stereochemical information of the C 4 stereocenter through the α, β unsaturated ester to C21. Subjecting 1 to hydrolysis and esterification of the
corresponding CCK fragment for HPLC trace analysis were performed to establish C23, C 22 and C 21 stereocenters.

Figure 2. Chlorocyclopropanes in Natural Products

Chlorocyclopropanes are present in other natural products such as phorbaside A^{3} and callipeltosides A-C. ${ }^{4}$ Molinski proposed that the stereochemistry at C22 and C23 positions of muironolide A have the same absolute configuration found in callipeltosides A-C but opposite to phorbaside A. Interestingly, phorbaside A was extracted from the same marine sponge Phorbus as muironolide A.

Scheme 1. Identification of CCK of 1 via Degradation, Synthesis and HPLC

Efforts to confirm the stereochemistry of CCK 5 by HPLC traces prompted the synthesis of four synthetic CCK diastereomers shown in Scheme 1A. Sonication of chloroform solutions containing (-)-menthyl acrylate 2, potassium hydroxide and tetramethylammonium bromide afforded dichlorocyclopropane $\mathbf{3}$ in 88% ee. Diastereoselective reduction of $\mathbf{3}$ was achieved with lithium aluminum hydride that provided trans-alcohol 4. The configuration of the chlorocyclopropyl alcohol 4 matched the same compound that was reported by Olivo and coworkers. ${ }^{5}$ Oxidation and treatment of the resulting aldehyde with zinc powder and methyl 2-bromoacetate completed the synthesis of the CCK fragment. A total of four isomers at C23, C22 and C21-positions were made from this synthesis. Further modifications to install a chromophore to aid in the HPLC analysis were necessary. Hydrolysis of the methyl ester and esterification with 2-bromo-1-(naphthalen-2-yl)ethanone were performed. Similarly, muironolide A was subjected to the same hydrolysis and esterification procedures. Then, the natural product derived CCK fragment 5 was spiked with samples 5-B and 5-D. The natural CCK $\mathbf{5}$ showed matching retention times with sample 5-B. Therefore, they concluded that the natural CCK unit was the C23-(R), C22-(S) and C21-(S) isomer.

1.3: Synthetic Studies Towards Hexahydro-1H-Isoindolone Unit of Muironolide A

1.3.1: Molinski's Study Towards Hexahydro-1H-Isoindolone Unit

Figure 3. Hexahydro-1H-Isoindolone Unit of Muironolide A

The hexahydro- 1 H -isoindolinone (referred to here as isoindolinone) bears three contiguous stereocenters on the $\mathrm{C} 4, \mathrm{C} 5$, and C 11 -positions and unsaturation at the α, β positions of the amide. Asymmetric intramolecular Diels-Alder (IMDA) cycloaddition with MacMillan-type organocatalyst was used to construct the isoindolinone subunit from precursor 6 (Scheme 2). ${ }^{6}$

Scheme 2. Asymmetric Intramolecular Diels-Alder using Organocatalyst

Under optimized conditions, the treatment of amide 6 with $20 \mathrm{~mol} \%$ of (S)-5-benzyl-3-(2-hydroxyethyl)-2,2-dimethylimidazolidin-4-one perchlorate (7) in a 2% wateracetonitrile solution at $0{ }^{\circ} \mathrm{C}$ for 84 h provided a $6: 1(\mathbf{8 : 9})$ mixture of diastereomers in 73% yield and 88% ee. Diastereomer 8 was converted to the desired isomer 9 with DBU. Attempts to isomerize the C 9 and C 10 double bond into conjugation were unsuccessful with a variety of different bases (NaOMe-MeOH, DBU-benzene, NaH-DMF). Conformational analysis provided some insight into the reluctance of this isomerization.

Figure 4. Conformational Analysis of Double Bond Isomers

9

10

The double bond at the α, β-positions of $\mathbf{1 0}$ confers a strained half-chair conformation (Figure 4). Additionally, semiempirical calculations of enthalpies of formation showed
the β, γ-position (9) was more stable than the α, β-positions (10) by $0.6 \mathrm{kcal} / \mathrm{mol}$ (PM3). The authors suggested that one possible method to place the double into conjugation was through hydrogenation, α-selenation and oxidation/elimination.

1.3.3: Mitchell's Study Towards Hexahydro-1H-Isoindolone Unit

In 2013 and 2015, Mitchell reported a unique intermolecular Diels-Alder approach to the isoindolinone core of muironolide $A .^{7}$ In their study, an electronically deficient diene 11 underwent [4+2] cyclization with dienophile 12 to afford endo product 13 in 76% yield and $>19: 1 \mathrm{dr}$.

Scheme 3. Mitchell's Intermolecular Diels-Alder Approach

Unfortunately, the stereocenter at the C11 position was epimeric from the desired configuration due to the cyclic restraint of the dienophile. Attempts with acyclic dienophile to correct the stereochemical configuration were unsuccessful. The treatment of α, β-unsaturated aldehyde 14 and diene 11 with Macmillan's organocatalyst provided no cycloaddition adduct.

Scheme 4. Mitchell's Intermolecular Diels-Alder Reaction with Organocatalyst

1.3.4: Zakarian's Study Towards Hexahydro-1H-Isoindolone Unit

In 2013, we reported a study utilizing an intramolecular Diels-Alder (IMDA) reaction to access the isoindolinone subunit in an efficient manner. ${ }^{8}$ We identified that compound 35 was structurally similar to the natural product and would serve as a suitable model to study the IMDA reaction.

Scheme 5. IMDA Strategy

We envisioned that β-ketoamide $\boldsymbol{Z} \mathbf{- 3 3}$, in the enol form, would undergo a cycloaddition or a double Michael addition to access 34. The strategic placement of β keto amide served two purposes in our synthetic design. First, the placement of the double bond between C9 and C10 after cycloaddition was inconsequential as this existed as the enol-tautomer. Also, the dicarbonyl functional group could chelate with a chiral Lewis acid to promote an asymmetric IMDA reaction. At the onset of our plan, we were aimed to test the influence of double bond geometry on the stereochemical outcome of the IMDA reaction with $\boldsymbol{Z - 3 3}$ and $\boldsymbol{E - 2 4}$ as substrates. This investigation started with substrate \boldsymbol{E}-24.

The synthesis of $\boldsymbol{E}-\mathbf{2 4}$ was completed in a four-step sequence. Swern oxidation of (E)-4-bromo-3-methylbut-2-en-1-ol $\mathbf{1 7}^{9}$, Wittig olefination of the respective aldehyde and
direct exposure with PMB-amine $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}\right)$ provided 19 in 34% overall yield. Dioxinone 23 was completed in three-steps by treatment of (E)-ethyl 2,4-dimethylpent-2enoate 20 with $i-\mathrm{Bu}_{2} \mathrm{AlH}$, Swern oxidation to $\mathbf{2 1}$, followed by olefination with Horner-Wadsworth-Emmons (HWE) reagent 22 provided 23 in 44% overall yield. ${ }^{10,11}$ Direct coupling of amine 19 and dioxinone 23 in the presence of pyridinium p-toluenesulfonate in refluxing toluene afforded amide $\boldsymbol{E}-\mathbf{2 4}$ in 62% yield. ${ }^{12}$

Scheme 6. Synthesis of $\boldsymbol{E}-24$ IMDA Precursor

Upon heating of substrate \boldsymbol{E}-24 in toluene, a highly endo-selective IMDA product $\mathbf{2 5}$ was isolated in 61% yield and $\mathrm{dr}>30: 1$. The addition of any base additives (e.g., triethyl amine, $\left.\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, n-\mathrm{Bu}_{4} \mathrm{NF}\right)^{13}$ did not accelerate the reaction rate but rather poor yields or decomposition products were isolated. Therefore this suggested a concerted cycloaddition was occurring rather than a double Michael addition.

After the Luche reduction $\left(\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}\right)$ of the ketone, the relative stereochemistry of $\mathbf{2 6}$ was confirmed by NOE studies. The stereochemistry consistent with muironolide A could be obtained by epimerizing C4-position. Treatment of ester 26 with $i-\mathrm{Bu}_{2} \mathrm{AlH}$ and MnO_{2} provided unsaturated aldehyde 27 in 79% yield. Epimerization was performed in
the presence of piperidinium trifluoroacetate (toluene, $75{ }^{\circ} \mathrm{C}$) to afford 28 in 80% yield and dr $>20: 1 .{ }^{14}$

Scheme 7. Highly Endo-Selective IMDA Reaction with $\boldsymbol{E}-\mathbf{2 4}$

The stereochemical outcome of this key IMDA transformation deserves a comment. At the onset, the reactive enol form of $\boldsymbol{E - 2 4}$ was hydrogen bond stabilized (TS1). This underwent an endo-selective cycloaddition reaction, followed by rapid C8 epimerization (Figure 5). We hypothesized that the origin of this highly diastereoselective transformation was based on hydrogen bond stabilization in the transition state (TS1) rather than stabilization gained from secondary orbital overlap (TS2). There was notable erosion in diastereoselectivity ($\sim 5: 1$ favoring endo) when \boldsymbol{E}-24 was trapped as a silyl ketene acetal, suggesting minor influences of secondary orbital overlap to the stereoselective outcome of this transformation. The IMDA reaction of $\boldsymbol{Z} \mathbf{- 3 3}$ was investigated next.

The synthesis of IMDA precursor \boldsymbol{Z} - $\mathbf{3 3}$ began with Kumada coupling of iodide 29 with vinylmagnesium-bromide and $\mathrm{Pd}(\mathrm{PPh})_{4}$, followed by a one-pot substitution of the hydroxyl group to $\mathrm{PMB}-\mathrm{amine} 32$ in 32% overall yield (Scheme 8). ${ }^{15}$ Amide bond formation proceeded cleanly with pyridinium p-toluenesulfonate (PPTS) in refluxing
toluene for 3 h to provide rotamer 34 in 95% yield. Cross metathesis of methyl acrylate with diene 34 in the presence of Hoyveda-Grubbs II (HGII) catalyst (10 mol\%) completed IMDA precursor $\boldsymbol{Z}-\mathbf{3 3}$ in 81% yield. ${ }^{16}$

Figure 5. Rational for Endo-selective IMDA Reaction for E-Isomer

Scheme 8. Synthesis of Z-configured IMDA Precursor

Scheme 9. Highly Exo-Selective IMDA Reaction with Z-33

Heating β-keto amide \boldsymbol{Z} - $\mathbf{3 3}$ in toluene at $100^{\circ} \mathrm{C}$ for 24 h , provided IMDA product $\mathbf{3 4}$ in 60% yield and $\mathrm{dr}>30: 1$. NOE studies confirmed the relative stereochemistry at C 4 , C5 and C11 were consistent with the natural product.

Figure 6. Rational for Exo-selective IMDA Reaction for Z-Isomer

Three additional steps were required to complete the isoindolinone subunit. Luche reduction $\left(\mathrm{NaBH}_{4}, \mathrm{CeCl} 3\right)$ of the ketone followed mesylation of the corresponding
alcohol and mesylate elimination (DBU at $85^{\circ} \mathrm{C}$) provided isoindolinone 35 in 64% yield over three steps. The significance of this transformation was the ability to access the correct stereoconfiguration of the isoindolinone in one-step. This study represents the most concise entry to the isoindolinone core to-date.

1.3.5: Heteroleptic Lanthanide-Terpyridine Complexes with 2-Oxo Amides

The ultimate goal of the IMDA approach to access the isoindolinone core of muironolide A was to render this transformation stereoselective. Asymmetric catalysis with lanthanide complexes has increasing utility in organic synthesis. ${ }^{17}$ Unique characteristics of lanthanides include high coordination numbers, stability and dynamic binding towards ligands that impart catalytic efficiency. ${ }^{18}$

Table 1. Lewis Acid Screening for IMDA Reaction

Initial screening of the IMDA reaction in the presence of catalytic amounts of metal salts revealed that $\mathrm{La}(\mathrm{III})$ salts were superior. Under optimized conditions, entries 13 and 15 (see Table 1), β-keto amide $\boldsymbol{Z} \mathbf{- 3 3}$ was converted to isoindolone $\mathbf{3 4}$ in the presence of either $\mathrm{La}(\mathrm{OTf})_{3}$ or $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3}$ in ethyl acetate at $45{ }^{\circ} \mathrm{C}$ for 24 h with $\mathrm{dr}>20: 1$ and $10: 1$, respectively. Screening different D-block transition metals such as copper, iron and zirconium salts led to poor conversions (16-43\%) and long reaction times (40-70 h) (entries 2-4).

Figure 7. Screening of Ligands for IMDA Reaction

L1, 40\% ee

L4, 0\% ee

L2, 0\% ee

L3, 0\% ee

L5, $R^{1}=H, R^{2}=P h ; \quad 4 \%$ ee L6, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=i-\mathrm{Pr} ;-20 \%$ ee L7, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=t-\mathrm{Bu} ; 1 \%$ ee
$\mathbf{L 8}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph} ;-4 \%$ ee

L9, 8\% ee

With optimized conditions at hand, we next turned our focus towards chiral ligands for asymmetric catalysts with lanthanide salts. The reaction conditions for each ligand
were individually optimized and $\mathbf{L} 1$ provided the most satisfactory enantioselectivity at 40% ee.

At this point, we were inspired to explore unconventional ligands for the IMDA reaction. Our goal was to rationally design chiral ligands that were suitable for β ketoamides. Inspiration first came from a report by Fukuda and co-workers, who reported crystal structures of heteroleptic lanthanum-terpyridine complexes with acetoacetate (Ln (terpy)(acac) $\left.\left(\mathrm{NO}_{3}\right)_{2}\right) .{ }^{19}$ Surprisingly, there was little literature precedence for chiral terpyridine (terpy) ligands with rare earth metals used in asymmetric synthesis. The only relevant application was modestly enantioselective cyclopropanation of styrene using chiral terpy ligand with $\mathrm{Cu}(\mathrm{II})$ or $\mathrm{Rh}(\mathrm{III})$ catalysts reported by Kwong et. al. ${ }^{20}$ Other applications of non-chiral $\operatorname{Ln}(\mathrm{III})$-terpy complexes range from the study of fluorescent emissions properties and application as photochemotherapeutic agents. ${ }^{21}$

At the onset, we chose to replace acac with unsymmetrical ligands such as pyrolidineamide $\mathbf{3 8}$ or N, N-dibenzyl-2-oxobutanamide 39 (Scheme 10). Known complexes of $\left[\mathrm{Ln}(\right.$ terpy $\left.)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}\right] \mathrm{NO}_{3}$ were obtained by the treatment of $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ with one equivalent of terpyridine in ethanol for one hour at room temperature followed by filtration. This bench-top stable complex was treated with three equivalents of β-keto amide, two equivalence of triethylamine in a $1: 1$ mixture of acetonitrile and ethanol. Slow evaporation at room temperature ($\sim 36 \mathrm{~h}$) provided colorless crystals ranging from $10-50 \mu \mathrm{~m}$. Crystal structures of this type were obtained through X-Ray diffraction for dysprosium, samarium and europium.

Scheme 10. Synthesis and X-Ray Structures of Ln-Terpyridine Complexes with β Keto Amide Ligands.

Dy (terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac) 40

Dy(terpy)($\left.\mathrm{NO}_{3}\right)_{2}$ (pyacac) 41

The ORTEP drawing of Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac) is shown in Scheme 10. As expected, the two nitrate groups occupy the axial positions above and below the plane occupied by terpy and pyacac ligands. Of note, while the majority of reported acac complexes with lanthanides contain more than two units of the ligand, in our case only one pyacac unit was present in the Dy complex. ${ }^{22}$ This property was highly desirable for catalyst development because it was indicative of a more defined, unambiguous substrate binding. Both the terpyridine and pyacac ligands are nearly planar; the angle between the planes was approximately 33°. XRD structures with closely related complexes were also obtained for $\mathrm{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}($ pyacac $)$ and $\mathrm{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}($ pyacac $)$, with the angles between the planar terpyridine and pyacac ligands at 29° and 30°, respectively. With these compounds on-hand, we continued with a more complex, conformationally labile dibenzyl amide 39. We were delighted that when $\left[\mathrm{Dy}(\right.$ terpy $\left.)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$ was treated with amide 39 in the presence of triethylamine, the resulting complex

Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac) afforded crystals suitable for crystallographic analysis (Scheme 10).

From these structures, we concluded that $\operatorname{Ln}(\mathrm{III})$-terpy complexes could be excellent catalysts for the IMDA application, not only for its ability to generate the reactive enolate form of β-ketoamides but also for its well-defined and predictable metal-ligand geometry. In the future, these crystal structures could aid in the strategic placement of chiral groups on the terpyridine ligand to impart a chiral environment necessary for asymmetric catalysis

1.4: Total Synthesis and Structural Revision of (+)-Muironolide A

We reported the first enantioselective total synthesis of (+)-muironolide A (44). ${ }^{23}$ Based on chemical synthesis and NMR studies, synthetic 1 did not match the characterization data of the natural substance. The synthesis of two C21, C22, C23diastereomers ($\mathbf{4 3}$ and $\mathbf{4 4}$) led to the discovery of the correct structure of muironolide A to be the C21-epimer (44) shown in Figure 8. The full characterization of $\mathbf{4 4}$ was in full agreement with that of natural muironolide A. However, the CD spectrum of 44 was found to be antipodal; therefore, we established the absolute configuration of the natural product to be (-)-muironolide A.

In this synthetic strategy, we envisioned a challenging late stage 16 -membered macro-lactonization shown in Scheme 11. Concise reduction and dehydration steps completed the isoindolinone subunit. An asymmetric lanthanum catalyzed intramolecular Diels-Alder (IMDA) reaction was employed for the construction of the isoindoledione subunit.

Figure 8. Muironolide A and C21, C22 and C23-Diastereomers

Scheme 11. Synthesis Plan for (+)-Muironolide A

Strategically, the natural product was divided into three segments (Figure 9). The synthesis of the eastern fragment started with (+)- β-citronellene 52. The southern chlorocyclopropyl ketide (CCK) fragment had its origins from enzymatic resolution of β -
hydroxy pentenoate 51. Finally, the synthesis of the western portion began from known iodo-alcohol 50.

Figure 9. Three Key Starting Material Fragments

The preparation of the western fragment began by converting $(+)-\beta$-citronellene ${ }^{24}$ to trichloromethyl carbinol 53 (Scheme 12). Selective ozonolysis and treatment of the resulting aldehyde with TMSCCl_{3} and sodium formate afforded alcohol 53 in 79% yield in a $1: 1 \mathrm{dr}{ }^{25}$

Scheme 12. Synthesis of Eastern Fragment Starting From (+)- β-citronellene

No literature precedence existed for asymmetric trichloromethyl addition to aldehydes and our attempts were met without success. Therefore, the synthesis of $\mathbf{5 4}$ required oxidation $\left(\mathrm{DMSO},\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, i-\mathrm{Pr}_{2} \mathrm{NEt}\right)$ followed by an asymmetric Noyori reduction of the corresponding ketone with $[\mathrm{Ru}(\mathrm{cymene}) \mathrm{Cl}]_{2}$ and (R, R)-TsDPEN to afforded $\mathbf{5 4}$ in 78% yield with a $10: 1 \mathrm{dr} .{ }^{26}$ Benzyloxymethyl (BOM) protection of 54 and cross metathesis with methacrolein in the presence of Hoveyda-Grubbs II catalyst (HGII) gave aldehyde $\mathbf{5 5}$ in $\mathbf{6 2 \%}$ yield and an $E: Z$ ratio of 10:1. Installment of dioxinone $\mathbf{5 6}$ through Horner-Wadsworth-Emmons (HWE) olefination with aldehyde 55 provided intermediate 57. Thermolysis of the resulting dioxinone (PPTS, toluene, $110{ }^{\circ} \mathrm{C}$) with amine 58 afforded amide 59 in 93\% yield. ${ }^{27}$

Figure 10. Macrolactonization Strategy: Pathway A and Pathway B

At this juncture, our synthetic plan for late stage macrolactonization was left flexible for ring closure through pathway A (positions 19, 18, Figure 10) or pathway B (positions 1, 21). Ultimately, both routes have been explored. Our investigation began with pathway A, which required early installment of the CCK fragment.

The chlorocyclopropyl ketide was prepared in three steps from tert-butyl 3-hydroxypent-4-enoate $\mathbf{5 1} .^{28}$ Allylic acetate $\mathbf{5 2}$ was obtained through a robust and scalable enzymatic resolution with amano lipase PS and vinyl acetate in pentanes at $30^{\circ} \mathrm{C}$ in 48%
yield (50% theoretical yield) and $98 \% e e$. Treatment of acetate 52 with potassium carbonate in methanol afforded allylic alcohol 54 in 83\% yield.

Scheme 13. Synthesis of Chlorocyclopropyl Ketide (CCK)

Treatment of allylic alcohol 54 with $\mathrm{CHI}_{2} \mathrm{Cl}$ and diethyl zinc at $-40{ }^{\circ} \mathrm{C}$ for 24 h afforded CCK fragment 47 in 56% yield in a dr of 5:1 (Scheme 13). ${ }^{29}$ Acylation of intermediate 47 with acryloyl chloride and its cross metathesis with diene 59 ($5 \mathrm{~mol} \%$ $\mathrm{HG}(\mathrm{II}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 45^{\circ} \mathrm{C}, 12 \mathrm{~h}$) provided IMDA precursor $\mathbf{6 1}$ in 64% yield with an $E: Z$ of $>20: 1$.

Scheme 14. Lanthanum Catalyzed IMDA Reaction

Optimized cycloaddition conditions required $12 \mathrm{~mol} \%$ PYBOX ligand L1, $10 \mathrm{~mol} \%$ $\mathrm{La}(\mathrm{OTf})_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in ethyl acetate at $45{ }^{\circ} \mathrm{C}$ for 24 h , furnishing isoindoledione $\mathbf{6 2}$ in 61% yield as an inseparable $3: 1$ mixture of diastereomers (Scheme 14). The exo IMDA reaction pathway was preferred due to stabilization of the metal enolate in the transition state (as mentioned previously). The lanthanum enolate was expected to raise the HOMO energy of the diene system by increasing its electron density, which was favorable for the cycloaddition reaction.

Scheme 15. Separation of Diastereomers by Preparative HPLC

The reduction of ketone 62 with sodium borohydride made the separation of the diastereomeric mixtures possible by preparative HPLC. The major diastereomer 63 was
isolated in 70% yield, and the minor diastereomer was isolated in 25% yield. A single crystal of 63 suitable for X-Ray analysis was obtained. This crystal structure unequivocally established all stereogenic centers present in muironolide A (Scheme 15). Dehydration with DCC and CuCl in refluxing toluene completed the isoindolinone subunit in $80-90 \%$ yield. ${ }^{30}$ Other dehydration methods ($\mathrm{MsCl} / \mathrm{DBU}$, Burgess or Martin reagents) solely provided the $\mathrm{C} 9-\mathrm{C} 10$ double bond isomer (versus $\mathrm{C} 8-\mathrm{C} 9$ double bond). In preparation for macrolactonization, a one-pot deprotection of the tert-butyl ester and benzyloxymethyl (BOM) ether was achieved with trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to reveal hydroxyl acid 60 in 95\% yield (Scheme 16).

Scheme 16. Macrolactonization via Pathway A

Conditions for macrolactonization using Yamaguchi reagent appeared to be the most promising. ${ }^{31}$ However, hydroxyl acid $\mathbf{6 5}$ was isolated in $30-50 \%$ yield as a major product apparently arising from β-elimination of the CCK fragment. Therefore, our attention shifted towards macrolactonization through pathway B.

From a common diene intermediate (59), cross metathesis with methyl acrylate afforded IMDA precursor 66 in 89% yield and an $E: Z$ of $>20: 1$ (Scheme 17). The same
four-step sequence shown previously for the construction of the isoindolinone core and BOM-deprotection afforded alcohol 67 in 38% yield over 4 steps.

Scheme 17. Synthesis of Alcohol 67

Scheme 18. Pathway B: Yamaguchi Protocol for Macrolactonization

Esterification of $\mathbf{6 7}$ with acid $\mathbf{2 3}$ was achieved through Yamaguchi's protocol to provide ester 69 in excellent yield. Simultaneous cleavage of methyl ester and silyl ether in the presence of LiCl in DMF with microwaved-assisted heating ($170^{\circ} \mathrm{C}$ for 1 h) afforded $\mathbf{6 1}$ in 81% yield. We were delighted when, under Yamaguchi conditions, hydroxyl acid $\mathbf{6 1}$
underwent macrolactonization at $50^{\circ} \mathrm{C}$ to afford macrocycle 70 in 55% yield. The final steps of this synthesis consisted of oxidative deprotection of the p-methoxybenzyl (PMB) group with DDQ and controlled amounts of water (5 equiv.) in dioxanes at $100^{\circ} \mathrm{C}$. These conditions afforded $\mathbf{1}$ in 90% yield. ${ }^{32}$

Scheme 19. Completion of the Synthesis of C21-epi-Muironolide A

muironolide A (1)

Unfortunately, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC data for $\mathbf{1}$ did not match the spectroscopic data of the natural compound. Graphical analysis of the differences in chemical shifts of the synthetic versus natural is shown in Scheme 19. This graph depicts carbon numbering of muironolide A (X-axis) versus differences in chemical shift denoted as $\Delta \delta\left(\delta{ }^{13} \mathrm{C}(\mathbf{1})-\delta{ }^{13} \mathrm{C}\right.$ (natural)) on the Y -axis. Examination of this graph revealed the biggest discrepancies were confined to the macrocycle and the CCK units. We were confident in the relative stereocenters of $\mathrm{C} 4, \mathrm{C} 5$ and C 11 through IMDA studies to form the isoindolinone subunit. It was hypothesized that a C21 epimer could have a drastic affect on the configuration of the macrocyclic diester. We could easily test this hypothesis since the CCK fragment had its origins in enzymatic resolution.

Scheme 20. Synthesis of C22, C23-epi-Muironolide A

Following the same four-step sequence with acid ent-68 provided C22, C23-epimuironolide A 43 in 32% overall yield (Scheme 20). Comparing $\Delta \delta$ in ${ }^{13} \mathrm{C}$ NMR spectra showed remarkable similarity of this synthetic product to the natural compound. The main differences were now confined to the C22 and C23 positions, thereby suggesting a cis-relationship between C 21 and C 22 rather than a trans configuration. Based on this evaluation, we conjectured that the CCK fragment would be the original C 21 epimer 71.

Again, the same four-step sequence was applied to 67 and 71, and the synthesis of $(+)$-muironolide A was completed (44) in 23% yield (Scheme 21). All spectroscopic data of 44 was in full agreement with the natural product. The only deviation from physical data arose from the circular dichroism (CD) spectrum that showed synthetic muironolide was antipodal to the natural. Therefore we reassigned the absolute configuration to be (-)muironolide A .

Scheme 21. Completion of the Synthesis of (+)-Muironolide A

Conclusion
We reported the first enantioselective total synthesis of (+)-muironolide A. We reassigned the stereochemistry as the C21-epimer and determined the absolute configuration of the natural product. Although, synthetic $(+)$-muironolide A was enantiomeric, material was sent to NCI60 (National Cancer Institute) to assay against 60 cell lines with data still pending. Current efforts towards the scale-up of muironolide A are ongoing and will be reported in due course.

Chapter 2: Late Stage Derivatization of Pinnatoxin Compounds

2.1: Background of Pinnatoxin and Cyclic Imine Toxins

Cyclic imine (CI) toxins are an important class of marine toxins with worldwide distribution. Dinoflagellates of a genus K. selliformis, A. ostenfeldii, A. peruvianum and V. rogsum are members of a phytoplankton specie that are attributed to the production and proliferation of CI toxins. ${ }^{33}$ During favorable oceanic conditions, harmful algal blooms (HABs) are the source of toxic dinoflagellates that spread to aquatic life. Filter feeding bivalve mollusks (shellfish) that feed on toxic phytoplankton accumulate CI toxins in their digestive glands and edible tissues. ${ }^{34}$ In turn, this poses a health risk to higher order predators either marine or terrestrial. Pinnatoxins and pteriatoxins represent the largest subgroups of known CI toxins. These compounds pose the highest risk to human health due to their potent oral toxicity. ${ }^{35}$ Although there are no reports of fatal toxicity in humans, widespread shellfish poisoning attributed to CI toxins was reported in China and Japan. ${ }^{36}$

In 1994, Uemura and coworkers reported the isolation and characterization of pinnatoxins (PnTXs) from Pinna muricata, a bivalve mollusk. ${ }^{37}$ Collection of 45 kg of this shellfish led to the isolation of pinnatoxin $A(3.5 \mathrm{mg})$, pinnatoxin B and $C(1.2 \mathrm{mg}$ as a $1: 1$ mixture) and pinnatoxin $\mathrm{D}(2.0 \mathrm{mg})$ (Figure 11$).{ }^{38}$ Bioassays via intraperitoneal (i.p.) injection in mice showed lethal toxicity of pinnatoxin A with $\mathrm{LD}_{99}=180 \mu \mathrm{~g} / \mathrm{kg}$ and pinnatoxin B and C with $\mathrm{LD}_{99}=22 \mu \mathrm{~g} / \mathrm{kg} .{ }^{39}$ Pinnatoxin D showed the lowest potency with $\mathrm{LD}_{99}=400 \mu \mathrm{~g} / \mathrm{kg}$, however it showed strong toxicity against murine leukemia cell line P388 at $\mathrm{IC}_{50}=2.5 \mu \mathrm{~g} / \mathrm{mL} .{ }^{40}$ Pteriatoxins are the least studied members of the pinnatoxin family. Pteriatoxins A-C were isolated from bivalve Pteria penguin in 2001,
were found to be more potent by i.p. injection in mice (pteriatoxin A with $\mathrm{LD}_{99}=100$ $\mu \mathrm{g} / \mathrm{kg}$ and pteriatoxins B and C (1:1 mixture) with $\left.\mathrm{LD}_{99}=8 \mu \mathrm{~g} / \mathrm{kg}\right) .{ }^{41}$

Figure 11. Pinnatoxins and Pteriatoxins

(+)-pinnatoxin A
72

34S: pinnatoxin B (73)
34R: pinnatoxin C (74)

pinnatoxin D
75

pteriatoxin A
76

34R: pteriatoxin B (77)
34S: pteriatoxin C (78)

Currently, there are no regulations that mandate acceptable levels of CI toxins in seafood that are bound for human consumption. ${ }^{42}$ One barrier to monitoring these marine toxins was the lack of access to highly pure standards. ${ }^{43}$ Chemical purity of CI standards used in bioassays is a growing concern, as they are persistently not reported. ${ }^{44}$ Methods employed for the extraction from natural sources heavily influence the purity of CI compounds that are used for testing. To address this problem, a reliable method to access these compounds is needed and one option is the direct and reliable chemical synthesis of these marine natural products. Additionally, very little was known about the biological mode of action (MOA), biodistribution, cellular metabolism and short/long-term effects of CI toxin exposure. Our goal was to build upon a growing body of knowledge to help answer these intriguing questions.

Pinnatoxins and related pteriatoxins are intriguing macrocycles containing a spiroimine AG-ring, BCD-dispiroketal and EF-bicycloketal rings. Varying the substituents at C34-position provided the different pinnatoxins A-D and related pteriatoxins A-C (Figure 11). Uemura proposed a biomimetic intramolecular Diels-Alder cycloaddition pathway for the construction of the 6,7 -azaspiro-linked imine fragment (AG-ring) and the macrocycle. Feeding studies of Alexandrium ostenfeldii demonstrated that the polycyclic ether units of PnTX was made from linear polyketide synthesis and a glycine unit was incorporated intact to form the imine portion. ${ }^{45}$ The first pioneering total synthesis of (-)-pinnatoxin A and related pteriatoxins A, B and C was reported by Kishi et. al. in 1998 and 2006, respectively. ${ }^{46}$ Murai (2002), ${ }^{47}$ Inoue-Hirama (2004), ${ }^{48}$ Nakamura-Hashimoto (2008) ${ }^{49}$ and Zakarian group $(2008,2011)^{50}$ have also reported the total synthesis of PnTX A. A review of Kishi's synthesis, which established the stereochemistry of (-)-pinnatoxin A and pteriatoxins A-C, will be briefly summarized. Also, the Zakarian synthesis (2011) of pinnatoxin A and biological MOA, which is the prelude to this work, will be presented.

2.2: Kishi's Total Synthesis of (-)-Pinnatoxin A (1998) ${ }^{51}$

The synthesis of the unnatural enantiomer of pinnatoxin A was reported through a potentially biomimetic intramolecular Diels-Alder (IMDA) reaction pathway. Kishi and coworkers established the absolute stereochemistry of synthetic pinnatoxin A to be the antipode of the natural and confirmed the assignment of the relative stereochemistry of this stereo-rich natural product through their total synthesis. This synthesis, which remained the shortest sequence of 38 steps to-date, produced 1.0 mg of (-)-pinnatoxin A.

Figure 12. Kishi's Synthetic Strategy for (-)-Pinnatoxin A

In this retrosynthetic analysis, the putative biomimetic intramolecular Diels-Alder reaction forged the quaternary stereogenic center of the spiroimine unit. Cyclic ketalization formed the EF-rings and dispiroketalization reaction assembled the BCDbisketal rings under thermodynamic control. The synthesis of complex fragment $\mathbf{8 2}$ was achieved from four smaller fragments employing two dithiane umpolung strategies to form C24, C25 and C26 bonds and Nozaki-Hiyama-Kishi (NHK) reactions to form C5, C6 and C32, C33 bonds shown in Figure 12.

The synthesis of BCD-rings began with diketone $\mathbf{8 3}$, which was prepared in 12 steps from 1-pentynol. The formation of the bis-spiroketal portion was made possible by treating diketone 83 with camphorsulfonic acid (CSA) in methanol to provide a 2:3 mixture favoring the desired isomer. The formation of undesired compound $\mathbf{8 8}$ was assisted by hydrogen bonding of the tertiary alcohol and the oxygen of the D-ring (see Murai and coworkers). ${ }^{52}$ Disruption of hydrogen bonding by O-silylation with TBSOTf
fully converted the undesired tricyclic ketal $\mathbf{8 8}$ to more conformationally stable isomer $\mathbf{9 0}$ (Scheme 22).

Scheme 22. Bis-Ketalization to Form B,C,D-Rings

In preparation for dithiane coupling partner, tert-butyldimethylsilyl ether (TBS) was cleaved (TBAF) to produce the corresponding primary alcohol and subsequently converted to iodide $\mathbf{9 2}$ under standard Mitsanobu conditions. Iodide 92 was added to a solution of lithiated 1,3-dithiane (t-BuLi, 10\% HMPA/THF) to form C 24 and C 25 bonds. After exposure with tetrabutylammonium fluoride (TBAF), this alkylation sequence was repeated with iodide $\mathbf{8 6}$ followed by oxidative deprotection of 1,3-dithiane $\left(\mathrm{PhI}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}, \mathrm{CaCO}_{3}\right)$ delivering ketone 93 in 57% yield over four steps.

The first $\mathrm{NiCl}_{2} / \mathrm{CrCl}_{2}(\mathrm{NHK})$ mediated coupling to install alkyl amine 84, began with p-methoxybenzyl (PMB) group removal, followed by Dess-Martin Periodinane (DMP) oxidation in 63% yield. The resulting aldehyde was treated with $1 \mathrm{~mol} \% \mathrm{NiCl}_{2} / \mathrm{CrCl}_{2}$ in DMF and vinyl iodide 84 that provided the corresponding allylic alcohol in 55% yield as a 1:1 diastereomeric mixture. En-route to the second NHK coupling, chemoselective tert-
butyldimethylsilyl (TBS) group deprotection (HF pyridine) and DMP oxidation was performed. Increased amounts of catalyst loading at $33 \mathrm{~mol} \% \mathrm{NiCl}_{2} / \mathrm{CrCl}_{2}$ and bispyridinyl ligand were required to forge C32-C33 bond.

Scheme 23. Preparation of IMDA Precursor

Acetonide solvolysis mediated by trifluoroacetic acid (TFA) in aqueous dichloromethane allowed for formation of EF-ketal in 71\% yield. IMDA precursor $\mathbf{8 1}$ was completed in three additional steps through mesylation, hydroxyl protection with triethylsilane (TES) followed mesylate elimination with DABCO (52\% yield in three steps). It was noteworthy that during the EF-ring formation, C19 completely epimerized under acidic conditions (TFA, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). However upon silylation (TES) of the tertiary alcohol at C15, the desired isomer of BCD-rings was obtained quantitatively.

Scheme 24. Completion of Synthesis of (-)-Pinnatoxin A

The exolendo selectivity of the intramolecular Diels-Alder reaction was found to depend on the choice of solvent and amine substituent. For example, heating IMDA precursor $\mathbf{8 1}$ in toluene at $100^{\circ} \mathrm{C}$ gave a 1:1:1 mixture of exo:endo product distribution. The formation of endo (undesired) product could be minimized using 2 mM dilution in dodecane at $70{ }^{\circ} \mathrm{C}$ that afforded 1.0:0.9:0.4 with ca. 5:1 exo:endo in 78% combined yield. After N -allylchloroformate cleavage $\left(\mathrm{Pd}_{\left.\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{AcOH}\right) \text {, imine formation occurred under }}\right.$ high temperature and pressure $\left(200{ }^{\circ} \mathrm{C}, ~ 1-2 ~ T o r r\right)$. Forcing conditions for imine cyclization was indicative of a high energy barrier between the imine and the amino ketone. The synthesis was completed by the cleavage of the tert-butyl ester to afford (-)pinnatoxin A in 55% yield over three steps. Synthetic pinnatoxin A was found to be antipodal to the natural through the optical rotation measurement.

2.3: Zakarian's Total Synthesis of Pinnatoxin A (2011) ${ }^{53}$

Zakarian group first published the total synthesis of pinnatoxin A in 2008, however an improved synthesis and biological mode of action was later published in 2011, which
will be the focus of this segment. The impetus for the second-generation synthesis was to address two issues: the scalability of PnTX synthesis and confirming the hypothesis that toxicity of PnTXs is solely due to their potent action on nicotinic acetylcholine receptors.

Figure 13. Zakarian's Retrosynthesis of Pinnatoxin A

PnTX A was accessed from azido triol 98 by oxidation of the allyl alcohol to the carboxylate at C34, followed spiroimine formation. Tandem deprotection and ketalization of substrate 99 formed the EF-rings. Direct alkyllithium addition, from lithium-iodide exchange of $\mathbf{1 0 0}$, to aldehyde $\mathbf{1 0 1}$ united the two advanced fragments. Finally, central to this strategy was the use of the Ireland-Claisen rearrangement of ester $\mathbf{1 0 2}$ to form the C5 quaternary center in a diastereospecific fashion. The significance of this design was the recognition that further elaboration of azido triol $\mathbf{9 8}$ would allow one to access all of the pinnatoxins A-F and related pteriatoxins A-C.

Synthesis of aldehyde 101 began with dithioacetal formation of D-ribose followed by a three-step protocol for selective protection of the resulting tetraol. Cleavage of dithioacetal revealed the corresponding aldehyde and its olefination with Horner-Wadsworth-Emmons reagent gave α, β-unsaturated ester 107 in 80% yield.

Scheme 25. Synthesis of Allylic Alcohol 110

After reduction and oxidation to α, β-unsaturated aldehyde 108, asymmetric ethylation with $6 \mathrm{~mol} \%$ ligand $\mathbf{L 1 0 9}$ and diethyl zinc afforded allylic alcohol $\mathbf{1 1 0}$ in 79% yield. Esterification, under Yamaguchi conditions, of alcohol $\mathbf{1 1 0}$ with carboxylic acid $\mathbf{1 1 6}$ (made in 11 steps from (S)-citronellic acid) provided ester 102 in 85% yield.

The key transformation in the synthesis was performed by a diastereospecific IrelandClaisen rearrangement with lithium amide 114. Traditional methods for this transformation gave an unwanted mixture of diastereomers at C5, which opened an opportunity to explore new methodology. It was well established that obtaining exclusive E and Z geometry during enolate formation was critical to high diastereocontrol. In model studies, using chiral α-branched esters, enolization with lithium diisopropyl amine (LDA) gave a mixture of $E(65 \%)$ and $Z(35 \%)$ isomers as shown in Scheme 26. However, in the presence of chiral lithium amide 115, the chirality match between the ester and lithium reagent enabled exclusive formation of Z-enolate 113. The chirality of lithium amide controls the E and Z geometries during the enolization event.

Scheme 26. Stereoselective Enolization with Chiral Lithium Amines

To demonstrate the utility of this transformation, a highly stereoselective Z-enolate formation was enabled by the chiral base 114 of α, α-branched ester 102, where rearrangement to acid $\mathbf{1 1 7}$ was possible as a single diastereomer in 81% yield.

Scheme 27. Diastereoselective Ireland-Claisen Rearrangement

Formation of the G-ring required converting rearrangement product $\mathbf{1 1 7}$ to dialdehyde 118 in 6 steps. Treatment of the dialdehyde with dibenzylammonium trifluoroacetate rapidly formed aldol product 119 , followed by a slow dehydration step ($\sim 20 \mathrm{~h}$) to complete α, β-unsaturated aldehyde $\mathbf{1 2 0}$ in 89% yield. Reduction of the allylic aldehyde
followed by protection of the resultant hydroxy group with methoxymethyl ether (MOM) was performed. Selective triisopropylsilyl (TIPS) deprotection, oxidation and Wittig olefination with the corresponding aldehyde afforded $\mathbf{1 2 1}$ in 87% yield over five steps. In two steps, aldehyde 101 was completed by LiAlH_{4} reduction followed by Swern oxidation in 87% yield.

Scheme 28. Assembly of G-Ring and Completion of Aldehyde 101

The synthesis of BCD-bisketal fragment started with an efficient enzymatic resolution of tert-butyl hydroxy-pentenoate $\mathbf{5 1}$ catalyzed by amano lipase PS, using vinyl acetate in pentanes. The produced free allylic alcohol was advanced to borane $\mathbf{1 2 2}$ in two steps, while the vinyl acetate was transformed to Weinreb amide $\mathbf{1 2 3}$ in six steps in 65% yield.

Scheme 29. Efficient Enzymatic Resolution for Synthesis of Ketal Precursors

Carbon extension with organolithium reagent, generated from lithium-iodide exchange of iodide $\mathbf{1 2 4}$, coupled with Weinreb amide $\mathbf{1 2 3}$ afforded the resulting ketone. Stereoselective iodo-de-silylation, from silane 125, allowed for its coupling with borane 122 under Suzuki-Miyaura conditions in the presence of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ and $\mathrm{Ph}_{3} \mathrm{As}$.

Scheme 30. Completion of Spiroketal Fragment 100

Installation of tertiary alcohol by Sharpless asymmetric dihydroxylation with AD-mix β, followed by silyl group removal and oxidation to diketone completed ketal precursor 127 in 61% yield over five steps. The treatment of precursor 127 with camphorsulfonic acid in methanol revealed free tetraol intermediate 128. The solvent displacement to cyclohexane was essential to trigger spiroketalization that was complete within 48 h producing the desired product under thermodynamic control. The completion of the spiroketal fragment was done in eight steps that began with silyl protection of the primary
alcohol, reduction of the ester with $i \mathrm{Bu}_{2} \mathrm{AlH}$ to aldehyde 131. Alkylation, Dess-Martin Periodinane (DMP) oxidation, Peterson olefination, para-methoxybenzyl deprotection and iodo-de-hydroxylation concluded the bisketal fragment 100 in 67% yield. The two fragments could now be united by the addition of complex organolithium reagent derived from iodide 100, through lithium-iodide exchange, to aldehyde 101 resulted in an inconsequential 1:1 mixture of diastereomers 133 in 75\% yield.

Scheme 31. Fragment Coupling and Ring Closing Metathesis

The ring closing metathesis (RCM) precursor 134 was prepared in three steps with a 76% overall yield. The treatment of $\mathbf{1 3 4}$ with $20 \mathrm{~mol} \%$ HGII catalyst provided a 3:1 mixture of isomers in 68% combined yield. Isolation of the minor isomer revealed an RCM product that formed between the allylic alcohol and the methylene group at C10. Ratios greater than $3: 1$ could not be obtained after screening different catalysts, temperatures and solvents. Oxidation to α, β-unsaturated ketone, stereoselective cuprate addition paved the way for a challenging one-pot deprotection and ketalization to form EF-rings.

Scheme 32. Completion of Total Synthesis of Pinnatoxin A

$$
\text { 1. TEMPO, } \mathrm{Phl}(\mathrm{OAc})_{2}
$$

$$
\text { 2. } \mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}
$$

$$
\text { 3. } \mathrm{Me}_{3} \mathrm{SiCHN}_{2}
$$

The synthesis of PnTX A was completed in six steps, where the allylic alcohol at C34 was converted to the methyl ester. Azide reduction to the primary amine and was followed by imine formation, which was accomplished with triethylammonium 2,4,6trimethylbenzoate in toluene at $85^{\circ} \mathrm{C}$ for 60 h . Hydrolysis of the methyl ester provided pinnatoxin A in 37-43\% yield over six steps.

2.4: Binding Studies of Pinnatoxin A with Nicotinic Receptors (nAChRs)

With reproducible synthetic method to access high quality PnTX A, the mode of action (MOA) of this toxin could now be investigated. One clue was provided from the observation of mice after i.p. injection of PnTX A, which led to hyperactivity, spasms, respiratory distress and death ($3-50 \mathrm{~min}$) indicating CNS related mortality. Previous reports revealed that gymnodimine A and 13-desmethylspirolide C (related CI toxins) were potent antagonists towards nicotinic receptors (nAChRs). Together with these observations, PnTX A was conjectured to have similar activity against nAChRs.

The nAChRs are homo- or heteropentamers consisting of different subunits. There have been 17 identified nAChRs, and the stoichiometry of the subunits uniquely defines its function. ${ }^{54}$ These ionotropic receptors are divided in two types based on protein sequences: neuronal-type and muscle-type. ${ }^{55}$ Neuronal-types only contain α, β-subunits, while muscle-types contain $\alpha, \beta, \delta, \gamma, \varepsilon$-subunits. ${ }^{56}$ Pinnatoxins A, G and pinnatoxin amino ketone derivative (PnTX AK) were used in binding studies with nAChRs.

Figure 14. Pinnatoxins Tested for nAChRs Binding Studies

The dual-microelectrode voltage-clamp electrophysiology study on Xenopus oocytes expressing human neuronal $\alpha 4 \beta 2$ or $\alpha 7$ nAChRs subtypes was performed. Control experiments established EC_{50} values with $350 \mu \mathrm{M}$ acetylcholine (ACh), a known agonist, which elicited currents from $1-3 \mu \mathrm{~A}$ at -60 mV holding membrane potential ($n=54$ oocytes from five donors).

The perfusion of PnTX A at varying concentrations showed partial decrease in desensitization (competitive binding against ACh) shown in Figure 15A-C. Dramatic suppression of ACh-evoked currents were observed in a concentration-inhibition curve (Figure 15D) at pM and nM concentrations of PnTX A. Oocytes expressing human $\alpha 7$ nAChRs showed high degree of potency for PnTX A with $\mathrm{IC}_{50}=0.107 \mathrm{nM}$, however PnTX G showed a lower potency with $\mathrm{IC}_{50}=5.06 \mathrm{nM}$.

Figure 15. Electrophysiology Experiment of Xenopus Oocytes with PnTX A

Ach and PnTX A current effect on nAChRs at holding potential -60 mV . (a) human $\alpha 7$, (b) Torpedo $\alpha 1_{2} \beta \gamma \delta$, and (c) human $\alpha 4 \beta 2$ nAChRs before (black line) and after (red line) of addition of PnTX A. (d) Inhibition of ACh-evoked currents by PnTX A or PnTX AK of Xenopus oocytes in human $\alpha 7$ (solid circles, black curve) and $\alpha 4 \beta 2$ (solid triangles, red curve), or Torpedo $\alpha 1_{2} \beta \gamma \delta$ (solid diamonds, blue curve).

After attempting to washout PnTX A from the medium (10-15 min), PnTX A remained bound to nAChRs suggesting irreversible blocking action with nAChRs. Final evaluation of the potency of PnTX A was dependent on the receptor type and established an order of inhibition on nAChRs as $\alpha 7$ (human) $>\alpha 1_{2} \beta \gamma \delta$ (Torpedo) $>\alpha 4 \beta 2$ (human) ranging from $0.1-30.4 \mathrm{nM}$. The performance of PnTX AK analogue (opened form of the imine ring) showed no action on nAChRs subtypes in a range of concentrations. This indicated that the spiroimine component was the pharmacophore necessary for binding in nAChRs. Competitive binding studies were performed with radiotracers $\left[{ }^{125} I\right] \alpha$ bungarotoxin $(\alpha-\mathrm{BTX})$ and $(\pm)-\left[{ }^{3} \mathrm{H}\right]$ epibatidine with PnTX A and showed high affinities
in Torpedo $\alpha 1_{2} \beta \gamma \delta$ and $\alpha 7-5 \mathrm{HT}_{3}$ (chimeric chicken neuronal nAChRs type) at 2.8 nM and 0.35 nM , respectively. Affinities for hetereopentameric neuronal nAChRs ($\alpha 3 \beta 2$ and $\alpha 4 \beta 2$) were less potent, and the order of potency was $\alpha 7-5 \mathrm{HT}_{3}>$ Torpedo $\alpha 1_{2} \beta \gamma \delta>\alpha 3 \beta 2$ $=\alpha 4 \beta 2$.

2.5: Studies Towards ${ }^{18} \mathrm{~F},{ }^{13} \mathrm{C}$ and ${ }^{3} \mathrm{H}$ Isotope Labeled PnTX Derivatives

We proposed ${ }^{18} \mathrm{~F},{ }^{13} \mathrm{C}$ and ${ }^{3} \mathrm{H}$ isotope labeled pinnatoxin derivatives (Figure 16) to probe biodistribution, cellular metabolomics and toxicological profile in biological systems. ${ }^{57}$ Ultimately, information gained from these studies can be part of an effort to aid in the regulation of CI toxin levels in seafood, to understand short and long-term effects of CI exposure, and to utilize PnTX radiotracers as standards for drug discovery in nAChR related neurodegenerative diseases such as schizophrenia, Parkinson's and Alzheimer's. ${ }^{58}$

In 1935, Shoenheimer and Rittenberg first used isotopic labeling in their study of fat metabolism in mice with deuterium. ${ }^{59}$ Since its inception, isotopically labeled bioactive molecules have been used heavily in areas such as drug discovery and oncology. ${ }^{60}$ For more than two decades, radiotracers in animal models have accelerated drug discovery by gathering toxicological, metabolomics, fluxomics and excretion profiles in a rapid manner. ${ }^{61}$ For example, drug metabolism and pharmacokinetic (DMPK) studies now utilize quantitative whole-body autoradiography (QWBA) for drug distribution of radiolabeled bioactive molecules in medicinal chemistry. ${ }^{62}$
${ }^{18} \mathrm{~F}$-labeled bioactive molecules are valuable tools for in vivo images that are detected by positron emissions tomography (PET). ${ }^{63}$ Clear 3-D images are obtained that show the biodistribution of the radiotracer. For example, ${ }^{18}$ F-nifene radiotracers were used to
obtain PET images of $\alpha_{4} \beta_{2}$ nAChRs (thalamic and extrathalamic brain regions) in rhesus monkeys and exhibited potent binding properties at $K_{i}=0.50 \mathrm{nM}$ for this subtype. ${ }^{64}$ Similarly, we wish to incorporate ${ }^{18}$ F-radiolabeled pinnatoxin (derivative 149 and 150) to acquire PET images in mice.

Figure 16. Targets of Derivatives Accessed from Azido triol

Additionally, ${ }^{3} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-labeling are also routinely used in metabolomics. With the advent of ultra-high resolution Fourier transform mass spectrometry (FT-MS); metabolites can be characterized accurately by mass to offer clues in cellular metabolic pathways. ${ }^{65}$ We carefully selected different derivative candidates for isotopic labeling shown in Figure 16. Our initial goal was to develop a reliable synthetic method to access these derivatives and to fully characterization them. Additionally, we wanted to obtain the potency of each derivative against nAChRs to compare its binding properties against PnTX A prior to isotopic labeling.

Scheme 33. Proposed Synthesis of $\left[{ }^{3} \mathrm{H}\right]$-PnTX-OH 146

The proposed synthesis of $\left[{ }^{3} \mathrm{H}\right]$-PnTX-OH 146 (Scheme 33) would advance azido triol 98 to $\left[{ }^{3} \mathrm{H}\right]$-azido triol 151 by $\mathrm{TEMPO} / \mathrm{PhI}(\mathrm{OAc})_{2}$ oxidation and reduction with sodium borotritide. ${ }^{66}$ Standard imine formation protocol would complete the synthesis of $\left[{ }^{3} \mathrm{H}\right]-\mathrm{PnTX}-\mathrm{OH} 146$ in four steps. The synthesis of PnTX-OH 141 could be rapidly accessed from azidotriol in two steps through Staudinger reduction $\left(\mathrm{PPh}_{3}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 55\right.$ ${ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$) of azide 98 (Scheme 34), followed by imine formation (69% yield over two steps). The completion of derivative $\mathbf{1 4 1}$ provided the necessary substrate to investigate the feasibility of synthesizing PnTX-F 144 through nucleophilic substitution of the corresponding tosylate.

Selective mono-tosylation of allylic alcohol 141 was achieved in the presence of p toluenesulfonic anhydride $\left(\mathrm{Ts}_{2} \mathrm{O}\right)$ and 2,6-di-tert-butyl-4-methyl pyridine (DTMP) in dichloromethane in quantitative yield (Scheme 34). Fluorine substitution conditions were screened with a model tosylate $\mathbf{1 5 5}$, which was made in two steps from (S)perillaldehyde. For each of the conditions, thermal and microwave assisted heating were performed.

Scheme 34. Synthesis of PnTX-OH and Selective Mono Tosylation

Scheme 35. Screening Conditions for Fluoro-de-Tosylation

The most promising reaction conditions are presented in entries 5-8. Tetrabutylammonium fluoride (TBAF) in refluxing acetonitrile provided allylic fluoride 156A in 85% yield along with hydrolysis product 157B (allylic alcohol). ${ }^{67}$ Utilization of potassium fluoride and 18 -crown-6 in acetonitrile also gave comparable yields (80%
yield) ${ }^{68}$ however, elimination product $\mathbf{1 5 8 C}$ was observed in both traditional oil bath and microwave assisted heating.

With these promising conditions at-hand, mono-tosylate 154 was subjected to the same reaction conditions (entries 5-8). The treatment of tosylate $\mathbf{1 5 4}$ with potassium fluoride and 18-crown-6 in refluxing acetonitrile only produced complex mixtures. We were delighted to find that in the presence of tetrabutylammonium fluoride in acetonitrile with microwave assisted heating at $120^{\circ} \mathrm{C}$ for 30 min afforded 2.27 mg of fluoride 144 in 67% isolated yield (Scheme 36). It should be noted that yields of reactions on a 4 mg scale were calculated by ${ }^{1} \mathrm{H}$ NMR titration (see Supporting Information).

Scheme 36. Synthesis of Pinnatoxin-Fluoride

Our focus shifted towards our next target, pinnatoxin 2-fluropyridine 145. The synthetic strategy was based on a reliable reaction pathway utilizing "click" chemistry to couple azide 157 with pinnatox-yne 143. Pinnatox-yne 143 was made in four steps from azido triol. Selective oxidation at C 34 with $\mathrm{TEMPO} / \mathrm{PhI}(\mathrm{OAc})_{2}$ in dichloromethane provided aldehyde 148 in 70% yield. Homologation of the corresponding aldehyde to alkyne $\mathbf{1 4 8}$ was possible with Ohira-Bestmann reagent 155 in potassium carbonate and methanol. ${ }^{69}$ Standard conditions for imine formation began with reduction of the azide to the primary amine, followed by cyclization with triethylammonium 2,4,6-
trimethylbenzoate in toluene at $85^{\circ} \mathrm{C}$ for 60 h provided pinnatox-yne 143 in 48% yield over two steps.

Scheme 37. Synthesis of Pinnatoxin 2-Fluoropyridine

Prior to azide-alkyne cycloaddition chemistry, 3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy-2-fluoropyridine 157 was prepared in four steps from triethylene glycol (TEG) and 2-nitropyridin-3-ol. ${ }^{70}$ The copper catalyzed 1,3-dipolar azide-alkyne cycloaddition proceeded cleanly in the presence $20 \mathrm{~mol} \% \mathrm{CuSO}_{4}$ and $40 \mathrm{~mol} \%$ sodium ascorbate in aqueous tert-butanol at $23{ }^{\circ} \mathrm{C}$ for 12 h producing triazole $\mathbf{1 4 5}$ in 84% yield. ${ }^{71}$

The last target, pinnatoxin methyl ester 142, was obtained in five steps. Oxidation to the methyl ester was accomplished by stepwise $\mathrm{TEMPO} / \mathrm{Ph}(\mathrm{I}) \mathrm{OAc}_{2}$ and Pinnick
oxidation to the carboxylic acid followed by methyl ester formation with trimethylsilyl diazomethane in 70-80\% yield over three steps.

Scheme 38. Unoptimized Synthesis of Pinnatoxin Methyl Ester

Standard conditions for imine formation provided pinnatoxin methyl ester 142 in 35% yield as an inseparable mixture with triphenylphosphine oxide. To address the issue of this low yielding imine formation with the methyl ester functionality, we hypothesized that during the Staudinger reduction, the presence of the iminophosphorane intermediate was the culprit that led to unproductive reaction pathways. One way to circumvent this issue was shortening the lifespan of the iminophosphorane in the reaction mixture by expediting its hydrolysis with water. Triethylamine is known to accelerate the hydrolysis step in Staudinger azide reductions. ${ }^{72}$ To test this hypothesis, azide $\mathbf{1 5 9}$ was treated with $\mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ at $55^{\circ} \mathrm{C}$. We observed full consumption of starting material in 8 h compared to 36 h without triethylamine. Under standard protocol, this crude reaction
mixture was submitted to cyclic imine formation that afforded pinnatoxin methyl ester 142 in 92% yield.

Scheme 39. Synthesis of Pinnatoxin Methyl Ester

1. PPh_{3}, THF- $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Et} 3 \mathrm{~N}(10$ equiv $)$
$55^{\circ} \mathrm{C}, 36 \mathrm{~h}$

2. $\mathrm{P}\left(p-\mathrm{PhCF}_{3}\right)_{3}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Et}_{3} \mathrm{~N}(10$ equiv $)$
$55^{\circ} \mathrm{C}, 36 \mathrm{~h}$

Although we were able to substantially improve the yield, triphenylphosphine oxide was still problematic during purification. We began screening various triarylphosphines for suitable reactivity and separation from its corresponding oxide. Excellent results came from Tris(4-(trifluoromethyl)-phenyl)-phosphine that afforded pure PnTX methyl ester 142 in 86% yield. Due to the decreased nucleophilic nature of this phosphine, the azide reduction required 36 h . We postulated that the rate-determining step was the formation of the iminophosphorane, followed by its rapid hydrolysis.

2.6: Kishi's Total Synthesis of Pteriatoxin A-C

Uemura and co-workers, in 2001, isolated PtTX A and PtTX B/C as an inseparable mixture from Pteria penguin, and they observed the same gross structure as PnTX A but
containing a cysteine residue. In 2006, Kishi reported the total synthesis ${ }^{73}$ and stereochemistry ${ }^{74}$ of pteriatoxins A, B and $\mathrm{C}(\operatorname{PrTX} A-\mathrm{C})$. Their synthetic strategy heavily relied on previously published synthesis of pinnatoxin A discussed above. The purpose of Kishi's synthesis of PtTXs was to secure access to all possible stereoisomers at C34 and C2-positions to unequivocally identify each member of the PrTX family. Although PtTX B and C were isolated as a 1:1 mixture, they were able to identify distinct ${ }^{1} \mathrm{H}$ NMR signals for each isomer. The diagnostic NMR characteristics and HPLC traces established the stereochemistry as (34 $S, 2^{\prime} R$) PtTX A, $\left(34 R, 2^{\prime} R\right)$ PtTX B and $\left(34 S, 2^{\prime} R\right)$ PtTX C (Scheme 41).

Scheme 40. Synthesis of C33-C35 Fragments through Enzymatic Resolution

Enzymatic resolution of $\mathbf{1 6 0}$ was the foundation in which all C34 isomers could be synthesized (Scheme 40). The other building blocks for the construction of the macrocyclic carbostructure are the same used for the synthesis of PnTX A. Hydrolysis with Amano lipase PS800 of diacetate $\mathbf{1 6 0}$ resolved two optically pure fragments (ee > 96%) and was subsequently converted to their respective dioxaspiranes. Vinyl bromide

162 was further elaborated to the diene functionality through NHK-coupling $(\mathrm{Ni} / \mathrm{Cr})$ with aldehyde 165, acylation and Pd-mediated elimination in 78\% yield.

Scheme 41. Synthesis of PtTX A-C

Alkylation of lithiated dithiane $\mathbf{1 6 8}$ with iodide $\mathbf{1 6 7}$ united the two complex fragments in high yield. After the formation of EF-rings, oxidation to the aldehyde of the C6 hydroxy group permitted the second $\mathrm{Ni} / \mathrm{Cr}$-mediated coupling with vinyl iodide ent-84 and DMP
oxidation completed the IMDA precursor in 40% yield over five steps. Protecting group manipulation of the 1,2-diol to the p-methoxybenzoate provided the best exo:endo (ca. 2:1) selectivity for the desired exo intramolecular Diels-Alder product (dodecane, $160{ }^{\circ} \mathrm{C}$) in 51% isolated yield. Introduction of cysteine residue was possible through epoxide $\mathbf{1 7 3}$ to provide two regioisomers, PtTX A and PtTX B, in an $\mathrm{S}_{\mathrm{N}} 2$ fashion. Forcing conditions $\left(200{ }^{\circ} \mathrm{C}\right)$ for imine cyclization used in the PnTX A synthesis was unsuccessful in this approach. The implication of weakly acidic conditions with sterically congested carboxylic acids $\left(2,4,6-(i-\operatorname{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ and triethylamine delivered the requested cyclic imines in acceptable yields for PtTX A-C as well as the unnatural PrTX isomer (see Scheme 41).

2.7: Synthetic Studies Towards Pteriatoxin A

The landmark synthesis by Kishi required early C34 functionalization to access pteriatoxins A-C in 34 steps (longest linear steps). Our ultimate goal was to develop the synthesis of pteriatoxins by direct functionalization of pinnatoxin G. Concise synthetic approach to these molecules would allow establishing their bioactivity profile, which remained to be conclusively investigated.

Our first approach envisioned cysteine addition to chiral allylic epoxide $\mathbf{1 7 3}$ (Figure 17). At the onset, no literature precedence existed to access terminal chiral allylic epoxides from their corresponding aldehydes. Three reports by Connon, Aggarwal and Goodman reported asymmetric Corey-Chaykovsky epoxidation of benzaldehyde with chiral sulfur ylides shown in Scheme 42. Connon provided the most promising results with bulky ylide $\mathbf{1 8 0}, \mathrm{P}_{2}-t \mathrm{Bu}$ base, proton sponge to afford styrene oxide in 92% yield and 92% ee.

Figure 17. Retrosynthesis of PrTX A via Cysteine Addition to Chiral Epoxide

Scheme 42. Precedence for Asymmetric Corey-Chaykovsky Epoxidation

Performing Connon procedure on a suitable model containing the requisite α-branched and α, β-unsaturated aldehyde 187 afforded epoxide $\mathbf{1 8 8}$ in 89% yield and 85% ee
(Scheme 43). Application of this method with aldehyde 189 and 190 provided no epoxide but only moderate decomposition of the starting material. We hypothesized that the steric clash of the bulky aryl groups of the ylide with the sterically congested cyclohexenal prohibited this reaction. Next, we wanted to investigate the possibility of substrate (189) controlled asymmetric epoxidation with trimethylsulfonium iodide could be achieved. However, a 1:1 mixture of diastereomers (190) was obtained from trimethylsulfonium iodide and potassium bis(trimethylsilyl)amide (KHMDS). Unfortunately, the addition of cysteine residue to racemic epoxide would lead to four diastereomers. This route greatly deviated from our primary objective, which was the direct synthesis of pteriatoxin A. As an alternative approach, we envisioned chiral diols as another attractive precursor to all isomers of pteriatoxins.

Scheme 43. Connon Procedure for Asymmetric Epoxidation

We investigated the feasibility of accessing PtTX A through a direct Sharpless asymmetric dihydroxylation of pinnatoxin G, followed by selective mono-tosylation and direct $\mathrm{S}_{\mathrm{N}} 2$ addition with cysteine (Figure 18). The starting material was prepared in four steps from azido triol. Oxidation and Wittig olefination of the corresponding aldehyde with methyltriphenylphosphonium bromide, n - BuLi in THF at $-78^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ provided azido triene 194 in $40-45 \%$ yield. Standard spiroimine formation provided PnTX G in 8891\% yield.

A review of literature suggested that we could tune the regioselectivity to favor dihydroxylation of the mono-substituted olefin (C34 and C35-positions). It was well documented that dihydroxylation of di- or tri-substituted olefins required the use of methanesulfonamide additive to the AD-mix. ${ }^{75}$

Figure 18. Retrosynthetic Plan for the Synthesis of Pteriatoxin A

PtTX A

In contrast, methanesulfonamide was shown to slow the reactivity with terminal olefins (1,1-disubstituted and mono-substituted olefins). ${ }^{76}$ Additionally, the phthalazine ligand linker, as in $(\mathrm{DHQ})_{2} \mathrm{PHAL}$, stabilizes substrates through $\pi-\pi$ interactions. The $\pi-\pi$
stabilization between phthalazine and cyclohexene could provide the necessary preference needed for dihydroxylation of the C34-C35 double bond.

Scheme 44. Catalytic Asymmetric Dihydroxylation of Pinnatoxin G

We were delighted to see that regioselective dihydroxylation of PnTX G occurred in the presence of AD-mix- $\alpha,{ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$ at $0{ }^{\circ} \mathrm{C}$ (no sulfonamide additive) for 5.5 h afforded tetraol 192 in 55% yield and a 10:1 dr along with recovered starting material. Longer reaction times (16 h) under these conditions led to complex distribution of products and decomposition of the tetraol. Halting this reaction at 5.5 h provided clean tetraol in 55\% yield along with recovered PnTX G in 31\% yield. Tosylation of tetraol 192 ($\mathrm{Ts}_{2} \mathrm{O}$, DTMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 70 \%$ conversion) afforded a $1: 1$ mixture of mono-tosylate 191 and epoxide 194. Purification of the tosylate through column chromatography resulted in
higher conversion to the epoxide. The future direction of the synthesis of PtTX A would be to investigate other possibilities of substitution of C35 hydroxyl group with cysteine.

Conclusion

In 2011, the Zakarian laboratory established a robust and scalable synthesis of PnTX A. This was demonstrated in this work by producing almost 600 mg of an advanced azido triol intermediate, which can be converted to PnTX A in 6 steps, or PnTX G in 4 steps. The azido triol has been used as a starting material for the preparation of a variety of bioactive pinnatoxin derivatives. Competitive binding and electrophysiological data of these derivatives against nicotinic acetylcholine receptors are pending. In the future, ${ }^{18} \mathrm{~F}$, ${ }^{13} \mathrm{C}$ and ${ }^{3} \mathrm{H}$ isotope labeling of these derivatives can reveal biodistribution, cellular metabolism and short/long-term affect of pinnatoxin exposure. Also, a catalytic asymmetric dihydroxylation of pinnatoxin G secured a promising route to the synthesis of pteriatoxins. The culmination of this work will build upon a growing body of knowledge that will ultimately lead to the regulation of these toxins in contaminated shellfish.

Experimental Procedures

General Information. All reactions were carried out under an inert atmosphere of dry argon in oven or flame-dried glassware, unless the reaction procedure states otherwise. Tetrahydrofuran (THF) and ether (diethyl ether) were distilled from sodium-benzophenone in a continuous still under an atmosphere of argon. Dichloromethane, di-iso-propylamine and triethylamine were distilled from calcium hydride in a continuous still under and atmosphere of argon. Reaction temperatures were controlled by IKA ETS-D4 fuzzy thermo couples. Analytical thin-layer chromatography (TLC) was performed using pre-coated TLC plates with Silica Gel $60 \mathrm{~F}_{254}$ (EMD no. 5715-7) and visualized using combinations of UV, anisaldehyde, ceric ammonium molybdate (CAM), potassium permanganate, and iodine staining. Flash column chromatography was preformed using 40-63 mm silica gel (EMD, Geduran, no. 1.11567 .9026) as the stationary phase. Proton nuclear magnetic resonance spectra were recorded at 400, 500, and 600 MHz on Varian Unity Inova. Carbon nuclear magnetic resonance spectra were recorded at $100 \mathrm{MHz}, 125 \mathrm{MHz}$, and 150 MHz on Varian Unity Inova, and Varian Unity Inova spectrometers. All chemical shifts were reported in δ units relative to tetramethylsilane. Optical Rotations were measured on a Rudolph Autopol III polarimeter. High resolution mass spectral data were obtained by the Mass Spectrometry laboratory at the University of California, Santa Barbara.

(E)-Ethyl 2,4-dimethylpent-2-enoate (19). Ethyl 2-(triphenylphosphoranylidene)

 propanoate $(7.97 \mathrm{~g}, 22.0 \mathrm{mmol})$ in dry dichloromethane $(25.0 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Freshly distilled isobutyraldehyde ($1.8 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise via syringe within 5 min . This mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for an additional 4 h . The crude yellow mixture was concentrated and purified by column chromatography (silica, 10\% diethyl ether - pentanes, then 30% diethyl ether pentanes) to give the desired ester $19(2.73 \mathrm{~g}, 17.5 \mathrm{mmol}, 79 \%$ yield $)$ as a clear liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 6.54(\mathrm{dd}, \mathrm{J}=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.61$ (dhept, $\mathrm{J}=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.26(\mathrm{~m}$, $3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 168.48,148.68$, 125.57, 60.34, 27.86, 21.91, 14.25, 12.21; HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+]$ calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$, 156.1150; found, 156.1156.
(\boldsymbol{E})-2,4-Dimethylpent-2-en-1-ol (S1). (E)-Ethyl 2,4-dimethylpent-2-enoate 5 $(1.40 \mathrm{~g}, 8.96 \mathrm{mmol})$ in dry diethyl ether $(10.0 \mathrm{~mL})$ was added dropwise with a syringe over 5 min to a mixing solution of $\mathrm{LiAlH}_{4}(0.850 \mathrm{~g}, 22.40 \mathrm{mmol})$ in diethyl ether $(35.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 45 min , the solution was cooled to $0^{\circ} \mathrm{C}$. To the cooled mixture, $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL}), 3 \mathrm{M} \mathrm{NaOH}(0.9 \mathrm{~mL})$ and another portion of $\mathrm{H}_{2} \mathrm{O}(2.6 \mathrm{~mL})$ were added sequentially at 5 min intervals while stirring vigorously.

The resultant mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 3 h . The salts were filtered and washed with ether ($3 \times 10 \mathrm{~mL}$), and the combined filtrate was dried with magnesium sulfate and evaporated. The crude clear mixture was purified by column chromatography (silica, 20\% diethyl ether - pentanes, then 40% diethyl ether pentanes) to give the desired alcohol $\mathbf{S 1}(0.844 \mathrm{~g}, 7.39 \mathrm{mmol}, 82 \%$ yield $)$ as a clear liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 5.22(\mathrm{ddd}, \mathrm{J}=9.2,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta(\mathrm{ppm}): 133.93$, $132.34,76.75,69.00,26.80,22.87,13.57$.

(E)-2,4-Dimethylpent-2-enal (21). Dimethylsulfoxide ($1.1 \mathrm{~mL}, 16.1 \mathrm{mmol}$) was added dropwise to a solution of $(\mathrm{COCl})_{2}(0.7 \mathrm{~mL}, 8.04 \mathrm{mmol})$ in dry dichloromethane $(10.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 min , (E)-2,4-dimethylpent-2-en-1-ol S1 $(0.612 \mathrm{~g}, 5.36 \mathrm{mmol})$ in dry dichloromethane $(7.0 \mathrm{~mL})$ was added via syringe at -78 ${ }^{\circ} \mathrm{C}$ and stirred for 25 min . Triethylamine ($3.4 \mathrm{~mL}, 24.1 \mathrm{mmol}$) was added over 5 min at $-78{ }^{\circ} \mathrm{C}$, and then the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for an additional 25 min . The solution was diluted with diethyl ether $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ and stirred for 5 min . A $1: 1$ mixture of brine $(10 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added and the aquesous phase was extracted with diethyl ether (3 x 10 mL). The combined organic layers were washed with a mixture of brine $(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate (10 mL), dried with sodium sulfate, and the crude clear mixture was purified by column chromatography (silica, 20% diethyl ether -
pentanes, then 40% diethyl ether - pentanes) to give the desired aldehyde $21(0.367 \mathrm{~g}$, $3.28 \mathrm{mmol}, 61 \%$ yield) as a clear liquid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 9.34$ (s, 1H), $6.26(\mathrm{dd}, \mathrm{J}=9.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dhept}, \mathrm{J}=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta(\mathrm{ppm}): 195.60$, $161.15,137.05,28.16,21.71,9.05$.

6-((1E,3E)-3,5-Dimethylhexa-1,3-dien-1-yl)-2,2-dimethyl-4H-1,3-dioxin-4-one

(23). Diethyl ((2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)methyl)phosphinate 22 (3.07 $\mathrm{g}, 11.0 \mathrm{mmol}$) was dissolved in dry THF (23.0 mL) and added dropwise to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $0.463 \mathrm{~g}, 11.0 \mathrm{mmol})$ in dry THF $(23.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 30 min. A solution of (E)-2,4-Dimethylpent-2-enal $21(1.30 \mathrm{~g}, 11.6 \mathrm{mmol})$ in dry THF (23.0 mL) was added via cannula at $-78^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 12 h and then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, diluted with ethyl acetate (20 mL), and washed with brine (20 mL). The organic layer was dried with sodium sulfate and evaporated. The crude product was purified by column chromatography (silica, 10% ethyl acetate - hexanes) to give a white crystalline solid 23 ($1.58 \mathrm{~g}, 6.68 \mathrm{mmol}, 58 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 6.92(\mathrm{~d}, \mathrm{~J}=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{ddt}, \mathrm{J}$ $=13.3,9.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$); $\delta(\mathrm{ppm}): 164.11,162.08,148.89,143.31,130.80$,
117.16, 106.10, 93.61, 27.96, 25.03, 22.45, 12.04; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}, 259.1310$; found, 259.1298.

(2E,4E)-Ethyl 6-bromo-5-methylhexa-2,4-dienoate (18). The (E)-4-bromo-3methyl but-2-en-1-ol was synthesized from isoprene according to a known procedure. ${ }^{77}$ Dimethylsulfoxide $(2.8 \mathrm{~mL}, 38.9 \mathrm{mmol})$ was added to a solution of oxalyl chloride $(1.6 \mathrm{~mL}, 19.5 \mathrm{mmol})$ in dry dichloromethane $(60.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 15 min , a solution of the (E)-4-bromo-3-methylbut-2-en-1-ol $(2.14 \mathrm{~g}, 12.9$ $\mathrm{mmol})$ in dichloromethane (30.0 mL total with rinses) was added. The mixture was stirred for 45 min . Diisopropylethylamine ($10.0 \mathrm{~mL}, 58.5 \mathrm{mmol}$) was added dropwise, and after 30 min the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 25 min . The reaction mixture was quenched by adding 100 mL of 1 M aqueous HCl . The aqueous layer was extracted with dichloromethane (3 x 65 mL). The combined organic layers were washed with water and a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated at $25^{\circ} \mathrm{C}$, and the residue was used directly in the next step.

Ethyl 2-(triphenylphosphoranylidene)acetate $(4.70 \mathrm{~g}, 13.5 \mathrm{mmol})$ was added to the solution of aldehyde in dichloromethane $(40.0 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at the same temperature for 14 h , after which 5 g of silica gel were added. The mixture was concentrated and purified by column chromatography (silica, 5\% ethyl acetate - hexanes) to give 18 as a yellow oil ($1.48 \mathrm{~g}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.48(\mathrm{ddd}, \mathrm{J}=15.2,12.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.20(\mathrm{~m}$, $1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}=15.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.17(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}$, $1 \mathrm{H}), 1.99(\mathrm{dd}, \mathrm{J}=14.1,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\operatorname{CDCl} 3) ; ~ \delta(\mathrm{ppm}): 166.87,166.84,139.39,139.24,127.29,126.75,122.84,122.79$, 60.43, 60.41, 50.79, 39.43, 14.27; HRMS-EI (m/z): [M+] calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{2}$, 232.0099; found, 232.0108.

(2E,4E)-Ethyl 6-((4-methoxybenzyl)amino)-5-methylhexa-2,4-dienoate (19). $\mathrm{K}_{2} \mathrm{CO}_{3}(1.74 \mathrm{~g}, 12.6 \mathrm{mmol})$ was added to a mixture of 4-methoxybenzylamine (0.9 $\mathrm{mL}, 6.60 \mathrm{mmol}$) and ($2 E, 4 E$)-ethyl 6-bromo-5-methylhexa-2,4-dienoate ($1.48 \mathrm{~g}, 6.30$ mmol) in dimethylformamide (20.0 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and brine, dried with sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (silica, 20% to 30% ethyl acetate - hexanes) to afford $19(0.960 \mathrm{~g}, 70 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.60(\mathrm{dd}, \mathrm{J}=15.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H})$, $1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl3); $\delta(\mathrm{ppm}): 167.67,158.85$, $147.47,140.52,132.42,129.45,123.28,120.28,113.97,60.36,56.49,55.43,52.73$,
16.31, 14.51; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}, 312.1576$; found, 312.1564.

(Z)-2-Methylpenta-2,4-dien-1-ol (30). (Z)-3-Iodo-2-methylprop-2-en-1-ol 14 was synthesized from propargyl alcohol according to a known procedure. ${ }^{78}$ Tetrakis(triphenylphosphine)palladium ($0.292 \mathrm{~g}, 0.250 \mathrm{mmol}$) was added to a solution of vinyl iodide $13(2.00 \mathrm{~g}, 10.0 \mathrm{mmol})$ in dry, degassed toluene (135.0 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 20 min , vinyl magnesium bromide (1.25 M in THF, 24.0 $\mathrm{mL}, 30.0 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 30 min . The reaction was quenched by adding 20 ml of saturated aqueous ammonium chloride. The aqueous layer was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated under reduced presuure at $10{ }^{\circ} \mathrm{C}$, and the residue was purified by column chromatography on silica gel (silica, 30% diethyl ether - hexanes) to afford $30(0.770 \mathrm{~g}, 75 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm})$: 6.63 (dt, J = 16.7, 10.6 Hz, 1H), $5.96(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3); $\delta(\mathrm{ppm}): 137.57,131.96,128.37,116.57,61.26,21.34 ;$ HRMS-EI (m/z): [M+] calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}, 98.0732$; found, 98.0730.

(Z)-N-(4-Methoxybenzyl)-2-methylpenta-2,4-dien-1-amine
(32). N-Bromosuccimide ($1.82 \mathrm{~g}, 10.2 \mathrm{mmol}$) was added to a stirred solution of triphenylphosphine ($2.67 \mathrm{~g}, 10.2 \mathrm{mmol}$) and $\mathbf{3 0}(0.770 \mathrm{~g}, 7.80 \mathrm{mmol})$ in anhydrous THF $(20.0 \mathrm{~mL})$ at -10 ${ }^{\circ} \mathrm{C}$ over 2-3 min in small portions under argon. After 20 min , TLC showed a complete consumption of alcohol 14. 4-Methoxybenzylamine ($2.0 \mathrm{~mL}, 15.6 \mathrm{mmol}$) was injected via a syringe in one portion. The temperature was raised to $23{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . Hexane (10 mL) was added to the reaction mixture and stirred for 0.5 h . to precipitate triphenylphosphine oxide and succinimide. The solid was filtered and washed with 1 N HCl . Then the aqueous layer was neutralized by sodium bicarbonate solution and extracted with diethyl ether (3 x 20 mL). The combined organic layers were dried with anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (silica, 60% ethyl acetate - hexanes) to afford $32(0.730 \mathrm{~g}, 43 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 7.24(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.61-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.04-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, \mathrm{J}=16.7,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ $(\mathrm{dd}, \mathrm{J}=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.54$ (bs, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3); $\delta(\mathrm{ppm}): 158.61,137.28,132.50,132.42$, $129.32,128.75,115.86,113.74,55.25,52.43,49.12,22.56 ; \operatorname{HRMS}-E S I(m / z):[\mathrm{M}+\mathrm{H}]$ calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}, 218.1545$; found, 218.1533.

(2E,4E)-Ethyl 6-((4E,6E)-N-(4-methoxybenzyl)-6,8-dimethyl-3-oxonona-4,6dien amido)-5-methylhexa-2,4-dienoate (E-24). Pyridinium tosylate (4.3 mg , $0.0172 \mathrm{mmol})$ was added to a solution of 6 -((1E,3E)-3,5-dimethylhexa-1,3-dienyl)-2,2-dimethyl-4H-1,3-dioxin-4-one 19 (40.0 mg, 0.172 mmol) and (2E,4E)-ethyl 6-(4-methoxybenzylamino)-5-methylhexa-2,4-dienoate ($50.0 \mathrm{mg}, 0.172 \mathrm{mmol}$) 12 in dry toluene (3.5 mL). The resulting solution was heated to reflux for 2 h . Toluene was evaporated and the crude product was purified by column chromatography (silica, 40% ethyl acetate - hexanes) to give $(\boldsymbol{E}) \mathbf{- 2 4}$ as a white crystalline solid $(50.0 \mathrm{mg}$, $0.106 \mathrm{mmol}, 62 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.56$ (ddd, $\mathrm{J}=2.4,11.4$, $16.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=8.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{ddd}, \mathrm{J}=3.3$, 8.5, 20.3 Hz, 2H), 6.18 (d, J = 16.2 Hz, 1H), $6.04(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=$ $13.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=9.3,1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{qd}, \mathrm{J}=5.2,7.1,7.1,7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 1 \mathrm{H})$, $1.85(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.97(\mathrm{~m}$, $6 \mathrm{H})$. HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Na}, 490.2569$; found, 490.2552.

(E)-Ethyl 3-((3aR,4S,5S,7aR)-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methyl

 pent-2-en-2-yl)-1,7-dioxooctahydro-1H-isoindol-4-yl)acrylate (25). (2E,4E)-Ethyl 6-((4E,6E)-N-(4-methoxybenzyl)-6,8-dimethyl-3-oxonona-4,6-dienamido)-5-methyl hexa-2,4-dienoate $(\boldsymbol{E}-\mathbf{2 4})(8.2 \mathrm{mg}, 17.5 \mu \mathrm{~mol})$ and BHT $(0.4 \mathrm{mg}, 1.70 \mu \mathrm{~mol})$ were dissolved in dry toluene $(0.6 \mathrm{~mL})$ and heated at reflux for 18 h . Toluene was evaporated and the crude product was purified by column chromatography (silica, 50% ethyl acetate - hexanes) to give $\mathbf{2 5}$ as a yellowish oil ($7.0 \mathrm{mg}, 15.0 \mu \mathrm{~mol}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=15.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}$, 2H), $2.46-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta(\mathrm{ppm}):$ 204.94, 168.38, 165.44, 159.46, 143.21, 135.09, 130.30, 129.88, 127.90, 125.55, $114.36,62.73,60.66,57.39,55.44,48.38,46.36,43.34,41.19,39.35,27.91,27.28$, 22.94, 22.92, 16.65, 14.42; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]$ calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Na}$, 490.2569; found, 490.2565.
(E)-Ethyl 3-((3aR,4S,5S,7R,7aR)-7-hydroxy-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methylpent-2-en-2-yl)-1-oxooctahydro-1H-isoindol-4-yl)acrylate

Sodium borohydride $(8.0 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{2 5}(10.0 \mathrm{mg}$,
$21.0 \mu \mathrm{~mol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(74.0 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ for 20 min . Ammonium chloride (3 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the mixture was extracted with ethyl acetate (3 x 15 mL). The organic layers were combined, dried with sodium sulfate, and concentrated. Purification with column chromatography (silica, 60\% ethyl acetate - hexanes) gave a yellowish oil 26 (10.0 $\mathrm{mg}, 21.0 \mu \mathrm{~mol}, 100 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.15(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 2H), 6.92 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.67 (dd, J = 15.4, $11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (d, J = 15.4 Hz , $1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{td}, \mathrm{J}=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dd}, \mathrm{J}=11.2$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.62$ $-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 176.07,165.77$, $159.41,145.38,134.36,131.87,129.79,128.25,123.64,114.38,71.68,60.46,56.33$, $55.85,55.45,46.27,46.03,42.87,39.69,30.72,27.97,27.18,23.07,22.92,16.52$, 14.46; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Na}, 492.2726$; found, 492.2720 .

(E)-3-((3aR,4S,5S,7R,7aR)-7-Hydroxy-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methylpent-2-en-2-yl)-1-oxooctahydro-1 H -isoindol-4-yl)acrylaldehyde (27).

Diiso- butylaluminum hydride (1 M in toluene, $0.2 \mathrm{~mL}, 0.200 \mathrm{mmol}$) was added
dropwise to a solution of ester $\mathbf{2 6}(10.0 \mathrm{mg}, 21.0 \mu \mathrm{~mol})$ in dry dichloromethane (1.0 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 20 min , a saturated solution of Rochelle's salt (5 mL) was added and then the mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$. The mixture was stirred vigorously for 2 h at room temperature. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 20 mL). The organic layers were dried with sodium sulfate, concentrated, and the residue was purified by column chromatography on silica gel (silica, 70% to 90% ethyl acetate - hexanes) to afford the expected allylic alcohol ($8.0 \mathrm{mg}, 80 \%$).

Activated $\mathrm{MnO}_{2}(80.0 \mathrm{mg})$ was added to a solution of the allylic alcohol in dry dichloromethane $(1.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 12 h , and then directly submitted to purification by column chromatography (70\% ethyl acetate - hexane) to give pure aldehyde $27\left(7.0 \mathrm{mg} 88 \%\right.$ yield) as an oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 9.45(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, \mathrm{J}=15.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, \mathrm{J}=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.43(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.67-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=$ 6.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}); $\delta(\mathrm{ppm}): 193.02,175.58,159.28,154.32$, $134.92,134.40,131.43,129.62,127.89,114.24,71.33,56.19,55.98,55.57,55.27$, 46.33, 45.87, 42.51, 39.45, 29.70, 27.83, 26.98, 22.99, 22.84; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Na}, 448.2464$; found, 448.2462.

(28). Aldehyde $27(2.5 \mathrm{mg}, 5.80 \mu \mathrm{~mol})$ was dissolved in dry toluene $(1.0 \mathrm{~mL})$ and piperidium trifluoroacetate ($1.5 \mathrm{mg}, 7.50 \mu \mathrm{~mol}$) was added. The mixture was heated to $75^{\circ} \mathrm{C}$ for 2.5 h , and then finally cooled to $23^{\circ} \mathrm{C}$. The solution was directly applied on a silica column (silica, 60% ethyl acetate - hexanes) to afford product $\mathbf{2 8}(2.0 \mathrm{mg}$, $47.0 \mu \mathrm{~mol}, 80 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 9.38(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=15.6,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.04(\mathrm{dd}, \mathrm{J}=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 192.77,175.36,159.28,155.66,135.95,135.57,131.87,129.47,127.87$, $114.28,70.10,57.98,55.28,52.27,49.82,46.28,45.94,39.86,35.96,28.32,26.70$, 22.98, 22.75, 12.19; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Na}, 448.2464$; found, 448.2447 .

(4E,6E)-N-(4-Methoxybenzyl)-6,8-dimethyl- N-((Z)-2-methylpenta-2,4-dien-1-
yl)-3-oxonona-4,6-dienamide (34). Pyridinium p-toluenesulfonate ($35.0 \mathrm{mg}, 0.138$
$\mathrm{mmol})$ was added to a solution of dioxinone $\mathbf{2 3}(0.326 \mathrm{~g}, 1.38 \mathrm{mmol})$ and amine $\mathbf{3 2}$ $(0.300 \mathrm{~g}, 1.38 \mathrm{mmol})$ in toluene $(25.0 \mathrm{~mL})$, and the mixture was stirred and heated at reflux for 3 h . After cooling, the mixture was concentrated and the resultant red oil was purified by silica gel flash chromatography (silica, 20\% ethyl acetate - hexanes) yielding the title compound 34 as a yellow oil ($0.520 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 7.30-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.46$ $-6.14(\mathrm{~m}, 1 \mathrm{H}), 6.07-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=10.0,1 \mathrm{H}), 5.28$ $(\mathrm{d}, \mathrm{J}=15.2,1 \mathrm{H}), 5.22-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=3.5,2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=$ $2.2,2 H), 3.97-9.92(\mathrm{~d}, \mathrm{~J}=7.0,2 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 5 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.75(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=8.2,3 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 6 \mathrm{H})$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Na}, 418.2358$; found, 418.2343.

(2E,4Z)-Methyl 6-((4E,6E)-N-(4-methoxybenzyl)-6,8-dimethyl-3-oxonona-4,6-dienamido)-5-methylhexa-2,4-dienoate ($\boldsymbol{Z}-\mathbf{3 3}$). Alkene 34 ($0.520 \mathrm{~g}, 1.31 \mathrm{mmol}$) and methyl acrylate ($35.0 \mu \mathrm{~L}, 3.94 \mathrm{mmol}$) were dissolved in dichloromethane (35.0 mL), and Hoveyda-Grubbs second generation catalyst ($20.0 \mathrm{mg}, 33.0 \mu \mathrm{~mol}$) was added in one portion. The reaction was stirred at $45^{\circ} \mathrm{C}$ for 3 h and then concentrated. The residue was purified by column chromatography (silica, 20% to 30% ethyl acetate - hexanes) to give the desired product (\boldsymbol{Z}) $\mathbf{- 3 3}(0.480 \mathrm{~g}, 81 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.61-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.27(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~d}$,
$\mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.52-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}$, $\mathrm{J}=3.57 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}) 4.22(\mathrm{~d}, \mathrm{~J}=9.61 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.96$ (dt, J = 4.3, 4.3, 8.1 Hz, 3H), $3.90(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 3 \mathrm{H}), 2.93-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.98(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.97-1.91(\mathrm{M}, 3 \mathrm{H}), 1.17(\mathrm{dd}, \mathrm{J}=6.5$, $10.5 \mathrm{~Hz}, 6 \mathrm{H})$. HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]$ calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Na}, 476.2413$; found, 476.2403.

(E)-Ethyl \quad 3-((3aR,4R,5S,7aR)-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methyl

 pent-2-en-2-yl)-1,7-dioxooctahydro-1H-isoindol-4-yl)acrylate (34). A solution of \boldsymbol{Z} $33(24.0 \mathrm{mg}, 53.0 \mu \mathrm{~mol})$ in toluene $(1.8 \mathrm{~mL})$ was heated at reflux for 18 h . After cooling, the mixture was concentrated and the resultant red oil was purified by silica gel flash chromatography (silica, 20% to 60% ethyl acetate - hexanes) yielding the title compound 34 as a yellow oil ($14.4 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.15(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{dd}, \mathrm{J}=15.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}=9.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52-2.28(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.77(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}); $\delta(\mathrm{ppm}): 204.46,168.56,165.76$, $159.21,145.37,137.07,130.17,129.53,127.77,124.57,114.20,63.88,55.23,52.19$, 51.57, 49.53, 47.71, 46.10, 44.66, 42.75, 28.10, 26.78, 22.59, 22.57, 11.66; HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]$ calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Na}, 476.2413$; found, 476.2405.
(E)-Ethyl 3-((3aR,4R,5S,7R,7aR)-7-hydroxy-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methylpent-2-en-2-yl)-1-oxooctahydro-1H-isoindol-4-yl)acrylate (S2). Sodium borohydride ($15.0 \mathrm{mg}, 0.400 \mathrm{mmol}$) was added to a stirred solution of cerium(III) chloride heptahydrate ($61.0 \mathrm{mg}, 0.160 \mathrm{mmol}$) and $34(37.0 \mathrm{mg}, 81.0 \mu \mathrm{~mol})$ in anhydrous methanol (4.0 mL) at $-78{ }^{\circ} \mathrm{C}$. After 40 min , saturated aqueous ammonium chloride (4 mL) was added. The aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography on silica gel (silica, 50% to 70% ethyl acetate - hexanes) to afford the desired alcohol $\mathbf{S 2}(30.0 \mathrm{mg}$, 81%) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 7.14(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, J = 9.1, 1.1 Hz, 1H), $4.42(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{ddd}, \mathrm{J}=11.5,9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}$, $1 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}$, $2 \mathrm{H}), 1.85(\mathrm{ddd}, \mathrm{J}=12.4,4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 175.52$, $166.07,159.21,147.05,135.66,131.94,129.50,127.99,123.84,114.24,70.14,58.05$, $55.25,52.37,51.46,49.56,46.13,45.91,39.73,36.05,28.23,26.68,22.77,22.72,12.30$; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Na}, 478.2569$; found, 478.2548 .

(E)-Ethyl 3-((3aR,4R,5S)-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-methylpent-2-en-2-yl)-1-oxo-2,3,3a,4,5,6-hexahydro-1 \boldsymbol{H}-isoindol-4-yl)acrylate (35). Methane sulfonyl chloride $(25.0 \mu \mathrm{~L}, 0.330 \mathrm{mmol})$ was added to the solution of alcohol $\mathbf{S 2}$ (30.0 $\mathrm{mg}, 66.0 \mu \mathrm{~mol})$ and triethylamine $(92.0 \mu \mathrm{~L}, 0.660 \mathrm{mmol})$ in dichloromethane $(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate and extracted with ethyl acetate. The combined organic leyers were washed with 1 M HCl , brine, dried over sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was used directly in the next step.

The residue was dissolved in toluene $(4.0 \mathrm{~mL})$ and treated with 1,8 -diazabicyclo(5.4.0)-undec-7-ene ($93.0 \mu \mathrm{~L}, 0.660 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h and then poured into a mixture of 1 M HCl and ethyl acetate. The organic layer was separated and washed with saturated aqueous solution of sodium bicarbonate, brine, then dried over sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (silica, 30\% ethyl acetate - hexanes) to afford $\mathbf{3 5}$ (23.0 mg , 79%) as an oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.14(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=5.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, \mathrm{J}=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-$
$2.41(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{ddd}, \mathrm{J}=10.7,8.9,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}); $\delta(\mathrm{ppm}): 167.18,166.21,159.05,148.05,140.17$, $135.89,132.03,129.52,129.35,128.40,122.55,114.07,55.24,53.83,51.48,49.84,49.51$, 46.06, 41.53, 29.28, 28.35, 26.84, 22.86, 22.72, 12.79; HRMS-ESI (m/z): [M+Na] calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Na}, 460.2464$; found, 460.2442 .

(E)-3-((3aR,4R,5S,7R,7aR)-7-Hydroxy-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4-

 methylpent-2-en-2-yl)-1-oxooctahydro-1 H -isoindol-4-yl)acrylaldehyde (28).Diisobutylaluminum hydride (1 M in toluene, $0.2 \mathrm{~mL}, 0.200 \mathrm{mmol}$) was added dropwise to a solution of ester $\mathbf{S} \mathbf{2}(4.0 \mathrm{mg}, 8.80 \mu \mathrm{~mol})$ in dry dichloromethane $(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 20 min , a saturated solution of Rochelle's salt (5 mL) was added and then the mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$. The mixture was stirred vigorously for 2 h at room temperature. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 5 mL). The organic layers were dried with sodium sulfate, concentrated, and the residue was purified by column chromatography on silica gel (silica, 70% to 90% ethyl acetate - hexanes) to afford the expected allylic alcohol (4.0 $\mathrm{mg}, 99 \%)$.

Activated $\mathrm{MnO}_{2}(40.0 \mathrm{mg})$ was added to a solution of the allylic alcohol in dry dichloromethane $(1.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 12 h , and then directly submitted to purification by column chromatography (100% ethyl
acetate) to give pure aldehyde 28 as an oil ($4.0 \mathrm{mg} 95 \%$ yield). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were identical to the material prepared previously for substrate 28.

(R)-4-Methylhex-5-enal (S3). (R)-3,7-Dimethylocta-1,6-diene was prepared according to a described synthetic procedure. ${ }^{79}$ Ozone was bubbled through a solution of citronellene $52(3.00 \mathrm{~g}, 21.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was monitored by TLC, and once the starting material was consumed, dimethylsulfide ($4.0 \mathrm{~mL}, 54.2 \mathrm{mmol}$) was added and the mixture was stirred at $-30^{\circ} \mathrm{C}$ for 1 h . The solution was warmed to $0^{\circ} \mathrm{C}$ and fractionated directly by distillation at $\sim 200 \mathrm{~mm} \mathrm{Hg}$ to isolate pure product $\mathbf{S 3}(2.06 \mathrm{~g}, 18.4 \mathrm{mmol}, 85 \%$ yield), which was collected as the last fraction. $[\alpha]_{\mathrm{D}}^{23}-6.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 9.77(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (ddd, $J=17.1,10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}$, 2H), 2.43 (dddd, $J=8.4,7.0,3.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15 (dddd, $J=12.4,8.1,5.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 202.5, 143.2, 113.7, 41.7, 37.4, 28.4, 20.1. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{ONa}, 135.0786$; found, 135.0789.

(5R)-1,1,1-Trichloro-5-methylhept-6-en-2-ol (53). Sodium formate (0.260 g, $3.87 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiCCl}_{3}(11.1 \mathrm{~g}, 58.0 \mathrm{mmol})$ were added to a solution of $(4 R)-4-$ methylhex-5-enal S3 (4.30 g, 38.7 mmol) in dry DMF (86 mL) at $23{ }^{\circ} \mathrm{C}$ and the
mixture was stirred for 1 h . A mixture of methanol and 1 M aqueous $\mathrm{HCl}(8 \mathrm{~mL}, 1: 1$, v / v) was added and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h . Water (10 mL) was added, the aqueous layer was separated and extracted with diethyl ether (4×10 mL). The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the crude product was purified by column chromatography on silica gel (10% diethyl ether in pentanes) to afford the alcohol 53 ($8.42 \mathrm{~g}, 36.4 \mathrm{mmol}, 94 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}-2.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.70$ (dddd, $J=17.4,13.8,10.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.64$ (ddd, $J=14.6,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.52-1.41 (m, 1H), 1.05-1.03 (m, 3H): ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 143.9$, $143.6,113.5,113.2,104.9,104.2,83.2,82.9,37.6,37.5,32.9,32.7,29.4,29.2,20.4$, 20.0. HRMS-ESI (m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{O}, 228.9954$; found, 228.9952.

(R)-1,1,1-Trichloro-5-methylhept-6-en-2-one (S4). Trifluoroacetic anhydride ($5.5 \mathrm{~mL}, 38.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added to a solution of dimethyl sulfoxide ($3.3 \mathrm{~mL}, 46.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ dropwise at $-78{ }^{\circ} \mathrm{C}$ over 5 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . A solution of (5R)-1,1,1-trichloro-5-methylhept-6-en-2-ol $53(3.60 \mathrm{~g}, 15.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise over 10 min at $-78^{\circ} \mathrm{C}$ and stirred for an additional 5 min . The reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for another 1 h . The solution was cooled to $0^{\circ} \mathrm{C}$ and i $\operatorname{Pr}_{2} \mathrm{NEt}(13.5 \mathrm{~mL}, 77.7 \mathrm{mmol})$ was added dropwise. The mixture was warmed to 23 ${ }^{\circ} \mathrm{C}$ for 1 h . The solution was diluted with diethyl ether (4 mL) and washed with 1 M

HCl , and saturated aqueous NaHCO_{3}. The aqueous layers were extracted with diethyl ether ($3 \times 4 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under atmospheric conditions and purified by column chromatography on silica gel (10% diethyl ether in pentanes) to deliver trichloromethyl ketone $\mathbf{S 4}(2.85 \mathrm{~g}, 12.4 \mathrm{mmol}, 80 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}-3.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.65(\mathrm{ddd}, J=17.2,10.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.93$ (m, 2H), 3.09-2.89 (m, 2H), $2.20(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 190.8,142.9,114.2,37.5,31.8,31.2$, 29.6, 20.2.

(2R,5R)-1,1,1-trichloro-5-methylhept-6-en-2-ol (54). Dichloro(p-cymene)

ruthenium(II) dimer ($0.150 \mathrm{~g}, 0.246 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(69 \mu \mathrm{~L}, 0.492 \mathrm{mmol})$ were added to a solution of $(1 R, 2 R)$ - N - p-tosyl-1,2-diphenylethylenediamine $(0.180 \mathrm{~g}$, $0.492 \mathrm{mmol})$ in DMF $(5.0 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . In parallel, formic acid ($1.2 \mathrm{~mL}, 49.2 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.7 \mathrm{~mL}, 19.7 \mathrm{mmol})$ were stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min . A solution of substrate $\mathbf{S 4}(2.26 \mathrm{~g}, 9.84 \mathrm{mmol})$ in tert-butyl methyl ether (20 mL) was added to the formic acid-triethylamine mixture, followed by the solution of the catalyst. After stirring at $23{ }^{\circ} \mathrm{C}$ for 3 h , water (20 mL) was added. The layers were separated and the aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on
silica gel (20% diethyl ether in pentanes) to afford the alcohol $54(2.20 \mathrm{~g}, 9.44 \mathrm{mmol}$, 96% yield, dr 10:1). $[\alpha]_{\mathrm{D}}^{23}+25.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 5.71 (ddd, $J=17.1,10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.99$ (ddd, $J=9.6,5.6,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 1 \mathrm{H})$, 1.04 (dd, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.9,113.2,104.2$, 83.2, 37.6, 32.9, 29.4, 20.1.

((($2 R, 5 R)-1,1,1-T r i c h l o r o-5-m e t h y l h e p t-6-e n-2-y l) o x y) m e t h o x y) b e n z e n e ~(S 5) . ~$

Diisopropyl-ethylamine $(13.8 \mathrm{~mL}, 79.0 \mathrm{mmol})$ was added to a solution of $(2 R, 5 R)$ -1,1,1-trichloro-5-methylhept-6-en-2-ol $54(3.02 \mathrm{~g}, 13.2 \mathrm{mmol})$, benzyloxymethyl chloride ($7.2 \mathrm{~mL}, 52.1 \mathrm{mmol}$), and tetrabutylammonium iodide ($0.48 \mathrm{~g}, 1.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . The solution was then heated at $45^{\circ} \mathrm{C}$ for 12 h . The crude mixture was cooled to $23{ }^{\circ} \mathrm{C}$, water (13 mL) was added, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel $(10 \%$ ethyl acetate in hexanes) to afford $\mathbf{S 5}(2.20 \mathrm{~g}, 9.44 \mathrm{mmol}, 96 \%$ yield, dr $10: 1) .[\alpha]_{\mathrm{D}}^{23}$ $+82.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.37-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.33-7.31 (m, 1H), 5.72-5.64 (m, 1 H), 5.13-5.11 (m, 1H), 5.04-4.94 (m, 3H), $4.83(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.9,137.3,128.4,127.8,127.7,113.2,102.7,97.1,89.7,70.6$,
37.8, 32.8, 30.1, 20.4. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{Na}$, 373.0505; found, 373.0509.

(4R,7R,E)-7-((Benzyloxy)methoxy)-8,8,8-trichloro-2,4-dimethyloct-2-enal
(55). Hoveyda-Grubbs II catalyst (1,3-bis-(2,4,6,-trimethylphenyl)-2-imidazol idinylidene)-dichloro (o-isopropoxyphenylmethylene)ruthenium ($28 \mathrm{mg}, 44.3 \mu \mathrm{~mol}$) was added to a degassed solution of $\mathbf{S 5}(0.520 \mathrm{~g}, 1.48 \mathrm{mmol})$ and metacrolein (2.3 $\mathrm{mL}, 28.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.0 \mathrm{~mL})$. The solution was heated at $65^{\circ} \mathrm{C}$ for 10 h . The crude mixture was concentrated and immediately purified by column chromatography on silica gel (30% ethyl acetate in hexanes) to afford aldehyde $55(0.390 \mathrm{~g}, 0.991$ $\mathrm{mmol}, 67 \%$ yield, $E: Z 10: 1$), along with recovered starting material ($90 \mathrm{mg}, 0.256$ mmol, 17% yield $) .[\alpha]_{\mathrm{D}}^{23}+88.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.37-7.36 (m, 4H), 7.33-7.31 (m, 1H), 5.72-5.64 (m, 1 H$), 5.13-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.04-$ 4.94 (m, 3H), 4.83 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (d, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (d, $8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-2.10 (m, 2H), 1.82-1.75 (m, 1H), 1.73-1.65 (m, 1H), $1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 195.3,158.9,138.3,137.1,128.4,127.9,127.5$, $102.3,97.2,89.5,70.5,33.4,32.6,30.0,19.4,9.3$.

6-((1E,3E,5R,8R)-8-((Benzyloxy)methoxy)-9,9,9-trichloro-3,5-dimethylnona-

 1,3-dien-1-yl)-2,2-dimethyl-4H-1,3-dioxin-4-one (57). A solution of diethyl ((2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)methyl)phosphonate 56 ($5.07 \mathrm{~g}, 18.1 \mathrm{mmol}$) in THF (40 mL) was added to a suspension of sodium hydride (60% in mineral oil, $0.673 \mathrm{~g}, 16.8 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 30 min . This mixture was added via cannula into a solution of ($4 R, 7 R, E$)-7-((benzyloxy)methoxy)-8,8,8-trichloro-2,4-dimethyloct-2-enal $55(5.1 \mathrm{~g}, 13.0 \mathrm{mmol})$ in THF $(140 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over 15 min . This solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 12 h . Brine (200 mL) was added, layers separated, and the aqueous layer was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (30% ethyl acetate in hexanes) to afford dioxinone $57(5.3 \mathrm{~g}, 10.2 \mathrm{mmol}, 79 \%$ yield $)$ as the only isomer. $[\alpha]_{\mathrm{D}}^{23}+34.3^{\circ}(c$ $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 4.62(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 6 \mathrm{H})$, 1.51-1.41 (m, 1H), $0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $163.9,162.0,146.6,142.8,137.2,132.1,128.4,127.8,128.6,117.6,106.1,102.5$, 97.2, 93.9, 89.6, 70.6, 33.3, 33.2, 30.1, 25.1, 25.0, 20.2, 12.3. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{O}_{5} \mathrm{Na}, 539.1135$; found, 539.1131.
(4E,6E,8R,11R)-11-((Benzyloxy)methoxy)-12,12,12-trichloro-N-(4-methoxy benzyl)-6,8-dimethyl- N-((Z)-2-methylpenta-2,4-dien-1-yl)-3-oxododeca-4,6-
dienamide (59). Pyridinium p-toluenesulfonate ($43 \mathrm{mg}, 0.343 \mathrm{mmol}$) was added to a stirring solution of amine $\mathbf{5 8}(0.812 \mathrm{~g}, 3.43 \mathrm{mmol})$ and dioxinone $57(1.78 \mathrm{~g}, 3.43$ $\mathrm{mmol})$ in toluene $(68 \mathrm{~mL})$ in a sealed flask and heated at $110{ }^{\circ} \mathrm{C}$ for 4 h . The crude mixture was allowed to cool to room temperature and concentrated. The residue was purified by column chromatography on silica gel (20% ethyl acetate in hexanes) to afford the amide $59(2.17 \mathrm{~g}, 3.19 \mathrm{mmol}, 93 \%$ yield), which exists as a mixture of rotamers and tautomers as observed by NMR. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.35 (dd, $J=5.3,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.20$ (dd, $J=8.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.17(\mathrm{~m}, 1 \mathrm{H})$, 6.11-6.03 (m, 1H), 5.87-5.65 (m, $1 \mathrm{H}), 5.53(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=26.6,17.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.10 (dd, $J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=11.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (dd, $J=11.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.94$ (m, 2H), 3.84-3.75 (m, 3H), 2.54 (tq, $J=14.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.72(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{td}, J=7.7,6.4,4.7 \mathrm{~Hz}, 3 \mathrm{H})$.

trichloro- N-(4-methoxy-benzyl)-6,8-dimethyl-3-oxododeca-4,6-dienamido)-5-

methylhexa-2,4-dienoate (66). Hoveyda Grubbs II catalyst ($0.102 \mathrm{~g}, 0.162 \mathrm{mmol}$) was added to a stirring degassed solution of methyl acrylate $(1.2 \mathrm{~mL}, 13.0 \mathrm{mmol})$ and substrate $59(2.2 \mathrm{~g}, 3.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(108 \mathrm{~mL})$. The resulting solution was heated at $45{ }^{\circ} \mathrm{C}$ for 14 h . The crude mixture was cooled to room temperature and immediately concentrated. The residue was purified by column chromatography on silica gel (20% ethyl acetate in hexanes) to afford the amide 66 as a mixture of rotamers and tautomers ($2.12 \mathrm{~g}, 2.88 \mathrm{mmol}, 89 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta(\mathrm{ppm}): 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=12.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.25-$ $6.11(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{dq}, J=15.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{ddd}, J=14.9,10.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97$ (dd, $J=6.6,4.7 \mathrm{~Hz}, 3 \mathrm{H}):$ HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{Cl}_{3} \mathrm{NO}_{7} \mathrm{Na}$, 756.2238; found, 756.2257 .

 $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOAc}, 45^{\circ} \mathrm{C}, 24 \mathrm{~h}$ 61\% yield, dr 3:1

(E)-Methyl 3-((3aR,4R,5S)-5-((4R,7R,E)-7-((benzyloxy)methoxy)-8,8,8-trich

 loro-4-methyl-oct-2-en-2-yl)-2-(4-methoxybenzyl)-3a-methyl-1,7-dioxooctahydro- $\mathbf{1 H}$-isoindol-4-yl) acrylate (S6). Lanthanum(III) triflate ($0.191 \mathrm{~g}, 0.325$ mmol) was added to a solution of 2,6-bis((3aS,8aR)-8,8a-dihydro-3a H-indeno[1,2d] oxazol-2-yl)pyridine L1 ($0.154 \mathrm{~g}, 0.390 \mathrm{mmol}$) in ethyl acetate (20 mL). After stirring at $23{ }^{\circ} \mathrm{C}$ for 1 h , the catalyst was added to $\mathbf{6 6}(2.39 \mathrm{~g}, 3.25 \mathrm{mmol})$ in ethyl acetate (88 mL). The resulting solution was capped and heated at $45^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled, concentrated, and the residue was purified by chromatography on silica gel (80% ethyl acetate in hexanes) to afford product $\mathbf{S 6}$ $(1.45 \mathrm{~g}, 1.98 \mathrm{mmol}, 61 \%$ yield, $3: 1 \mathrm{dr}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.37-$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.30(\mathrm{~m}, 1 \mathrm{H})$, 5.80 (dd, $J=15.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=12.7,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.89 (ddd, $J=19.3,9.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (t, $J=11.4,1 \mathrm{H}), 4.63$ (t, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=14.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=10.1,8.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.97$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=10.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.19 (m, 1H), 1.96 (qdd, $J=10.8,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.45$ (dd, $J=15.6,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.8(\mathrm{dd}, J=45.2,6.6 \mathrm{~Hz}, 3 \mathrm{H}):$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 204.1,168.4,165.7,159.2,145.2,137.2$, $135.1,131.9,129.5,128.4,127.8,127.5,124.5,114.2,102.6,97.1,89.6,70.5,63.8$, $55.2,52.1,51.5,49.3,47.9,46.1,44.6,42.7,33.4,32.1,30.1,28.0,20.5,11.7$. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{Cl}_{3} \mathrm{O}_{7} \mathrm{NNa}, 756.2238$; found, 756.2224.

(3aR,4R,5S,7R)-5-((4R,7R,E)-7-((Benzyloxy)methoxy)-8,8,8-trichloro-4-methyloct-2-en-2-yl)-7-hydroxy-2-(4-methoxybenzyl)-3a-methyl-4-((E)-prop-1-en-1-yl)octahydro-1H-isoindol-1-one (S7). Sodium borohydride ($0.148 \mathrm{~g}, 3.99$ $\mathrm{mmol})$ was added to a solution of $\mathbf{S 6}(2.45 \mathrm{~g}, 3.33 \mathrm{mmol})$ in MeOH and THF ($1: 1 \mathrm{v} / \mathrm{v}$, 167 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to $23{ }^{\circ} \mathrm{C}$, and extracted with ethyl acetate. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (70% ethyl acetate in hexanes) to deliver products $\mathbf{S 7}$ and $\mathbf{S 8}$ as a mixture (2.40 g , $3.26 \mathrm{mmol}, 98 \%$ yield). The mixture was separated by preparative HPLC (YMC PakSil; $2 \% i$ - PrOH in toluene; flow rate $=50.0 \mathrm{~mL} / \mathrm{min}$; detection at $290 \mathrm{~nm} ; \mathrm{t}_{1}=27.8 \mathrm{~min}$ $(\mathbf{S 8}) ; \mathrm{t}_{2}=37.0 \mathrm{~min}(\mathbf{S} 7) ; \mathrm{t}_{3}=38.0 \mathrm{~min}($ other isomers) $)$ to provide $\mathbf{S 7}$ as a white crystalline solid ($1.82 \mathrm{~g}, 2.43 \mathrm{mmol}, 73 \%$ yield), $\mathbf{S 8}(0.55 \mathrm{~g}, 0.746 \mathrm{mmol}, 22 \%$ yield), and a mixture of other isomers $(0.140 \mathrm{~g}, 0.190 \mathrm{mmol}, 6 \%$ yield $) . \mathbf{S} 7[\alpha]_{\mathrm{D}}^{23}+5.2^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.33(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.17(\mathrm{dd}$, $J=17.1,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.82(\mathrm{~m}, 1 \mathrm{H})$, 4.78 (d, 11.9 Hz, 1H), 4.62 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}$,
$J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{tt}, J=8.4,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-$ $1.56(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 165.9,159.2,146.9,137.2,133.7,129.4,128.4,128.3,127.7,127.6$, $123.8,114.2,102.6,97.0,89.6,70.5,55.2,52.3,51.4,49.3,45.9,39.7,33.6,32.0$, 30.2, 28.1, 20.6, 12.3. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{Cl}_{3} \mathrm{O}_{7} \mathrm{NNa}$, 758.2394; found, 758.2381 .

(E)-Methyl 3-((3aR,4R,5S)-5-((4R,7R,E)-7-((benzyloxy)methoxy)-8,8,8-trich loro-4-methyloct-2-en-2-yl)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-2,3,3a,4,5, 6-hexahydro-1H-isoindol-4-yl)acrylate (S9). N, N '-Dicyclohexylcarbodiimide (0.463 $\mathrm{g}, 2.24 \mathrm{mmol})$ and $\mathrm{CuCl}(0.444 \mathrm{~g}, 4.48 \mathrm{mmol})$ were sequentially added to a stirring solution of substrate $\mathbf{S} 7(0.330 \mathrm{~g}, 0.448 \mathrm{mmol})$ in dry toluene $(22 \mathrm{~mL})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was cooled and saturated aqueous ammonium chloride (30 mL) was added. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The aqueous layer was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$) and the combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver product $\mathbf{S} 9(0.216 \mathrm{~g}, 0.336 \mathrm{mmol}, 75 \%$ yield $)$. $[\alpha]_{\mathrm{D}}^{23}-13.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}$,

4H), 7.32-7.26 (m, 1H), $7.15(\mathrm{~d}, 8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=7.6$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 1H), 5.00 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=9.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (d, $11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.64-4.58 (m, 1H), 4.20 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38$ (t, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (ddd, $J=14.6,10.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.07$ (m, 2H), 2.03-1.90 (m, 2H), 1.66 (dtdd, $J=27.1,24.9,11.3,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.31$ (ddt, $J=10.4,7.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $0.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.0,166.1,159.0$, $147.8,140.2,137.2,134.0,133.8,129.2,128.4,128.3,127.8,127.6,122.5,114.0$, $102.6,97.0,89.6,70.5,55.2,53.7,51.4,50.1,49.4,46.0,41.5,33.6,32.2,30.3,29.4$, 28.4, 20.7, 12.8. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{Cl}_{3} \mathrm{O}_{6} \mathrm{NNa}, 740.2288$; found, 740.2277 .

S9

(E)-Methyl 3-((3aR,4R,5S)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R, E)-8,8,8-trichlo-ro-7-hydroxy-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1H-isoindol-4-yl)acrylate (67). Substrate $\mathbf{S 9}$ ($0.216 \mathrm{~g}, 0.300 \mathrm{mmol}$) was stirred in a solution of trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for additional 1 h . The crude mixture was concentrated, toluene ($3 \times 15 \mathrm{~mL}$) was added, and the solution was concentrated again. The dilution-concentration using toluene was repeated three
times. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver alcohol $67(0.170 \mathrm{~g}, 0.282 \mathrm{mmol}, 94 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}-48.1^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.98 (dd, $J=9.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (ddd, $J=9.8,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (t, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (tt, $J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 167.1,166.1,159.0,147.8,140.2,134.0$, $133.9,129.5,129.2,128.3,122.6,114.0,104.3,83.2,55.2,53.7,51.5,50.0,49.5$, 46.0, 41.6, 33.7, 32.1, 29.6, 29.4, 28.4, 20.9, 13.0. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{Na}, 620.1713$; found, 620.1703.

(S)-tert-Butyl 3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoate (57).

Diethylzinc ($2.1 \mathrm{~mL}, 20.1 \mathrm{mmol}$) was added dropwise to a stirring solution of (S) -tert-butyl 3-hydroxypent-4-enoate $\mathbf{5 4}^{80}(1.57 \mathrm{~g}, 9.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ at -40 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . Diiodochloromethane ${ }^{81}(3.8 \mathrm{~mL}$, 40.1 mmol) was added dropwise and resulting mixture was stirred protected from light at $-40^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with saturated aqueous sodium sulfite (20 mL) and allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for an additional 1 h. Aqueous 1 M solution of HCl was added in portions until precipitates dissolved,
the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×20 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (2% ethyl acetate in dichloromethane) to deliver product $57(1.13 \mathrm{~g}, 5.10 \mathrm{mmol}, 56 \%$ yield $) .[\alpha]_{D}^{23}-$ $13.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.61$ (ddt, $J=8.5,6.4,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{ddd}, J=6.8,4.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.44(\mathrm{~m}$, $2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.9,81.6,68.4,41.6,30.1,28.0,27.3,13.0$. HRMS-ESI $(m / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}$, 243.0764; found, 243.0754.

(R)-tert-Butyl 3-((1R,2S)-2-chlorocyclopropyl)-3-hydroxypropanoate (S10). Diethylzinc ($2.1 \mathrm{~mL}, 20.1 \mathrm{mmol}$) was added dropwise to a stirring solution of (R) -tert-butyl 3-hydroxypent-4-enoate $\mathbf{5 3}(1.57 \mathrm{~g}, 9.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ at -40 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . Diiodochloromethane Error! Bookmark not defined. ($3.8 \mathrm{~mL}, 40.1 \mathrm{mmol}$) was added dropwise and resulting mixture was protected from light and stirred at $-40^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched with saturated aqueous sodium sulfite $(20 \mathrm{~mL})$ and allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 1 h . Aqueous 1 M solution of HCl was added in portions until precipitates dissolved, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (2% ethyl acetate in dichloromethane) to deliver product $\mathbf{S 1 0}$ (1.13
g, $5.10 \mathrm{mmol}, 56 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}+12.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 3.61 (ddt, $J=8.5,6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (ddd, $J=6.8$, $4.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H})$, 1.03-0.91 (m, 2H): ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.9,81.6,68.4,41.6$, 30.1, 28.0, 27.3, 13.0. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}$, 243.0764; found, 243.0763.

(S)-3-((1S,2R)-2-Chlorocyclopropyl)-3-((triethylsilyl)oxy)propanoic acid (23).

Ester 47 ($0.216 \mathrm{~g}, 0.300 \mathrm{mmol}$) was stirred in a solution of trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 30.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for another 1 h . The crude mixture was concentrated, toluene (3x15 mL) was added, and the solution was concentrated again. The dilution-concentration using toluene was repeated three times. This residue was used in the next step without purification.

Chlorotriethylsilane ($0.56 \mathrm{~mL}, 2.72 \mathrm{mmol}$) was added to a stirring solution of the hydroxyl acid and imidazole $(0.231 \mathrm{~g}, 3.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.8 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction mixture was poured into aqueous acetate buffer $(\mathrm{pH}=4)$ and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (30% ethyl acetate in hexanes) to deliver product $23(0.122 \mathrm{~g}, 0.442 \mathrm{mmol}, 65 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}-50.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.75(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{dtd}, J=9.9,6.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.93(\mathrm{~m}$, $9 \mathrm{H}), 0.90(\mathrm{dt}, J=7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.73-0.52(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 176.7, 69.5, 42.6, 30.6, 28.2, 13.2, 6.7, 4.8. HRMS-ESI (m/z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClO}_{3} \mathrm{Si}$, 277.1027; found, 277.1035.

(R)-3-((1R,2S)-2-Chlorocyclopropyl)-3-((triethylsilyl)oxy)propanoic
(ent-68). Substrate $53(0.216 \mathrm{~g}, 0.300 \mathrm{mmol})$ was stirred in a solution of trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 30.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for another 1 h . The crude mixture was concentrated and toluene ($3 \times 15 \mathrm{~mL}$) was added and concentrated in triplicate. This residue was used in the next step without purification. Chlorotriethylsilane (0.56 mL , 2.72 mmol) was added to a stirring solution of the hydroxy acid and imidazole (0.231 $\mathrm{g}, 3.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.8 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was poured into aqueous acetate buffer $(\sim 100 \mathrm{mM}, \mathrm{pH} 4)$ and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (30% ethyl acetate in hexanes) to deliver product ent-68 ($0.122 \mathrm{~g}, 0.442 \mathrm{mmol}, 65 \%$ yield $).[\alpha]_{\mathrm{D}}^{23}$ $+47.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.75(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.98 (dt, $J=7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44$ (dtd, $J=9.9,6.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 9 \mathrm{H}), 0.90(\mathrm{dt}, J=7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.73-0.52$ (m, 6H): ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 176.7,69.5,42.6,30.6,28.2,13.2$,
6.7, 4.8. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClO}_{3} \mathrm{Si}, 277.1027$; found, 277.1029.

(S)-3-(tert-butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl acrylate (60). Acryloyl chloride ($0.27 \mathrm{~mL}, 2.88 \mathrm{mmol}$) was added dropwise to a solution of alcohol 47 and diisopropylethylamine $(0.63 \mathrm{~mL}, 3.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min . the resulting mixture warmed to $23^{\circ} \mathrm{C}$ and stirred for an additional 1 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and washed with water $(5 \mathrm{~mL})$. The organic phase was washed successively with 1 M aqueous solution of HCl and saturated aqueous solution of NaHCO_{3}. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (20% ethyl acetate in hexanes) to deliver acrylate $\mathbf{6 0}(0.188 \mathrm{~g}, 0.684$ $\mathrm{mmol}, 95 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}-76.2^{\circ}\left(c \mathrm{c} .0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ 6.40 (dd, $J=17.3,1.4 \mathrm{H}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (dd, $J=10.4,1.3$ Hz, 1H), 4.78 (td, $J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (ddd, $J=7.3,4.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.47$ (m, 2H), 1.48 (dddd, $J=9.7,8.6,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40$ (s, 9H), 1.05 (ddd, $J=9.9,6.6$, 4.0 Hz, 1H), $0.96(\mathrm{dt}, J=7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 168.7, 165.1, 131.3, 128.1, 81.2, 71.6, 40.4, 30.8, 27.9, 25.9, 14.0. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClO}_{4} \mathrm{Na}, 297.0869$; found, 297.0876.

(2E,4Z)-(S)-3-(tert-Butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl-6-

 ((4E,6E,8R,11R) -11-((benzyloxy)methoxy)-12,12,12-trichloro-N-(4-methoxy benzyl)-6,8-dimethyl-3-oxododeca-4,6-dienamido)-5-methylhexa-2,4-dienoate (61). Hoveyda-Grubbs II catalyst (1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-isopropoxyphenyl methy-lene)ruthenium (5.5 mg , $8.80 \mu \mathrm{~mol})$ was added to a solution of acrylate $\mathbf{6 0}(73.0 \mathrm{mg}, 0.265 \mathrm{mmol})$ and substrate $59(0.120 \mathrm{~g}, 0.177 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ contained in a microwave vial. The resulting solution was heated in the microwave at $100{ }^{\circ} \mathrm{C}(4 \mathrm{~atm})$ for 15 min. The crude mixture was cooled to room temperature and concentrated. The residue was purified by column chromatography on silica gel (25% ethyl acetate in hexanes) to afford amide $61(0.104 \mathrm{~g}, 0.113 \mathrm{mmol}, 64 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.39-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.81$ (m, 3H), 6.24-6.11 (m, 2H), 5.91-5.69 (m, 3H), 5.53 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.01$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.75$ (ddd, $J=11.0,6.4,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63$ (d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.55-4.44$ (m, 1H), 4.31 (dd, $J=10.5,6.5 \mathrm{~Hz}, 4 \mathrm{H})$, 4.00-3.91 (m, 2H), 3.87-3.74 (m, 6H).
(E)-(S)-3-(tert-Butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl 3-((3aR, 4R,5S)-5-((4R,7R,E)-7-((benzyloxy)methoxy)-8,8,8-trichloro-4-methyloct-2-en -2-yl)-2-(4-methoxybenz-yl)-3a-methyl-1,7-dioxooctahydro-1H-isoindol-4-yl)
acrylate (62). Lanthanum(III) triflate ($13 \mathrm{mg}, 22.0 \mu \mathrm{~mol}$) was added to a stirring solution of 2,6-bis((3aS,8aR)-8,8a-dihydro-3a H-indeno[1,2- d]oxazol-2-yl)pyr idine $\mathbf{L} 1(8.7 \mathrm{mg}, 22.0 \mu \mathrm{~mol})$ in ethyl acetate $(1.0 \mathrm{~mL})$. After 1 h at $23^{\circ} \mathrm{C}$, the catalyst solution was added to $\mathbf{6 1}(0.100 \mathrm{~g}, 0.108 \mathrm{mmol})$ in ethyl acetate $(4.6 \mathrm{~mL})$. The resulting solution was capped and heated at $45^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled, concentrated, and the residue was purified by chromatography on silica gel (80% ethyl acetate in hexanes) to afford product 62 as inseparable mixture of diastereomers ($61.0 \mathrm{mg}, 65.9 \mu \mathrm{~mol}, 61 \%$ yield, $3: 1 \mathrm{dr}$). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), 6.85 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.37 (dd, $J=15.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.93$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.05(\mathrm{dt}, J=7.3,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.51$ (m, 3H), 2.48-2.37 (m, 1H), 2.36-2.30 (m, 1 H), 2.24 (ddd, $J=13.6,10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{tddd}, J=19.5,11.5,5.1,2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{ddd}, J=10.1,6.7,3.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 0.91 (ddt, $J=10.6,7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):$ minor diastereomer $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 7.36-7.31 (m, 4H), 7.26-7.23 (m, 1H), 7.17 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (dd, $J=15.5,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.61$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.54-4.25 (m, 2H), 3.97 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.37$ (m, 3 H), 2.37-2.30 (m, 1H), 2.24 (ddd, $J=13.6,10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (ddddt, $J=19.5$, 14.1, 11.5, 5.3, 2.5 Hz, 1H), 1.72-1.55 (m, 2H), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}$, 3 H), 1.03 (ddd, $J=10.1,6.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.91$ (ddt, $J=10.6,7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.83$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

62

63
53% yield

22\% yield
(E)-(S)-3-(tert-Butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl 3-((3aR, 4R,5S,7R)-5-((4R,7R,E)-7-((benzyloxy) methoxy)-8,8,8-trichloro-4-methyloct-2-en-2-yl)-7-hydroxy-2-(4-methoxybenzyl)-3a-methyl-1-oxooctahydro-1H-iso indol-4-yl)acrylate (63). Sodium borohydride ($12 \mathrm{mg}, 0.324 \mathrm{mmol}$) was added to a solution of $62(60 \mathrm{mg}, 64.0 \mu \mathrm{~mol})$ in methanol and THF $(1: 1 \mathrm{v} / \mathrm{v}, 3.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 20 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and warmed to $23{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The combined
organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (70% ethyl acetate in hexanes) to deliver a mixture of products 63 and S11. Pure 63 was isolated by dissolving the mixture of products in $5 \% \quad i-\mathrm{PrOH} / \mathrm{hexane}$ and separation by preparative HPLC (YMC Pak-Sil; $5 \% i$-PrOH in hexane; flow rate $=20.0 \mathrm{~mL} / \mathrm{min}$; detection at $210 \mathrm{~nm} ; \mathrm{t}_{1}=17.5 \mathrm{~min} ; \mathrm{t}_{2}=20.0 \mathrm{~min} ; \mathrm{t}_{3}=21.2 \mathrm{~min}$) to provide major diastereomer 63 as a white solid ($31 \mathrm{mg}, 33.9 \mu \mathrm{~mol}, 53 \%$ yield) and minor diastereomer S11 as a white solid (13 mg, $14.1 \mu \mathrm{~mol}, 22 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}-1.4^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.15$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ (dd, $J=15.4,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.72 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (dd, $J=9.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, 1H), 4.38 (q, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.24(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (ddd, $J=7.3,4.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.50$ (m, 3H), 2.64-2.50 (m, 1H), 2.26 (ddd, $J=9.1,7.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{t}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.89(\mathrm{~m}$, $1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 175.4,168.7$, $164.8,159.2,148.0,137.3,134.0,133.6,129.6,128.4,127.9,127.8,127.6,123.5$, $114.2,102.6,97.0,89.7,81.1,71.7,70.5,69.9,58.0,55.2,52.3,49.2,46.4,45.9,40.4$, $39.7,35.8,33.6,32.1,30.8,30.3,29.6,28.1,27.9,26.9,25.9,20.9,14.2,12.1$. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{Cl}_{4} \mathrm{NO}_{9} \mathrm{Na}$, 948.2998; found, 946.2687.

(E)-(S)-3-(tert-Butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl 3-((3aR, 4R,5S)-5-((4R,7R,E)-7-((benzyloxy)methoxy)-8,8,8-trichloro-4-methyloct-2-en -2-yl)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-2,3,3a,4,5,6-hexahydro-1H-iso indol-4yl) acrylate (64). N, N '-Dicyclohexylcarbodiimide ($6.7 \mathrm{mg}, 32.0 \mu \mathrm{~mol}$) and $\mathrm{CuCl}(6.3$ $\mathrm{mg}, 14.0 \mu \mathrm{~mol})$ were sequentially added to a solution of alcohol $63(5.0 \mathrm{mg}, 5.40$ $\mu \mathrm{mol})$ in toluene $(0.3 \mathrm{~mL})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 20 min . The resulting mixture was cooled and saturated aqueous ammonium chloride (30 mL) was added. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (5\% acetone in dichloromethane) to deliver product $64\left(4.0 \mathrm{mg}, 4.3 \mu \mathrm{~mol}, 80 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), .28(\mathrm{q}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=15.5,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 5.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=9.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (td, $J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.56$ (m, 2H), 4.16 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (dtd, $J=10.7,7.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{qd}, J=15.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{t}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{tt}, J=8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}$,
$1 \mathrm{H}), 2.08(\mathrm{td}, J=8.9,8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.65-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.12$ (s, 3H), 1.04 (ddd, $J=10.1,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6$ Hz, 3H).

(S)-3-((1S,2R)-2-chlorocyclopropyl)-3-(((E)-3-((3aR,4R,5S)-2-(4-methoxy

 benzyl)-3a-methyl-1-oxo-5-((4R,7R,E)-8,8,8-trichloro-7-hydroxy-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro- 1 H -isoindol-4-yl)acryloyl)oxy)propanoic acid (60). Benzyloxymethyl ether $64(29 \mathrm{mg}, 31.0 \mu \mathrm{~mol})$ was stirred in a solution of trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 2.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , the reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 3 h . The crude mixture was concentrated and the residue was purified by column chromatography (10% methanol in chloroform) to deliver hydroxy acid $\mathbf{6 0}\left(21.5 \mathrm{mg}, 29.5 \mu \mathrm{~mol}, 95 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=15.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.67(\mathrm{~m}, 2 \mathrm{H})$, 2.59 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (t, $J=10.6,1 \mathrm{H}$), 2.23-2.14 (m, 2H), 1.99 (ddd, $J=11.5$, $8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.15$(s, 3H), 1.07 (ddd, $J=10.3,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=8.6 \mathrm{~Hz}, 5 \mathrm{H})$.

(E)-3-((3aR,4R,5S)-2-(4-Methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R,E)-8,8,8-

trichloro-7-hydroxy-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro- \mathbf{H}-iso indol-4-yl)acrylic acid (65). 2,4,6-trichlorobenzoyl chloride ($0.26 \mathrm{~mL}, 1.64 \mathrm{mmol}$) was added to a solution of acid $\mathbf{6 0}(30 \mathrm{mg}, 41.0 \mu \mathrm{~mol})$ and pyridine $(0.20 \mathrm{~mL}, 2.46 \mathrm{mmol})$ in toluene (2.7 mL) at $0^{\circ} \mathrm{C}$. After $45 \mathrm{~min}, 4$-(dimethylamino)pyridine ($20 \mathrm{mg}, 0.164$ mmol) was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred for 5 h . Brine was added, layers separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver product $\mathbf{6 5}(16 \mathrm{mg}, 22.5$ $\mu \mathrm{mol}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.17$ (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.86$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.72 (dd, $J=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=16.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (dd, $J=16.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=8.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.81$ (m, 1H), 4.69-4.47 (m, 2H), 4.22 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3H), 3.20 (ddd, $J=7.3,4.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.44(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=10.3,6.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.71 (s, 3H), 1.60 (dddd, $J=12.2,6.9,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (tdd, $J=9.9,6.9,4.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (ddt, $J=10.2,6.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.00-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Chemical correlation of compounds $S 7$ and 63a

(E)-(S)-3-(tert-butoxy)-1-((1S,2R)-2-chlorocyclopropyl)-3-oxopropyl 3-((3aR, 4R,5S,7R)-5-((4R,7R,E)-7-((benzyloxy)methoxy)-8,8,8-trichloro-4-methyloct-2-en-2-yl)-7-hydroxy-2-(4-methoxybenzyl)-3a-methyl-1-oxooctahydro- $\mathbf{H} \boldsymbol{H}$-isoindol-4-yl)acrylate (63a). Sodium hydroxide ($0.108 \mathrm{~g}, 2.71 \mathrm{mmol}$) was added to a solution of ester $\mathbf{S} 7(20 \mathrm{mg}, 27.1 \mu \mathrm{~mol})$ in methanol and water $(7: 1, \mathrm{v} / \mathrm{v}, 2.7 \mathrm{~mL})$ and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with ether (3 mL) and 1 M aqueous HCl was added (3 mL). The layers were separated and the aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated. 2,4,6Trichlorobenzoyl chloride ($5.4 \mu \mathrm{~L}, 34.5 \mu \mathrm{~mol}$) was added to a solution of the resulting hydroxyl acid ($10 \mathrm{mg}, 13.8 \mu \mathrm{~mol}$) and pyridine $(6.7 \mu \mathrm{~L}, 82.9 \mu \mathrm{~mol})$ in toluene $(1.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 45 min , a solution of alcohol $57(14 \mathrm{mg}, 62.2 \mu \mathrm{~mol})$ and 4-(dimethylamino)pyridine $(17 \mathrm{mg}, 0.138 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an
additional 1 h . Brine was added, layers separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50\% ethyl acetate in hexanes) to deliver product 63a ($9.6 \mathrm{mg}, 10.4 \mu \mathrm{~mol}, 71 \%$ yield over two steps). This compound had ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data identical to those observed previously for compound $\mathbf{6 3}$ confirming its absolute and relative configuration.

(E)-Methyl 3-((3aR,4R,5S)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R, E)-8,8,8-trichlo-ro-7-(((S)-3-((1S,2R)-2-chlorocyclopropyl)-3-((triethylsilyl)
oxy)propanoyl)oxy)-4-methyl-oct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1 H -iso indol-4-yl)acrylate (24). 2,4,6-Trichloro-benzoyl chloride ($40 \mu \mathrm{~L}, 0.254 \mathrm{mmol}$) was added to a solution of acid $23(34 \mathrm{mg}, 0.122 \mathrm{mmol})$ and pyridine $(49 \mu \mathrm{~L}, 0.611 \mathrm{mmol})$ in toluene (2.0 mL) at $0{ }^{\circ} \mathrm{C}$. After 45 min , a solution of alcohol $67(61 \mathrm{mg}, 0.102 \mathrm{mmol})$ and 4-(dimethylamino)pyridine ($31 \mathrm{mg}, 0.254 \mathrm{mmol}$) in toluene $(2.0 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$. After another 10 min , the reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for an additional 1 h . Brine was added, layers separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $24(84 \mathrm{mg}, 98.4 \mu \mathrm{~mol}, 97 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}-39.5^{\circ}(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}$,
$J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=15.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=9.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{qd}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddt}, J=12.4,9.1,4.1 \mathrm{~Hz}$, 2H), 2.12-1.97 (m, 2H), 1.80-1.68 (m, 1H), 1.52-1.43 (m, 4H), 1.36 (ddd, $J=13.4$, $10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 11 \mathrm{H}), 0.83(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 169.7$, $167.0,166.1,159.0,147.8,140.2,134.1,133.7,129.5,129.2,128.3,122.62,114.0$, $99.9,81.1,68.0,55.2,53.7,51.4,50.1,49.4,46.0,42.5,41.5,32.8,32.0,30.2,29.4$, 28.6, 28.4, 27.8, 20.7, 13.2, 12.8, 6.8, 4.8. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{Cl}_{4} \mathrm{NO}_{7} \mathrm{Na}, 880.2712$; found, 880.2703.

(E)-3-((3aR,4R,5S)-2-(4-Methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R,E)-8,8,8-trichloro-7-(((S)-3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoyl)oxy)-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1 H -isoindol-4-yl)acrylic acid (25). Lithium chloride ($2.48 \mathrm{~g}, 58.6 \mathrm{mmol}$) was added to a solution of substrate $\mathbf{2 4}(84 \mathrm{mg}$, $97.6 \mu \mathrm{~mol})$ in DMF (5.0 mL) in a microwave vial. The vial was sealed and the mixture was heated in the microwave reactor at $160{ }^{\circ} \mathrm{C}$ for 70 min . The heterogeneous mixture was cooled to $23{ }^{\circ} \mathrm{C}$, diluted with ethyl acetate (3 mL) and
water (5 mL), and stirred until all precipitates dissolved. The resulting solution was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $25(67 \mathrm{mg}, 79.1 \mu \mathrm{~mol}, 81 \%$ yield) and a byproduct of only the triethylsilyl ether cleavage (hydroxy methyl ester) ($13 \mathrm{mg}, 17.4 \mu \mathrm{~mol}, 18 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}-3.1^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64$ (dd, $J=15.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=10.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 (s, 3H), 3.72 (td, $J=7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.57$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=9.5,3.4 \mathrm{~Hz}$, 2 H), 2.08 (ddd, $J=10.7,6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (dtd, $J=15.0,10.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{dtd}, J=9.7,6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ (ddd, $J=17.1,8.2$, $4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 170.8,167.1$, $159.0,149.8,140.1,134.2,133.5,129.5,128.1,114.1,99.7,97.7,81.2,68.1,60.3$, 55.2, 53.8, 49.4, 46.1, 41.6, 40.9, 32.7, 31.9, 30.0, 29.6, 28.4, 27.4, 21.0, 20.7, 14.1, 13.2. HRMS-ESI (m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{NO}_{7}, 728.1715$; found, 728.1744.

(5aS, $6 E, 8 R, 11 R, 15 S, 18 E, 19 \mathrm{a}, 19 \mathrm{~b} R)$-15-((1S,2R)-2-Chlorocyclopropyl)-2-(4-methoxybenzyl)-6,8,19b-trimethyl-11-(trichloromethyl)-5,5a,8,9,10,11,14,15-octahydro-1H-[1,5]dioxacyclo-hexadecino[9,10-e]isoindole-3,13,17(2H,19aH, 19bH)-trione (26). 2,4,6-Trichlorobenzoyl chloride ($0.26 \mathrm{~mL}, 1.64 \mathrm{mmol}$) was added to a solution of acid $25(30 \mathrm{mg}, 41.0 \mu \mathrm{~mol})$ and pyridine $(0.20 \mathrm{~mL}, 2.46 \mathrm{mmol})$ in toluene (2.7 mL) at $0{ }^{\circ} \mathrm{C}$. After 45 min , 4-(dimethylamino)pyridine ($20 \mathrm{mg}, 0.164$ mmol) was added at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred for 5 h . After cooling to room temperature, brine was added and the mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $26(16 \mathrm{mg}, 22.5 \mu \mathrm{~mol}, 55 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}+3.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.17(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ (dd, $J=7.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=16.0$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (dd, $J=16.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=8.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.81$ (m, 1H), 4.69-4.47 (m, 2H), 4.22 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20$ (ddd, $J=7.3$, 4.1, 3.1 Hz, 1H), $2.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.62-$ 2.52 (m, 1H), 2.44 (dd, $J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddd, $J=10.3,6.0,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (dddd, $J=12.2,6.9,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (tdd, $J=9.9,6.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (ddt, $J=10.2,6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.00-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.6,166.9,164.6,159.1,148.0,141.1,134.1,130.6,129.6$, $129.2,128.3,123.4,114.1,99.6,81.0,71.6,64.3,55.2,53.7,49.7,46.6,46.0,42.3$,
$38.6,32.7,31.5,31.4,30.6,30.4,28.8,26.8,25.6,20.9,19.1,19.0,18.7,14.2,13.6$.
HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{NO}_{6} \mathrm{Na}, 734.1586$; found, 734.1569.

(5aS,6E, $8 R, 11 R, 15 S, 18 E, 19 \mathrm{a} R, 19 \mathrm{~b} R)$-15-((1S,2R)-2-Chlorocyclopropyl)-

6,8,19b-trimethyl-11-(trichloromethyl)-5,5a,8,9,10,11,14,15-octahydro-1H-

$[1,5]$ dioxacyclohexadecino $[9,10-e]$ isoindole-3,13,17(2H,19aH,19bH)-trione (1). 2,3-Dichloro-5,6-dicyano-p-benzoquinone ($64 \mathrm{mg}, 0.280 \mathrm{mmol}$) was added to a solution of substrate $26(20 \mathrm{mg}, 28.0 \mu \mathrm{~mol})$ and water ($2.5 \mu \mathrm{~L}$ (measured and injected with a $10 \mu \mathrm{~L}$ Hamilton syringe $), 0.140 \mathrm{mmol}$) in 1,4-dioxane (2.8 mL). The solution was heated at $100{ }^{\circ} \mathrm{C}$ for 8 h . After cooling to $23^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added followed by a mixture of saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}(1: 1$, 4.0 mL). The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . The biphasic solution was extracted with ethyl acetate ($3 \times 4 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (100% ethyl acetate) to deliver $\mathbf{1}(15.0 \mathrm{mg}, 25.2 \mu \mathrm{~mol}, 90 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}+36.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.74$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.40$ (dd, $J=8.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (ddd, $J=9.3,7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=7.9,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-2.69$ (m, 1H), 2.65-2.56 (m, 1H), $2.48(\mathrm{dd}, J=14.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91-$
$1.78(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{tdd}, J=14.3,7.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (s, 4H), 1.34 (ddd, $J=13.7,9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.13 (ddd, $J=10.2,6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.00-$ $0.95(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 169.7$, 167.6, 164.6, 147.9, 140.1, 134.0, 130.7, 130.2, 123.5, 99.6, 81.1, 71.5, 49.8, 46.5, 44.4, 38.7, 32.8, 31.5, 31.4, 30.5, 28.6, 26.8, 25.6, 19.0, 18.7, 14.2.

67

S12
(E)-Methyl 3-((3aR,4R,5S)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R, $E)$-8,8,8-trichlo-ro-7-(((R)-3-((1R,2S)-2-chlorocyclopropyl)-3-((triethylsilyl) oxy)propanoyl)oxy)-4-methyl-oct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro- \mathbf{H}-iso indol-4-yl)acrylate (S12). 2,4,6-Trichloro-benzoyl chloride ($39 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) was added to a solution of acid ent-68 $(33 \mathrm{mg}, 0.118 \mathrm{mmol})$ and pyridine $(48 \mu \mathrm{~L}, 0.590$ $\mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 45 min , a solution of alcohol $67(59 \mathrm{mg}$, $98.6 \mu \mathrm{~mol})$ and 4-(dimethylamino)pyridine ($30 \mathrm{mg}, 0.246 \mathrm{mmol}$) in toluene (2.0 mL) was added at $0{ }^{\circ} \mathrm{C}$. After another 10 min , the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 1 h . Brine was added, layers separated, and the aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $\mathbf{S 1 2}$ ($71 \mathrm{mg}, 82.8 \mu \mathrm{~mol}$, 84% yield). $[\alpha]_{\mathrm{D}}^{23}-28.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.15(\mathrm{~d}$,
$J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=15.6$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, 9.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (q, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dt}, J=7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, J=5.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{tt}$, $J=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dddd, $J=19.7,16.6,9.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.12-1.97 (m, 2H), $1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{td}, J=12.0,11.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.18$ (m, 1H), $1.15(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 10 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 169.9,167.0,166.1,159.0,147.8$, $140.3,134.2,133.7,129.5,129.1,128.3,122.6,114.0,100.0,81.2,68.5,55.2,53.7$, 51.4, 50.1, 49.4, 46.0, 42.4, 41.5, 33.0, 32.1, 30.5, 29.4, 28.6, 28.4, 28.0, 20.8, 13.2, 12.8, 6.8, 4.9. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{Cl}_{4} \mathrm{NO}_{7} \mathrm{SiNa}, 880.2712$; found, 880.2718 .

S12

S13
(E)-3-((3aR,4R,5S)-2-(4-Methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R,E)-8,8,8-trichloro-7-(((R)-3-((1R,2S)-2-chlorocyclopropyl)-3-hydroxypropanoyl)oxy)-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1H-isoindol-4-yl)acrylic acid (S13). Lithium chloride ($1.95 \mathrm{~g}, 46.1 \mathrm{mmol}$) was added to a solution of substrate $\mathbf{S 1 2}$ (66 $\mathrm{mg}, 76.7 \mu \mathrm{~mol})$ in DMF (4.0 mL) in a microwave vial. The mixture was sealed and heated in a microwave reactor at $160{ }^{\circ} \mathrm{C}$ for 70 min . The heterogeneous mixture was
cooled to $23{ }^{\circ} \mathrm{C}$ and diluted with ethyl acetate $(3 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The mixture was stirred until all precipitate dissolved. The resulting solution was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $\mathbf{S 1 3}(47 \mathrm{mg}, 64.4 \mu \mathrm{~mol}$, 84% yield) and a byproduct of only the triethylsilyl ether cleavage (hydroxy methyl ester) ($6 \mathrm{mg}, 7.7 \mu \mathrm{~mol}, 10 \%$ yield $) \cdot[\alpha]_{\mathrm{D}}^{23}-3.1^{\circ}\left(c \mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{dd}, J=15.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=10.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{td}, J=7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.57$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=9.5,3.4 \mathrm{~Hz}$, 2H), 2.08 (ddd, $J=10.7,6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (dtd, $J=15.0,10.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{dtd}, J=9.7,6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ (ddd, $J=17.1,8.2$, $4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 170.8,167.1$, $159.0,149.8,140.1,134.2,133.5,129.5,128.1,114.1,99.7,97.7,81.2,68.1,60.3$, $55.2,53.8,49.4,46.1,41.6,40.9,32.7,31.9,30.0,29.6,28.4,27.4,21.0,20.7,14.1$, 13.2. HRMS-ESI (m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{NO}_{7}, 728.1715$; found, 728.1727.

(5aS,6E, $8 R, 11 R, 15 R, 18 E, 19 \mathrm{a}, 19 \mathrm{~b} R)-15-((1 R, 2 S)$-2-Chlorocyclopropyl)-2-(4-methoxybenzyl)-6,8,19b-trimethyl-11-(trichloromethyl)-5,5a,8,9,10,11,14,15-octahydro-1H-[1,5]dioxacyclo-hexadecino[9,10-e]isoindole-3,13,17(2H,19aH, 19bH)-trione (S14). 2,4,6-Trichlorobenzoyl chloride ($0.24 \mathrm{~mL}, 1.53 \mathrm{mmol}$) was added to a solution of acid $\mathbf{S 1 3}(28 \mathrm{mg}, 38.2 \mu \mathrm{~mol})$ and pyridine $(0.19 \mathrm{~mL}, 2.29$ $\mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 45 min , 4-(dimethylamino)pyridine (19 mg , 0.153 mmol) was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After another 10 min , the reaction mixture was warmed to $50{ }^{\circ} \mathrm{C}$ for 5 h . Brine was added to the resulting solution and the mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50\% ethyl acetate in hexanes) to deliver substrate S14 (14 $\mathrm{mg}, 19.5 \mu \mathrm{~mol}, 51 \%$ yield $) \cdot[\alpha]_{\mathrm{D}}^{23}+12.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 7.18$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (dd, $J=7.92 .6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.48 (dd, $J=15.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (d, $J=15.3 \mathrm{~Hz}, 5.53$ (dd, $J=10.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.2,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.04$ (dddd, $J=12.9,8.8,6.5,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42$ (dddd, $J=9.6,6.5,4.8$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{tdt}, J=11.6,8.3,3.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{dt}, J=7.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 169.1,167.1$, 164.7, 159.1, 147.1, 140.9, 134.2, 131.6, 129.6, 129.2, 128.3, 125.0, 114.1, 99.6, 80.5, $71.5,55.2,54.1,53.2,46.7,46.1,42.3,39.1,31.6,31.5,31.1,31.0,28.4,27.3,25.6$,
19.6, 18.5, 14.1. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{NO}_{6} \mathrm{Na}, 734.1586$; found, 734.1584.

(5aS,6E, $8 R, 11 R, 15 R, 18 E, 19 \mathrm{a} R, 19 \mathrm{~b} R)-15-((1 R, 2 S)$-2-Chlorocyclopropyl)-

6,8,19b-trimethyl-11-(trichloromethyl)-5,5a,8,9,10,11,14,15-octahydro-1H-

$[1,5]$ dioxacyclohexadecino $[9,10-e]$ isoindole-3,13,17(2H,19aH,19bH)-trione (43).
2,3-Dichloro-5,6-dicyano-p-benzoquinone ($64.0 \mathrm{mg}, 0.280 \mathrm{mmol}$) was added to a solution of substrate $\mathbf{S 1 4}(16 \mathrm{mg}, 22.4 \mu \mathrm{~mol})$ and water ($2.0 \mu \mathrm{~L}$, (measured and injected with a $10 \mu \mathrm{~L}$ Hamilton syringe) 0.111 mmol) in 1,4-dioxane (2.2 mL). The solution was heated at $100{ }^{\circ} \mathrm{C}$ for 8 h . After cooling to $23{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added followed by a mixture of saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} (1:1, 4.0 mL). The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . The biphasic solution was extracted with ethyl acetate ($3 \times 4 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (100% ethyl acetate) to deliver 43 ($10 \mathrm{mg}, 20.2 \mu \mathrm{~mol}, 90 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}+62.3^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.73(\mathrm{dd}$, $J=8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, 15.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.52$ (m, 2H), 5.00-4.87 (m, 2H), 3.35 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dt, $J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=16.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.33(\mathrm{~m}$, 3H), 2.06 (dddd, $J=14.6,8.6,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (dddd, $J=24.4,16.5,9.9,4.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 1.71$ (qd, $J=11.6,10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 169.8,169.1,164.7,147.0$, $139.9,134.0,131.8,130.2,125.2,99.6,80.6,71.5,54.1,49.2,46.6,44.4,39.1,31.7$, 31.6, 31.2, 31.0, 28.1, 27.3, 25.6, 19.6, 18.5, 14.1. HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{4} \mathrm{NO}_{5} \mathrm{Na}, 614.1011$; found, 614.0989 .

tert-Butyl 3-((1S,2R)-2-chlorocyclopropyl)-3-oxopropanoate (S15). Jones reagent ($2.0 \mathrm{M}, 0.75 \mathrm{~mL}, 1.42 \mathrm{mmol}$) was added dropwise to a solution of alcohol 57 $(0.210 \mathrm{~g}, 0.951 \mathrm{mmol})$ in acetone $(9.5 \mathrm{~mL})$. The mixture was stirred for 20 min at 23 ${ }^{\circ} \mathrm{C}$. Methanol (4 mL) was added and stirring was continued for 30 min . After addition of water (4 mL), the mixture was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over MgSO_{4}, concentrated and residue was purified by column chromatography on silica gel (30% diethyl ether in pentanes) to deliver keto ester $\mathbf{S} 15(0.156 \mathrm{~g}, 0.713 \mathrm{mmol}, 75 \%) .[\alpha]_{\mathrm{D}}^{23}-14.3^{\circ}(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.31$ (ddd, $J=7.6,4.9,2.8$ Hz, 1H), 2.42 (ddd, $J=8.9,5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (dt, $J=7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (s, 9H), 1.45-1.38 (m, 1H): ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 200.0,165.7,82.3,51.7$, 35.8, 30.8, 27.9, 21.0. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO}_{3} \mathrm{Na}$, 241.0607; found, 241.0605.

(R)-tert-Butyl 3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoate (S16).

Dichloro(p-cymene)ruthenium(II) dimer ($11 \mathrm{mg}, 17.8 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 2.85$ mmol) were added to a solution of $(1 R, 2 R)-(-)-N-p$-tosyl-1,2diphenylethylenediamine ($13 \mathrm{mg}, 35.6 \mu \mathrm{~mol}$) in DMF $(0.36 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h . In parallel, a mixture of $\mathrm{HCO}_{2} \mathrm{H}(0.18 \mathrm{~mL}, 7.13 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 2.85 \mathrm{mmol})$ was prepared at $23^{\circ} \mathrm{C}$ for 10 min . A solution of $\mathbf{S 1 5}$ $(0.156 \mathrm{~g}, 0.713 \mathrm{mmol})$ in tert-butyl methyl ether $(1.4 \mathrm{~mL})$ was added to the formic acid-triethylamine mixture followed by the solution of the preformed catalyst. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . Water (10 mL) was added, layers separated, and the aqueous layer extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (20% ethyl acetate in hexanes) to afford the alcohol $\mathbf{S 1 6}\left(0.150 \mathrm{~g}, 0.684 \mathrm{mmol}, 96 \%\right.$ yield, dr 5:1). $[\alpha]_{\mathrm{D}}^{23}-1.2^{\circ}(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.74(\mathrm{ddt}, J=9.2,6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=7.2,3.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}$, 9 H), 1.31 (dtd, $J=9.6,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.04$ (m, 1H), 0.99 (ddd, $J=9.9,6.3,3.8$ $\mathrm{Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.9,81.6,68.4,41.6,30.1,28.0$, 27.3, 13.0. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}$, 243.0764; found, 243.0766.

(R)-3-((1S,2R)-2-Chlorocyclopropyl)-3-((triethylsilyl)oxy)propanoic acid (71).

Ester $\mathbf{S 1 6}(0.111 \mathrm{~g}, 0.502 \mathrm{mmol})$ was stirred in a solution of trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 1.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for another hour. The mixture was concentrated, toluene was added $(15 \mathrm{~mL})$, and the solution was concentrated again. The dilution-concentration protocol was repeated trice. Chlorotriethylsilane ($0.2 \mathrm{~mL}, 0.975 \mathrm{mmol}$) was added to a stirring solution of the resulting crude hydroxy acid ($73.0 \mathrm{mg}, 0.443 \mathrm{mmol}$) and imidazole ($75.0 \mathrm{mg}, 1.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was poured into acetate buffer $(\mathrm{pH}=4,5 \mathrm{~mL})$ and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. To hydrolyze a residual amount of the silyl ester, a mixture of the crude oil and $\mathrm{NaHCO}_{3}(0.186 \mathrm{~g}, 2.21 \mathrm{mmol})$ in methanol (2.0 mL) was stirred at $23{ }^{\circ} \mathrm{C}$ for 20 min . Water (20 mL) was added, the mixture was acidified with 1 M aqueous HCl to $\mathrm{pH} \sim 4$, and then extracted with dichloromethane ($3 \times 6 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, delivering 71 which was used without further purification $\left(0.111 \mathrm{~g}, 0.398 \mathrm{mmol}, 90 \%\right.$ yield over two steps). $[\alpha]_{\mathrm{D}}^{23}-40.2^{\circ}$ (c 1.0 , CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.99(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dt}$, $J=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.86(\mathrm{~m}, 9 \mathrm{H}), 0.68-$ $0.55(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 176.5,68.1,42.7,30.2,28.1$,
13.0, 6.7, 4.9. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClO}_{3} \mathrm{SiNa}, 301.1003$; found, 301.0997.

(E)-Methyl 3-((3aR,4R,5S)-2-(4-methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R,

 E)-8,8,8-trichlo-ro-7-(((R)-3-((1S,2R)-2-chlorocyclopropyl)-3-((triethylsilyl) oxy)propanoyl)oxy)-4-methyl-oct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1H-iso indol-4-yl)acrylate (S16). 2,4,6-Trichloro-benzoyl chloride ($0.14 \mathrm{~mL}, 0.917 \mathrm{mmol}$) was added to a solution of acid $71(64 \mathrm{mg}, 0.229 \mathrm{mmol})$ and pyridine $(0.14 \mathrm{~mL}, 1.72$ $\mathrm{mmol})$ in toluene $(4.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 45 min , a solution of alcohol $67(0.164 \mathrm{~g}$, 0.275 mmol) and 4 -(dimethylamino) pyridine ($70 \mathrm{mg}, 0.573 \mathrm{mmol}$) in toluene (4.6 mL) was added at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for an additional 1 h . Brine was added, the layer were separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $\mathbf{S 1 6}$ ($0.184 \mathrm{~g}, 0.215 \mathrm{mmol}$, 94% yield). $[\alpha]_{\mathrm{D}}^{23}-26.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.15(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (dd, $J=7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=15.5$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (dd, $J=15.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=10.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (dd, $J=9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=7.3,3.6 \mathrm{~Hz}$,$1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dtt}$, $J=9.7,6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (dtd, $J=14.9$, $10.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (ddd, $J=9.9,6.7,5.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (ddt, $J=13.2,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{dt}, J=7.2,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 169.7,167.0,166.0,159.0,147.7,140.2,134.2,133.7$, $129.5,129.2,128.3,122.6,114.0,99.9,81.1,67.5,55.2,53.6,51.4,50.1,49.4,46.0$, $42.5,41.5,33.0,32.0,30.2,29.4,28.6,28.4,28.1,20.8,13.1,12.8,6.7,6.5,5.7,4.9$.

HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{Cl}_{4} \mathrm{NO}_{7} \mathrm{Na}$, 880.2712; found, 880.2715.

(E)-3-((3aR,4R,5S)-2-(4-Methoxybenzyl)-3a-methyl-1-oxo-5-((4R,7R,E)-8,8,8-trichloro-7-(((R)-3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoyl)oxy)-4-methyloct-2-en-2-yl)-2,3,3a,4,5,6-hexahydro-1H-isoindol-4-yl)acrylic acid (S17). Lithium chloride $(5.29 \mathrm{~g}, 0.124 \mathrm{~mol})$ was added to a solution of $\mathbf{S 1 6}(0.179 \mathrm{~g}, 0.208$ $\mathrm{mmol})$ in DMF $(10.4 \mathrm{~mL})$ in a microwave vial. The vial was sealed and the mixture was heated in a microwave reactor at $160^{\circ} \mathrm{C}$ for 70 min . The heterogeneous mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and diluted with ethyl acetate $(200 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The biphasic mixture was stirred until all solids dissolved. The layers were separated and the aqueous layer extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was
purified by column chromatography (50% ethyl acetate in hexanes) to deliver hydroxy acid $\mathbf{S 1 7}$ ($92 \mathrm{mg}, 0.127 \mathrm{mmol}, 61 \%$ yield) and a byproduct of only the triethylsilyl ether cleavage (hydroxy methyl ester) ($27 \mathrm{mg}, 37.4 \mu \mathrm{~mol}, 18 \%$ yield). $[\alpha]_{\mathrm{D}}^{23}-30.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{q}, J=5.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.57(\mathrm{~m}, 1 \mathrm{H}), 5.78$ (dd, $J=15.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=10.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (dd, $J=14.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=14.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=9.3,6.4,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=9.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-$ 2.67 (m, 2H), 2.57 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (tt, $J=9.1$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dd, $J=7.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{ddt}, J=14.7,7.4$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (dtd, $J=13.9,10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (dq, $J=9.8,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31$ (ddd, $J=11.4,7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.23-1.19$ (m, $1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (ddd, $J=9.9,6.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.85$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 170.8,167.1,159.1,149.9$, $140.0,137.8,134.1,133.6,129.5,129.0,128.1,125.2,114.1,99.7,81.2,67.4,55.2$, 53.8, 49.7, 49.4, 46.1, 41.6, 41.0, 32.7, 31.9, 29.9, 29.4, 28.4, 27.3, 21.4, 20.6, 13.4, 13.0. HRMS-ESI (m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{NO}_{7}, 728.1715$; found, 728.1695.

(5aS,6E, $8 R, 11 R, 15 R, 18 E, 19 \mathrm{a}, 19 \mathrm{~b} R)-15-((1 S, 2 R)$-2-Chlorocyclopropyl)-2-(4-methoxybenzyl)-6,8,19b-trimethyl-11-(trichloromethyl)-5,5a, 8,9,10,11,14,15-
octahydro-1H-[1,5]dioxacyclo-hexadecino[9,10-e]isoindole-3,13,17(2H,19aH,
19bH)-trione (S18). 2,4,6-Trichlorobenzoyl chloride ($0.68 \mathrm{~mL}, 4.37 \mathrm{mmol}$) was added to a solution of acid $\mathbf{S 1 7}(80 \mathrm{mg}, 0.109 \mathrm{mmol})$ and pyridine $(0.53 \mathrm{~mL}, 2.29$ mmol) in toluene $(7.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After $45 \mathrm{~min}, 4$-(dimethylamino) pyridine (53 mg , 0.437 mmol) was added at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was kept at $23^{\circ} \mathrm{C}$ for 12 h . Brine was added, the layers were separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (50% ethyl acetate in hexanes) to deliver $\mathbf{S} 18(39 \mathrm{mg}, 54.5 \mu \mathrm{~mol}, 50 \%$ yield $) .[\alpha]_{\mathrm{D}}^{23}+19.0^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (ddd, $J=10.9,8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.85 (dd, $J=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, $3 \mathrm{H}), 3.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (dddd, $J=19.5,16.6,10.0,4.4 \mathrm{~Hz}$, 2H), 1.69-1.59 (m, 1H), 1.53 (s, 3H), 1.41 (ddt, $J=11.8,6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.19$ (m, 2H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{tdd}, J=8.6,6.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.0,167.1,164.6,159.0,147.2,140.9,134.0$, $131.7,129.6,129.3,128.3,124.9,114.0,99.6,80.5,70.9,55.2,53.9,53.1,46.6,46.1$, $42.2,39.5,31.6,31.5,31.2,29.6,28.3,27.3,25.8,19.6,18.5,15.1 . \operatorname{HRMS}-E S I(m / z):$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{NO}_{6} \mathrm{Na}, 734.1586$; found, 734.1566 .

Muironolide A (44). 2,3-Dichloro-5,6-dicyano-p-benzoquinone (118 mg, 0.518 $\mathrm{mmol})$ was added to a solution of $\mathbf{S 1 8}(37 \mathrm{mg}, 51.9 \mu \mathrm{~mol})$ and water $(4.7 \mu \mathrm{~L}$ (measured and injected into solution with a $10 \mu \mathrm{~L}$ Hamilton syringe), 0.259 mmol) in 1,4-dioxane (5.2 mL). The solution was heated at $100^{\circ} \mathrm{C}$ for 8 h . After cooling to 23 ${ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added followed by a mixture of saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}(1: 1,4.0 \mathrm{~mL})$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . The layers were separated and the aqueous layer was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (100% ethyl acetate) to deliver muironolide A, 44 ($21 \mathrm{mg}, 35.3 \mu \mathrm{~mol}, 68 \%$ yield) and recovered starting material S18 (6 mg, $8.4 \mu \mathrm{~mol}, 16 \%$). The recovered starting material was resubmitted to the same reaction conditions shown above to deliver an additional amount of muironolide A, $44(4 \mathrm{mg}, 6.86 \mu \mathrm{~mol}, 82 \%$ yield $)$ for a total of $25 \mathrm{mg}(42.2$ $\mu \mathrm{mol}, 81 \%$ overall yield $) .[\alpha]_{\mathrm{D}}^{23}+42.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 6.72 (dd, $J=8.02 .6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=15.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.76$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (dd, $J=10.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (ddd, $J=11.3,8.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.96-$ 2.86 (m, 2H), 2.84 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47-2.35 (m, 3H), 2.05 (ddd, $J=14.6,8.8,6.3$,
$2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.39$ $(\mathrm{m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{td}, J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{dqd}$, $J=11.8,5.9,4.9,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ (ppm): 170.0, 169.0, 164.6, 147.1, 140.0, 133.9, 131.8, 130.3, 125.1, 99.6, 80.6, 71.0, 54.0, 49.3, 46.6, 44.4, 39.5, 31.7, 31.6, 31.2, 30.4, 28.1, 27.3 25.8, 19.6, 18.5, 15.2. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{4} \mathrm{NO}_{5} \mathrm{Na}$, 614.1011; found, 614.1006.
${ }^{1} H$ NMR data for natural muironolide A and synthetic compounds 1,43 , and 44 .

	$\begin{aligned} & \text { natural, } \\ & d(J) \end{aligned}$	synthetic $44, d(J)$	synthetic 1, $d(J)$	$\begin{array}{r} \text { syntheti } \\ \text { c 43, } d(J) \end{array}$
1				
2	5.77	5.76	5.76	5.79
	(15.5)	(15.3)	(16.0)	(15.2)
3	6.53	6.53	6.72	6.73
	$(15.5,11.6)$	(15.2, 11.1)	(7.7)	(8.0, 2.6)
4	2.45	2.44	2.73	2.45
	(11.6)	(11.8)		(11.8)
5				
6	3.33 (8.8)	3.33 (8.8)	3.14	3.35
			(8.9)	(8.7)
6^{\prime}	2.84 (8.8)	2.84 (8.7)	2.87	2.88
			(8.3)	(8.7)

7

8

9

	2.5)	2.6)	(7.2)	(8.0, 2.6)
10	1.92	1.93	1.81	1.94
10'	2.40	2.42	2.73	2.40
11	1.70	1.69	1.85	1.71
	(11.6, 8.7,	(11.7, 9.1,	(11.4, 9.6)	(11.6, 10.3,
	2.8)	3.1)		2.2)
12				
13	4.88	4.88 (9.0)	4.86	4.90
	(9.12)		(9.2)	(9.5)
14	2.42	2.42	2.6	2.45
15	1.16	1.17	1.42	1.18
15'	1.05	1.09	1.34	1.11
16	1.95	1.93	1.54	1.96
16^{\prime}	2.04	2.05	2.08	2.06
17	5.55	5.54	5.40	5.55
	$(10.8,2.4)$	(10.7, 2.5)	(8.1, 3.6)	(11.1, 2.1)

18

19

20
2.90
2.91
2.87
2.79

	$(16.2,3.0)$	$(16.2,2.9)$	(7.9, 5.6)		(16.2, 2.4)
20'	2.94	2.94	2.86		2.92
	(16.2, 3.0)	(16.2, 3.1)	(7.9, 5.6)		(16.1, 4.5)
21	5.03	5.03	4.66		4.93
	(11.6, 9.4,	(11.3, 8.8,	(9.3,	7.5,	(11.5, 9.1,
	3.2)	3.0)	5.6)		2.4)
22	1.44 (9.4,	1.43 (9.4,	1.54		1.44
	9.4, 6.3, 3.2)	6.4, 3.0)	(14.3,	7.1,	
			4.5)		
23	2.98 (6.5,	2.98 (7.3,	3.22		3.24
	3.7, 3.2)	3.8, 3.6)	(7.3, 3.6)		(7.5, 3.7)
24	1.09 (9.4,	1.09 (9.9,	0.98		1.00
	6.5, 3.7)	6.4, 3.9)	(13.9,	7.0,	(6.8)
			6.8)		
24	1.25 (6.5)	1.25 (6.9)	1.13		1.10
			(10.2,		
			4.1)		
25	1.28	1.28	1.42		1.30
26	1.56	1.56	1.74		1.59
27		0.94 (6.5)	0.94		0.95
			(6.8)		(6.5)

${ }^{13} \mathrm{C}$ NMR chemical shifts for natural muironolide A and synthetic compounds $\mathbf{1}$,
43 , and 44.

position	natural,	synthetic	synthetic	syntheti
	d	44, d	1, d	c 43, d
1	164.4	164.6	164.6	164.7
2	124.8	125.1	123.5	125.2
3	146.9	147.1	147.9	147.0
4	53.6	54.0	49.8	54.1
5	44.0	44.4	44.4	44.4
6	49.0	49.3	49.8	49.2
7	169.7	170.0	169.7	169.8
8	139.7	140.0	140.1	139.9
9	130.0	130.0	130.2	130.2
10	31.3	31.6	31.4	31.6
11	46.2	46.6	46.5	46.6
12	133.8	133.9	134.0	134.0
13	131.6	131.8	130.7	131.8
14	30.8	31.2	30.5	31.2
15	31.4	31.7	32.8	31.7
16	27.1	27.3	26.8	27.3
17	80.3	80.6	81.1	80.6

18	99.3	99.6	99.6	99.6
19	168.9	169.0	167.6	169.1
20	39.4	39.5	38.7	39.1
21	70.8	71.0	71.5	71.5
22	25.6	25.8	25.6	25.6
23	30.0	30.4	31.5	31.0
24	14.7	15.2	14.2	14.1
25	27.7	28.1	28.6	28.1
26	19.1	19.6	18.7	19.6
27		18.5	19.0	18.5

Parameter	Value
1 Title	KY-OL-3-Ester-F
2 Spectrometer	inova
3 Number of Scans	4
4 Acquisition Date	2013-04-03T19:24:28
5 Spectrometer Freq	499.86

19

Parameter	$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$ Value ${ }_{\text {c }}^{\infty}$
1 Title	
2 Spectrometer	inova
3 Number of Scans	28
4 Acquisition Date	2013-04-03T19:30:14
5 Spectrometer Frequency 125.70	

19

[^0]| Parameter | Value |
| :--- | :--- |
| 1 Title | KY-OL-4-F |
| 2 Spectrometer | inova |
| 3 Number of Scans | 8 |
| 4 Acquisition Date | 2013-04-04T07:05:51 |
| 5 Spectrometer Frequency 499.86 | |

S1

Parameter	Value
1 Title	KY-OL-4-H
2 Spectrometer	inova
3 Number of Scans	32
4 Acquisition Date	2013-04-04T07:14:01
5 Spectrometer Frequency 125.70	

O
$\begin{array}{lllllllllllllllllllllllllllllllll}1 \\ 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

21

[^1]| Parameter | Value |
| :---: | :---: |
| 1 Title | xq-2-295-H |
| 2 Spectrometer | inova |
| 3 Number of Scans | 16 |
| 4 Acquisition Date | 2013-01-28T12:59:48 |
| 5 Spectrometer Frequency 499.86 | |

[^2]| Parameter | Value |
| :---: | :---: |
| 1 Title | xq-3-67-2 |
| 2 Spectrometer | inova |
| 3 Number of Scans | 12 |
| 4 Acquisition Date | 2013-03-25T12:01:15 |
| 5 Spectrometer Frequency 499.86 | |

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30
$\mathrm{f} 1(\mathrm{ppm})$														

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Parameter	Value
1 Title	cis－imda－2
2 Spectrometer	inova
3 Number of Scans	32
4 Acquisition Date	2013－05－06T14：49：05
5 Spectrometer Frequency 599.64	

	边年号		
	coldedue		
1 Title	ky－1－214－çarton－		
2 Spectrometer	inova		
3 Number of Scans	2368		
4 Acquisition Date	2013－05－04T16：19：27		
5 Spectrometer Freq	150.79		

$$
1 \text { Title ~~ }
$$

[^3]| Parameter | Value |
| :---: | :---: |
| 1 Title | xq-3-109 |
| 2 Spectrometer | inova |
| 3 Number of Scans | 32 |
| 4 Acquisition Date | 2013-05-07T17:17:51 |
| 5 Spectrometer Frequency | 499.86 |

30	190	180	170	160	150	140	130	120	110	100	1
f1 (pmm)											

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{f 1 (\mathrm { ppm })}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- |

$\stackrel{\infty}{\sim}$

170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \text { f1 (ppm) } \end{gathered}$	80	70	60	50	40	30	20	10	0

General Procedure for the Metal Catalyzed IMDA Reaction in Table 1.

(E)-methyl 3-((3aR,4R,5S,7aR)-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4methylpent -2-en-2-yl)-1,7-dioxooctahydro-1H-isoindol-4-yl)acrylate (34). The β keto amide \boldsymbol{Z}-33 was prepared according to a described synthetic procedure. A metal salt in Table $1(10 \mathrm{~mol} \%)$ was added to a solution of $\boldsymbol{Z} \mathbf{- 3 3}(17.6 \mu \mathrm{~mol}, 1.0$ equiv $)$ in solvent (0.6 mL). $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) was added to the reaction mixture and was heated for a duration specified in Table 1. The crude mixture was quenched with ethyl acetate (2 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 x 1 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, and concentrated in vacuo. The crude oil was purified by column chromatography (silica, 80% ethyl acetate - hexanes) to give isoindolinone 34. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=15.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}$, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

General Procedure for the Asymmetric IMDA Reaction in Figure 7.

\qquad

Table A: Ligand screening for IMDA reaction

entry	ligand	conv., $\%$	dr	ee
1	L1	79%	$>30: 1$	40%
2	L2	65%	$8: 1$	17%
3	L3	87%	$>30: 1$	0%
4	L4	85%	$>30: 1$	0%
5	L5	86%	$30: 1$	4%
6	L6	87%	$30: 1$	20%
7	L7	86%	$30: 1$	1%

8	L8	87%	$30: 1$	0%
9	L9	83%	$>30: 1$	8%

(E)-methyl 3-((3aR,4R,5S,7aR)-2-(4-methoxybenzyl)-3a-methyl-5-((E)-4methylpent -2-en-2-yl)-1,7-dioxooctahydro-1H-isoindol-4-yl)acrylate (34). ${ }^{82}$ The β-keto amide \boldsymbol{Z}-33 was prepared according to a described synthetic procedure. $\mathrm{La}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$ was added to a solution of ligand in Table A (11 mol\%) in ethyl acetate $(0.2 \mathrm{~mL})$ and stirred for 30 min at $23{ }^{\circ} \mathrm{C}$. The preformed catalyst and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) was added to 5 ($17.6 \mu \mathrm{~mol}, 1.0$ equiv) in ethyl acetate $(0.4 \mathrm{~mL})$ and was heated to $45{ }^{\circ} \mathrm{C}$ for 24 h . The crude mixture was quenched with ethyl acetate (2 mL) and water (3 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 1 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, and concentrated in vacuo. The crude oil was purified by column chromatography (silica, 80% ethyl acetate - hexanes) to give isoindoledione 34. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=15.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}$, $2 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

General Procedure for the synthesis of $\operatorname{Ln}(t e r p y)\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$. $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathrm{Ln}=\mathrm{Dy}, \mathrm{Sm}, \mathrm{Eu})(0.2 \mathrm{mmol}, 1.0$ equiv $)$ was added to a solution of $2,2^{\prime}: 6^{\prime}, 2$ "-terpyridine ($0.2 \mathrm{mmol}, 1.0$ equiv) in ethanol $(4.0 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ for 1 h to
form a white suspension. The suspension was filtered and washed with ethanol (3x 4 mL) and dried in vacuo to give $\mathrm{Ln}($ terpy $)\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$. This material was used without further purification of characterization.

General Procedure for the synthesis of $\operatorname{Ln}(t e r p y)\left(\mathrm{NO}_{3}\right)_{2}$ (pyracac) or $\mathbf{L n}($ terpy $)\left(\mathbf{N O}_{\mathbf{3}} \mathbf{)}_{\mathbf{2}}\right.$ (dbacac). 1-(Pyrrolidin-1-yl)butane-1,3-dione ($0.3 \mathrm{mmol}, 3.0$ eqiv) or N, N-dibenzyl-3-oxobutanamide ($0.3 \mathrm{mmol}, 3.0$ equiv) was added to a solution of $\mathrm{Ln}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}(\mathrm{Ln}=\mathrm{Dy}, \mathrm{Sm}, \mathrm{Eu})(0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}-\mathrm{EtOH}$ $(1: 1,0.8 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ followed by $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{mmol}, 2.0$ equiv). The mixture was stirred for 1 h at $23{ }^{\circ} \mathrm{C}$. The stir bar was removed and the solution was allowed to slowly evaporate at $23{ }^{\circ} \mathrm{C}$ for about 36 h to form colorless crystals suitable for X-ray crystallography.

X-ray Data Collection, structure solution and Refinement

The crystal was mounted on a glass fiber and transferred to a Bruker Kappa APEX II CCD diffractometer. The APEX2 software program was used to determine the unit cell parameters and data collection. The data were collected at 100 K using Oxford Cryostream Plus system. The raw frame data were processed using APEX2 program. The absorption correction was applied using program SADABS. Subsequent calculations were carried out using SHELXTL program.

ORTEP drawing of Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac) with 50% probability ellipsoids and H atoms and solvent have been omitted for clarity.

X-ray Crystallographic Data for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

Identification code	ky2108_0m	
Empirical formula	C26 H26 Dy N7 O7	
Formula weight	711.04	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic $2 / \mathrm{n}$	$\mathrm{a}=90^{\circ}$.
Space group	$\mathrm{a}=9.1631(3) \AA$	$\mathrm{b}=93.537(2)^{\circ}$.
Unit cell dimensions	$\mathrm{b}=27.7638(10) \AA$	$\mathrm{g}=90^{\circ}$.
	$\mathrm{c}=10.7721(4) \AA$	
Volume	$2735.23(17) \AA \AA^{3}$	
Z	4	

Density (calculated)	$1.727 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.790 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1412
Crystal size	$0.300 \mathrm{x} 0.200 \times 0.050 \mathrm{~mm}^{3}$
Theta range for data collection	1.467 to 28.282°.
Index ranges	$-10<=\mathrm{h}<=12,-37<=\mathrm{k}<=37,-14<=\mathrm{l}<=12$
Reflections collected	27116
Independent reflections	$6786[\mathrm{R}(\mathrm{int})=0.0453]$
Completeness to theta $=25.242^{\circ}$	100.0%
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$6786 / 0 / 372$
Goodness-of-fit on F^{2}	1.047
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0292, \mathrm{wR} 2=0.0547$
R indices (all data)	$\mathrm{R} 1=0.0426, \mathrm{wR} 2=0.0578$
Extinction coefficient	n / a
Largest diff. peak and hole	0.528 and $-1.384 \mathrm{e} . \AA^{-3}$

Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$U(e q)$
$C(1)$	$10776(3)$	$1654(1)$ 192	$10211(3)$	$21(1)$

C(2)	12075(3)	1885(1)	10532(3)	24(1)
C(3)	12141(3)	2375(1)	10402(3)	24(1)
C(4)	10913(3)	2622(1)	9945(3)	22(1)
C(5)	9634(3)	2369(1)	9648(3)	16(1)
C(6)	8249(3)	2614(1)	9211(3)	17(1)
C(7)	8120(4)	3114(1)	9212(3)	23(1)
C(8)	6785(4)	3320(1)	8861(3)	26(1)
C(9)	5625(4)	3025(1)	8506(3)	23(1)
C(10)	5812(3)	2529(1)	8489(3)	16(1)
C(11)	4613(3)	2196(1)	8092(3)	15(1)
C(12)	3306(3)	2358(1)	7519(3)	20(1)
C(13)	2249(3)	2026(1)	7143(3)	23(1)
C(14)	2506(3)	1544(1)	7337(3)	22(1)
C(15)	3823(3)	1407(1)	7930(3)	20(1)
C(16)	5652(3)	-89(1)	7922(3)	20(1)
C(17)	6553(3)	271(1)	8679(3)	14(1)
C(18)	7359(3)	116(1)	9722(3)	16(1)
C(19)	8312(3)	418(1)	10473(3)	15(1)
C(20)	8953(3)	-254(1)	11963(3)	20(1)
C(21)	10062(3)	-251(1)	13081(3)	24(1)
C(22)	10051(4)	264(1)	13535(3)	26(1)
C(23)	9933(3)	552(1)	12339(3)	21(1)
C(24)	4603(4)	654(1)	5164(3)	28(1)

$\mathrm{C}(25)$	$6149(4)$	$674(1)$	$4962(4)$	$36(1)$
$\mathrm{Dy}(1)$	$7294(1)$	$1413(1)$	$9064(1)$	$11(1)$
$\mathrm{N}(1)$	$9562(3)$	$1887(1)$	$9779(2)$	$17(1)$
$\mathrm{N}(2)$	$7117(3)$	$2325(1)$	$8852(2)$	$14(1)$
$\mathrm{N}(3)$	$4863(3)$	$1725(1)$	$8308(2)$	$16(1)$
$\mathrm{N}(4)$	$9018(3)$	$244(1)$	$11499(2)$	$17(1)$
$\mathrm{N}(5)$	$8510(3)$	$1443(1)$	$6647(2)$	$21(1)$
$\mathrm{N}(6)$	$5871(3)$	$1431(1)$	$11404(2)$	$20(1)$
$\mathrm{N}(7)$	$3382(4)$	$630(1)$	$5314(3)$	$41(1)$
$\mathrm{O}(1)$	$6518(2)$	$706(1)$	$8246(2)$	$15(1)$
$\mathrm{O}(2)$	$8552(2)$	$862(1)$	$10215(2)$	$17(1)$
$\mathrm{O}(3)$	$7218(2)$	$1583(1)$	$6790(2)$	$22(1)$
$\mathrm{O}(4)$	$9233(2)$	$1302(1)$	$7612(2)$	$26(1)$
$\mathrm{O}(5)$	$9035(3)$	$1445(1)$	$5619(2)$	$34(1)$
$\mathrm{O}(6)$	$5463(2)$	$1136(1)$	$10565(2)$	$19(1)$
$\mathrm{O}(7)$	$6837(2)$	$1738(1)$	$11121(2)$	$24(1)$
$\mathrm{O}(8)$	$5372(3)$	$1427(1)$	$12434(2)$	$35(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\operatorname{Dy}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}($ pyacac $)$.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.345(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.378(4)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500

$\mathrm{C}(2)-\mathrm{C}(3)$	$1.369(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.381(5)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	1.386(4)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{N}(1)$	1.348(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.490(4)
$\mathrm{C}(6)-\mathrm{N}(2)$	1.349(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.393(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.381(5)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	1.376 (5)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	1.388(4)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{N}(2)$	1.359(4)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.479(4)
$\mathrm{C}(11)-\mathrm{N}(3)$	1.348(4)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.387(4)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.381(5)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	1.372(5)

$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	1.383(4)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{N}(3)$	1.344(4)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.503(4)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(17)-\mathrm{O}(1)$	1.294(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.375(4)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.427(4)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{O}(2)$	1.286(3)
$\mathrm{C}(19)-\mathrm{N}(4)$	1.335(4)
$\mathrm{C}(20)-\mathrm{N}(4)$	1.473(4)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.527(4)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(21)-\mathrm{C}(22)$	1.512(5)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9900
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9900
$\mathrm{C}(22)-\mathrm{C}(23)$	1.515(4)

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9900
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9900
$\mathrm{C}(23)-\mathrm{N}(4)$	1.469(4)
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9900
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9900
$\mathrm{C}(24)$ - N (7)	1.142(5)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.448(5)
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{Dy}(1)-\mathrm{O}(2)$	2.2428 (19)
Dy(1)-O(1)	2.2500(19)
$\mathrm{Dy}(1)-\mathrm{O}(7)$	2.452(2)
Dy(1)-O(4)	2.458(2)
Dy(1)-N(3)	2.479(2)
Dy(1)-O(3)	2.491(2)
Dy(1)-O(6)	2.521(2)
$\mathrm{Dy}(1)-\mathrm{N}(1)$	2.539(2)
Dy(1)-N(2)	2.546(2)
Dy(1)-N(5)	2.896(2)
Dy(1)-N(6)	2.909(2)
$\mathrm{N}(5)-\mathrm{O}(5)$	1.234(3)
$\mathrm{N}(5)-\mathrm{O}(4)$	1.261(3)

$\mathrm{N}(5)-\mathrm{O}(3)$	$1.264(3)$
$\mathrm{N}(6)-\mathrm{O}(8)$	$1.226(3)$
$\mathrm{N}(6)-\mathrm{O}(6)$	$1.260(3)$
$\mathrm{N}(6)-\mathrm{O}(7)$	$1.279(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.0(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	118.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	118.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.7(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.6
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.2(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.4(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$121.6(3)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$121.7(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(6)$	$116.1(3)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.9(3)$
$\mathrm{N}(5) \mathrm{C}(5)$	$116.4(3)$
N	

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$119.1(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.0(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.9(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.0
$\mathrm{~N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.2(3)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$116.6(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122.2(3)$
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.6(3)$
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$116.2(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.2(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.0(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.8
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(12)$	120.5
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{H}(12)$	120.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.1
$\mathrm{C}(12)$	$119.8(3)$
$\mathrm{C}(13)-\mathrm{H}(13)$	120.1
C	

```
C(15)-C(14)-H(14) 120.8
N(3)-C(15)-C(14) 122.8(3)
N(3)-C(15)-H(15) 118.6
C(14)-C(15)-H(15) 118.6
C(17)-C(16)-H(16A) 109.5
C(17)-C(16)-H(16B) 109.5
H(16A)-C(16)-H(16B)109.5
C(17)-C(16)-H(16C) 109.5
H(16A)-C(16)-H(16C)109.5
H(16B)-C(16)-H(16C)109.5
O(1)-C(17)-C(18) 126.0(3)
O(1)-C(17)-C(16) 115.1(3)
C(18)-C(17)-C(16) 119.0(3)
C(17)-C(18)-C(19) 123.9(3)
C(17)-C(18)-H(18) 118.0
C(19)-C(18)-H(18) 118.0
O(2)-C(19)-N(4) 116.4(3)
O(2)-C(19)-C(18) 123.3(3)
N(4)-C(19)-C(18) 120.3(3)
N(4)-C(20)-C(21) 103.0(2)
N(4)-C(20)-H(20A) 111.2
C(21)-C(20)-H(20A) 111.2
N(4)-C(20)-H(20B) 111.2
```

```
C(21)-C(20)-H(20B) 111.2
H(20A)-C(20)-H(20B)109.1
C(22)-C(21)-C(20) 104.0(3)
C(22)-C(21)-H(21A) 111.0
C(20)-C(21)-H(21A) 111.0
C(22)-C(21)-H(21B) 111.0
C(20)-C(21)-H(21B) 111.0
H(21A)-C(21)-H(21B)109.0
C(21)-C(22)-C(23) 103.1(3)
C(21)-C(22)-H(22A) 111.2
C(23)-C(22)-H(22A) 111.2
C(21)-C(22)-H(22B) 111.2
C(23)-C(22)-H(22B) 111.2
H(22A)-C(22)-H(22B)109.1
N(4)-C(23)-C(22) 103.0(3)
N(4)-C(23)-H(23A) 111.2
C(22)-C(23)-H(23A) 111.2
N(4)-C(23)-H(23B) 111.2
C(22)-C(23)-H(23B) 111.2
H(23A)-C(23)-H(23B)109.1
N(7)-C(24)-C(25) 178.8(4)
C(24)-C(25)-H(25A) 109.5
C(24)-C(25)-H(25B) 109.5
```

$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B}) 109.5$	
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C}) 109.5$	
H(25B)-C(25)-H(25C)109.5	
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(1)$	76.14(7)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(7)$	82.05(7)
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{O}(7)$	127.41(7)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(4)$	84.20(7)
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{O}(4)$	82.20(7)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(4)$	142.34(7)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(3)$	147.16(7)
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{N}(3)$	85.43(8)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(3)$	88.20(8)
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(3)$	120.32(7)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(3)$	130.91(7)
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{O}(3)$	77.94(7)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(3)$	145.39(7)
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{O}(3)$	51.35(7)
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{O}(3)$	68.97(7)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(6)$	77.12(7)
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{O}(6)$	77.17(7)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(6) \quad 51.34(7)$	
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{O}(6)$	154.89(8)

$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{O}(6)$	$72.37(7)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{O}(6)$	$135.15(7)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$78.60(8)$
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$143.51(7)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$73.59(7)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$69.37(7)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$128.37(8)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$99.95(8)$
$\mathrm{O}(6)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$121.90(7)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$139.05(7)$
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$144.70(7)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$72.66(7)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$96.45(8)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$64.71(8)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$74.09(7)$
$\mathrm{O}(6)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$108.66(7)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$25.77(7)$
$\mathrm{N}(1)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$63.79(8)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$107.67(8)$
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$78.63(7)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$153.96(7)$
$\mathrm{O}(1)-\mathrm{N}(5)$	$25.59(7)$
$\mathrm{O}(1)-\mathrm{N}(5)$	$94.73(8)$
O	

$\mathrm{O}(6)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$153.33(7)$
$\mathrm{N}(1)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$84.52(7)$
$\mathrm{N}(2)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$85.21(7)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$77.01(7)$
$\mathrm{O}(1)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$101.92(7)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$25.85(7)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$159.04(7)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$80.61(7)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$149.53(7)$
$\mathrm{O}(6)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$25.57(7)$
$\mathrm{N}(1)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$97.52(8)$
$\mathrm{N}(2)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$91.79(7)$
$\mathrm{N}(5)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$175.22(7)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$118.0(3)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Dy}(1)$	$119.9(2)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	$121.83(19)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	$118.8(3)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Dy}(1)$	$121.47(19)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)-\mathrm{C}(23)$	$119.41(18)$
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	$118.4(3)$
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Dy}(1)$	$118.5(2)$
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	$122.38(19)$
120	

$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(20)$	$126.4(3)$
$\mathrm{C}(23)-\mathrm{N}(4)-\mathrm{C}(20)$	$111.7(2)$
$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{O}(4)$	$121.8(3)$
$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{O}(3)$	$121.9(3)$
$\mathrm{O}(4)-\mathrm{N}(5)-\mathrm{O}(3)$	$116.3(2)$
$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$178.6(2)$
$\mathrm{O}(4)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$57.39(13)$
$\mathrm{O}(3)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$58.90(14)$
$\mathrm{O}(8)-\mathrm{N}(6)-\mathrm{O}(6)$	$122.2(3)$
$\mathrm{O}(8)-\mathrm{N}(6)-\mathrm{O}(7)$	$121.6(3)$
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(7)$	$116.2(2)$
$\mathrm{O}(8)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$175.0(2)$
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$59.75(13)$
$\mathrm{O}(7)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$56.71(13)$
$\mathrm{C}(17)-\mathrm{O}(1)-\mathrm{Dy}(1)$	$132.30(18)$
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{Dy}(1)$	$133.19(18)$
$\mathrm{N}(5)-\mathrm{O}(3)-\mathrm{Dy}(1)$	$95.34(16)$
$\mathrm{N}(5)-\mathrm{O}(4)-\mathrm{Dy}(1)$	$97.02(16)$
$\mathrm{N}(6)-\mathrm{O}(6)-\mathrm{Dy}(1)$	$94.68(15)$
$\mathrm{N}(6)-\mathrm{O}(7)-\mathrm{Dy}(1)$	$97.44(16)$

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\operatorname{Dy}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).
The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\right.$
$\left.\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

U^{11}	U^{22}	U33	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$ 17(2)	24(2)	22(2)	-2(1)	-1(1)	0 (1)
C(2) 14(2)	38(2)	19(2)	-6(2)	2(1)	-4(2)
C(3) 18(2)	32(2)	22(2)	-14(2)	4(1)	-11(2)
C(4) 24(2)	19(2)	25(2)	-7(1)	7(1)	-7(1)
C(5) 17(2)	20(2)	12(1)	-4(1)	6(1)	-4(1)
C(6) 22(2)	17(2)	12(1)	-3(1)	7(1)	-4(1)
C(7) 34(2)	16(2)	21(2)	-1(1)	10(1)	-6(1)
C(8) 38(2)	12(2)	28(2)	2(1)	8(2)	2(2)
C(9) 30(2)	16(2)	23(2)	6(1)	5(1)	7(1)
C(10)20(2)	18(2)	12(1)	1(1)	7(1)	-1(1)
C(11) 16(2)	17(2)	12(1)	3(1)	4(1)	4(1)
C(12)21(2)	26(2)	14(2)	4(1)	5(1)	12(1)
$\mathrm{C}(13) 17(2)$	39(2)	15(2)	1(1)	1(1)	9(2)
$\mathrm{C}(14) 14(2)$	31(2)	23(2)	-3(1)	$0(1)$	$0(1)$
$\mathrm{C}(15) 14(1)$	20(2)	25(2)	1(1)	3(1)	-1(1)
C(16)28(2)	16(2)	15(2)	$0(1)$	-4(1)	-4(1)
C(17) 12(1)	17(2)	14(1)	-3(1)	4(1)	2(1)
C(18) 20(2)	11(1)	15(2)	2(1)	$0(1)$	-2(1)
$\mathrm{C}(19) 15(1)$	17(2)	14(1)	2(1)	3(1)	2(1)

C(20)24(2)	18(2)	18(2)	6(1)	-1(1)	4(1)
C(21)24(2)	29(2)	18(2)	4(1)	$0(1)$	6(2)
C (22) 27(2)	32(2)	18(2)	3(1)	-4(1)	0 (2)
C(23)23(2)	24(2)	16(2)	0(1)	-6(1)	1(1)
C(24)41(2)	20(2)	21(2)	-6(1)	-11(2)	4(2)
C(25)41(2)	29(2)	36(2)	-6(2)	-3(2)	-4(2)
Dy(1)10(1)	11(1)	12(1)	$0(1)$	$0(1)$	0 (1)
$\mathrm{N}(1) 14(1)$	18(1)	18(1)	-3(1)	2(1)	-1(1)
$\mathrm{N}(2) 17(1)$	14(1)	12(1)	$0(1)$	3(1)	2(1)
$\mathrm{N}(3) 14(1)$	18(1)	17(1)	2(1)	4(1)	1(1)
$\mathrm{N}(4) 20$ (1)	15(1)	17(1)	2(1)	-4(1)	2(1)
$\mathrm{N}(5) 25(1)$	19(1)	21(1)	-2(1)	8(1)	-8(1)
N(6) 21(1)	19(1)	20(1)	0(1)	4(1)	2(1)
N(7) 43(2)	41(2)	38(2)	-12(2)	-6(2)	6(2)
$\mathrm{O}(1) 16(1)$	13(1)	15(1)	2(1)	-3(1)	$0(1)$
$\mathrm{O}(2) 17(1)$	15(1)	18(1)	4(1)	-4(1)	-2(1)
O(3) 26(1)	22(1)	17(1)	5(1)	5(1)	8(1)
$\mathrm{O}(4) 14(1)$	48(2)	16(1)	-4(1)	0(1)	-2(1)
O(5) 38(1)	49(2)	18(1)	-2(1)	14(1)	-6(1)
O(6) 19(1)	20(1)	17(1)	-1(1)	1(1)	-3(1)
$\mathrm{O}(7) 29(1)$	20(1)	23(1)	-4(1)	7(1)	-9(1)
$\mathrm{O}(8)$ 43(2)	42(2)	21(1)	-5(1)	16(1)	-5(1)

Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\quad\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

	X	y	z	U(eq)
H(1)	10735	1314	10298	25
H (2)	12908	1708	10839	28
H(3)	13021	2544	10623	29
H(4)	10945	2961	9836	27
H(7)	8938	3310	9450	28
H(8)	6670	3660	8866	31
H(9)	4698	3161	8272	27
H(12)	3141	2693	7387	24
H(13)	1347	2130	6750	28
H(14)	1797	1310	7072	27
H(15)	3999	1074	8076	24
H(16A)	4675	44	7723	30
H(16B)	5570	-387	8401	30
H(16C)	6125	-158	7150	30
H(18)	7275	-212	9957	19
H(20A)	9234	-487	11325	24
H(20B)	7961	-333	12217	24
H(21A)	9764	-476	13733	29

$\mathrm{H}(21 \mathrm{~B})$	11045	-344	12832	29
$\mathrm{H}(22 \mathrm{~A})$	10964	342	14035	31
$\mathrm{H}(22 \mathrm{~B})$	9205	324	14041	31
$\mathrm{H}(23 \mathrm{~A})$	9462	868	12464	26
$\mathrm{H}(23 B)$	10907	605	12013	26
$\mathrm{H}(25 \mathrm{~A})$	6431	386	4509	53
$\mathrm{H}(25 B)$	6710	689	5766	53
$\mathrm{H}(25 \mathrm{C})$	6353	962	4475	53

Torsion angles [${ }^{\circ}$] for $\mathrm{Dy}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-0.3(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.5(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.0(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$-0.8(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$176.9(3)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$-7.6(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$174.5(3)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$170.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-7.4(4)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$1.5(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-176.5(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-0.8(5)$

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-0.8(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	1.8(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-178.8(3)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	9.8(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	-169.6(3)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-169.6(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	10.9(4)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-1.2(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	178.3(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-0.1(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	1.1(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)$	-0.8(5)
$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-1.4(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	176.6(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(2)$	-2.8(5)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(4)$	177.6(3)
$\mathrm{N}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	28.4(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-39.2(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(4)$	34.2(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	0.5(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Dy}(1)$	175.3(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	0.1(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	-177.8(2)

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	-174.6(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	7.5(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	-0.5(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	177.6(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Dy}(1)$	-173.7(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Dy}(1)$	4.4(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	-1.2(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	179.4(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)$	172.2(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)$	-7.3(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	-0.4(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Dy}(1)$	-170.9(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	1.4(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	-178.1(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	171.5(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	-8.0(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(23)$	4.5(4)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(23)$	-175.9(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(20)$	-178.1(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{C}(20)$	1.4(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(4)-\mathrm{C}(19)$	160.8(3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(4)-\mathrm{C}(20)$	-17.0(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(4)-\mathrm{C}(19)$	175.3(3)

ORTEP drawing of $\operatorname{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac) with 50% probability ellipsoids and H atoms and solvent have been omitted for clarity.

X-ray Crystallographic Data for $\mathrm{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

Identification code	ky03042014_0m
Empirical formula	C31 H36 N7 O10 Sm
Formula weight	817.02
Temperature	100(2) K
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
Unit cell dimensions	$a=9.7347(2) \AA \quad a=90^{\circ}$.
	$\mathrm{b}=11.5779(3) \AA$
	$\mathrm{b}=92.4370(10)^{\circ}$.
	$\mathrm{c}=29.1920(6) \AA \quad \mathrm{g}=90^{\circ}$.
Volume	3287.18(13) \AA^{3}
Z	4
Density (calculated)	$1.651 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.855 \mathrm{~mm}^{-1}$
$F(000)$	1652
Crystal size	$0.15 \times 0.1 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	1.396 to 28.289°.
Index ranges	$-11<=\mathrm{h}<=12,-15<=\mathrm{k}<=10,-38<=1<=38$
Reflections collected	22466
Independent reflections	$8135[\mathrm{R}(\mathrm{int})=0.0295]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents

C(10)	6359(3)	8235(3)	968(1)	19(1)
C(11)	7721(3)	8874(3)	923(1)	22(1)
C(12)	8324(3)	8901(3)	1416(1)	23(1)
C(13)	7951(3)	7726(3)	1605(1)	21(1)
C(14)	6101(3)	5889(3)	1855(1)	15(1)
C(15)	5387(3)	4929(2)	1967(1)	16(1)
C(16)	5907(3)	4198(3)	2364(1)	22(1)
C(18)	-197(3)	5845(2)	548(1)	12(1)
C(19)	-1587(3)	5976(3)	415(1)	16(1)
C(20)	-2563(3)	5369(3)	648(1)	19(1)
C(21)	-2145(3)	4655(3)	1003(1)	18(1)
C(22)	-748(3)	4564(2)	1124(1)	15(1)
C(23)	-227(3)	3777(3)	1494(1)	17(1)
C(24)	1583(3)	3249(3)	1987(1)	21(1)
C(25)	832(3)	2360(3)	2172(1)	25(1)
C(26)	-494(3)	2178(3)	2004(1)	27(1)
C(27)	-1036(3)	2894(3)	1662(1)	23(1)
C(28)	885(2)	6428(2)	289(1)	12(1)
C(29)	3205(3)	6792(3)	226(1)	16(1)
C(30)	2984(3)	7440(3)	-166(1)	17(1)
C(31)	1647(3)	7575(3)	-336(1)	17(1)
C(32)	585(3)	7060(2)	-108(1)	16(1)
$\mathrm{N}(1)$	3482(3)	606(2)	950(1)	22(1)

$\mathrm{N}(2)$	$6615(2)$	$7476(2)$	$1366(1)$	$16(1)$
$\mathrm{N}(6)$	$1800(2)$	$7318(2)$	$1764(1)$	$22(1)$
$\mathrm{N}(7)$	$3588(2)$	$3588(2)$	$561(1)$	$16(1)$
$\mathrm{N}(4)$	$208(2)$	$5172(2)$	$904(1)$	$12(1)$
$\mathrm{N}(3)$	$1085(2)$	$3942(2)$	$1649(1)$	$17(1)$
$\mathrm{N}(5)$	$2197(2)$	$6290(2)$	$456(1)$	$12(1)$
$\mathrm{O}(1)$	$5706(2)$	$1173(2)$	$998(1)$	$28(1)$
$\mathrm{O}(2)$	$6408(2)$	$1255(2)$	$2139(1)$	$40(1)$
$\mathrm{O}(3)$	$4612(2)$	$6561(2)$	$1239(1)$	$16(1)$
$\mathrm{O}(4)$	$4269(2)$	$4539(2)$	$1757(1)$	$21(1)$
$\mathrm{O}(5)$	$1620(2)$	$7293(2)$	$1333(1)$	$22(1)$
$\mathrm{O}(6)$	$2477(2)$	$3477(2)$	$778(1)$	$20(1)$
$\mathrm{O}(7)$	$4363(2)$	$4416(2)$	$684(1)$	$21(1)$
$\mathrm{O}(8)$	$3850(2)$	$2936(2)$	$249(1)$	$21(1)$
$\mathrm{O}(9)$	$2172(2)$	$6375(2)$	$1958(1)$	$29(1)$
$\mathrm{O}(10)$	$1638(2)$	$8207(2)$	$1984(1)$	$35(1)$
$\mathrm{Sm}(1)$	$2725(1)$	$5329(1)$	$1238(1)$	$13(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\operatorname{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.520(4)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.521(5)$
$\mathrm{C}(1)-\mathrm{H}(3)$	0.9900

$\mathrm{C}(1)-\mathrm{H}(1)$	0.9900
$\mathrm{C}(2)-\mathrm{N}(1)$	1.477(4)
$\mathrm{C}(2)-\mathrm{H}(12)$	0.9900
$\mathrm{C}(2)-\mathrm{H}(13)$	0.9900
$\mathrm{C}(3)-\mathrm{O}(1)$	1.225(4)
$\mathrm{C}(3)-\mathrm{N}(1)$	1.347(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.528(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.515(4)
$\mathrm{C}(4)-\mathrm{H}(6)$	0.9900
$\mathrm{C}(4)-\mathrm{H}(7)$	0.9900
$\mathrm{C}(5)-\mathrm{O}(2)$	1.195(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.499(5)
$\mathrm{C}(6)-\mathrm{H}(2)$	0.9800
$\mathrm{C}(6)-\mathrm{H}(5)$	0.9800
$\mathrm{C}(6)-\mathrm{H}(4)$	0.9800
$\mathrm{C}(7)-\mathrm{N}(1)$	1.468(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.529(5)
$\mathrm{C}(7)-\mathrm{H}(8)$	0.9900
$\mathrm{C}(7)-\mathrm{H}(9)$	0.9900
$\mathrm{C}(8)-\mathrm{H}(11)$	0.9900
$\mathrm{C}(8)-\mathrm{H}(10)$	0.9900
$\mathrm{C}(9)-\mathrm{O}(3)$	1.283(3)
$\mathrm{C}(9)-\mathrm{N}(2)$	1.337(4)

$\mathrm{C}(9)-\mathrm{C}(14)$	1.432(4)
$\mathrm{C}(10)-\mathrm{N}(2)$	1.471(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.529(4)
$\mathrm{C}(10)-\mathrm{H}(21)$	0.9900
$\mathrm{C}(10)-\mathrm{H}(20)$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	1.533(4)
$\mathrm{C}(11)-\mathrm{H}(19)$	0.9900
$\mathrm{C}(11)-\mathrm{H}(18)$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.517(4)
$\mathrm{C}(12)-\mathrm{H}(16)$	0.9900
$\mathrm{C}(12)-\mathrm{H}(17)$	0.9900
$\mathrm{C}(13)-\mathrm{N}(2)$	1.478(3)
$\mathrm{C}(13)-\mathrm{H}(14)$	0.9900
$\mathrm{C}(13)-\mathrm{H}(15)$	0.9900
$\mathrm{C}(14)-\mathrm{C}(15)$	1.358(4)
$\mathrm{C}(14)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(15)-\mathrm{O}(4)$	1.307(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.505(4)
$\mathrm{C}(16)-\mathrm{H}(23)$	0.9800
$\mathrm{C}(16)-\mathrm{H}(22)$	0.9800
$\mathrm{C}(16)-\mathrm{H}(24)$	0.9800
$\mathrm{C}(18)-\mathrm{N}(4)$	1.346(3)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.399(3)

$\mathrm{C}(18)-\mathrm{C}(28)$	1.484(4)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.383(4)
$\mathrm{C}(19)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	1.375(4)
$\mathrm{C}(20)-\mathrm{H}(31)$	0.9500
$\mathrm{C}(21)-\mathrm{C}(22)$	1.394(4)
$\mathrm{C}(21)-\mathrm{H}(30)$	0.9500
$\mathrm{C}(22)-\mathrm{N}(4)$	1.349(3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.486(4)
$\mathrm{C}(23)-\mathrm{N}(3)$	1.351(3)
$\mathrm{C}(23)-\mathrm{C}(27)$	1.392(4)
$\mathrm{C}(24)-\mathrm{N}(3)$	1.346(4)
C(24)-C(25)	1.384(4)
$\mathrm{C}(24)-\mathrm{H}(29)$	0.9500
C(25)-C(26)	1.378(4)
$\mathrm{C}(25)-\mathrm{H}(28)$	0.9500
C(26)-C(27)	1.384(4)
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(27)-\mathrm{H}(27)$	0.9500
$\mathrm{C}(28)-\mathrm{N}(5)$	1.356(3)
$\mathrm{C}(28)$-C(32)	1.391(4)
$\mathrm{C}(29)-\mathrm{N}(5)$	1.344(3)
C(29)-C(30)	1.378(4)

$\mathrm{C}(29)-\mathrm{H}(36)$	0.9500
$\mathrm{C}(30)-\mathrm{C}(31)$	1.382(4)
$\mathrm{C}(30)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(31)-\mathrm{C}(32)$	1.388(4)
$\mathrm{C}(31)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(32)-\mathrm{H}(35)$	0.9500
$\mathrm{N}(6)-\mathrm{O}(10)$	1.226(3)
$\mathrm{N}(6)-\mathrm{O}(5)$	1.263(3)
$\mathrm{N}(6)-\mathrm{O}(9)$	1.274(3)
$\mathrm{N}(6)-\operatorname{Sm}(1)$	2.931(3)
$\mathrm{N}(7)-\mathrm{O}(8)$	1.219(3)
$\mathrm{N}(7)-\mathrm{O}(7)$	1.263(3)
$\mathrm{N}(7)-\mathrm{O}(6)$	1.282(3)
$\mathrm{N}(7)-\mathrm{Sm}(1)$	2.969(2)
$\mathrm{N}(4)-\operatorname{Sm}(1)$	2.605(2)
$\mathrm{N}(3)-\mathrm{Sm}(1)$	2.595(2)
$\mathrm{N}(5)-\operatorname{Sm}(1)$	2.571(2)
$\mathrm{O}(3)-\mathrm{Sm}(1)$	2.3256(19)
$\mathrm{O}(4)-\mathrm{Sm}(1)$	2.2795(18)
$\mathrm{O}(5)-\mathrm{Sm}(1)$	2.536(2)
$\mathrm{O}(6)-\mathrm{Sm}(1)$	2.536(2)
$\mathrm{O}(7)-\mathrm{Sm}(1)$	2.548(2)
$\mathrm{O}(9)-\mathrm{Sm}(1)$	2.504(2)

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	103.0(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(3)$	111.2
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(3)$	111.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	111.2
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(1)$	111.2
$\mathrm{H}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	109.1
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	102.7(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(12)$	111.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(12)$	111.2
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(13)$	111.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(13)$	111.2
$\mathrm{H}(12)-\mathrm{C}(2)-\mathrm{H}(13)$	109.1
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{N}(1)$	123.1(3)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	118.7(3)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	118.2(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	108.9(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(6)$	109.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(6)$	109.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(7)$	109.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(7)$	109.9
$\mathrm{H}(6)-\mathrm{C}(4)-\mathrm{H}(7)$	108.3
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	122.2(3)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	121.9(3)

$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$116.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(2)$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(5)$	109.5
$\mathrm{H}(2)-\mathrm{C}(6)-\mathrm{H}(5)$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(4)$	109.5
$\mathrm{H}(2)-\mathrm{C}(6)-\mathrm{H}(4)$	109.5
$\mathrm{H}(5)-\mathrm{C}(6)-\mathrm{H}(4)$	109.5
$\mathrm{~N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$103.5(3)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(8)$	111.1
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(8)$	111.1
$\mathrm{~N}(1)-\mathrm{C}(7)-\mathrm{H}(9)$	111.1
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(9)$	111.1
$\mathrm{H}(8)-\mathrm{C}(7)-\mathrm{H}(9)$	109.0
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$103.1(3)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(11)$	111.1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(11)$	111.1
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(10)$	111.1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(10)$	111.1
$\mathrm{H}(11)-\mathrm{C}(8)-\mathrm{H}(10)$	109.1
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{N}(2)$	$117.1(2)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(14)$	$123.4(3)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.5(2)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$103.8(2)$
C	

```
N(2)-C(10)-H(21) 111.0
C(11)-C(10)-H(21) 111.0
N(2)-C(10)-H(20) 111.0
C(11)-C(10)-H(20) 111.0
H(21)-C(10)-H(20) 109.0
C(10)-C(11)-C(12) 103.2(2)
C(10)-C(11)-H(19) 111.1
C(12)-C(11)-H(19) 111.1
C(10)-C(11)-H(18) 111.1
C(12)-C(11)-H(18) 111.1
H(19)-C(11)-H(18) 109.1
C(13)-C(12)-C(11) 103.6(2)
C(13)-C(12)-H(16) 111.0
C(11)-C(12)-H(16) 111.0
C(13)-C(12)-H(17) 111.0
C(11)-C(12)-H(17) 111.0
H(16)-C(12)-H(17) 109.0
N(2)-C(13)-C(12) 103.0(2)
N(2)-C(13)-H(14) 111.2
C(12)-C(13)-H(14) 111.2
N(2)-C(13)-H(15) 111.2
C(12)-C(13)-H(15) 111.2
H(14)-C(13)-H(15) 109.1
```

```
C(15)-C(14)-C(9) 124.9(2)
C(15)-C(14)-H(25) 117.6
C(9)-C(14)-H(25) 117.6
O(4)-C(15)-C(14) 126.4(2)
O(4)-C(15)-C(16) 114.4(2)
C(14)-C(15)-C(16) 119.1(2)
C(15)-C(16)-H(23) 109.5
C(15)-C(16)-H(22) 109.5
H(23)-C(16)-H(22) 109.5
C(15)-C(16)-H(24) 109.5
H(23)-C(16)-H(24) 109.5
H(22)-C(16)-H(24) 109.5
N(4)-C(18)-C(19) 121.7(2)
N(4)-C(18)-C(28) 117.7(2)
C(19)-C(18)-C(28) 120.6(2)
C(20)-C(19)-C(18) 119.0(3)
C(20)-C(19)-H(32) 120.5
C(18)-C(19)-H(32) 120.5
C(21)-C(20)-C(19) 119.3(2)
C(21)-C(20)-H(31) 120.4
C(19)-C(20)-H(31) 120.4
C(20)-C(21)-C(22) 119.3(3)
C(20)-C(21)-H(30) 120.3
```

$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(30)$	120.3
$\mathrm{~N}(4)-\mathrm{C}(22)-\mathrm{C}(21)$	$121.7(3)$
$\mathrm{N}(4)-\mathrm{C}(22)-\mathrm{C}(23)$	$116.4(2)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.9(3)$
$\mathrm{N}(3)-\mathrm{C}(23)-\mathrm{C}(27)$	$121.8(3)$
$\mathrm{N}(3)-\mathrm{C}(23)-\mathrm{C}(22)$	$116.5(2)$
$\mathrm{C}(27)-\mathrm{C}(23)-\mathrm{C}(22)$	$121.7(2)$
$\mathrm{N}(3)-\mathrm{C}(24)-\mathrm{C}(25)$	$123.3(3)$
$\mathrm{N}(3)-\mathrm{C}(24)-\mathrm{H}(29)$	118.3
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(29)$	118.3
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$118.5(3)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(28)$	120.7
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(28)$	120.7
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$119.2(3)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	120.4
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	120.4
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(23)$	$119.3(3)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	120.3
$\mathrm{C}(23)-\mathrm{C}(27)-\mathrm{H}(27)$	120.3
$\mathrm{~N}(5)-\mathrm{C}(28)-\mathrm{C}(32)$	$121.5(2)$
$\mathrm{N}(5)-\mathrm{C}(28)-\mathrm{C}(18)$	$116.2(29)-\mathrm{C}(30)$
$\mathrm{N}(28)-\mathrm{C}(18)$	$122.3 .0(2)$
$\mathrm{N}(2)$	
N	

```
N(5)-C(29)-H(36) 118.0
C(30)-C(29)-H(36) 118.0
C(29)-C(30)-C(31) 118.1(3)
C(29)-C(30)-H(33) 120.9
C(31)-C(30)-H(33) 120.9
C(30)-C(31)-C(32) 119.2(3)
C(30)-C(31)-H(34) 120.4
C(32)-C(31)-H(34) 120.4
C(31)-C(32)-C(28) 119.5(2)
C(31)-C(32)-H(35) 120.3
C(28)-C(32)-H(35) 120.3
C(3)-N(1)-C(7) 126.9(3)
C(3)-N(1)-C(2) 120.6(3)
C(7)-N(1)-C(2) 111.6(2)
C(9)-N(2)-C(10) 122.6(2)
C(9)-N(2)-C(13) 125.5(2)
C(10)-N(2)-C(13) 111.8(2)
O(10)-N(6)-O(5) 121.6(3)
O(10)-N(6)-O(9) 121.8(2)
O(5)-N(6)-O(9) 116.6(2)
O(10)-N(6)-Sm(1) 169.3(2)
O(5)-N(6)-Sm(1) 59.53(14)
O(9)-N(6)-Sm(1) 58.12(14)
```

$\mathrm{O}(8)-\mathrm{N}(7)-\mathrm{O}(7)$	$122.8(2)$
$\mathrm{O}(8)-\mathrm{N}(7)-\mathrm{O}(6)$	$121.0(2)$
$\mathrm{O}(7)-\mathrm{N}(7)-\mathrm{O}(6)$	$116.2(2)$
$\mathrm{O}(8)-\mathrm{N}(7)-\mathrm{Sm}(1)$	$173.01(17)$
$\mathrm{O}(7)-\mathrm{N}(7)-\mathrm{Sm}(1)$	$58.50(13)$
$\mathrm{O}(6)-\mathrm{N}(7)-\mathrm{Sm}(1)$	$58.07(13)$
$\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(22)$	$118.9(2)$
$\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{Sm}(1)$	$119.26(17)$
$\mathrm{C}(22)-\mathrm{N}(4)-\mathrm{Sm}(1)$	$121.05(16)$
$\mathrm{C}(24)-\mathrm{N}(3)-\mathrm{C}(23)$	$117.9(3)$
$\mathrm{C}(24)-\mathrm{N}(3)-\mathrm{Sm}(1)$	$119.95(18)$
$\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{Sm}(1)$	$121.58(18)$
$\mathrm{C}(29)-\mathrm{N}(5)-\mathrm{C}(28)$	$117.7(2)$
$\mathrm{C}(29)-\mathrm{N}(5)-\mathrm{Sm}(1)$	$120.51(16)$
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{O}(9)$	$78.21(8)$
$\mathrm{O}(4)-\mathrm{Sm}(5)-\mathrm{Sm}(1)$	$121.29(17)$
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{Sm}(1)$	$134.76(18)$
$\mathrm{C}(15)-\mathrm{O}(4)-\mathrm{Sm}(1)$	$133.32(18)$
$\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Sm}(1)$	$95.05(16)$
$\mathrm{N}(7)-\mathrm{O}(6)-\mathrm{Sm}(1)$	$96.51(15)$
$\mathrm{N}(7)-\mathrm{O}(7)-\mathrm{Sm}(1)$	$96.49(15)$
$\mathrm{N}(6)-\mathrm{Sm}(1)$	$96.28(15)$
O	

$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{O}(9)$	84.26(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{O}(5)$	123.90(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{O}(5)$	77.80(7)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{O}(5)$	50.71(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{O}(6)$	93.32(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{O}(6)$	125.23(6)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{O}(6)$	146.55(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{O}(6)$	141.70(6)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{O}(7)$	80.91(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{O}(7)$	74.92(6)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{O}(7)$	153.61(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{O}(7)$	136.19(7)
$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{O}(7)$	50.31(6)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{N}(5)$	149.86(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{N}(5)$	82.19(6)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{N}(5)$	119.58(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{N}(5)$	68.88(7)
$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{N}(5)$	83.38(7)
$\mathrm{O}(7)-\mathrm{Sm}(1)-\mathrm{N}(5)$	73.96(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{N}(3)$	81.10(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{N}(3)$	151.68(7)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{N}(3)$	75.66(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{N}(3)$	103.41(7)

$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{N}(3)$	71.05(7)
$\mathrm{O}(7)-\mathrm{Sm}(1)-\mathrm{N}(3)$	116.79(7)
$\mathrm{N}(5)-\mathrm{Sm}(1)-\mathrm{N}(3)$	125.09(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{N}(4)$	143.47(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{N}(4)$	140.72(7)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{N}(4)$	96.60(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{N}(4)$	72.95(7)
$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{N}(4)$	71.09(7)
$\mathrm{O}(7)-\mathrm{Sm}(1)-\mathrm{N}(4)$	109.77(6)
$\mathrm{N}(5)-\mathrm{Sm}(1)-\mathrm{N}(4)$	63.18(7)
$\mathrm{N}(3)-\mathrm{Sm}(1)-\mathrm{N}(4)$	62.75(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{N}(6)$	100.11(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{N}(6)$	77.16(7)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{N}(6)$	25.60(7)
$\mathrm{O}(5)-\mathrm{Sm}(1)-\mathrm{N}(6)$	25.42(6)
$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{N}(6)$	156.53(6)
$\mathrm{O}(7)-\mathrm{Sm}(1)-\mathrm{N}(6)$	150.82(7)
$\mathrm{N}(5)-\mathrm{Sm}(1)-\mathrm{N}(6)$	94.07(7)
$\mathrm{N}(3)-\mathrm{Sm}(1)-\mathrm{N}(6)$	91.99(7)
$\mathrm{N}(4)-\mathrm{Sm}(1)-\mathrm{N}(6)$	86.88(7)
$\mathrm{O}(4)-\mathrm{Sm}(1)-\mathrm{N}(7)$	88.43(7)
$\mathrm{O}(3)-\mathrm{Sm}(1)-\mathrm{N}(7)$	99.89(7)
$\mathrm{O}(9)-\mathrm{Sm}(1)-\mathrm{N}(7)$	164.60(7)

$\mathrm{O}(5)-\operatorname{Sm}(1)-\mathrm{N}(7)$	$144.60(6)$
$\mathrm{O}(6)-\mathrm{Sm}(1)-\mathrm{N}(7)$	$25.41(6)$
$\mathrm{O}(7)-\operatorname{Sm}(1)-\mathrm{N}(7)$	$25.00(6)$
$\mathrm{N}(5)-\operatorname{Sm}(1)-\mathrm{N}(7)$	$75.79(7)$
$\mathrm{N}(3)-\operatorname{Sm}(1)-\mathrm{N}(7)$	$94.87(7)$
$\mathrm{N}(4)-\mathrm{Sm}(1)-\mathrm{N}(7)$	$89.54(6)$
$\mathrm{N}(6)-\operatorname{Sm}(1)-\mathrm{N}(7)$	$169.79(7)$

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\operatorname{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac). The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h\right.$ $\left.k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}
$\mathrm{C}(1) 41(2)$	$20(2)$	$30(2)$	$1(1)$	$-8(1)$	$3(2)$
$\mathrm{C}(2) 34(2)$	$20(2)$	$28(2)$	$-2(1)$	$-1(1)$	$6(1)$
$\mathrm{C}(3) 25(2)$	$16(2)$	$28(2)$	$5(1)$	$-1(1)$	$5(1)$
$\mathrm{C}(4) 23(2)$	$26(2)$	$29(2)$	$-2(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(5) 22(1)$	$26(2)$	$24(2)$	$-2(1)$	$1(1)$	$0(1)$
$\mathrm{C}(6) 43(2)$	$46(2)$	$41(2)$	$15(2)$	$-1(2)$	$-10(2)$
$\mathrm{C}(7) 20(2)$	$33(2)$	$32(2)$	$7(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(8) 30(2)$	$29(2)$	$41(2)$	$10(2)$	$-8(1)$	$-8(1)$
$\mathrm{C}(9)$	$14(1)$	$12(1)$	$16(1)$	$-6(1)$	$-2(1)$

C(10) 20(1)	15(2)	22(1)	2(1)	-5(1)	-2(1)
$\mathrm{C}(11) 19(1)$	20(2)	26(2)	1(1)	-1(1)	-6(1)
C(12)20(1)	24(2)	25(2)	0 (1)	-3(1)	-7(1)
C(13) 19(1)	23(2)	20(1)	$0(1)$	-7(1)	-3(1)
$\mathrm{C}(14) 11$ (1)	22(2)	12(1)	-2(1)	-1(1)	0 (1)
C(15) 14(1)	18(2)	15(1)	0 (1)	-1(1)	4(1)
C(16)21(1)	25(2)	19(1)	5(1)	-6(1)	-3(1)
C(18) 11(1)	12(1)	13(1)	-5(1)	$0(1)$	O(1)
C(19) 12(1)	15(2)	20(1)	-1(1)	-1(1)	2(1)
C(20) 10(1)	20(2)	26(1)	-6(1)	-1(1)	1(1)
C(21) 13(1)	21(2)	21(1)	-8(1)	4(1)	-3(1)
C(22) 16(1)	14(1)	16(1)	-5(1)	1(1)	-2(1)
C(23) 17(1)	18(2)	15(1)	-2(1)	4(1)	-2(1)
C(24) 18(1)	28(2)	18(1)	1(1)	$0(1)$	1(1)
C(25)27(2)	30(2)	18(1)	7(1)	3(1)	-1(1)
C(26)29(2)	31(2)	23(2)	5(1)	5(1)	-7(1)
C(27) 19(1)	29(2)	22(1)	2(1)	1(1)	-4(1)
C(28) 10(1)	11(1)	14(1)	-4(1)	-1(1)	1(1)
C(29) 12(1)	20(2)	17(1)	-3(1)	-1(1)	$0(1)$
C(30) 17(1)	18(2)	16(1)	-2(1)	2(1)	-2(1)
C(31)21(1)	14(2)	15(1)	1(1)	-1(1)	2(1)
C(32) 12(1)	17(2)	19(1)	-2(1)	-4(1)	4(1)
$\mathrm{N}(1) 23(1)$	20(1)	24(1)	1(1)	1(1)	0 (1)

$\mathrm{N}(2)$	$14(1)$	$17(1)$	$15(1)$	$-1(1)$	$-5(1)$
$\mathrm{N}(6) 16(1)$	$26(2)$	$24(1)$	$-9(1)$	$0(1)$	$3(1)$
$\mathrm{N}(7) 10(1)$	$20(1)$	$16(1)$	$2(1)$	$-4(1)$	$2(1)$
$\mathrm{N}(4) 11(1)$	$13(1)$	$14(1)$	$-3(1)$	$0(1)$	$1(1)$
$\mathrm{N}(3) 18(1)$	$19(1)$	$13(1)$	$-1(1)$	$1(1)$	$1(1)$
$\mathrm{N}(5) 10(1)$	$14(1)$	$13(1)$	$-1(1)$	$-1(1)$	$0(1)$
$\mathrm{O}(1) 22(1)$	$32(1)$	$30(1)$	$7(1)$	$4(1)$	$3(1)$
$\mathrm{O}(2) 27(1)$	$35(2)$	$57(2)$	$1(1)$	$-13(1)$	$-1(1)$
$\mathrm{O}(3) 14(1)$	$15(1)$	$18(1)$	$0(1)$	$-6(1)$	$0(1)$
$\mathrm{O}(4) 19(1)$	$19(1)$	$25(1)$	$6(1)$	$-8(1)$	$-5(1)$
$\mathrm{O}(5) 24(1)$	$26(1)$	$18(1)$	$-5(1)$	$-4(1)$	$6(1)$
$\mathrm{O}(6) 14(1)$	$19(1)$	$26(1)$	$-4(1)$	$4(1)$	$-5(1)$
$\mathrm{O}(7) 12(1)$	$17(1)$	$35(1)$	$-5(1)$	$4(1)$	$-4(1)$
$\mathrm{O}(8) 18(1)$	$24(1)$	$20(1)$	$-6(1)$	$0(1)$	$7(1)$
$\mathrm{O}(9) 41(1)$	$27(1)$	$18(1)$	$-3(1)$	$-1(1)$	$0(1)$
$\mathrm{O}(10) 37(1)$	$36(2)$	$32(1)$	$-20(1)$	$-2(1)$	$8(1)$
$\mathrm{Sm}(1) 11(1)$	$15(1)$	$12(1)$	$0(1)$	$-3(1)$	$0(1)$

Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\operatorname{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).
\qquad

H(3)	1855	-217	37	37
H(1)	1803	1114	199	37
H(12)	3897	-554	441	33
H(13)	4128	771	292	33
H(6)	4666	2378	1668	31
H(7)	3450	1468	1740	31
H(2)	5562	-702	2302	65
H(5)	4716	-771	1820	65
H(4)	4002	-266	2261	65
H(8)	1711	1343	1163	34
H(9)	2032	104	1396	34
H(11)	1274	-887	754	40
H(10)	305	237	691	40
H(21)	5602	8782	1022	23
H(20)	6124	7779	689	23
H(19)	7568	9665	803	26
H(18)	8334	8453	718	26
H(16)	9334	9008	1422	28
$\mathrm{H}(17)$	7909	9529	1594	28
H(14)	8647	7139	1532	25
H(15)	7860	7756	1941	25
H(25)	6899	6074	2039	18

$\mathrm{H}(23)$	5199	4147	2592	33
$\mathrm{H}(22)$	6739	4548	2504	33
$\mathrm{H}(24)$	6121	3421	2254	33
$\mathrm{H}(32)$	-1856	6474	169	19
$\mathrm{H}(31)$	-3511	5445	563	23
$\mathrm{H}(30)$	-2801	4228	1166	22
$\mathrm{H}(29)$	2495	3375	2105	26
$\mathrm{H}(28)$	1222	1887	2409	30
$\mathrm{H}(26)$	-1030	1568	2121	33
$\mathrm{H}(27)$	-1951	2785	1543	28
$\mathrm{H}(36)$	4125	6694	341	20
$\mathrm{H}(33)$	3730	7784	-315	20
$\mathrm{H}(34)$	1457	8016	-606	20
$\mathrm{H}(35)$	-338	7137	-222	19

Torsion angles [${ }^{\circ}$] for $\operatorname{Sm}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$-34.7(3)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-63.1(4)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$116.8(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$103.5(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-76.1(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$40.3(3)$

$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	-29.8(3)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-28.5(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	38.5(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(2)$	-33.0(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(15)$	7.9(4)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(15)$	-171.2(3)
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(4)$	-0.2(5)
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	178.5(3)
$\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-2.1(4)
$\mathrm{C}(28)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	176.5(2)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	0.1(4)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	0.4(4)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(4)$	1.0(4)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-177.9(3)
$\mathrm{N}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(3)$	15.3(4)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(3)$	-165.8(3)
$\mathrm{N}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(27)$	-162.9(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(27)$	16.0(4)
$\mathrm{N}(3)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-0.3(5)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-0.9(5)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(23)$	$0.5(5)$
$\mathrm{N}(3)-\mathrm{C}(23)-\mathrm{C}(27)-\mathrm{C}(26)$	1.2(5)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(27)-\mathrm{C}(26)$	179.3(3)

$\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{N}(5)$	-4.2(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{N}(5)$	177.2(2)
$\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{C}(32)$	174.3(2)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{C}(32)$	-4.3(4)
$\mathrm{N}(5)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-0.5(4)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	0.0(4)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(28)$	0.7(4)
$\mathrm{N}(5)-\mathrm{C}(28)-\mathrm{C}(32)-\mathrm{C}(31)$	-0.9(4)
$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{C}(32)-\mathrm{C}(31)$	-179.4(3)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	-174.2(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	5.9(5)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	-5.7(5)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	174.3(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(3)$	177.7(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(2)$	8.4(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	-153.6(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	16.5(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)$	-3.3(4)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)$	175.8(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(13)$	178.9(3)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(13)$	-1.9(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(9)$	-169.9(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(13)$	8.2(3)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(9)$	-166.3(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(10)$	15.7(3)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(22)$	3.5(4)
$\mathrm{C}(28)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{C}(22)$	-175.1(2)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{Sm}(1)$	-166.6(2)
$\mathrm{C}(28)-\mathrm{C}(18)-\mathrm{N}(4)-\mathrm{Sm}(1)$	14.8(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(4)-\mathrm{C}(18)$	-3.0(4)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{N}(4)-\mathrm{C}(18)$	176.0(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{N}(4)-\mathrm{Sm}(1)$	167.0(2)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{N}(4)-\mathrm{Sm}(1)$	-14.1(3)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{N}(3)-\mathrm{C}(23)$	1.9(4)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{N}(3)-\mathrm{Sm}(1)$	-169.2(2)
$\mathrm{C}(27)-\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{C}(24)$	-2.3(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{C}(24)$	179.5(2)
$\mathrm{C}(27)-\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{Sm}(1)$	168.7(2)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(3)-\mathrm{Sm}(1)$	-9.5(3)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{N}(5)-\mathrm{C}(28)$	0.3(4)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{N}(5)-\mathrm{Sm}(1)$	-172.1(2)
$\mathrm{C}(32)-\mathrm{C}(28)-\mathrm{N}(5)-\mathrm{C}(29)$	0.4(4)
$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{N}(5)-\mathrm{C}(29)$	179.0(2)
$\mathrm{C}(32)-\mathrm{C}(28)-\mathrm{N}(5)-\mathrm{Sm}(1)$	172.74(19)
$\mathrm{C}(18)-\mathrm{C}(28)-\mathrm{N}(5)-\mathrm{Sm}(1)$	-8.7(3)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{Sm}(1)$	178.27(17)

$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{Sm}(1)$	$-0.8(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(4)-\mathrm{Sm}(1)$	$-14.8(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{O}(4)-\mathrm{Sm}(1)$	$166.48(19)$
$\mathrm{O}(10)-\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Sm}(1)$	$167.6(2)$
$\mathrm{O}(9)-\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Sm}(1)$	$-11.7(2)$
$\mathrm{O}(8)-\mathrm{N}(7)-\mathrm{O}(6)-\mathrm{Sm}(1)$	$-171.9(2)$
$\mathrm{O}(7)-\mathrm{N}(7)-\mathrm{O}(6)-\mathrm{Sm}(1)$	$6.9(2)$
$\mathrm{O}(8)-\mathrm{N}(7)-\mathrm{O}(7)-\mathrm{Sm}(1)$	$171.9(2)$
$\mathrm{O}(6)-\mathrm{N}(7)-\mathrm{O}(7)-\mathrm{Sm}(1)$	$-6.9(2)$
$\mathrm{O}(10)-\mathrm{N}(6)-\mathrm{O}(9)-\mathrm{Sm}(1)$	$-167.4(2)$
$\mathrm{O}(5)-\mathrm{N}(6)-\mathrm{O}(9)-\mathrm{Sm}(1)$	$11.9(2)$

ORTEP drawing of Eu(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac) with 50% probability ellipsoids and H atoms and solvent have been omitted for clarity.

X-ray Crystallographic Data for $\mathrm{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

Identification code	ky_2_227_n_0m
Empirical formula	C23 H23 Eu N6 O8
Formula weight	663.43
Temperature	107(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=9.452(3) \AA \quad a=87.037(7)^{\circ}$.
	$b=9.782(3) \AA \quad b=74.201(7)^{\circ}$.
	$\mathrm{c}=13.752(4) \AA \quad \mathrm{g}=87.784(7)^{\circ}$
Volume	1221.4(6) \AA^{3}
Z	2
Density (calculated)	$1.804 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.629 \mathrm{~mm}^{-1}$
$F(000)$	660
Crystal size	$0.100 \times 0.050 \times 0.050 \mathrm{~mm}^{3}$
Theta range for data collection	2.085 to 26.552°.
Index ranges	$-11<=\mathrm{h}<=11,-12<=\mathrm{k}<=12,-11<=\mathrm{l}<=17$
Reflections collected	8252
Independent reflections	$5028[\mathrm{R}(\mathrm{int})=0.0415]$
Completeness to theta $=25.242^{\circ}$	99.4 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5028 / 0 / 344

Goodness-of-fit on F^{2}	1.020
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0483, \mathrm{wR} 2=0.1078$
R indices (all data)	$\mathrm{R} 1=0.0700, \mathrm{wR} 2=0.1179$
Extinction coefficient	n / a
Largest diff. peak and hole	2.135 and $-1.831 \mathrm{e} . \AA^{-3}$

Atomic coordinates ($\mathrm{x} \mathrm{10} 0^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Eu(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{C}(1)$	$5869(8)$	$1717(7)$	$6521(5)$	$24(2)$
$\mathrm{C}(2)$	$7384(8)$	$1771(7)$	$6114(5)$	$22(2)$
$\mathrm{C}(3)$	$7972(8)$	$3004(7)$	$5715(5)$	$24(2)$
$\mathrm{C}(4)$	$7060(7)$	$4139(6)$	$5759(5)$	$18(1)$
$\mathrm{C}(5)$	$5559(7)$	$4023(6)$	$6210(5)$	$16(1)$
$\mathrm{C}(6)$	$4542(7)$	$5231(6)$	$6338(5)$	$16(1)$
$\mathrm{C}(7)$	$5064(8)$	$6570(6)$	$6128(5)$	$21(1)$
$\mathrm{C}(8)$	$4080(8)$	$7659(7)$	$6244(5)$	$22(2)$
$\mathrm{C}(9)$	$2616(8)$	$7414(7)$	$6564(5)$	$23(2)$
$\mathrm{C}(10)$	$2137(7)$	$6069(7)$	$6769(5)$	$18(1)$
$\mathrm{C}(11)$	$545(7)$	$5752(7)$	$7125(5)$	$18(1)$

$\mathrm{C}(12)$	-556(8)	6722(7)	7089(5)	23(2)
C(13)	-2001(8)	6361(8)	7455(5)	27(2)
$\mathrm{C}(14)$	-2348(7)	5050(8)	7840(5)	23(2)
C(15)	-1190(7)	4146(7)	7828(5)	22(2)
C(16)	-1796(7)	-182(7)	8503(6)	25(2)
$\mathrm{C}(17)$	-175(7)	130(6)	8234(5)	17(1)
C(18)	743(7)	-695(7)	8654(5)	19(1)
C(19)	2280(7)	-480(6)	8493(5)	18(1)
C(20)	4612(7)	-1211(7)	8867(6)	22(2)
$\mathrm{C}(21)$	4927(8)	-2359(7)	9571(5)	24(2)
C(22)	3964(7)	-3494(7)	9423(6)	25(2)
C(23)	2548(7)	-2753(7)	9373(5)	21(2)
$\mathrm{Eu}(1)$	2181(1)	2554(1)	7350(1)	14(1)
$\mathrm{N}(1)$	4964(6)	2809(5)	6594(4)	18(1)
N(2)	3088(6)	5005(5)	6662(4)	15(1)
N(3)	217(6)	4462(6)	7478(4)	18(1)
N(4)	1847(6)	3430(6)	9389(4)	22(1)
N(5)	2199(6)	1713(6)	5305(4)	20(1)
N(6)	3062(6)	-1413(5)	8895(4)	17(1)
$\mathrm{O}(1)$	2953(5)	560(4)	8032(3)	19(1)
$\mathrm{O}(2)$	207(5)	1197(5)	7619(4)	22(1)
$\mathrm{O}(3)$	2976(5)	3701(5)	8664(3)	25(1)
$\mathrm{O}(4)$	882(5)	2730(5)	9165(4)	25(1)

$\mathrm{O}(5)$	$1683(6)$	$3811(6)$	$10242(4)$	$34(1)$
$\mathrm{O}(6)$	$2890(5)$	$988(5)$	$5840(4)$	$27(1)$
$\mathrm{O}(7)$	$2086(7)$	$1352(5)$	$4500(4)$	$37(1)$
$\mathrm{O}(8)$	$1658(5)$	$2851(4)$	$5665(3)$	$20(1)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\operatorname{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.333(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.390(10)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.372(10)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.373(10)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.392(9)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.353(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.481(9)$
$\mathrm{C}(6)-\mathrm{N}(2)$	$1.347(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.373(9)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.360(10)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$\mathrm{C}(8)-\mathrm{C}(9)$

$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	1.397(9)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{N}(2)$	1.336(8)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.489(9)
$\mathrm{C}(11)-\mathrm{N}(3)$	1.345(8)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.390(9)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.374(10)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	1.378(10)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	1.378(10)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{N}(3)$	1.328(9)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.514(9)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(17)-\mathrm{O}(2)$	1.306(8)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.382(9)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.431(9)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500

$\mathrm{C}(19)-\mathrm{O}(1)$	1.267(7)
$\mathrm{C}(19)$ - $\mathrm{N}(6)$	1.343(8)
$\mathrm{C}(20)-\mathrm{N}(6)$	1.475(8)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.519(9)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(21)-\mathrm{C}(22)$	1.518(9)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9900
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9900
$\mathrm{C}(22)-\mathrm{C}(23)$	1.514(9)
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9900
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9900
$\mathrm{C}(23)-\mathrm{N}(6)$	1.474(8)
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9900
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9900
$\mathrm{Eu}(1)-\mathrm{O}(2)$	2.268(4)
$\mathrm{Eu}(1)-\mathrm{O}(1)$	2.300(4)
$\mathrm{Eu}(1)-\mathrm{O}(3)$	2.471 (5)
$\mathrm{Eu}(1)-\mathrm{O}(4)$	2.474 (5)
$\mathrm{Eu}(1)-\mathrm{O}(8)$	2.498 (5)
$\mathrm{Eu}(1)-\mathrm{N}(3)$	$2.559(5)$
$\mathrm{Eu}(1)-\mathrm{N}(1)$	2.569(6)
$\mathrm{Eu}(1)-\mathrm{O}(6)$	$2.569(5)$

$\mathrm{Eu}(1)-\mathrm{N}(2)$	$2.620(5)$
$\mathrm{Eu}(1)-\mathrm{N}(4)$	$2.906(6)$
$\mathrm{Eu}(1)-\mathrm{N}(5)$	$2.966(6)$
$\mathrm{N}(4)-\mathrm{O}(5)$	$1.216(8)$
$\mathrm{N}(4)-\mathrm{O}(4)$	$1.272(7)$
$\mathrm{N}(4)-\mathrm{O}(3)$	$1.273(7)$
$\mathrm{N}(5)-\mathrm{O}(7)$	$1.212(7)$
$\mathrm{N}(5)-\mathrm{O}(8)$	$1.273(7)$
$\mathrm{N}(5)-\mathrm{O}(6)$	$1.282(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.7(6)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	118.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	118.2
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.2(6)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.9
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.3(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.6(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.2
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.2
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$121.6(6)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$116.5(6)$

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.8(6)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	120.7(6)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	117.7(5)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	121.5(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.6(7)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.2
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.2
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	119.0(6)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.9(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	121.5(6)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	116.7(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.8(6)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	121.1(6)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	116.5(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	122.4(6)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.0(7)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.3(7)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.9
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.9
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	116.9(7)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	121.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	121.6
$\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	124.3(7)
$\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{H}(15)$	117.9
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	117.9
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B}$	109.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
H(16A)-C(16)-H(16C	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C}$)109.5
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	126.4(6)
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	114.8(6)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	118.8(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	124.4(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	117.8
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	117.8
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{N}(6)$	117.1(6)
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{C}(18)$	124.7(6)
$\mathrm{N}(6)-\mathrm{C}(19)-\mathrm{C}(18)$	118.1(6)

```
N(6)-C(20)-C(21) 103.2(5)
N(6)-C(20)-H(20A) 111.1
C(21)-C(20)-H(20A) 111.1
N(6)-C(20)-H(20B) 111.1
C(21)-C(20)-H(20B) 111.1
H(20A)-C(20)-H(20B)109.1
C(22)-C(21)-C(20) 102.7(5)
C(22)-C(21)-H(21A) 111.2
C(20)-C(21)-H(21A) 111.2
C(22)-C(21)-H(21B) 111.2
C(20)-C(21)-H(21B) 111.2
H(21A)-C(21)-H(21B)109.1
C(23)-C(22)-C(21) 103.8(5)
C(23)-C(22)-H(22A) 111.0
C(21)-C(22)-H(22A) 111.0
C(23)-C(22)-H(22B) 111.0
C(21)-C(22)-H(22B) 111.0
H(22A)-C(22)-H(22B)109.0
N(6)-C(23)-C(22) 102.7(5)
N(6)-C(23)-H(23A) 111.2
C(22)-C(23)-H(23A) 111.2
N(6)-C(23)-H(23B) 111.2
C(22)-C(23)-H(23B) 111.2
```

$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B}) 109.1$	
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{O}(1)$	77.00(16)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{O}(3)$	125.94(16)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{O}(3)$	85.46(16)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{O}(4)$	74.76(16)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{O}(4)$	78.42(16)
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{O}(4)$	51.59(15)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{O}(8)$	80.08(16)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{O}(8)$	126.19(15)
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{O}(8)$	145.22(15)
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{O}(8)$	139.29(15)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{N}(3)$	82.50(17)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{N}(3)$	148.25(17)
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{N}(3)$	87.28(17)
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{N}(3)$	72.91(17)
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{N}(3)$	72.50(16)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{N}(1)$	147.38(17)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{N}(1)$	81.74(16)
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{N}(1)$	75.92(17)
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{N}(1)$	124.70(16)
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{N}(1)$	93.21(16)
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{N}(1)$	126.11(17)
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{O}(6)$	76.84(17)

$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$76.98(16)$
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$147.32(16)$
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$145.82(16)$
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$50.51(15)$
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$121.58(16)$
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{O}(6)$	$74.44(17)$
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$141.83(16)$
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$141.17(16)$
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$70.79(16)$
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$107.13(16)$
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$74.81(15)$
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$62.86(17)$
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$63.25(16)$
$\mathrm{O}(6)-\mathrm{Eu}(1)-\mathrm{N}(2)$	$106.93(16)$
$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$100.39(17)$
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$81.32(16)$
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$25.80(15)$
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$25.79(15)$
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$151.04(16)$
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$78.83(17)$
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(4)$	$100.52(17)-\mathrm{Eu}(1)-\mathrm{N}(4)$
$88.72(16)$	
$158.20(16)$	
$\mathrm{N}(4)$	

$\mathrm{O}(2)-\mathrm{Eu}(1)-\mathrm{N}(5)$	75.49(16)
$\mathrm{O}(1)-\mathrm{Eu}(1)-\mathrm{N}(5)$	101.45(16)
$\mathrm{O}(3)-\mathrm{Eu}(1)-\mathrm{N}(5)$	158.57(15)
$\mathrm{O}(4)-\mathrm{Eu}(1)-\mathrm{N}(5)$	149.45(15)
$\mathrm{O}(8)-\mathrm{Eu}(1)-\mathrm{N}(5)$	25.12(14)
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{N}(5)$	96.49(17)
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(5)$	84.95(17)
$\mathrm{O}(6)-\mathrm{Eu}(1)-\mathrm{N}(5)$	25.50(15)
$\mathrm{N}(2)-\mathrm{Eu}(1)-\mathrm{N}(5)$	92.13(15)
$\mathrm{N}(4)-\mathrm{Eu}(1)-\mathrm{N}(5)$	174.23(16)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	117.5(6)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Eu}(1)$	120.3(4)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Eu}(1)$	122.0(4)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	119.4(5)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Eu}(1)$	120.4(4)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Eu}(1)$	119.5(4)
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	118.4(6)
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Eu}(1)$	118.8(4)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Eu}(1)$	122.5(4)
$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(4)$	121.6(6)
$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(3)$	122.9(6)
$\mathrm{O}(4)-\mathrm{N}(4)-\mathrm{O}(3)$	115.4(5)
$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{Eu}(1)$	178.7(5)

$\mathrm{O}(4)-\mathrm{N}(4)-\mathrm{Eu}(1)$	$57.8(3)$
$\mathrm{O}(3)-\mathrm{N}(4)-\mathrm{Eu}(1)$	$57.6(3)$
$\mathrm{O}(7)-\mathrm{N}(5)-\mathrm{O}(8)$	$122.0(6)$
$\mathrm{O}(7)-\mathrm{N}(5)-\mathrm{O}(6)$	$122.3(6)$
$\mathrm{O}(8)-\mathrm{N}(5)-\mathrm{O}(6)$	$115.7(5)$
$\mathrm{O}(7)-\mathrm{N}(5)-\mathrm{Eu}(1)$	$174.7(5)$
$\mathrm{O}(8)-\mathrm{N}(5)-\mathrm{Eu}(1)$	$56.4(3)$
$\mathrm{O}(6)-\mathrm{N}(5)-\mathrm{Eu}(1)$	$59.6(3)$
$\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(23)$	$126.3(5)$
$\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(20)$	$122.2(5)$
$\mathrm{C}(23)-\mathrm{N}(6)-\mathrm{C}(20)$	$111.5(5)$
$\mathrm{C}(19)-\mathrm{O}(1)-\mathrm{Eu}(1)$	$132.9(4)$
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Eu}(1)$	$130.5(4)$
$\mathrm{N}(4)-\mathrm{O}(3)-\mathrm{Eu}(1)$	$96.6(4)$
$\mathrm{N}(4)-\mathrm{O}(4)-\mathrm{Eu}(1)$	$96.4(4)$
$\mathrm{N}(5)-\mathrm{O}(6)-\mathrm{Eu}(1)$	$94.9(4)$
$\mathrm{N}(5)-\mathrm{O}(8)-\mathrm{Eu}(1)$	$98.5(4)$

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}($ pyacac $)$.
The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a * 2 U^{11}+\ldots\right.$ $+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}

$\mathrm{C}(1) 31(4)$	17(3)	24(4)	3(3)	-8(3)	6(3)
C(2) 26(4)	18(3)	20(4)	-3(3)	-4(3)	9(3)
C(3) 19(3)	35(4)	19(4)	-5(3)	-2(3)	-3(3)
C(4) 23(3)	16(3)	16(3)	3(3)	-7(3)	-3(3)
C(5) 25(3)	14(3)	11(3)	-4(2)	-6(3)	-2(3)
C(6) 22(3)	16(3)	10(3)	-3(2)	-5(3)	3(3)
C(7) 33(4)	13(3)	17(3)	-2(3)	-10(3)	4(3)
C(8) 34(4)	15(3)	17(3)	-2(3)	-8(3)	-2(3)
C(9) 34(4)	15(3)	22(4)	-5(3)	-12(3)	11(3)
C(10)20(3)	23(3)	10(3)	-2(3)	-2(3)	9(3)
C(11)26(4)	22(3)	12(3)	-7(3)	-12(3)	4(3)
C(12)28(4)	28(4)	16(3)	-8(3)	-10(3)	10(3)
C(13)33(4)	31(4)	23(4)	-11(3)	-17(3)	14(3)
C(14) 17(3)	41(4)	13(3)	-14(3)	-5(3)	2(3)
C(15)24(4)	28(4)	15(3)	-4(3)	-8(3)	4(3)
C(16)21(4)	22(4)	31(4)	0 (3)	-7(3)	-1(3)
C(17) 18(3)	14(3)	18(3)	-3(3)	-3(3)	1(2)
C(18) 14(3)	25(4)	13(3)	0 (3)	2(3)	-3(3)
C(19)28(4)	10(3)	14(3)	-2(3)	-2(3)	0 (3)
C(20) 19(3)	25(4)	24(4)	0(3)	-6(3)	0 (3)
$\mathrm{C}(21) 24(4)$	24(4)	25(4)	4(3)	-10(3)	2(3)
C(22)20(4)	17(3)	36(4)	6(3)	-8(3)	0 (3)

$\mathrm{C}(23) 22(3)$	$16(3)$	$24(4)$	$5(3)$	$-8(3)$	$1(3)$
$\mathrm{Eu}(1) 16(1)$	$14(1)$	$14(1)$	$2(1)$	$-6(1)$	$0(1)$
$\mathrm{N}(1) 24(3)$	$14(3)$	$18(3)$	$0(2)$	$-9(2)$	$4(2)$
$\mathrm{N}(2) 24(3)$	$12(3)$	$14(3)$	$-3(2)$	$-11(2)$	$4(2)$
$\mathrm{N}(3) 19(3)$	$24(3)$	$12(3)$	$0(2)$	$-7(2)$	$5(2)$
$\mathrm{N}(4) 31(3)$	$21(3)$	$16(3)$	$2(2)$	$-11(3)$	$-1(3)$
$\mathrm{N}(5) 26(3)$	$16(3)$	$17(3)$	$4(2)$	$-7(3)$	$-6(2)$
$\mathrm{N}(6) 15(3)$	$15(3)$	$22(3)$	$1(2)$	$-8(2)$	$-1(2)$
$\mathrm{O}(1) 20(2)$	$16(2)$	$21(2)$	$6(2)$	$-8(2)$	$-1(2)$
$\mathrm{O}(2) 18(2)$	$20(2)$	$27(3)$	$4(2)$	$-6(2)$	$-1(2)$
$\mathrm{O}(3) 26(3)$	$36(3)$	$14(2)$	$1(2)$	$-6(2)$	$-12(2)$
$\mathrm{O}(4) 23(3)$	$34(3)$	$19(3)$	$5(2)$	$-8(2)$	$-7(2)$
$\mathrm{O}(5) 47(3)$	$41(3)$	$14(3)$	$-3(2)$	$-8(2)$	$-8(3)$
$\mathrm{O}(6) 32(3)$	$22(3)$	$26(3)$	$-3(2)$	$-8(2)$	$6(2)$
$\mathrm{O}(7) 69(4)$	$23(3)$	$29(3)$	$-5(2)$	$-27(3)$	$-3(3)$
$\mathrm{O}(8) 27(3)$	$16(2)$	$19(2)$	$2(2)$	$-9(2)$	$4(2)$

Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

x	y	z	$U(e q)$	
$H(1)$	5456	853	6762	29

H(2)	7994	976	6111	26
H(3)	8999	3071	5412	29
H(4)	7451	4999	5482	22
H(7)	6091	6720	5908	25
H(8)	4417	8569	6103	26
H(9)	1920	8155	6648	28
H(12)	-313	7621	6815	28
H(13)	-2764	7017	7442	33
H(14)	-3340	4783	8102	28
H(15)	-1412	3237	8087	26
H(16A)	-2366	557	8898	37
H(16B)	-1969	-1048	8903	37
H(16C)	-2101	-258	7882	37
H(18)	325	-1455	9079	23
H(20A)	4739	-303	9114	27
H(20B)	5263	-1292	8173	27
H(21A)	5980	-2644	9375	29
H(21B)	4648	-2082	10282	29
H(22A)	4422	-3964	8789	30
H(22B)	3787	-4177	9998	30
H(23A)	2041	-3241	8957	25
H(23B)	1873	-2649	10057	25

Torsion angles [${ }^{\circ}$] for $\mathrm{Eu}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (pyacac).

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-3.5(11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	1.9(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.4(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	-1.3(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	175.9(6)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	-11.1(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	171.6(6)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	169.1(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-8.2(10)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.7(10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	179.1(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.2(10)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.0(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	0.3(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	179.7(6)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	11.5(8)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	-167.9(6)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-167.7(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	12.9(10)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	2.4(10)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-178.5(6)

$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-0.8(10)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.6(10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)$	0.5(10)
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	1.5(11)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-177.5(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(1)$	7.4(11)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(6)$	-175.7(6)
$\mathrm{N}(6)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	32.3(7)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-40.7(7)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(6)$	32.5(7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	2.7(10)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Eu}(1)$	179.4(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	-0.2(9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	-177.5(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Eu}(1)$	-176.9(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Eu}(1)$	5.8(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	-0.8(9)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	179.8(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Eu}(1)$	169.2(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Eu}(1)$	-10.2(7)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	$1.0(9)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	-178.8(6)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Eu}(1)$	-169.1(5)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Eu}(1)$	11.1(7)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	1.1(10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Eu}(1)$	-173.4(5)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	-2.5(9)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	178.3(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Eu}(1)$	171.7(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Eu}(1)$	-7.5(7)
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(23)$	-173.7(6)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(23)$	9.2(10)
$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(20)$	4.0(9)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(6)-\mathrm{C}(20)$	-173.2(6)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(6)-\mathrm{C}(19)$	165.5(6)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{N}(6)-\mathrm{C}(20)$	-12.4(8)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(6)-\mathrm{C}(19)$	169.4(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(6)-\mathrm{C}(23)$	-12.6(7)
$\mathrm{N}(6)-\mathrm{C}(19)-\mathrm{O}(1)-\mathrm{Eu}(1)$	-172.7(4)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(1)-\mathrm{Eu}(1)$	4.3(10)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Eu}(1)$	-21.4(10)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Eu}(1)$	157.6(4)
$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(3)-\mathrm{Eu}(1)$	-178.7(6)
$\mathrm{O}(4)-\mathrm{N}(4)-\mathrm{O}(3)-\mathrm{Eu}(1)$	$1.0(6)$
$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(4)-\mathrm{Eu}(1)$	178.7(5)
$\mathrm{O}(3)-\mathrm{N}(4)-\mathrm{O}(4)-\mathrm{Eu}(1)$	-1.0(6)

ORTEP drawing of Dy(terpy)($\left.\mathrm{NO}_{3}\right)_{2}$ (dbacac) with 50% probability ellipsoids and H atoms and solvent have been omitted for clarity.

X-ray Crystallographic Data for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group
Unit cell dimensions
ky_2_154_0m
C35 H33 Dy N6 O8.50
836.17

100(2) K
$0.71073 \AA$
Monoclinic
$\mathrm{P} 2_{1} / \mathrm{n}$
$a=19.2296(9) \AA \quad a=90^{\circ}$.

$$
b=9.2999(4) \AA \quad b=
$$

$112.085(2)^{\circ}$.

$$
\mathrm{c}=21.3594(9) \AA \quad \mathrm{g}=90^{\circ} .
$$

Volume
Z

Density (calculated)

Absorption coefficient
$F(000)$

Crystal size
Theta range for data collection
Index ranges
Reflections collected

Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission

Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$3539.5(3) \AA^{3}$

4
$1.569 \mathrm{Mg} / \mathrm{m}^{3}$
$2.172 \mathrm{~mm}^{-1}$
1676
$0.250 \times 0.100 \times 0.050 \mathrm{~mm}^{3}$
1.217 to 32.428°.
$-22<=\mathrm{h}<=29,-14<=\mathrm{k}<=9,-32<=\mathrm{l}<=32$
34853
$12568[\mathrm{R}(\mathrm{int})=0.0468]$
99.9 \%

Semi-empirical from equivalents
0.7464 and 0.5470

Full-matrix least-squares on F^{2}
12568 / $10 / 454$
1.193
$R 1=0.0686, w R 2=0.1227$
$R 1=0.1224, w R 2=0.1361$
n/a
2.270 and -1.180 e. \AA^{-3}

Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{dbacac}) . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	X	y	z	U(eq)
C(1)	7335(3)	-746(6)	3784(3)	29(1)
C(2)	7297(4)	-1913(7)	3360(3)	37(2)
C(3)	7744(4)	-1880(7)	2990(3)	40(2)
C(4)	8213(4)	-710(7)	3046(3)	34(1)
C(5)	8221(3)	399(6)	3474(2)	24(1)
C(6)	8694(3)	1704(6)	3541(2)	22(1)
C(7)	9230(3)	1774(7)	3246(3)	31(1)
C(8)	9639(4)	3023(8)	3315(3)	39(2)
C(9)	9519(3)	4154(7)	3673(3)	32(1)
C(10)	8985(3)	4017(6)	3966(2)	22(1)
C(11)	8827(3)	5210(6)	4355(3)	23(1)
C(12)	9222(4)	6488(7)	4478(4)	39(2)
C(13)	9045(4)	7551(8)	4853(4)	50(2)
C(14)	8479(4)	7301(6)	5078(3)	42(2)
C(15)	8104(4)	6023(6)	4930(3)	33(1)
C(16)	7503(3)	2805(6)	6012(3)	23(1)
C(17)	6963(3)	1685(7)	5852(3)	34(1)

C(18)	6698(4)	942(9)	5251(3)	43(2)
C(19)	6097(5)	-156(13)	5135(5)	88(4)
$\mathrm{C}(20)$	7647(3)	2813(6)	7223(3)	29(1)
C(21)	7026(4)	3541(7)	7387(3)	35(1)
C(22)	6386(4)	4060(9)	6887(4)	49(2)
C(23)	5801(5)	4647(10)	7038(5)	63(2)
$\mathrm{C}(24)$	7098(5)	3645(7)	8052(3)	45(2)
C(25)	6486(6)	4263(8)	8194(4)	54(2)
C(26)	5864(6)	4726(9)	7684(5)	61(2)
C(27)	8182(3)	4758(6)	6761(3)	25(1)
C(28)	8989(3)	4568(6)	7219(3)	26(1)
C(29)	9424(3)	3496(7)	7097(3)	31(1)
C(30)	10164(4)	3312(8)	7524(4)	49(2)
C(31)	10483(5)	4224(10)	8072(5)	68(3)
C(32)	10067(5)	5322(9)	8176(4)	71(3)
C(33)	9322(5)	5496(8)	7754(3)	47(2)
C(34)	5351(15)	5290(30)	4883(15)	130(10)
C(35)	4779(16)	6030(30)	5095(16)	127(10)
C(36)	5170(20)	7030(50)	5660(20)	280(30)
C(37)	5970(20)	6690(50)	5813(18)	208(18)
Dy(1)	7772(1)	2522(1)	4589(1)	20(1)
$\mathrm{N}(1)$	7778(2)	405(5)	3840(2)	22(1)
$\mathrm{N}(2)$	8590(2)	2801(4)	3907(2)	16(1)

$\mathrm{N}(3)$	$8271(3)$	$4981(5)$	$4581(2)$	$26(1)$
$\mathrm{N}(4)$	$7755(3)$	$3415(5)$	$6633(2)$	$24(1)$
$\mathrm{N}(5)$	$9175(3)$	$1398(5)$	$5572(2)$	$24(1)$
$\mathrm{N}(6)$	$6543(3)$	$4121(5)$	$3626(2)$	$27(1)$
$\mathrm{O}(1)$	$9753(3)$	$926(5)$	$5991(2)$	$42(1)$
$\mathrm{O}(2)$	$8583(3)$	$645(4)$	$5320(2)$	$32(1)$
$\mathrm{O}(3)$	$9121(2)$	$2693(4)$	$5368(2)$	$28(1)$
$\mathrm{O}(4)$	$6685(2)$	$4209(6)$	$4255(2)$	$41(1)$
$\mathrm{O}(5)$	$6922(2)$	$3186(5)$	$3449(2)$	$26(1)$
$\mathrm{O}(6)$	$6075(2)$	$4896(5)$	$3220(2)$	$33(1)$
$\mathrm{O}(7)$	$7746(2)$	$3305(4)$	$5582(2)$	$22(1)$
$\mathrm{O}(8)$	$6929(2)$	$1096(5)$	$4762(2)$	$38(1)$
$\mathrm{O}(9)$	$6072(14)$	$5890(30)$	$5271(15)$	$197(11)$

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\operatorname{Dy}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}($ dbacac $)$.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.345(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.397(9)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.370(10)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(9)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500

$\mathrm{C}(4)-\mathrm{C}(5)$	$1.375(8)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{N}(1)$	1.356(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.491(8)
$\mathrm{C}(6)-\mathrm{N}(2)$	$1.345(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.397(8)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.380(9)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.369(9)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	1.395(8)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{N}(2)$	1.342(6)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.485(8)
$\mathrm{C}(11)-\mathrm{N}(3)$	$1.345(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.382(8)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.392(10)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	1.367(11)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	1.364(9)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{N}(3)$	1.333(7)

$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{O}(7)$	1.265(6)
$\mathrm{C}(16)-\mathrm{N}(4)$	1.355(6)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.419(8)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.375(9)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{O}(8)$	1.288(7)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.492(10)
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{N}(4)$	1.462(7)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.524(9)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(21)-\mathrm{C}(24)$	1.377(8)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.378(10)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.392(10)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(26)$	1.343(12)
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.442(11)$
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500

$\mathrm{C}(25)-\mathrm{C}(26)$	1.349(12)
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(27)-\mathrm{N}(4)$	1.463(7)
$\mathrm{C}(27)-\mathrm{C}(28)$	1.502(8)
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9900
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9900
C(28)-C(33)	1.382(8)
C(28)-C(29)	1.387(8)
$\mathrm{C}(29)-\mathrm{C}(30)$	1.383(9)
$\mathrm{C}(29)-\mathrm{H}(29)$	0.9500
$\mathrm{C}(30)-\mathrm{C}(31)$	1.387(12)
$\mathrm{C}(30)-\mathrm{H}(30)$	0.9500
$\mathrm{C}(31)-\mathrm{C}(32)$	1.367(13)
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9500
$\mathrm{C}(32)-\mathrm{C}(33)$	1.386(11)
$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
C(34)-C(35)\#1	1.25(4)
$\mathrm{C}(34)-\mathrm{O}(9)$	$1.435(10)$
$\mathrm{C}(34)-\mathrm{C}(35)$	1.506(10)
C(34)-C(34)\#1	1.69(6)
C(35)-C(34)\#1	1.25(4)

$\mathrm{C}(35)-\mathrm{C}(36)$	1.487(10)
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.495(10)$
$\mathrm{C}(37)-\mathrm{O}(9)$	$1.449(10)$
Dy(1)-O(8)	2.229(4)
Dy(1)-O(7)	2.260(3)
Dy(1)-O(5)	2.447(4)
Dy(1)-O(2)	2.467(4)
Dy(1)-N(3)	2.482(5)
Dy(1)-O(4)	2.492(4)
Dy(1)-O(3)	2.506(4)
Dy(1)-N(2)	2.528(4)
Dy(1)-N(1)	2.540(4)
Dy(1)-N(6)	2.893(5)
Dy(1)-N(5)	2.920(5)
$\mathrm{N}(5)-\mathrm{O}(1)$	1.216(6)
$\mathrm{N}(5)-\mathrm{O}(2)$	1.271(6)
$\mathrm{N}(5)-\mathrm{O}(3)$	1.273(6)
$\mathrm{N}(6)-\mathrm{O}(6)$	1.223(6)
$\mathrm{N}(6)-\mathrm{O}(4)$	1.267(6)
$\mathrm{N}(6)-\mathrm{O}(5)$	1.280(6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.6(6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	118.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	118.2

$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$117.7(6)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	121.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	121.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.8(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.2(6)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.4
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$122.3(6)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.7(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.9(5)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.5(5)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$117.1(5)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$121.4(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$118.6(6)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.7
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.9(6)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.1
$\mathrm{C}(9)-\mathrm{C}(10)$	$119.1(6)$
C	120.4
C	

$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.4
$\mathrm{~N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.4(5)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$117.0(5)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.6(5)$
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.5(6)$
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$116.2(5)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.3(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119.0(7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$118.7(7)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.6
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.6
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.2(7)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4
$\mathrm{~N}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	$123.1(7)$
$\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{H}(15)$	118.4
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	118.4
$\mathrm{O}(7)-\mathrm{C}(16)-\mathrm{N}(4)$	$117.6(5)$
$\mathrm{O}(7)-\mathrm{C}(16)-\mathrm{C}(17)$	$122.2(5)$
$\mathrm{N}(16)-\mathrm{C}(17)$	$120.2(5)$
$\mathrm{C}(16)$	$125.0(5)$
N	

```
C(18)-C(17)-H(17) 117.5
C(16)-C(17)-H(17) 117.5
O(8)-C(18)-C(17) 125.6(6)
O(8)-C(18)-C(19) 115.0(6)
C(17)-C(18)-C(19) 119.4(6)
C(18)-C(19)-H(19A) 109.5
C(18)-C(19)-H(19B) 109.5
H(19A)-C(19)-H(19B)109.5
C(18)-C(19)-H(19C) 109.5
H(19A)-C(19)-H(19C)109.5
H(19B)-C(19)-H(19C)109.5
N(4)-C(20)-C(21) 113.9(5)
N(4)-C(20)-H(20A) 108.8
C(21)-C(20)-H(20A) 108.8
N(4)-C(20)-H(20B) 108.8
C(21)-C(20)-H(20B) 108.8
H(20A)-C(20)-H(20B)107.7
C(24)-C(21)-C(22) 119.3(7)
C(24)-C(21)-C(20) 119.0(7)
C(22)-C(21)-C(20) 121.7(5)
C(21)-C(22)-C(23) 121.4(7)
C(21)-C(22)-H(22) 119.3
C(23)-C(22)-H(22) 119.3
```

$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.5(9)$
$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{H}(23)$	120.3
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	120.3
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{C}(25)$	$118.1(8)$
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24)$	121.0
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	121.0
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.3(7)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{C}(25)$	$121.4(8)$
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3
$\mathrm{~N}(4)-\mathrm{C}(27)-\mathrm{C}(28)$	$113.1(5)$
$\mathrm{N}(4)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.0
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.0
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	119.7
$\mathrm{~N}(4)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.0
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.0
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B}) 107.8$	
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)$	$118.7(6)$
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(27)$	$120.5(6)$
$\mathrm{C}(28)-\mathrm{C}(27)$	$120.7(5)$
$\mathrm{C}(29)-\mathrm{C}(28)$	$120.6(6)$
C	

```
C(28)-C(29)-H(29) 119.7
C(29)-C(30)-C(31) 120.0(8)
C(29)-C(30)-H(30) 120.0
C(31)-C(30)-H(30) 120.0
C(32)-C(31)-C(30) 119.6(7)
C(32)-C(31)-H(31) 120.2
C(30)-C(31)-H(31) 120.2
C(31)-C(32)-C(33) 120.5(8)
C(31)-C(32)-H(32) 119.8
C(33)-C(32)-H(32) 119.8
C(28)-C(33)-C(32) 120.5(8)
C(28)-C(33)-H(33) 119.7
C(32)-C(33)-H(33) 119.7
C(35)#1-C(34)-O(9) 122(3)
C(35)#1-C(34)-C(35) 105(3)
O(9)-C(34)-C(35) 108(2)
C(35)#1-C(34)-C(34)#159(2)
O(9)-C(34)-C(34)#1 131(3)
C(35)-C(34)-C(34)#1 45.7(18)
C(34)#1-C(35)-C(36) 129(4)
C(34)#1-C(35)-C(34) 75(3)
C(36)-C(35)-C(34) 109(3)
C(35)-C(36)-C(37) 102(3)
```

$\mathrm{O}(9)-\mathrm{C}(37)-\mathrm{C}(36)$	112(3)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{O}(7)$	76.28(14)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{O}(5)$	93.45(15)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(5)$	127.64(13)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{O}(2)$	78.50(17)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(2)$	82.32(14)
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{O}(2)$	146.58(13)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{N}(3)$	148.87(17)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(3)$	81.62(14)
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{N}(3)$	82.88(14)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(3)$	120.12(15)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{O}(4)$	80.74(18)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(4)$	75.81(13)
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{O}(4)$	51.83(13)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(4)$	152.80(15)
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{O}(4)$	72.70(16)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{O}(3)$	124.31(15)
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{O}(3)$	74.89(13)
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{O}(3)$	141.40(13)
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{O}(3)$	51.26(13)
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{O}(3)$	68.87(14)
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{O}(3)$	134.23(15)
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{N}(2)$	143.64(14)

$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$138.18(13)$
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$74.23(13)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$93.08(14)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$64.88(14)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$113.99(13)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(2)$	$70.22(13)$
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$79.57(15)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$147.96(14)$
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$74.24(13)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$72.42(13)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$128.06(14)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$120.62(14)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$102.59(14)$
$\mathrm{N}(2)-\mathrm{Dy}(1)-\mathrm{N}(1)$	$64.23(13)$
$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$88.48(16)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$101.63(13)$
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$26.07(13)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$165.17(14)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$74.69(14)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$25.88(13)$
$\mathrm{N}(1)-\mathrm{Dy}(1)-\mathrm{N}(6)$	$98.45(14)$
$\mathrm{Dy}(1)-\mathrm{N}(6)$	$93.26(13)$
$\mathrm{N}(6)$	$143.53(13)$
O	

$\mathrm{O}(8)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$101.57(16)$
$\mathrm{O}(7)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$77.33(13)$
$\mathrm{O}(5)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$153.73(12)$
$\mathrm{O}(2)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$25.56(13)$
$\mathrm{N}(3)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$94.57(15)$
$\mathrm{O}(4)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$151.64(13)$
$\mathrm{O}(3)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$25.70(12)$
$\mathrm{N}(2)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$81.00(12)$
$\mathrm{N}(1)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$87.32(13)$
$\mathrm{N}(6)-\mathrm{Dy}(1)-\mathrm{N}(5)$	$169.22(13)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$117.4(5)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Dy}(1)$	$121.4(4)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	$121.3(4)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	$119.4(4)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)$	$119.1(3)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(2)$	$122.6(5)$
$\mathrm{C}(20)-\mathrm{N}(4)-\mathrm{C}(27)$	$114.7(4)$
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	$121.2(3)$
$\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Dy}(1)$	$119.4(4)$
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	$120.6(4)$
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(20)$	$124.7(5)$
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(27)$	$120.6(4)$
C	

$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(3)$	$121.9(5)$
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{O}(3)$	$115.5(4)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$178.8(4)$
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$56.9(2)$
$\mathrm{O}(3)-\mathrm{N}(5)-\mathrm{Dy}(1)$	$58.7(2)$
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(4)$	$121.5(5)$
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(5)$	$122.6(5)$
$\mathrm{O}(4)-\mathrm{N}(6)-\mathrm{O}(5)$	$115.9(5)$
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$173.7(4)$
$\mathrm{O}(4)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$59.1(3)$
$\mathrm{O}(5)-\mathrm{N}(6)-\mathrm{Dy}(1)$	$57.1(2)$
$\mathrm{N}(5)-\mathrm{O}(2)-\mathrm{Dy}(1)$	$97.6(3)$
$\mathrm{N}(5)-\mathrm{O}(3)-\mathrm{Dy}(1)$	$95.6(3)$
$\mathrm{N}(6)-\mathrm{O}(4)-\mathrm{Dy}(1)$	$95.0(3)$
$\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Dy}(1)$	$96.8(3)$
$\mathrm{C}(16)-\mathrm{O}(7)-\mathrm{Dy}(1)$	$134.9(3)$
$\mathrm{C}(18)-\mathrm{O}(8)-\mathrm{Dy}(1)$	$134.0(4)$
$\mathrm{C}(34)-\mathrm{O}(9)-\mathrm{C}(37)$	$106(2)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y+1,-z+1
Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac).
The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\right.$

$$
\left.\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]
$$

U^{11}	U^{22}	U33	U^{23}	U^{13}	U^{12}
C(1) 33(3)	26(3)	22(2)	3(2)	3(2)	-3(2)
$\mathrm{C}(2) 41(4)$	25(3)	30(3)	-1(3)	-1(3)	-10(3)
$\mathrm{C}(3) 51(4)$	31(3)	29(3)	-14(3)	7(3)	-4(3)
C(4) 40(4)	41(4)	20(2)	-6(2)	10(2)	5(3)
C(5) 25(3)	27(3)	15(2)	0(2)	2(2)	6(2)
C(6) 24(3)	21(3)	19(2)	0(2)	6 (2)	4(2)
C(7) 28(3)	40(4)	25(3)	-1(3)	12(2)	10(3)
C(8) 27(3)	57(4)	41(3)	7(3)	21(3)	2(3)
C(9) 31(3)	34(3)	35(3)	8(3)	16(3)	-6(3)
C(10) 18(2)	25(3)	19(2)	4(2)	4(2)	-3(2)
C(11)22(3)	20(3)	22(2)	6(2)	1(2)	3(2)
C(12)26(3)	29(3)	54(4)	4(3)	8(3)	-4(3)
$\mathrm{C}(13) 47(4)$	22(3)	59(4)	-2(4)	-6(3)	-2(4)
$\mathrm{C}(14) 73(5)$	11(3)	33(3)	-1(2)	10(3)	4(3)
C(15) 56(4)	19(3)	26(3)	6(2)	17(3)	11(3)
C(16) 18(2)	32(4)	21(2)	2(2)	9(2)	6 (2)
C(17)31(3)	48(4)	28(3)	-2(3)	18(3)	-10(3)
C(18)31(3)	68(5)	37(3)	-12(3)	19(3)	-20(3)
C(19) 83(7)	133(10)	68(6)	-45(6)	50(5)	-80(7)

C(20)38(3)	27(3)	22(2)	3(2)	13(2)	0 (2)
C(21)53(4)	30(3)	32(3)	-6(3)	28(3)	-13(3)
C(22)47(4)	59(5)	51(4)	0 (4)	28(4)	10(4)
C(23) 56(5)	71(6)	70(6)	-4(5)	33(5)	15(5)
$\mathrm{C}(24) 78$ (5)	31(4)	38(3)	-7(3)	36(4)	-17(4)
C(25)109(7)	30(4)	52(4)	-10(3)	64(5)	-21(4)
C(26)80(6)	37(4)	94(7)	-10(5)	63(6)	-8(4)
C(27)36(3)	23(3)	21(2)	3(2)	16(2)	6 (2)
C(28)34(3)	23(3)	18(2)	1(2)	8(2)	-3(2)
C(29)27(3)	29(3)	35(3)	5(3)	10(3)	6 (2)
C(30)34(4)	38(4)	70(5)	20(4)	12(4)	3(3)
C(31)41(5)	58(6)	75(6)	25(5)	-13(4)	-2(4)
C(32)73(6)	42(5)	53(5)	-2(4)	-26(4)	-7(4)
C(33)60(5)	42(4)	31(3)	-5(3)	9(3)	-3(4)
Dy(1)20(1)	25(1)	16(1)	0 (1)	8(1)	$0(1)$
$\mathrm{N}(1) 24(2)$	20(2)	16(2)	2(2)	3(2)	-2(2)
$\mathrm{N}(2)$ 20(2)	10(2)	17(2)	2(1)	4(2)	2(1)
$\mathrm{N}(3) 39(3)$	17(2)	21(2)	3(2)	12(2)	6 (2)
$\mathrm{N}(4) 27(2)$	29(3)	17(2)	3(2)	10(2)	5(2)
$\mathrm{N}(5) 31(3)$	23(2)	21(2)	6(2)	12(2)	9(2)
N(6) 25(2)	30(3)	25(2)	2(2)	9(2)	-3(2)
$\mathrm{O}(1) 41(3)$	43(3)	36(2)	20(2)	8(2)	23(2)
$\mathrm{O}(2)$ 47(3)	15(2)	24(2)	3(2)	2(2)	-3(2)

$\mathrm{O}(3) 23(2)$	$25(2)$	$32(2)$	$11(2)$	$6(2)$	$0(2)$
$\mathrm{O}(4) 39(3)$	$62(3)$	$23(2)$	$4(2)$	$12(2)$	$20(2)$
$\mathrm{O}(5) 26(2)$	$32(2)$	$19(2)$	$2(2)$	$7(2)$	$6(2)$
$\mathrm{O}(6) 27(2)$	$36(2)$	$31(2)$	$11(2)$	$5(2)$	$9(2)$
$\mathrm{O}(7) 27(2)$	$23(2)$	$19(2)$	$1(2)$	$11(2)$	$1(2)$
$\mathrm{O}(8) 32(2)$	$57(3)$	$30(2)$	$-16(2)$	$18(2)$	$-21(2)$

Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Dy}($ terpy $)\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac).

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1)$	7031	-766	4047	35
$\mathrm{H}(2)$	6972	-2702	3330	44
$\mathrm{H}(3)$	7734	-2655	2697	48
$\mathrm{H}(4)$	8524	-676	2790	41
$\mathrm{H}(7)$	9310	978	3003	37
$\mathrm{H}(8)$	10003	3098	3115	47
$\mathrm{H}(9)$	9797	5020	3721	39
$\mathrm{H}(12)$	9608	6638	4309	46
$\mathrm{H}(13)$	9313	8434	4950	60
$\mathrm{H}(14)$	8348	8008	5336	50
$\mathrm{H}(15)$	7704	5869	5082	40

$\mathrm{H}(17)$	6769	1429	6185	41
$\mathrm{H}(19 \mathrm{~A})$	5662	97	4730	132
$\mathrm{H}(19 \mathrm{~B})$	5949	-186	5527	132
$\mathrm{H}(19 \mathrm{C})$	6286	-1102	5073	132
$\mathrm{H}(20 \mathrm{~A})$	8124	2896	7619	34
$\mathrm{H}(20 \mathrm{~B})$	7528	1777	7142	34
$\mathrm{H}(22)$	6343	4015	6429	59
$\mathrm{H}(23)$	5362	4988	6686	75
$\mathrm{H}(24)$	7539	3318	8407	54
$\mathrm{H}(25)$	6520	4345	8648	65
$\mathrm{H}(26)$	5462	5117	7786	73
$\mathrm{H}(27 \mathrm{~A})$	7944	5460	6968	30
$\mathrm{H}(27 \mathrm{~B})$	8160	5161	6325	30
$\mathrm{H}(29)$	9211	2884	6717	37
$\mathrm{H}(30)$	10454	2560	7443	59
$\mathrm{H}(31)$	10988	4086	8372	82
$\mathrm{H}(32)$	10290	5970	8541	85
$\mathrm{H}(33)$	6260	7833	56	

Torsion angles [${ }^{\circ}$] for Dy(terpy) $\left(\mathrm{NO}_{3}\right)_{2}$ (dbacac).

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$0.8(9)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.1(10)$

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.2(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	-1.0(9)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-178.1(5)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	-5.5(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	171.8(5)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	173.4(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-9.3(8)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-2.4(8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	178.7(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.6(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.4(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	0.4(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-179.6(5)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	-3.6(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)$	176.4(5)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	176.8(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-3.3(8)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.9(9)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.4(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-0.9(10)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.1(10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)$	1.2(10)
$\mathrm{O}(7)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	6.1(10)

$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-176.4(6)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(8)$	4.0(13)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-176.5(8)
$\mathrm{N}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(24)$	-147.3(6)
$\mathrm{N}(4)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	34.6(9)
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-2.0(12)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	176.1(7)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(26)$	0.8(14)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{C}(25)$	1.6(10)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{C}(25)$	-176.5(6)
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-0.2(10)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{C}(25)$	0.7(14)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(23)$	-1.0(12)
$\mathrm{N}(4)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)$	-133.0(6)
$\mathrm{N}(4)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	49.6(7)
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	3.4(9)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	-179.1(6)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-1.5(10)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	-1.5(13)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	2.4(14)
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	-2.5(11)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	-180.0(7)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	-0.4(13)

$\mathrm{C}(35) \# 1-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(34) \# 1$	0.001(5)
$\mathrm{O}(9)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(34) \# 1$	-131(4)
$\mathrm{C}(35) \# 1-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	127(4)
$\mathrm{O}(9)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	-4(5)
$\mathrm{C}(34) \# 1-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	126(4)
$\mathrm{C}(34) \# 1-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	80(6)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	-7(6)
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{O}(9)$	16(6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	-1.6(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Dy}(1)$	177.5(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	1.7(8)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	179.0(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	-177.4(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Dy}(1)$	-0.1(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	-2.1(7)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	177.8(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)$	171.4(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{Dy}(1)$	-8.6(6)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	3.2(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	-177.9(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Dy}(1)$	-170.3(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Dy}(1)$	8.7(6)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{C}(11)$	-1.2(8)

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(3)-\mathrm{Dy}(1)$	164.9(5)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	0.1(8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(15)$	-179.5(5)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	-165.8(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Dy}(1)$	14.5(6)
$\mathrm{O}(7)-\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(20)$	-167.9(5)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(20)$	14.5(8)
$\mathrm{O}(7)-\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(27)$	10.8(7)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(27)$	-166.8(5)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(4)-\mathrm{C}(16)$	-102.2(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(4)-\mathrm{C}(27)$	79.1(6)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{N}(4)-\mathrm{C}(16)$	-111.5(5)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{N}(4)-\mathrm{C}(20)$	67.3(6)
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(2)-\mathrm{Dy}(1)$	178.7(4)
$\mathrm{O}(3)-\mathrm{N}(5)-\mathrm{O}(2)-\mathrm{Dy}(1)$	-0.2(5)
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(3)-\mathrm{Dy}(1)$	-178.7(4)
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{O}(3)-\mathrm{Dy}(1)$	0.2(4)
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(4)-\mathrm{Dy}(1)$	-172.6(5)
$\mathrm{O}(5)-\mathrm{N}(6)-\mathrm{O}(4)-\mathrm{Dy}(1)$	6.8(5)
$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Dy}(1)$	172.5(5)
$\mathrm{O}(4)-\mathrm{N}(6)-\mathrm{O}(5)-\mathrm{Dy}(1)$	-7.0(5)
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{O}(7)-\mathrm{Dy}(1)$	163.5(3)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{O}(7)-\mathrm{Dy}(1)$	-19.0(8)

$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(8)-\mathrm{Dy}(1)$	$-1.8(12)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{O}(8)-\mathrm{Dy}(1)$	$178.7(6)$
$\mathrm{C}(35) \# 1-\mathrm{C}(34)-\mathrm{O}(9)-\mathrm{C}(37)$	$-107(4)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{O}(9)-\mathrm{C}(37)$	$14(4)$
$\mathrm{C}(34) \# 1-\mathrm{C}(34)-\mathrm{O}(9)-\mathrm{C}(37)$	$-32(5)$
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{O}(9)-\mathrm{C}(34)$	$-19(5)$

Symmetry transformations used to generate equivalent atoms:
\#1 -x+1,-y+1,-z+1

==== Shimadzu LCsolution Analysis Report ====

PeakTable

PDA Ch1 210 nm 4 nm				PeakTable			
Peak\#	Ret. Time	Area	Height	Area \%	Height \%		
1	24.811	39341091	636385	49.622	65.045		
2	43.532	39940274	341985	50.378	34.955		
Total		79281365	978370	100.000	100.000		

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

	C:ILabSolutions\Data\Project1\XQ\|xq-3-114-1-DA.Icd	$\bigcirc \mathrm{H}^{\circ}$
Acquired by	: Admin	IV ${ }^{\text {H }}$
Sample Name	: xq-3-114-1-DA	-
Sample ID	: xq -3-114-1-DA	PMBN
Vail \#		
Injection Volume	: 10 uL	
Data File Name	: xq-3-114-1-DA.Icd	
Method File Name	: ces-OD-H-analytical.lcm	$\mathrm{CO}_{2} \mathrm{Me}$
Batch File Name		
Report File Name	: Default.lcr	6
Data Acquired	: 5/13/2013 11:54:54 AM	entry 2: L2
Data Processed	: 5/13/2013 5:08:54 PM	

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

\% i-PrOH in Hex C:ILabSolutions\Data\Project1\XQ\xq-3-117-4-DA.Icd		$\mathrm{O} \mathrm{H}^{\mathrm{O}}$
$1 \mathrm{ml} / \mathrm{min}$		-
AD-H analytical		PMBN
$4 \mathrm{mg} / \mathrm{ml}$		
10 uL injection		
210nm		
Acquired by	: Admin	$\mathrm{CO}_{2} \mathrm{Me}$
Sample Name	: xq-3-117-4-DA	
Sample ID	: xq -3-117-4-DA	6
Vail \#	-	entry 3: L3
Injection Volume	: 15 uL	entry 3 L3
Data File Name	: xq-3-117-4-DA.Icd	
Method File Name	: ces-OD-H-analytical.lcm	
Batch File Name	:	
Report File Name	: Default.lcr	
Data Acquired	: 5/16/2013 5:14:17 PM	
Data Processed	: 1/10/2015 3:15:20 PM	

<Chromatogram>

==== Shimadzu LCsolution Analysis Report ====

PDA Ch1 210 nm 4nm							PeakTable				
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$						
1	24.961	24874323	405611	49.743	65.200						
2	43.969	25131571	216492	50.257	34.800						
Total		50005894	622103	100.000	100.000						

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

1 PDA Multi 1/210nm 4nm

PDA Ch1 210 nm 4nm								PeakTable				
Peak\#	Ret. Time	Area	Height	Area \%	Height \%							
1	24.833	31638227	491757	40.174	55.927							
2	43.276	47115323	387520	59.826	44.073							
Total		78753550	879277	100.000	100.000							

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

Alcohol (S19). n-Butyllithium (2.37 M in hexanes, $15.5 \mathrm{~mL}, 36.8 \mathrm{~mL}$) was added to a solution of $\mathbf{1 1 4}(11.06 \mathrm{~g}, 37.6 \mathrm{mmol})$ in dry THF $(41 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 30 min . A solution of $\mathbf{1 0 2}(7.4 \mathrm{og}, 7.35 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL}$ total with rinses) was added dropwise. After 1 h , chlorotrimethylsilane ($4.7 \mathrm{~mL}, 36.8 \mathrm{mmol}$), freshly distilled from CaH_{2}, was added dropwise. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 20 min , at $0^{\circ} \mathrm{C}$ for 20 min , then warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The solution was quenched with water and diluted with ethyl acetate $(3 \times 100 \mathrm{~mL})$, and the combined organic layers were washed with 1 M aqueous $\mathrm{HCl}(2 \times 50 \mathrm{~mL})$. The aqueous layer was brought to $\mathrm{pH}>9$ using NaOH and extracted with ethyl acetate (3 x 100 mL) to recover the chiral amine. The organic layer was dried with sodium sulfate and concentrated. The crude oil was submitted to the next step without further purification.

The crude residue was dissolved in dry ether (258 ml) and lithium aluminum hydride $(2.89 \mathrm{~g}, 72.4 \mathrm{mmol})$ was added carefully at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to 23 ${ }^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was then heated at reflux for 1 h , then cooled to 23 ${ }^{\circ} \mathrm{C}$, and then to $0{ }^{\circ} \mathrm{C}$. An additional 100 mL of ether was added. Water (2.9 ml) was added carefully with vigorous stirring. After $5 \mathrm{~min}, 3 \mathrm{M}$ aqueous $\mathrm{NaOH}(2.9 \mathrm{ml})$ was added. After an additional 5 min , water $(8.7 \mathrm{ml})$ was added and the mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 1 h . The white precipitate was filtered off, and washed with dichloromethane. The filtrate was concentrated and the residue was purified by column
chromatography (silica, 20\% ethyl acetate - hexanes) afforded S19 (9.98 g, 10.03 mmol , $78 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.44(\mathrm{dd}, J=6.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $4.6,2.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}$, $1 \mathrm{H}), 4.82-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 3 \mathrm{H}), 4.06$ $(\mathrm{dd}, J=11.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 5 \mathrm{H}), 3.71-3.55(\mathrm{~m}, 5 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.35-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.00-$ $0.92(\mathrm{~m}, 7 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 3 \mathrm{H}), 0.78(\mathrm{dd}, J=6.9,2.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 0.43-0.36(\mathrm{~m}, 2 \mathrm{H})$.

Alcohol (S20). Benzoyl chloride ($2.5 \mathrm{~mL}, 21.5 \mathrm{mmol}$) was added to a solution $\mathbf{S 1 9}$ $(9.99 \mathrm{~g}, 10.07 \mathrm{mmol})$ in pyridine $(26.3 \mathrm{~mL})$ and the mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h . The solution was cooled to $23{ }^{\circ} \mathrm{C}$, quenched with methanol ($2.2 \mathrm{~mL}, 52.6 \mathrm{mmol}$) and stirred for 10 min . The mixture was diluted with dichloromethane $(500 \mathrm{~mL})$. The organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 200 \mathrm{~mL})$, water, saturated aqueous sodium bicarbonate, dried with sodium sulfate, and concentrated. The crude ester was submitted to the next step without further purification.

The residue was dissolved in dichloromethane (160 mL) and water (6.4 mL), followed by addition of 2,3-dichloro-5,6-dicyano-p-benzoquinone ($2.77 \mathrm{~g}, 12.18 \mathrm{mmol}$), and the mixture was stirred vigorously for 1.5 h at $23^{\circ} \mathrm{C}$. The reaction mixture was diluted with dichloromethane and washed with a $1: 1$ mixture of saturated aqueous sodium bicarbonate and saturated aqueous sodium thiosulfate. The aqueous layer was extracted
with dichloromethane, and the combined organic layers were dried with sodium sulfate, and concentrated. To help improve separation between the desired alcohol and p methoxybenzaldehyde, the crude alcohol was then was dissolved in MeOH (288 mL), followed by addition of sodium borohydride $(1.94 \mathrm{~g}, 51.4 \mathrm{mmol})$, at $0^{\circ} \mathrm{C}$. The solution was stirred for 10 min and then quenched with water. The solution was diluted with ethyl acetate, and washed with water. The aqueous layers were then extracted with ethyl acetate $(2 \times 300 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl acetate - hexanes) to afford S20 ($8.44 \mathrm{~g}, 8.66 \mathrm{mmol}, 88 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}); $\delta(\mathrm{ppm}): 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dt}, J=6.7,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.59(\mathrm{dd}, J=15.4,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{td}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}$, $J=10.8,9.5,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.46(\mathrm{q}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.20(\mathrm{~m}$, $2 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 7 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 19 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Diol (S21). Ozone was bubbled through a solution of $\mathbf{S} 20(7.4 \mathrm{~g}, 7.58 \mathrm{mmol}), \mathrm{N}$ -methylmorpholine- N-oxide ($3.55 \mathrm{~g}, 30.34 \mathrm{mmol}$), in dichloromethane (161 mL) at -78 ${ }^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC. After the starting material was consumed, the solution was purged with O_{2} and argon. A saturated aqueous solution of
ammonium chloride was added at $23{ }^{\circ} \mathrm{C}$. Dilute with dichloromethane and water. The aqueous layer was extracted with dichloromethane $(4 \times 110 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate and concentrated. The crude residue was dissolved in ethanol (108 mL), cooled to $-10^{\circ} \mathrm{C}$, and sodium borohydride (0.287 g , 7.58 mmol) was added. Additional sodium borohydride was added after 30 min and 1 h 30 min (1 equiv for each addition). After 2 h the solution was diluted with dichloromethane and quenched carefully with saturated aqueous solution of ammonium chloride. The aqueous layer was extracted with dichloromethane ($5 \times 100 \mathrm{ml}$). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 75% ethyl acetate - hexanes) to give $\mathbf{S 2 1}(5.61 \mathrm{~g}, 5.91 \mathrm{mmol}$, 78\%). H NMR (500 MHz, CDCl_{3}); $\delta(\mathrm{ppm}): 8.08-7.98$ (m, 2H), 7.54 (ddt, $J=8.7,7.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.79(\mathrm{~m}, 2 \mathrm{H})$, $4.58-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~h}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 13 \mathrm{H}), 0.97-$ $0.84(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Aldehyde (120). Dimethylsulfoxide ($4.4 \mathrm{~mL}, 61.80 \mathrm{mmol}$) was added to a solution of oxalyl chloride ($2.61 \mathrm{~mL}, 30.90 \mathrm{mmol}$) in dichloromethane (137 mL) at $-78^{\circ} \mathrm{C}$. After 20 min, a solution of $\mathbf{S} 21(11.76 \mathrm{~g}, 12.36 \mathrm{mmol})$ in dichloromethane (137 ml total with rinses) was added dropwise, and the mixture was stirred for 25 min . Triethylamine (12.9 $\mathrm{mL}, 92.70 \mathrm{mmol}$) was added dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 10 min , the mixture
was brought to $0^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction was quenched with 1 M aqueous $\mathrm{HCl}(200 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water and saturated aqueous sodium bicarbonate, dried with sodium sulfate, and concentrated to give the crude dialdehyde, which was used without further purification.

The crude dialdehyde was dissolved in dry toluene (773 mL) and dibenzylammonium trifluoroacetate $(11.31 \mathrm{~g}, 36.33 \mathrm{mmol})$ was added. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h , then heated at $36^{\circ} \mathrm{C}$ for 8 h , and then finally cooled to $23^{\circ} \mathrm{C}$ and stirred for an additional 8 h . The solution was directly applied on a silica column (silica, 15% ethyl acetate - hexanes) to afford $120(9.77 \mathrm{~g}, 10.51 \mathrm{mmol}, 85 \%) .1 \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.07-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 6.89(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.02$ $(\mathrm{m}, 2 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{ddd}, J=$ $42.2,9.4,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.25(\mathrm{dd}, J=16.0,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{dd}, J=7.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93(\mathrm{dt}, J=12.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.15-0.97(\mathrm{~m}, 18 \mathrm{H}), 0.91-0.81$ $(\mathrm{m}, 3 \mathrm{H}), 0.77(\mathrm{dd}, J=10.0,6.9 \mathrm{~Hz}, 4 \mathrm{H})$.

MOM Ether (S22). Sodium borohydride ($1.67 \mathrm{~g}, 42.04 \mathrm{mmol}$) was added to a solution of $\mathbf{1 2 0}(9.77 \mathrm{~g}, 10.51 \mathrm{mmol})$ in ethanol $(188 \mathrm{~mL})$ at $-70{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ while stirring over 1.5 h , at which point it was diluted with
dichloromethane and quenched carefully with a saturated aqueous solution of ammonium chloride. The aqueous layer was extracted with dichloromethane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate, and concentrated to give the crude alcohol, which was used without further purification.

The residue was dissolved in dichloromethane (58 ml), and di-isopropylethylamine ($55.1 \mathrm{~mL}, 316.42 \mathrm{mmol}$), chloromethyl methyl ether ($8.0 \mathrm{~mL}, 105.12 \mathrm{mmol}$), and tetra- n butylammonium iodide $(0.368 \mathrm{~g}, 0.998 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 14 h at $23{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with dichloromethane $(400 \mathrm{~mL})$. The organic layer was washed with 1 M aqueous $\mathrm{HCl}(2 \times 200 \mathrm{~mL})$, water, saturated aqueous sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20% ethyl acetate - hexanes) to give S22 (9.09 g, $9.56 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 8.03$ (dd, $J=$ $8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{ddt}, J=8.7,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $6 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.36-$ $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.63-$ $3.50(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.14-1.00(\mathrm{~m}, 18 \mathrm{H}), 0.94-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$.

Alcohol (S23). Tetra- n-butylammonium fluoride (1.0 M in THF, $13.5 \mathrm{~mL}, 13.47$
$\mathrm{mmol})$ was added to a solution of $\mathbf{S 2 2}(8.76 \mathrm{~g}, 8.98 \mathrm{mmol})$ in THF $(160 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. After 1 h and 10 min the reaction was quenched with a saturated aqueous solution of ammonium chloride. The aqueous layer was extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl acetate - hexanes then 60% ethyl acetate - hexanes) to give $\mathbf{S} 23(7.12 \mathrm{~g}, 8.14 \mathrm{mmol}$, 96\%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 8.07-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{td}, J=7.3,1.4$ Hz, 1H), $7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.75(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$, $4.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.40$ (m, 2H), $4.34(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-$ $3.61(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=9.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{dd}, J=$ $14.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Alkene (121). Dimethylsulfoxide ($1.5 \mathrm{~mL}, 20.86 \mathrm{mmol}$) was added to a solution of oxalyl chloride ($0.9 \mathrm{~mL}, 10.43 \mathrm{mmol}$) in dichloromethane $(98 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 20 min, a solution of $\mathbf{S} 23(7.12 \mathrm{~g}, 8.69 \mathrm{mmol})$ in dichloromethane (49 mL total with rinses) was then added dropwise, and the mixture was stirred for 25 min .

Triethylamine ($4.4 \mathrm{~mL}, 31.29 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and after 10 min the mixture was brought to $0^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction was quenched with 1 M aqueous $\mathrm{HCl}(100 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 150 \mathrm{~mL}$).

The combined organic layers were washed with water and saturated aqueous sodium bicarbonate, dried with sodium sulfate, and concentrated to give the crude aldehyde, which was used without further purification.

Potassium bis(trimethylsilyl)amide (0.5 M in toluene, $34.8 \mathrm{ml}, 17.38 \mathrm{mmol}$) was added to a mixture of methyltriphenylphosphonium bromide $(8.07 \mathrm{~g}, 22.60 \mathrm{mmol})$ in toluene (87 mL) at $0^{\circ} \mathrm{C}$. After 45 min , a solution of the crude aldehyde dissolved in toluene (51 mL total with rinses) was added dropwise. After 30 min the solution was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 1 h . Quench with a saturated aqueous solution of ammonium chloride. The aqueous layer was extracted with ethyl acetate ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl acetate - hexanes) to give $121(6.49 \mathrm{~g}, 7.91 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); δ (ppm): $8.05-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.08(\mathrm{ddd}, J=17.1,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.55-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{dt}, J=10.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.04$ $(\mathrm{m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}$, $3 \mathrm{H}), 3.24(\mathrm{dd}, J=9.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dt}, J=13.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=14.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.85$ (m, 2H), $0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Alcohol (S24). Lithium aluminum hydride ($1.84 \mathrm{~g}, 48.56 \mathrm{mmol}$) was carefully added to a solution of $\mathbf{1 2 1}(6.49 \mathrm{~g}, 7.96 \mathrm{mmol})$ in dry ether $(185 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture stirred for 1 h and additional lithium aluminum hydride $(0.91 \mathrm{~g}, 23.88 \mathrm{mmol})$ was added. At 2 h the solution was placed in a $0^{\circ} \mathrm{C}$ ice bath. After 10 min , an additional 1000 mL of ether was added. Water (2.75 mL) was added dropwise with vigorous stirring. After $5 \mathrm{~min}, 3 \mathrm{M}$ aqueous $\mathrm{NaOH}(2.75 \mathrm{~mL})$ was added. After an additional 5 min, water $(8.25 \mathrm{~mL})$ was added and the mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 2 h . The white precipitate was filtered off, washed with dichloromethane, concentrated, and the residue was purified by column chromatography (silica, 30% ethyl acetate - hexanes) to give S24 ($6.26 \mathrm{~g}, 7.24 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.47$ (dd, $J=$ $7.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{tdd}, J=11.2,10.5,5.7,2.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.07$ (ddd, $J=17.1,10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{ddd}, J=$ $18.0,3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-$ $4.56(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=$ 9.1, 4.9 Hz, 1H), 3.67 (dd, $J=11.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=11.3$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=9.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.75(\mathrm{~m}, 6 \mathrm{H})$.

Aldehyde (101). Dimethylsulfoxide ($1.23 \mathrm{~mL}, 17.24 \mathrm{mmol}$) was added to a solution of oxalyl chloride $(0.73 \mathrm{ml}, 8.62 \mathrm{mmol})$ in dichloromethane $(81 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$. After 20
min , a solution of $\mathbf{S} \mathbf{2 4}(5.11 \mathrm{~g}, 7.18 \mathrm{mmol})$ in dichloromethane (41 ml total with rinses) was added dropwise, and the mixture was stirred for 25 min . Triethylamine $(3.61 \mathrm{ml}$, 25.87 mmol) was added at $-78^{\circ} \mathrm{C}$ and, after 10 min the mixture was brought to $0^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction was quenched with 1 M aqueous $\mathrm{HCl}(100 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water and saturated aqueous sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20% ethyl acetate - hexanes) to give aldehyde 101 ($5.2 \mathrm{~g}, 6.68 \mathrm{mmol}, 93 \%) .1 \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.01$ (ddd, $J=17.2,10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.51-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=10.4$, $1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=10.4,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-$ $4.55(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.55(\mathrm{~m}, 2 \mathrm{H})$, 3.43 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=9.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.01-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.

Alcohol (133). A solution of iodide $100(3.28 \mathrm{~g}, 4.28 \mathrm{mmol})$ in ether (16 mL) was added dropwise to freshly titrated $t-\operatorname{BuLi}(1.66 \mathrm{M}$ in pentane, $5.20 \mathrm{~mL}, 8.58 \mathrm{mmol})$ in ether $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 1 h 10 min . A solution of aldehyde $101(3.04 \mathrm{~g}$, $4.28 \mathrm{mmol})$ in ether (16 mL) was added to the reaction mixture dropwise and stirred at -
$78{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was placed in a $0^{\circ} \mathrm{C}$ bath and continued to stir for and additional 6 min . The reaction was quenched with saturated aqueous ammonium chloride and diluted with dichloromethane. The aqueous layer was extracted with dichloromethane $(4 \times 150 \mathrm{~mL})$. The combined organic layers were washed with a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 15% ethyl acetate - hexanes) to afford $133(4.18 \mathrm{~g}, 3.12 \mathrm{mmol}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.51$ - 7.44 $(\mathrm{m}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.11(\mathrm{ddt}, J=17.1,10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.67(\mathrm{~m}, 1 \mathrm{H})$, $5.54-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.69(\mathrm{~m}, 1 \mathrm{H})$, $4.67(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dq}, J=$ $30.1,7.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 1 \mathrm{H})$, $3.41-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{dt}, J=14.0,8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 9 \mathrm{H}), 1.00-0.88(\mathrm{~m}$, $6 \mathrm{H}), 0.80(\mathrm{ddd}, J=18.2,9.5,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.01(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $6 \mathrm{H})$.

Diol (S25). Tetra- n-butylammonium fluoride (1.0 M in THF, $8.41 \mathrm{~mL}, 8.41 \mathrm{mmol}$) was added to a solution of $\mathbf{1 3 3}(5.4 \mathrm{~g}, 4.00 \mathrm{mmol})$ in THF (57 mL) at $23{ }^{\circ} \mathrm{C}$. After 1 h 30 min , a saturated aqueous solution of ammonium chloride was added. The aqueous layer
was extracted with ethyl acetate ($4 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 30% ethyl acetate - hexanes) to give the desired product S25 (4.03 g, $3.80 \mathrm{mmol}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.50-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.10(\mathrm{dddd}, J=17.0,10.6,6.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.58-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=9.6,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.71$ $-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{dd}, J=9.2,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{td}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=28.2,14.1,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=14.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.85(\mathrm{~m}$, $2 H), 1.84-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 4 \mathrm{H})$, $1.00-0.88(\mathrm{~m}, 7 \mathrm{H}), 0.85-0.70(\mathrm{~m}, 4 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.00(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, 6 H).

Keto Aldehyde (S26). Dess-Martin periodinane (7.76 g, 18.29 mmol$)$ was added to a solution of $\mathbf{S 2 5}$ ($4.85 \mathrm{~g}, 4.57 \mathrm{mmol}$) and pyridine ($4.44 \mathrm{~mL}, 54.87 \mathrm{mmol}$) in dichloromethane $(46 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. At 1 h , Dess-Martin periodinane $(2.42 \mathrm{~g}, 2.28 \mathrm{mmol})$ was added to the reaction mixture and the reaction continued to stir for an additional 1 h . The reaction was quenched with a 1:1 mixture of saturated aqueous sodium bicarbonate saturated aqueous sodium thiosulfate and dilute with dichloromethane. The aqueous layer
was extracted with dichloromethane $(3 \times 200 \mathrm{~mL})$. The combined organic layers was washed with water, $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, water, a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl acetate - hexanes) to give S26 (4.39 g, 4.15 mmol, 91%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 9.71(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41$ $(\mathrm{m}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.9,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.15(\mathrm{ddd}, J=17.0,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.34-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.62(\mathrm{~m}$, $2 \mathrm{H}), 4.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{ddt}, J=13.2,7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{td}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.53(\mathrm{td}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=9.3,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.59-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.83$ $-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 4 \mathrm{H}), 0.93(\mathrm{q}, J=$ $7.5,7.0 \mathrm{~Hz}, 7 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.65(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.

Allylic Alcohol (134). Vinylmagnesium bromide (0.77 M in THF, $27.0 \mathrm{~mL}, 20.77$ $\mathrm{mmol})$ was added to a solution of $\mathbf{S 2 6}(4.39 \mathrm{~g}, 4.15 \mathrm{mmol})$ in THF (32 mL) at $-78{ }^{\circ} \mathrm{C}$. After 5 min , the solution was placed in a $-30^{\circ} \mathrm{C}$ dry ice - acetone bath and was warmed to $-20^{\circ} \mathrm{C}$ over 1 h 25 min . The reaction mixture was quenched with a saturated aqueous solution of ammonium chloride and diluted with dichloromethane. The aqueous layer was
extracted with dichloromethane $(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl acetate - hexanes) to give the desired product $134(4.20 \mathrm{~g}, 3.86 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=8.0,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.15$ (dddd, $J=17.0,10.6,6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{ddt}, J=17.2,5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (ddt, $J=10.5,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=2.3,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 5 \mathrm{H}), 3.65(\mathrm{td}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{td}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{td}, J=9.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.89$ $(\mathrm{m}, 3 \mathrm{H}), 1.89-1.68(\mathrm{~m}, 10 \mathrm{H}), 1.56(\mathrm{~m}, 7 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.87(\mathrm{~m}, 6 \mathrm{H})$, $0.86-0.75(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.56(\mathrm{qd}, J=7.9,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.11-0.04(\mathrm{~m}$, $6 \mathrm{H})$.

Macrocycle (135). Hoveyda-Grubbs catalyst, 2nd generation ($0.166 \mathrm{~g}, 0.264 \mathrm{mmol}$) was added to a solution of $134(3.21 \mathrm{~g}, 0.2 .64 \mathrm{mmol})$ in degassed dichloromethane (528 mL). The reaction was then refluxed at $44^{\circ} \mathrm{C}$ for 21 h . After cooling to $23{ }^{\circ} \mathrm{C}$, the reaction mixture was concentrated on a rotary evaporator. The residue was purified by
column chromatography (silica, 10\% ethyl acetate - dichloromethane) to give desired macrocycle $135(2.00 \mathrm{~g}, 1.66 \mathrm{mmol}, 63 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.54$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.08-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}$, $1 \mathrm{H}), 4.82-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}$, $2 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (ddd, $J=13.4,9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 4 \mathrm{H})$, $2.07-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.56(\mathrm{~m}, 7 \mathrm{H}), 1.47(\mathrm{qd}, J=13.4,12.7$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{td}, J=7.9,2.6 \mathrm{~Hz}, 8 \mathrm{H})$, $0.70(\mathrm{dd}, J=10.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.64(\mathrm{dd}, J=17.7,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.56(\mathrm{qd}, J=7.9,3.8 \mathrm{~Hz}$, 4H), 0.02 ($\mathrm{s}, 6 \mathrm{H}$).

Enone (S27). Dess-Martin periodinane ($2.14 \mathrm{~g}, 5.05 \mathrm{mmol}$) was added to a solution of $\mathbf{1 3 5}(2.0 \mathrm{~g}, 1.68 \mathrm{mmol})$ and pyridine $(1.3 \mathrm{~mL}, 15.15 \mathrm{mmol})$ in dichloromethane (84 mL) at $23^{\circ} \mathrm{C}$. After 2 h 30 min , the mixture was diluted with dichloromethane and a $1: 1$ mixture of saturated aqueous sodium bicarbonate - saturated aqueous sodium thiosulfate was added to the reaction flask. The aqueous layer was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water, $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, water, a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl
acetate - hexanes) to give the desired product $\mathbf{S 2 7}(1.67 \mathrm{~g}, 1.41 \mathrm{mmol}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{dd}, J=$ $16.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=16.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.74$ (dd, $J=29.8,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $1 \mathrm{H}), 3.73-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=9.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=9.3$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.7,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=16.7,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{td}, J=12.0$, $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.46$ $(\mathrm{m}, 2 \mathrm{H}), 1.41(\mathrm{td}, J=13.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 10 \mathrm{H}), 0.70(\mathrm{dd}, J=12.8,6.4 \mathrm{~Hz}, 5 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

Diketone (S28). Methyl lithium (1.55 M in ether, $6.18 \mathrm{~mL}, 9.57 \mathrm{mmol}$) was added to copper cyanide $(0.883 \mathrm{~g}, 9.85 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The solution was then placed in a $0{ }^{\circ} \mathrm{C}$ ice bath and stirred for 10 min . The clear solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and freshly distilled boron trifluoride diethyl etherate ($1.15 \mathrm{~mL}, 9.29 \mathrm{mmol}$) was added dropwise to the reaction mixture. After 5 min , a solution of $\mathbf{S} 27(1.67 \mathrm{~g}, 1.41 \mathrm{mmol})$ in THF (15 mL total with rinses) was added dropwise to the yellow solution and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$. After 1 h 45 min , a $9: 1$ mixture of saturated aqueous ammonium chloride: ammonia was added to the solution at $-78^{\circ} \mathrm{C}$. The ice bath was removed and the solution was stirred vigorously for 1 h at $23^{\circ} \mathrm{C}$. The solution was diluted with ethyl
acetate. The aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with a 9:1 mixture of saturated aqueous ammonium chloride: ammonia (100 mL), brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 25% ethyl acetate - hexanes) to give $\mathbf{S 2 8}$ $(1.40 \mathrm{~g}, 1.17 \mathrm{mmol}, 83 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.42-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.36 - 7.27 (m, 6H), $5.81(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.63-$ $4.53(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.52(\mathrm{~m}, 4 \mathrm{H})$, $3.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.25(\mathrm{~m}, 5 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=18.1,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{ddt}, J=17.3,12.7,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.19-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.69(\mathrm{~m}, 15 \mathrm{H}), 1.54(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 7 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 7 \mathrm{H})$, $1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.89(\mathrm{~m}, 11 \mathrm{H}), 0.81(\mathrm{dd}, J=10.9,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 6 \mathrm{H})$.

Alcohol (S29). 2,3-dichloro-5,6-dicyano-p-benzoquinone ($1.97 \mathrm{~g}, 8.73 \mathrm{mmol}$), was added to a solution of diketone $\mathbf{S 2 8}(2.1 \mathrm{~g}, 1.74 \mathrm{mmol})$ in dichloromethane $(87 \mathrm{~mL})$ and water $(9 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ and stirred vigorously for 1.5 h . The reaction mixture was diluted with dichloromethane and quenched with a $1: 1$ mixture of saturated aqueous sodium bicarbonate and saturated aqueous sodium thiosulfate. The aqueous layer was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica,
40% ethyl acetate - hexanes) to deliver S29 ($0.640 \mathrm{~g}, 0.574 \mathrm{mmol}, 33 \%)$ and recovered starting material (S28) (1.36 g, $1.11 \mathrm{mmol}, 64 \%)$. The recovered starting material (S28) was re-submitted to the reaction conditions described above (the reaction time for additional reactions was increased to 2 h). Four recycles of the recovered starting material (S28) were performed. The total amount of product isolated from the 5 reactions was 1.55 $\mathrm{g}, 1.39 \mathrm{mmol}, 80 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, $1 \mathrm{H}), 3.69-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=18.0,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=19.7,11.9,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 3 \mathrm{H})$, $2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{td}, J=15.8,15.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.45-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.97-0.86(\mathrm{~m}, 8 \mathrm{H}), 0.82(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.71$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

Tosylate (S30). p-Toluenesulfonic anhydride $(1.1 \mathrm{~g}, 3.31 \mathrm{mmol})$ was added to a solution of pyridine ($2.90 \mathrm{~mL}, 33.37 \mathrm{mmol}$) and alcohol $\mathbf{S} 29(1.50 \mathrm{~g}, 1.34 \mathrm{mmol})$ in dichloromethane $(80 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was diluted with dichloromethane and water. The aqueous layer was extracted with dichloromethane $(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, water, and a saturated aqueous solution of sodium bicarbonate, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 20\% ethyl
acetate - hexanes) to deliver $\mathbf{S 3 0}(1.49,1.18 \mathrm{mmol}, 88 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta$ (ppm): $7.80-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 9 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{ddd}, J=$ 29.7, 9.5, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.51(\mathrm{~m}, 5 \mathrm{H}), 3.36(\mathrm{~s}, 4 \mathrm{H}), 3.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ $(\mathrm{dd}, J=18.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 7 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 3 \mathrm{H})$, $2.09-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.22$ $(\mathrm{m}, 8 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 17 \mathrm{H}), 0.75(\mathrm{dd}, J=22.5,6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.

Azide (137). Sodium azide (4.71 g, 72.39 mmol) was added to a solution of $\mathbf{S 3 0}$ (1.49 $\mathrm{g}, 1.17 \mathrm{mmol})$ in DMF (90 mL) and the reaction mixture was heated at $80^{\circ} \mathrm{C}$. After 1 h , the solution was cooled to $23^{\circ} \mathrm{C}$ and diluted with water. The aqueous layer was extracted with ethyl acetate $(5 \times 75 \mathrm{~mL})$. The combined organic phases were dried with sodium sulfate, concentrated, and dried under vacuum. The residue was purified by column chromatography (15% ethyl acetate - hexanes) to give the desired product $\mathbf{1 3 7}(1.21 \mathrm{~g}$, $1.09 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta(\mathrm{ppm}): 7.42-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddt}, J=11.6,8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.23$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=12.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.91(\mathrm{~m}, 7 \mathrm{H}), 1.91-1.68(\mathrm{~m}, 6 \mathrm{H})$,
$1.56(\mathrm{~s}, 16 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 7 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}$, 4H), 0.03 (s, 6H).

Azido Triol (98). A 0.328 M solution of lithium tetrafluoroborate in $4 \% \mathrm{aq}$. isopropanol is prepared by dissolving lithium tetrafluoroborate ($13.0 \mathrm{~g}, 139.0 \mathrm{mmol}$), in isopropanol (406 mL) and water (17.7 mL). Azide $137(1.37 \mathrm{~g}, 1.21 \mathrm{mmol})$ is dissolved in a 4% aq. isopropanol - lithium tetrafluoroborate solution $(0.328 \mathrm{M}, 370 \mathrm{~mL}, 121$ mmol) under argon and the mixture is heated at $90^{\circ} \mathrm{C}$ in a sealed vessel. After 3 h , the solution was cooled to $23^{\circ} \mathrm{C}$, and carefully quenched with a saturated aqueous solution of sodium bicarbonate. The reaction mixture is diluted with ethyl acetate and additional water. The aqueous layer is extracted with ethyl acetate $(5 \times 250 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 60% then 100% ethyl acetate - hexanes) to give the desired product $98(0.359 \mathrm{~g}, 0.484 \mathrm{mmol}, 40 \%)$ and partially ketalized and partially deprotected intermediates. These intermediates were re-submitted to the reaction conditions listed above (3 recycles of the intermediates were performed). A total of 0.571 $\mathrm{g}, 0.770 \mathrm{mmol}, 64 \%$ of azido triol $\mathbf{9 8}$ was isolated from the 4 reactions. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta(\mathrm{ppm}): 5.26-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=27.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=4.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-3.98(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{dd}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{dd}$,
$J=7.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=12.6$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-1.47(\mathrm{~m}, 28 \mathrm{H}), 1.42-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$

PnTX-OH (141). Triphenylphosphine ($9.0 \mathrm{mg}, 33.7 \mu \mathrm{~mol}$) was added to a solution of azido triol $98(10.0 \mathrm{mg}, 13.5 \mu \mathrm{~mol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1,4.5 \mathrm{~mL})$. The reaction vessel was capped and heated at $55^{\circ} \mathrm{C}$ for 36 h . After cooling, the reaction mixture was concentrated under reduced pressure. The crude material was dissolved in 5 mL of distilled toluene and concentrated and this was repeated three times. The crude residue was used immediately to the next step without further purification.

The crude residue was dissolved in 14 mL of a mixture prepared by dissolving 2,4,6trimethylbenzoic acid $(91.0 \mathrm{mg}, 0.553 \mathrm{mmol})$ and triethylamine $(77.0 \mu \mathrm{~L}, 0.553 \mathrm{mmol})$ in 19 mL of freshly distilled toluene. The solution was heated at $85^{\circ} \mathrm{C}$ for 60 h . After cooling, the solution was directly applied on a silica column (silica, 70\% ethyl acetate hexanes, 1% triethylamine) to afford PnTX-OH 141 ($8.0 \mathrm{mg}, 11.5 \mu \mathrm{~mol}, 85 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=5.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13-3.95(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=11.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{dd}, J=4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=11.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 2 \mathrm{H})$, $3.01-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.41-1.51(\mathrm{~m}, 30 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=$
$6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) . \operatorname{MS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{NO}_{8}, 698.46$; found, 698.51.

PnTX-Fluorine (144). p-Toluenesulfonic anhydride ($19.0 \mathrm{mg}, 57.4 \mu \mathrm{~mol}$) was added to a solution of PnTX-OH $141(4.0 \mathrm{mg}, 5.74 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was concentrated under reduced pressure and used immediately to the next step without further purification.

Tetrabutylammonium fluoride (1 M in $\mathrm{THF}, 58.0 \mu \mathrm{~L}, 57.4 \mu \mathrm{~mol}$) was added to a solution of crude tosylate dissolved in freshly distilled acetonitrile ($600 \mu \mathrm{~L}$) in a microwave vial and capped. The reaction mixture was heated by microwave irradiation at $120^{\circ} \mathrm{C}$ for 30 min . The mixture was diluted with ethyl acetate $(4 \mathrm{~mL})$ and water (4 mL). The aqueous later was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over sodium sulfate, concentrated and the residue was purified by column chromatography (silica, 50% ethyl acetate - hexanes) to give fluoride 144 ($2.27 \mathrm{mg}, 3.85 \mu \mathrm{~mol}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.22$ (s, $1 \mathrm{H}), 4.79-4.72(\mathrm{~m}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.87$ (dd, $J=11.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-$ $3.58(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-1.82(\mathrm{~m}, 26 \mathrm{H}), 1.80-$ $1.61(\mathrm{~m}, 12 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=$
6.7 Hz, 3H), $0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($\left.564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-214.69(\mathrm{~s}$, 1F) MS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{63} \mathrm{FNO}_{7}, 700.45$; found, 700.42.

Azido aldehyde (148). To a solution of azido triol 98 ($33.0 \mathrm{mg}, 44.5 \mu \mathrm{~mol}$) in dichloromethane (4.5 mL) was added a solution of 2,2,6,6-tetramethylpiperidine-1-oxyl $(1.0 \mathrm{mg}, 6.4 \mu \mathrm{~mol})$ and iodobenzene diacetate $(0.112 \mathrm{~g}, 0.347 \mathrm{mmol})$ in dichloromethane $(3.0 \mathrm{~mL})$. The solution was allowed to stir at $23^{\circ} \mathrm{C}$ for 2 h and 15 min . The solution was directly applied on a silica column (silica, 60% ethyl acetate - hexanes) to afford aldehyde $148(23.0 \mathrm{mg}, 31.4 \mu \mathrm{~mol}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.43(\mathrm{~s}$, $1 \mathrm{H}), 6.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=29.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}$, $1 \mathrm{H}), 3.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{dd}, J$ $=13.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 6 \mathrm{H}), 2.00-1.47(\mathrm{~m}, 22 \mathrm{H}), 1.40(\mathrm{dd}, J=14.2,11.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. MS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{NaO}_{9}$, 762.43; found, 762.35.

Azido alkyne (156). Potassium carbonate ($21.5 \mathrm{mg}, 0.155 \mathrm{mmol}$) was added to a solution of Ohira-Bestman reagent $\mathbf{1 5 5}(30.0 \mathrm{mg}, 0.155 \mathrm{mmol})$ and aldehyde $\mathbf{1 4 8}(23.0 \mathrm{mg}, 31.8$
$\mu \mathrm{mol})$ in dry methanol $(6.9 \mathrm{~mL})$ at room temperature and the reaction mixture was stirred for 18 h . The resulting solution was diluted with dichloromethane and quenched with saturated aqueous ammonium chloride. The layers were separated and the aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated. The residue was purified by column chromatography (silica, 60% ethyl acetate - hexanes) to give alkyne 156 ($13 \mathrm{mg}, 18.4 \mu \mathrm{~mol}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=4.3,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.06(\mathrm{~m}, 7 \mathrm{H}), 2.01-1.64(\mathrm{~m}$, $18 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 5 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. MS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{NaO}_{8}$, 758.44; found, 758.41 .

PnTX-yne (143). Triphenylphosphine ($11.8 \mathrm{mg}, 45.2 \mu \mathrm{~mol}$) was added to a solution of azido alkyne $156(13.3 \mathrm{mg}, 18.1 \mu \mathrm{~mol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1,6.0 \mathrm{~mL})$. The reaction vessel was capped and heated at $55^{\circ} \mathrm{C}$ for 36 h . After cooling, the reaction mixture was concentrated under reduced pressure. The crude material was dissolved in 5 mL of distilled toluene and concentrated and this was repeated three times. The crude residue was used immediately to the next step without further purification.

The crude residue was dissolved in 13.5 mL of a mixture prepared by dissolving 2,4,6-trimethylbenzoic acid $(0.132 \mathrm{~g}, 0.804 \mathrm{mmol})$ and triethylamine $(112 \mu \mathrm{~L}, 0.804$ $\mathrm{mmol})$ in 20 mL of freshly distilled toluene. The solution was heated at $85^{\circ} \mathrm{C}$ for 60 h . After cooling, the solution was directly applied on a silica column (silica, 70\% ethyl acetate - hexanes, 1% triethylamine) to afford PnTX-yne $143(6.0 \mathrm{mg}, 8.70 \mu \mathrm{~mol}, 48 \%)$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{dd}$, $J=4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{ddd}, J=14.5,11.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69$ (dd, $J=4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ $(\mathrm{dd}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.45-1.70(\mathrm{~m}, 18 \mathrm{H}), 1.66-1.33(\mathrm{~m}$, $12 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (dd, $J=6.6,3.4 \mathrm{~Hz}, 3 \mathrm{H})$. MS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{NO}_{7}, 692.44$; found, 692.41.

PnTX-2-fluoropyridine (145). Azide 157 was prepared according to a described synthetic procedure. Alkyne $143(3.0 \mathrm{mg}, 4.34 \mu \mathrm{~mol})$ was dissolved in $300 \mu \mathrm{~L}$ of a mixture prepared by dissolving azide $157(90 \mathrm{mg}, 0.318 \mathrm{mmol})$, sodium ascorbate (23.0 $\mathrm{mg}, 0.116 \mathrm{mmol})$ and copper (II) sulfate $(9.0 \mathrm{mg}, 58.0 \mu \mathrm{~mol})$ in tert-butanol-water (4:1, 30 mL) at $23^{\circ} \mathrm{C}$. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . The resulting solution was diluted with ethyl acetate and water. The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried over sodium sulfate and
concentrated. The residue was purified by column chromatography (silica, 1% methanol - ethyl acetate, 2% triethylamine) to give triazole $145(3.46 \mathrm{mg}, 3.60 \mu \mathrm{~mol}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.76(\mathrm{dq}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~s}, 1 \mathrm{H})$, $7.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.59(\mathrm{dd}, J=5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.70(\mathrm{dd}, J=5.9,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=8.5,3.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.25(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 7 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 6 \mathrm{H})$, $1.88(\mathrm{ddt}, J=19.6,14.0,6.7 \mathrm{~Hz}, 5 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 26 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}$, $3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=$ 6.6 Hz, 3 H$)$. MS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{53} \mathrm{H}_{77} \mathrm{FN}_{5} \mathrm{O}_{10}$, 962.57; found, 962.68.

Azido methyl ester (159). Sodium chlorite ($12.0 \mathrm{mg}, 0.135 \mathrm{mmol}$) was added to a solution of aldehyde $148(10.0 \mathrm{mg}, 13.5 \mu \mathrm{~mol})$, sodium phosphate dibasic $(18.0 \mathrm{mg}$, 0.150 mmol) and 2-methoxypropene ($0.54 \mathrm{~mL}, 5.66 \mathrm{mmol}$) in tert-butanol-water (4:1, 2.2 mL) at $0{ }^{\circ} \mathrm{C}$. This solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and warmed to $23^{\circ} \mathrm{C}$ for 50 \min. The reaction mixture was diluted with ethyl acetate and water. The layers were separated and the aqueous layer was extracted with ethyl acetate $(4 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated. The crude residue was used immediately to the next step without further purification.

Trimethylsilyldiazomethane (1.13 M in hexane, $0.170 \mathrm{~mL}, 0.195 \mathrm{mmol}$) was added dropwise to a solution of the crude residue in a mixture of dichloromethane $(2.3 \mathrm{~mL})$ and methanol $(0.6 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ and stirred for 10 min . The mixture was concentrated under reduced pressure and the residue was purified by column chromatography (silica, 50% ethyl acetate - hexanes) to afford methyl ester $\mathbf{1 5 9}(8.5 \mathrm{mg}, 11.6 \mu \mathrm{~mol}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.44(\mathrm{q}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=$ $4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H})$, $3.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.32-$ $2.16(\mathrm{~m}, 4 \mathrm{H}), 2.15-1.96(\mathrm{~m}, 8 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 8 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 7 \mathrm{H}), 1.46-1.35$ $(\mathrm{m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H})$. MS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{NaO}_{10}$, 792.44; found, 792.49.

PnTX methyl ester (142). Tris(4-(trifluoromethyl)phenyl)phosphine ($25.0 \mathrm{mg}, 52.9$ $\mu \mathrm{mol})$ was added to a solution of azido methyl ester $159(16.0 \mathrm{mg}, 21.1 \mu \mathrm{~mol})$ in THF $-\mathrm{H}_{2} \mathrm{O}(3: 1,7.0 \mathrm{~mL})$. The reaction vessel was capped and heated at $55^{\circ} \mathrm{C}$ for 36 h . After cooling, the reaction mixture was concentrated under reduced pressure. The crude material was dissolved in 5 mL of distilled toluene and concentrated and this was repeated three times. The crude residue was used immediately to the next step without further purification.

The crude residue was dissolved in 17 mL of a mixture prepared by dissolving 2,4,6trimethylbenzoic acid $(0.142 \mathrm{~g}, 0.868 \mathrm{mmol})$ and triethylamine $(121 \mu \mathrm{~L}, 0.868 \mathrm{mmol})$ in 22 mL of freshly distilled toluene. The solution was heated at $85^{\circ} \mathrm{C}$ for 60 h . After cooling, the solution was directly applied on a silica column (silica, 70\% ethyl acetate hexanes, 1% triethylamine) to afford PnTX methyl ester 142 ($13.2 \mathrm{mg}, 18.1 \mu \mathrm{~mol}, 86 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J$ $=5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 4 \mathrm{H})$, $3.63(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.19(\mathrm{~m}$, $7 \mathrm{H}), 2.08-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 12 \mathrm{H}), 1.51(\mathrm{q}, J=14.9$, $13.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. MS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{NO}_{9}, 726.46$; found, 726.46.

Alcohol (S33). t-BuLi (1.7 M solution in pentane, $2.85 \mathrm{~mL}, 4.85 \mathrm{mmol}$) was added dropwise to a solution of 3,5-diphenyl-1-bromobenzene ($1.01 \mathrm{~g}, 4.85 \mathrm{mmol}$) in THF (40 $\mathrm{mL})$ at $-20^{\circ} \mathrm{C}$. After 20 minutes a solution of $\mathbf{S 3 1}(0.165 \mathrm{~g}, 0.808 \mathrm{mmol})$, prepared from $(2 R, 5 S)$-diethyl 2,5-dibromohexanedioate, ${ }^{83}$ in THF (10 mL) was added dropwise. The resulting solution was maintained at $-20^{\circ} \mathrm{C}$ for 1 h and then allowed to warm up to $23^{\circ} \mathrm{C}$ and stirred for 16 h . The solution was quenched with saturated aqueous ammonium chloride and extracted with Et2O ($4 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, evaporated under reduced pressure, and the crude product purified by
column chromatography (silica, $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - hexane) affording alcohol $\mathbf{S 3 3}(0.691 \mathrm{~g}$, $0.654 \mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.83(\mathrm{~d}, J=24.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.76(\mathrm{~d}, J=30.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}$, $13 \mathrm{H}), 7.42$ (ddd, $J=7.8,6.9,3.5 \mathrm{~Hz}, 11 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $2 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=7.9,5.0 \mathrm{~Hz}, 2 \mathrm{H})$.

Ether (S34). $\mathrm{NaH}(60 \%$ in mineral oil, $0.100 \mathrm{~g}, 3.50 \mathrm{mmol}$) was added to a solution of $\mathbf{S 3 3}(0.420 \mathrm{~g}, 0.584 \mathrm{mmol})$ in THF $(5.8 \mathrm{~mL})$ and DMF $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min iodoethane $(0.60 \mathrm{~mL}, 11.68 \mathrm{mmol})$ was added dropwise and the resulting solution was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate and then evaporated under reduced pressure. The crude material was purified by column chromatography (silica, $30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - hexane) affording $\mathbf{S 3 4}$ (0.405 $\mathrm{g}, 0.362 \mathrm{mmol}, 62 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.74(\mathrm{~s}, 6 \mathrm{H}), 7.71(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 17 \mathrm{H}), 7.38(\mathrm{td}, J=7.2,6.4,1.2 \mathrm{~Hz}$, 9H), $7.36-7.28(\mathrm{~m}, 17 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{p}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.85(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.

Ylide (180). Methyl triflate ($27.0 \mu \mathrm{~L}, 0.242 \mathrm{mmol}$) was added to a solution $\mathbf{S 3 4}$ (90.0 $\mathrm{mg}, 80.9 \mu \mathrm{~mol})$ and proton sponge $(35.0 \mathrm{mg}, 80.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . The resulting reaction mixture was concentrated and directly purified by column chromatography (30\% ethyl acetate hexanes) to afford $\mathbf{1 8 0}(89.0 \mathrm{mg}, 69.6 \mu \mathrm{~mol}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.55-7.48(\mathrm{~m}$, $5 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 24 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 30 \mathrm{H}), 6.92(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{t}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ (s, 3H), $2.79(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 2 \mathrm{H}), 1.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Epoxide (188). Phosphazene base $\mathrm{P}_{2}-t \mathrm{Bu}(2 \mathrm{M}$ in THF, $34.0 \mu \mathrm{~L}, 68.4 \mu \mathrm{~mol}$) was added to a solution of aldehyde $\mathbf{1 8 7}(10.0 \mathrm{mg}, 68.4 \mu \mathrm{~mol})$ and ylide $\mathbf{1 8 0}(88.0 \mathrm{mg}, 68.4$ $\mu \mathrm{mol})$ in THF $(3.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. The resulting solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The two phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate, evaporated and purified by column chromatography (silica, 100\% hexane, 3\% triethyl amine) to afford $188(9.8 \mathrm{mg}, 60.9 \mu \mathrm{~mol}, 89 \%, 85 \% \mathrm{ee}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.62(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{ddd}, J=4.2,2.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=5.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=5.2$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.

Alkene (194). n - BuLi (2.13 M in hexane, $434 \mu \mathrm{~L}, 0.924 \mathrm{mmol}$) was added to a mixture of methyltriphenylphosphonium bromide $(0.417 \mathrm{~g}, 1.17 \mathrm{mmol})$ in THF $(18 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. After 45 min , a solution of aldehyde 148 ($36.0 \mathrm{mg}, 48.7 \mu \mathrm{~mol}$) dissolved in THF (6.4 mL total with rinses) was added dropwise. After 30 min the solution was allowed to warm to $-10{ }^{\circ} \mathrm{C}$ and stirred for 20 min . Quench with a saturated aqueous solution of ammonium chloride. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by column chromatography (silica, 60% ethyl acetate - hexanes) to give $194(17.0 \mathrm{mg}, 24.4 \mu \mathrm{~mol}, 50 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; $\delta(\mathrm{ppm}): 6.28(\mathrm{dd}, J=17.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=25.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{dt}, J=15.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=17.6,7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}$, $3 H), 2.25-1.61(\mathrm{~m}, 33 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

PnTX G (193). Triphenylphosphine ($16.0 \mathrm{mg}, 59.3 \mu \mathrm{~mol}$) was added to a solution of $194(17.5 \mathrm{mg}, 23.7 \mu \mathrm{~mol})$, triethylamine $(33 \mu \mathrm{~L}, 0.237 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1,8.0$ $\mathrm{mL})$. The reaction vessel was capped and heated at $55^{\circ} \mathrm{C}$ for 36 h . After cooling, the reaction mixture was concentrated under reduced pressure. The crude material was dissolved in 5 mL of distilled toluene and concentrated and this was repeated three times. The crude residue was used immediately to the next step without further purification.

The crude residue was dissolved in 19 mL of a mixture prepared by dissolving 2,4,6trimethylbenzoic acid $(0.160 \mathrm{~g}, 0.972 \mathrm{mmol})$ and triethylamine $(136.0 \mu \mathrm{~L}, 0.972 \mathrm{mmol})$ in 25 mL of freshly distilled toluene. The solution was heated at $85^{\circ} \mathrm{C}$ for 60 h . After cooling, the solution was directly applied on a silica column (silica, 60\% ethyl acetate hexanes) to afford PnTX G 193 ($15.9 \mathrm{mg}, 21.8 \mu \mathrm{~mol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.28(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.11(\mathrm{~m}, 8 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98$ $-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.56(\mathrm{~m}, 10 \mathrm{H}), 1.56-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Tetraol (192). AD-mix- α ($32.0 \mathrm{mg}, 2 \mathrm{~mol} \%$) was added to a solution of $193(8.0 \mathrm{mg}$, $11.5 \mu \mathrm{~mol})$ in tert-butanol $(0.6 \mathrm{~mL})$ and water $(0.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was quenched with aqueous solution of sodium sulfite $(5 \mathrm{~mL})$ and stirred at $23^{\circ} \mathrm{C}$ for 30 min . The resulting solution was diluted with ethyl acetate and the two layers were separated. The aqueous layer was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the combined organic layers were dried with sodium sulfate and concentrated. The crude residue was purified by column chromatrography (silica, 60% ethyl acetate - hexanes) to afford tetraol 192 ($15.9 \mathrm{mg}, 21.8 \mu \mathrm{~mol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (hept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.90-$ $3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (ddd, $J=18.0,11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{t}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dd}, J$ $=15.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 20 \mathrm{H}), 1.47$ (dd, $J=13.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{dd}, J=6.8,2.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 6 \mathrm{H})$.

Parameter	Value
1 Title	ky-4-2-a
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	2015-04-16T11:19:31
5 Spectrometer Frequency	499.86

Parameter	Value
1 Title	ky-4-35-d
2 Spectrometer	inova
3 Number of Scans	16
4 Acquisition Date	2015-05-15T08:48:57
5 Spectrometer Frequency 499.86	

Parameter	Value
1 Title	ky-4-50-a
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	2015-06-22T09:25:41
5 Spectrometer Frea	499.86

Parameter	Value
1 Title	ky-4-84-b
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	2015-07-21T09:21:10
5 Spectrometer Frequency	599.64

Parameter	Value
1 Title	ky-4-98-b
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	2015-08-06T14:48:37
5 Spectrometer Freq	599.64

Parameter	Value
1 Title	ky-4-114-a
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	$2015-08-28 \mathrm{~T} 16: 40: 05$
5 Spectrometer Frequency	599.64

Parameter	Value
1 Title	ky－4－125－b
2 Spectrometer	inova
3 Number of Scans	8
4 Acquisition Date	2015－09－02T08：48：11
5 Spectrometer Frequency 599.64	

	$\stackrel{\underset{\sim}{m}}{\underset{m}{2}}$				$\begin{aligned} & \text { 'T } \\ & \underset{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { T' } \\ & \text { बू } \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{M} \\ & \underset{\sim}{0} \end{aligned}$					\mathfrak{y}		$\begin{aligned} & 1 \\ & \hat{e} \\ & \stackrel{y}{n} \end{aligned}$	トリヤザ 0 moom ～べ～べか		$\stackrel{\square}{\stackrel{1}{6}}$	
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		4.0	$\mathrm{pm})^{3.5}$	3.0	2.5	2.0	1.5		1.0	0.5	0.0	－0．5

Parameter	Value
1 Title	ky-5-61-a-b-c
2 Spectrometer	inova
3 Number of Scans	40
4 Acquisition Date	$2016-02-24 T 09: 01: 02$
5 Spectrometer Frequepcy 599.64	

Parameter	Value
1 Title	ky-5-159-a-F19
2 Spectrometer	vnmrs
3 Number of Scans	24
4 Acquisition Date	$2016-05-27 \mathrm{~T} 15: 44: 47$
5 Spectrometer Frequency 376.11	

Parameter	Value 1 Title
2 Spectrometer	ky-5-169-b inova
3 Number of Scans	24
4 Acquisition Date	$2016-06-07 \mathrm{~T} 17: 12: 12$
5 Spectrometer Frequency 599.64	

Parameter	Value 1 Title
2 Spectrometer	ky-5-30-b
inova	
3 Number of Scans	28
4 Acquisition Date	$2016-02-02 \mathrm{~T} 16: 40: 30$
5 Spectrometer Frequency 599.64	

Parameter	Value		
1	Title		
2	kpectrometer		ky-5-57-a
:---	:---		
inova			

188

References

${ }^{1}$ Dalisay, D. S.; Morinaka, B. I.; Skepper, C. K.; Molinski, T.F. J. Am. Chem. Soc. 2009, 131, 7552-7553.
${ }^{2}$ (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126. (b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422. (c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879. (d) MacMillan, J. B.; Xiong-Zhou, G.; Skepper, C. K.; Molinski, T. F. J. Org. Chem. 2008, 73, 3699. (e) Skepper, C. K.; MacMillan, J. B.; Zhou, G. X.; Masuno, M. N.; Molinski, T. F. J. Am. Chem. Soc. 2007, 129, 4150.
${ }^{3}$ (a) MacMillan, J. B.; Xiong-Zhou, G.; Skepper, C. K.; Molinski, T. F. J. Org. Chem. 2008, 73, 3699. (b) Skepper, C. K.; MacMillan, J. B.; Zhou, G. X.; Masuno, M. N.; Molinski, T. F. J. Am. Chem. Soc. 2007, 129, 4150.
${ }^{4}$ (a) Zampella, A.; D'Auria, M. V.; Minale, L.; Debitus, C.; Roussakis, C. J. Am. Chem. Soc. 1996, 118, 11085. (b) Zampella, A.; D’Auria, M. V.; Minale, L.; Debitus, C. Tetrahedron Lett. 1997, 53, 3243. (c) Burch, J. D.; Evans, D. A. Org. Lett. 2001, 3, 503505. (d) (a) Trost, B. M.; Dirat, O.; Gunzner, J. L. Angew. Chem., Int. Ed. 2002, 41, 841843. (b) Evans, D. A.; Hu, J.; Burch, J. D.; Jaeschke, G. J. Am. Chem. Soc. 2002, 124, 5654-5655. (c) Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 10396-10415. (d) Paterson, I.; Davies, R. D. M.; Heimann, A. C.; Marquez, R.; Meyer, A. Org. Lett. 2003, 5, 4477-4480. (e) Huang, H.; Panek, J. S. Org. Lett. 2004, 6, 4383-4385. (f) Evans, D. A.; Burch, J. D.; Hu, E.; Jaeschke, G. Tetrahedron. 2008, 64, 4671-4699. (g) Carpenter, J.; Northrup, A. B.; Chung, D.; Wiener, J. J. M.; Kim, S.-G.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2008, 47, 3568-3572.
${ }^{5}$ Chlorocyclopropyl alcohol was reported in the synthetic study towards callipeltoside A.
Valazquez, F.; Henrique, T. C.; Olivo, H. F. Org. Lett. 2000, 2, 4055-4058.
${ }^{6}$ Flores, B.; Molinski, T. F. Org. Lett. 2011, 13, 3932-3935.
${ }^{7}$ (a) Shaner, C. E.; Ferrence, G. M.; Mitchell, A. T. Synlett 2013, 24, 1861-1864. (b)
Olson, C. A.; Shaner, C. E.; Roche, S. C.; Ferrence, G. M.; Mitchell, A. T. Synthesis 2015, 47, 2756-2766.
${ }^{8}$ Xiao, Q.; Young, K.; Zakarian, A. Org. Lett. 2013, 15, 3314-3317.
${ }^{9}$ (a) Duboudin, J. G.; Jousseaume, B.; Saux, A. J. Organomet. Chem. 1979, 168, 1-11.
(b) Liu, F.; Negishi, E. J. Org. Chem. 1997, 62, 8591-8594.
${ }^{10}$ Boeckman, R. K., Jr.; Thomas, A. J. J. Org. Chem. 1982, 47, 2823-2824.
${ }^{11}$ (a) Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38, 3022-
3034. (b) Clemens, R. J.; Witzeman, J. S. J. Am. Chem. Soc. 1989, 111, 2186-2193.
${ }^{12}$ Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38, 3022-3034. (b)
Clemens, R. J.; Witzeman, J. S. J. Am. Chem. Soc. 1989, 111, 2186-2193.
${ }^{13}$ (a) Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans, D. A. J. Am. Chem. Soc. 2007, 129, 8968-8969 (b) Yang, Z.; Shannon, D.; Truong, V.-L.; Deslongchamps, P. Org. Lett. 2002, 4, 4693-4696. (c) Petrovic, D.; Bruckner, R. Org. Lett. 2011, 13, 65246527. (d) Xue, H.; Yang, J.; Gopal, P. Org. Lett. 2011, 13, 5696-5699.
${ }^{14}$ (a) Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774-3776. (b) Stivala, C. E.; Zakarian, A. Org. Lett. 2009, 11, 839-842. (c) Araoz, R.; Servent, D.; Molgo, J.;

Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A. J. Am. Chem. Soc. 2011, 133, 10499-10511. (d) Stivala, C. E.; Zakarian, A. Tetrahedron Lett. 2007, 48, 6845-6848.
${ }^{15}$ (a) Duboudin, J. G.; Jousseaume, B.; Saux, A. J. Organomet. Chem. 1979, 168, 1-11. (b) Liu, F.; Negishi, E. J. Org. Chem. 1997, 62, 8591-8594. (c) Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 10772- 10773. (d) Clausen, D. J.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2011, 50, 5178-5181.
${ }^{16}$ (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783-3784. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179. (c) Dewi, P.; Randl, S.; Blechert, S. Tetrahedron Lett. 2005, 46, 577-580.
${ }^{17}$ (a) N. Yoshikawa, M. Shibasaki, Chem. Rev. 2002, 102, 2187-2209; (b) G. A. Molander, J. B. Etter, Tetrahedron Lett. 1984, 25, 3281-3284; (c) G. A. Molander, G. Hahn, J. Org. Chem. 1986, 51, 1135-1138; (d) H. B. Kagan, J. L. Namy, Tetrahedron 1986, 42, 6573-6614; (e) Z. Hou, Y. Fujiwara, H. Taniguchi, J. Org. Chem. 1988, 53, 3118-3120; (f) M. F. Lappert, J. Organomet. Chem. 1995, 489, C92-C93.
${ }^{18}$ (a) M. Terada, H. Matsuzawa, K. Mikami, Angew. Chem. Int. Ed. 2002, 41, 35543571; Angew. Chem. 2002, 114, 3704; (b) F. Bonadies, A. O. Lattanzi, R. Liliana, S. Pesci, A. Scettri, Tetrahedron Lett. 1993, 34, 7649-7650; (c) U. Groth, M. Jeske, Angew. Chem. Int. Ed. 2000, 39, 574-576; Angew. Chem. 2000, 112, 586; (d) J. Kratsch, P. W. Roesky, Angew. Chem. Int. Ed. 2014, 53, 376-383; (e) A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 497-500; Angew. Chem. 2006, 118, 511; (f) S.

Kobayashi, Synlett 1994, 9, 689-701; (g) F. Bonadies, A. Lattanzi, L. R. Orelli, S. Pesci, A. Scettri, Tetrahedron Lett. 1993, 34, 7649-7650; (h) O. Ujikawa, J. Inanaga, M. Yamaguchi, Tetrahedron Lett. 1989, 30, 2837-2840; (i) F. B. Etter, G. A. Molander, J. Am. Chem. Soc. 1987, 109, 6556-6558; (j) H. C. Aspinall, Chem. Rev. 2002, 102, 18071850.
${ }^{19}$ a) A. Nakao, K. Hayashi, Y. Fukuda, J. Chem. Soc., Dalton Trans. 2002, 4, 527-533;
b) D. Li, J. Wang, L. Kang, T. Wu, Y. Li, X. You, C. Li, Eur. J. Inorg. Chem. 2009, 32, 4844-4849; c) Q. Mei, B. Tong, Acta Crystallogr. Sect. E 2010, 66, m18; d) K. Hayashi, N. Nagao, K. Harada, M. Haga, Y. Fukuda, Chem. Lett. 1998, 27, 1173-1174.
${ }^{20}$ We found only one example for the use of a chiral terpyridine ligand in asymmetric catalysis: W. Wong, W. Lee, L. Cheng, W. Wong, H. Kwong, Tetrahedron: Asymmetry 2001, 12, 2683-2694.
${ }^{21}$ (a) Largy, E.; Hamon, F.; Rosu, F.; Gabelica, V.; De Pauw, E.; Guédin, A.; Mergny, J.; Teulade-Fichou, M., Chem. Eur. J., 2011, 17, 13274-13283. (b) Wong, W.; Lee, W.; Cheng, L.; Wong, W.; Kwong, H., Tetrahedron: Asymmetry, 2001, 12, 2683-2694.
${ }^{22}$ (a) B. Zhao, T.-P. Loh, Org. Lett. 2013, 15, 2914. (b) R. L. Melby, J. N. Rose, E. Abramson, J. C. Caris, J. Am. Chem. Soc. 1964, 86, 5117-5125; (c) C. Freund, W. Porzio, U. Giovanella, F. Vignali, M. Pasini, S. Destri, Inorg. Chem. 2011, 50, 54175429; (d) C. J. Kuehl, R. E. Da Re, B. L. Scott, D. E. Morris, K. D. John, Chem. Commun. 2003, 18, 2336-2337; (e) D. Li, C. Li, J. Wang, L. Kang, T. Wu, Y. Li, X. You, Eur. J. Inorg. Chem. 2009, 32, 4844-4849.
${ }^{23}$ Young, K.; Xiao, Q.; Zakarian, A. J. Am. Chem. Soc. 2015, 137, 5907-5910.
${ }^{24}$ Commercially available (+)- β-citronellene from Sigma-Aldrich comes as $70 \% e e$. Instead, $(+)-\beta$-citronellene can be made in four steps from geraniol that starts with Noyori asymmetric hydrogenation to the corresponding citronellol in upwards of $95 \% \mathrm{ee}$. See following references: Takaya, H., Ohta, T., Sayo, N., Kumobayashi, H., Akutagawa, S., Inoue, S., Kasahara, I. \& Noyori, R. (1987) J. Am. Chem. Soc. 109, 1596-1597, and correction (1987) 109, 4129.
${ }^{25}$ Kister, J.; Mioskowski, C. J. Org. Chem. 2007, 72, 3925.
${ }^{26}$ Perryman, M. S.; Harris, M. E.; Foster, J. L.; Joshi, A.; Clarkson, G. J.; Fox, D. J. Chem. Commun. 2013, 49, 10022.
${ }^{27}$ Xiao, Q.; Young, K.; Zakarian, A. Org. Lett. 2013, 15, 3314.
${ }^{28}$ (a) Tan, C.-H.; Holmes, A. B. Chem. Eur. J. 2001, 7, 1845. (b) Araoz, R.; Servent, D.;

Molgó, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A. J. Am. Chem. Soc. 2011, 133, 10499. (c) Lu, C.-D.; Zakarian, A. Org. Lett. 2007, 9, 3161.
${ }^{29}$ (d) Beaulieu, L.-P. B.; Zimmer, L. E.; Gagnon, A.; Charette, A. B. Chem. Eur. J. 2012, 18, 14784.
${ }^{30}$ Liu, Y.; Wang, Q.; Zhang, Q.; Huang, J.; Nie, L.; Chen, J.; Cao, W.; Wu, X. J. Org. Chem. 2013, 78, 12009.
${ }^{31}$ Parenty, A.; Moreau, X.; Niel, G.; Campagne, J. M. Chem. Rev. 2013, 113, PR1-PR40.
${ }^{32}$ Palmer, C. F.; Parry, P. K.; Roberts, S. M.; Sik, V. J. Chem. Soc., Perkin Trans. I 1992, 8, 1021.
${ }^{33}$ Stivala, C. E.; Benoit, E.; Araoz, R.; Servent, D.; Novikov, A.; Molgo, J.; Zakarian, A. Nat. Prod. Rep. 2015, 32, 411-435.
${ }^{34}$ (a) Rhodes, L.; Smith, K.; Selwood, A. I.; McNabb, P.; van Ginkel, R.; Holland, P. T.; Munday, R. Harmful Algae 2010, 9, 384-389.
${ }^{35}$ Selwood, A. I.; Miles, C. O.; Wilkins, A. L.; van, G. R.; Munday, R.; Rise, F.;
McNabb, P. J. Agric. Food Chem. 2010, 58, 6532-6542.
${ }^{36}$ (a) Otofuji, T.; Ogo, A.; Koishi, J.; Matsuo, K.; Tokiwa, H.; Yasumoto, T.; Nishihara, K.; Yamamoto, E.; Saisho, M.; Kurihara, Y.; Hayashida, K. Food Sunit. Res. 1981, 31, 76-83. (b) Department of Public Health, Fukuoka Prefecture. Food Sanit. Res. 1976, 26, 11-20. Zheng, S. Z.; Huang, F. L.; Chen, S.C.; Tan, X. F.; Zuo, J. B.; Peng, J.; Xie, R. W. Zhongguo Haiyang Yaowu (Chin. J. Mar. Drugs) 1990, 33, 33-35.
${ }^{37}$ Uemura, D.; Chou, T.; Haino, T.; Nagatsu, A.; Fukuzawa, S.; Chen, Z. H. J. Am. Chem. Soc., 1995, 117, 1155-1156.
${ }^{38}$ Chou, T.; Haino, T.; Nagatsu, A.; Fukuzawa, S.; Zheng, S.; Chen, H.; Uemura, D. J. Am. Chem. Soc. 1995, 117, 1155-1156.
${ }^{39}$ (a) Takada N, Umemura N, Suenaga K, Chou T, Nagatsu A, Haino T, Yamada K, Uemura D. Tetrahedron Lett. 2001, 42, 3491. (b) Takada N, Umemura N, Suenaga K, Uemura D. Tetrahedron Lett. 2001, 42, 3495.
${ }^{40}$ Chou, T.; Haino, T.; Kuramoto, M.; Uemura, D., Tetrahedron Letters, 1996, 37, 40274030.
${ }^{41}$ Takada, J.; Umemura, N.; Suenaga, K.; Chou, T.; Nagatsu, A.; Haino, T.; Yamada, K.; Uemura, D., Tetrahedron Letters, 2001, 42, 3491-3494. (b) Takada, N.; Umemura, N.; Suenaga, K.; Uemura, D., Tetrahedron Letters, 2001, 42, 3495-3497.
${ }^{42}$ Alexander, J.; Benford, D.; Boobis, A.; Ceccetallie, S.; Cravedi, J-F.; Domenico, A. D.; Doerge, D.; Dogliotti, E.; Elder, L.; Farmer, P.; Filipic, M.; Fink-Gremmels, J.; Furts, P.; Guerin, T.; Knutsen, H. K.; Machala, M.; Mutti, A.; Schlatter, J.; van Leeuwen, R., European Food Safety Authority (EFSA) Journal, 2010, 8, 1628-1639.
${ }^{43}$ Alexander, J.; Benford, D.; Boobis, A.; Ceccetallie, S.; Cravedi, J-F.; Domenico, A. D.; Doerge, D.; Dogliotti, E.; Elder, L.; Farmer, P.; Filipic, M.; Fink-Gremmels, J.; Furts, P.; Guerin, T.; Knutsen, H. K.; Machala, M.; Mutti, A.; Schlatter, J.; van Leeuwen, R., European Food Safety Authority (EFSA) Journal, 2010, 8, 1628-1639.
${ }^{44}$ Stivala, C. E.; Benoit, E.; Araoz, R.; Servent, D.; Novikov, A.; Molgo, J.; Zakarian, A. Nat. Prod. Rep. 2015, 32, 411-435.
${ }^{45}$ MacKinnon, S. L.; Cembella, A. D.; Burton, I. W.; Lewis, N.; LeBlanc, P.; Walter, J. A., J. Org. Chem. 2006, 71, 8724-8731.
${ }^{46}$ Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Junliang, H.; Kishi, Y., J. Am. Chem. Soc. 2006, 128, 7463-7465. (b) Hao, J.; Matsuura, F.; Masaki, K.; Kishi, Y.; Uemura, D.; Asai, N.; Iwashita, T., J. Am. Chem. Soc. 2006, 128, 7742-7743. (c) McCauley, J. A.; Nagasawa, K.; Lander, P. A.; Mischke, S. G.; Semones, M. A.; Kishi, Y., J. Am. Chem. Soc. 1998, 120, 7647-7648.
${ }^{47}$ (a) Ishihara, J.; Sugimoto, T.; Murai, A., Synlett. 1998, 603-606. (b) Sugimoto, T.; Ishihara, J.; Murai, A., Tetrahedron Lett. 1997, 38, 7379-7382. (c) Sugimoto, T.; Ishihara, J.; Murai, A., Synlett. 1999, 541-544.
${ }^{48}$ Sakamoto, S.; Sakazaki, H.; Hagiwara, K.; Kamada, K.; Ishii, K.; Noda, T.; Inoue, M.; Hirama, M., Angew. Chem., Int. Ed. 2004, 43, 6505-6510.
${ }^{49}$ Nakamura, S.; Kikuchi, F.; Hashimoto, S., Angew. Chem., Int. Ed. 2008, 47, 70917094.
${ }^{50}$ (a) Stivala, C. E.; Zakarian, A., J. Am. Chem. Soc. 2008, 130, 3774-3776. (b) Araoz,
R.; Servent, D.; Molgo, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A., J. Am. Chem. Soc. 2011, 133, 10499-10511.
${ }^{51}$ Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Junliang, H.; Kishi, Y., J. Am. Chem. Soc. 2006, 128, 7463-7465. (b) Hao, J.; Matsuura, F.; Masaki, K.; Kishi, Y.; Uemura, D.; Asai, N.; Iwashita, T., J. Am. Chem. Soc. 2006, 128, 7742-7743. (c) McCauley, J. A.; Nagasawa, K.; Lander, P. A.; Mischke, S. G.; Semones, M. A.; Kishi, Y., J. Am. Chem. Soc. 1998, 120, 7647-7648.
${ }^{52}$ (a) Ishihara, J.; Horie, T.; Murai, A. Synlett 1998, 603-606. (b) Sugimoto, T.; Ishihara, J.; Murai, A. Tetrahedron Lett. 1997, 38, 7379-7382. (c) Sugimoto, T.; Ishihara, J.;

Murai, A. Synlett 1999, 541-544.
${ }^{53}$ (a) Stivala, C. E.; Zakarian, A., J. Am. Chem. Soc. 2008, 130, 3774-3776. (b) Araoz, R.; Servent, D.; Molgo, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A., J. Am. Chem. Soc. 2011, 133, 10499-10511.
${ }^{54}$ Changeux, J. P., J. Biol. Chem. 2012, 287, 40207-40215.
${ }^{55}$ Kalamida, D.; Poulas, K.; Avramopoulou, V.; Fostieri, E.; Lagoumintzis, G.; Lazaridis, K.; Sideri, A.; Zouridakis, M.; Txartos, S. J., FEBS J. 2007, 274, 3799-3845.
${ }^{56}$ Alexander, S. P.; Peters, J. A.; Kelly, E.; Marrion, N.; Benson, H. E.; Faccenda, E.; Pawson, A. J.; Sharman, J. L.; Southan, C.; Davies, J. A., Br. J. Pharmacol. 2015, 172, 5870-5903.
${ }^{57}$ (a) Wong, D. F.; Kuwabara, H.; Kim, J.; Brasic, J. R.; Chamroonrat, W.; Gao, Y.; Valentine, H.; Willis, W.; Mathur, A.; McCaul, M. E.; Wand, G.; Gean, E. G.; Dannals, R. F.; Horti, A. G. Journal of Nuclear Medicine, 2013, 54, 1-7. (b) Chokkathukalam, A.; Kim, D. H.; Barrett, M. P.; Breitling, R.; Creek, D. J. Bioanalysis 2014, 6, 511-524. (d) Alauddin, M. M. Am. J. Nucl. Med. Mol. Imaging. 2012; 2, 55-76. (e) Klein, S.; Heinzle, E. WIREs Syst. Biol. Med. 2012, 4, 261-272.
${ }^{58}$ Posada, I.; Lopez-Hernandez, B.; Cena, V., Curr. Neuropharmacol. 2013, 11, 298-314.
${ }^{59}$ (a) Schoenheimer, R.; Rittenberg, D. J. Biol. Chem. 1935, 111, 163-168. (b) Schoenheimer, R.; Rittenberg, D. J. Biol. Chem. 1937, 121, 235-253.
${ }^{60}$ Chokkathakalam, A.; Kim, D-H.; Barrett, M. P.; Breitling, R.; Creek, D. J., Bioanalysis, 2014, 6, 511-514. Iglesias, J.; Sleno, L.; Volmer, D. A., Curr. Drug Metab. 2012, 13, 1213-1225.
${ }^{61}$ Elmore, C. S.; Bragg, R. A. Bioorganic \& Medicinal Chemistry Letters 2015, 25, 167171.
${ }^{62}$ Solon, E. G.; Kraus, L. J Pharmacol Toxicol Methods 2001, 46, 73-81.
${ }^{63}$ Ma, Y.; Kiesewetter, D. O.; Lang, L.; Gu, D.; Chen, X. Curr Drug Metab. 2010, 11, 483-493.
${ }^{64}$ Pichikaa, R.; Easwaramoorthya, B.; Collinsa, D.; Christianb, B. T.; Shib, B.; Narayananb, T. K.; Potkina, S. G.; Mukherjeea, J. Nuclear Medicine and Biology 2006, 33, 295-304.
${ }^{65}$ (a) Robertson, D.W.; Bloomquist, W.; Cohen, M. L.; Reid, L. R.; Schenck, K.; Wong, D. T. J. Med. Chem. 1990, 33, 3176-3181, (b) Martín, A.; Szczupak, B.; Gomez-Vallejo, V.; Domerc, M.; Cano, A.; Padro, D.; Munoz, C.; Higuchi, M.; Matute, C.; Llop, J. The Journal of Neuroscience, 2015, 5, 5998-6009.
${ }^{66}$ Ostlund, R. E.; Seemayer, R.; Gupta, S.; Kimmel, R.; Ostlund, E. L.; Sherman, W. R., J. Biol. Chem. 1996, 271, 10073-10078.
${ }^{67}$ Kim, D-Y.; Kim, H-J.; Yu, K-H, Min, J-J., Biorg. Med. Chem. Lett. 2012, 22, 319-322.
${ }^{68}$ Kuboyama, T.; Nakahara, M.; Yoshino, M.; Cui, Y.; Sako, T.; Wada, Y.; Imanishi, T.; Obika, S.; Watanabe, Y.; Suzuki, M.; Doi, H., Bioorg. and Med. Chem. 2011, 19, 249255.
${ }^{69}$ Muller, S. B.; Liepold, G.; Roth, J.; Bestmann, J., Synlett. 1996, 6, 521-522.
${ }^{70}$ Schrigten, D.; Breyholz, H-J.; Wagner, S.; Hermann, S.; Schober, O.; Schaefers, M.; Haufre, G.; Kopka, K., J. Med. Chem. 2012, 55, 223-232.
${ }^{71}$ Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B., J. Am. Chem. Soc. 2005, 127, 210-216.
${ }^{72}$ Wu, H.; Liu, B.; Kou, F.; Jia, F.; Yuan, J.; Bai, Y. J. Chin. Chem. Soc. 2012, 59, 836-
842. (b) Chuanopparat, N.; Kongkathip, N.; Kongkathip, B. Tet. Lett. 2012, 53, 62096211.
${ }^{73}$ Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Hao, J.; Kishi, Y. J. Am. Chem. Soc. 2006, 128, 7463-7465.
${ }^{74}$ Hao, J.; Matsuura, F.; Kishi, Y.; Kita, M.; Uemura, D.; Asai, N.; Iwashita, T. J. Am. Chem. Soc. 2006, 128, 7742-7743.
${ }^{75}$ (a) Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. Sharpless, B. K. J. Org. Chem. 1992, 57, 2771-2773. (b) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. J. Am. Chem. Soc. 2008, 130, 16864-16866.
${ }^{76}$ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, B. K. Chemical Reviews, 1994, 94, 2483-2547.
${ }^{77}$ Van, T. N.; De Kimpe, N. Tetrahedron 2000, 56, 7969-7973.
${ }^{78}$ (a) Duboudin, J. G.; Jousseaume, B., Saux, A. J. Organomet. Chem. 1979, 168, 1-11.
(b) Liu, F.; Negishi, E. J. Org. Chem. 1997, 62, 8591-8594.
${ }^{79}$ Takaya, H.; Ohta, T.; Inoue, S.; Tokunaga, M.; Kitamura, M.; Noyori, R. Org. Synth. 1995, 72, 74.
${ }^{80}$ (a) Tan, C-H.; Holmes, A. B. Chem. Eur. J. 2001, 7, 1845-1854. (b) Araoz, R.;
Servent, D.; Molgó, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.;
Zakarian, A. J. Am. Chem. Soc. 2011, 133, 10499-10511.
${ }^{81}$ Beaulieu, L-P, B.; Zimmer, L. E.; Gagnon, A.; Charette, A. B. Chem. Eur. J. 2012, 18, 14784-14791.

[^0]:

[^1]:

[^2]: $\begin{array}{lllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

