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COVARIATE BALANCING PROPENSITY SCORE
FOR A CONTINUOUS TREATMENT: APPLICATION

TO THE EFFICACY OF POLITICAL ADVERTISEMENTS

BY CHRISTIAN FONG, CHAD HAZLETT, AND KOSUKE IMAI

Stanford University, University of California, Los Angeles and
Princeton University

Propensity score matching and weighting are popular methods when es-
timating causal effects in observational studies. Beyond the assumption of
unconfoundedness, however, these methods also require the model for the
propensity score to be correctly specified. The recently proposed covariate
balancing propensity score (CBPS) methodology increases the robustness to
model misspecification by directly optimizing sample covariate balance be-
tween the treatment and control groups. In this paper, we extend the CBPS
to a continuous treatment. We propose the covariate balancing generalized
propensity score (CBGPS) methodology, which minimizes the association
between covariates and the treatment. We develop both parametric and non-
parametric approaches and show their superior performance over the standard
maximum likelihood estimation in a simulation study. The CBGPS methodol-
ogy is applied to an observational study, whose goal is to estimate the causal
effects of political advertisements on campaign contributions. We also pro-
vide open-source software that implements the proposed methods.

1. Introduction. Propensity score methods are popular among researchers
who wish to infer causal effects in observational studies [e.g., Rosenbaum and
Rubin (1983, 1984, 1985), Robins, Hernán and Brumback (2000), Hirano, Imbens
and Ridder (2003)]. Under the assumption of unconfoundedness, propensity score
matching and weighting methods aim to balance observed covariates across dif-
ferent values of a treatment variable [e.g., Imbens (2004), Ho et al. (2007), Stuart
(2010)].

Despite the popularity of propensity score methods, the vast majority of their
applications have been confined to a binary treatment. In particular, propensity
score methods have rarely been applied to a continuous treatment. This dearth of
applications to nonbinary treatments is not due to a lack of available methods.
For example, researchers proposed inverse-probability weighting, subclassifica-
tion, and regression adjustment based on the estimated density of the realized con-
tinuous treatment given the covariates to formulate weights [e.g., Robins, Hernán
and Brumback (2000), Imai and van Dyk (2004), Hirano and Imbens (2004)]. All
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of these promising methods, however, presume the accurate estimation of the un-
known generalized propensity score. Unfortunately, this is not a trivial assump-
tion. Scholars have found that even in the case of binary treatment where relatively
straightforward diagnostics tools are available, the empirical results can be sen-
sitive to model misspecification [e.g., Smith and Todd (2005), Kang and Schafer
(2007)]. This problem is exacerbated for a continuous treatment where checking
covariate balance is more difficult and less intuitive because the treatment variable
takes a continuum of values.

An important practical consequence of this complication is that applied re-
searchers across social and medical sciences often dichotomize a continuous treat-
ment in order to utilize propensity score methods [e.g., Donohue III and Ho (2007),
Harder, Stuart and Anthony (2008), Boyd, Epstein and Martin (2010), Nielsen
et al. (2011), De and Ratha (2012)]. In Section 2, we introduce an observational
study, in which the goal is to estimate the causal effects of political advertisements
on campaign contributions [Urban and Niebler (2014)]. In the original study, the
authors dichotomized the number of advertisements, which is essentially a contin-
uous variable, into a binary treatment using an arbitrary threshold of 1000 adver-
tisements. Using this dichotomized treatment variable, they conducted propensity
score matching by using the logistic regression to estimate the propensity score.
The dichotomization of treatment variable results in the loss of information, which
can compromise substantive insights gained from the data analysis.

In Section 3, we fill this gap between methodological and applied research and
develop a new method to estimate the propensity score for a continuous treatment.
In particular, we propose to directly minimize the association between a continu-
ous treatment variable and covariates when estimating the generalized propensity
score. In recent years, several researchers have proposed methods that estimate
propensity scores by optimizing covariate balance [e.g., McCaffrey, Ridgeway and
Morral (2004), Tan (2010), Hainmueller (2012), Graham, Pinto and Egel (2012),
Imai and Ratkovic (2014), Chan, Yam and Zhang (2016), Zhu, Coffman and Ghosh
(2015), Zubizarreta (2015), Hazlett (2016), Fan et al. (2016), Zhao (2016)]. While
these methods improve the robustness of propensity score methods, most of them
are not applicable to a continuous treatment. The only exception we find is the
method of Zhu, Coffman and Ghosh (2015), which extends the generalized boost-
ing method of McCaffrey, Ridgeway and Morral (2004) to a continuous treat-
ment. In this paper, we extend the covariate balancing propensity score (CBPS)
methodology of Imai and Ratkovic (2014) to a continuous treatment [see Fan et al.
(2016) for the theoretical properties of CBPS, and Imai and Ratkovic (2015) and
Zhao (2016) for other extensions]. We call this extension the Covariate Balancing
Generalized Propensity Score (CBGPS) methodology. In generalizing the CBPS,
we consider both parametric (Section 3.2) and nonparametric (Section 3.3) ap-
proaches.

Once researchers obtain the estimated propensity score using CBGPS, they can
employ a variety of methods including regression adjustment and subclassifica-
tion to estimate causal effects [e.g., Hirano and Imbens (2004), Imai and van Dyk
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(2004)]. In this paper, we focus on the inverse-probability weighting [Robins,
Hernán and Brumback (2000)], as it is directly related to the covariate balance
measure used in the CBGPS estimation. (The nonparametric CBGPS directly pro-
duces these weights rather than first estimating a generalized propensity score.) In
Section 4, we conduct a simulation study to evaluate the performance of the pro-
posed methodology. We find that the CBGPS is more robust to misspecification
than the standard maximum likelihood estimation. It also compares favorably to
the recently proposed GBM method [Zhu, Coffman and Ghosh (2015)], which uti-
lizes gradient boosted trees to flexibly estimate propensity scores while seeking to
improve finite sample balance. The bias and root-mean-squared error of treatment
effect estimates we obtain is similar to those of GBM (though our nonparametric
estimator, npCBGPS, outperforms it somewhat), while the balance obtained by our
approach is far better.

In Section 5, we reanalyze the motivating observational study introduced in
Section 2, but without dichotomizing the continuous treatment variable. We first
show that the proposed generalization of CBPS reduces the association between
the treatment variable and covariates more effectively than the standard maximum
likelihood estimation method. We then demonstrate that additional substantive in-
sights can be obtained by analyzing the original continuous treatment variable
rather than its dichotomized version. Finally, we offer concluding remarks in Sec-
tion 6. The proposed CBGPS methodology is implemented through publicly avail-
able open-source software CBPS [Fong et al. (2017)].

2. The effect of political advertisements on campaign contributions. In
this section, we introduce an observational study from political science that mo-
tivates our methodology. Urban and Niebler (2014) explored the potential causal
link between advertising and campaign contributions. Presidential campaigns or-
dinarily focus their advertising efforts on competitive states, but if political ad-
vertising drives more donations, then it may be worthwhile for candidates to also
advertise in noncompetitive states. The authors exploit the fact that media mar-
kets sometimes cross state boundaries. This means that candidates may inadver-
tently advertise in noncompetitive states when they purchase advertisements for
media markets that mainly serve competitive states. By restricting their analy-
sis to noncompetitive states, the authors attempt to isolate the effect of adver-
tising from that of other campaigning, which do not incur these media market
spillovers.

The treatment of interest, the number of political advertisements aired in each
zipcode, takes a range of values from 0 to 22,380 (with the average number of
advertisements equal to 1903), and hence can essentially be considered as a con-
tinuous variable. Urban and Niebler dichotomized this political advertising vari-
able by examining whether a zip code received more than 1000 advertisements or
not. According to this operationalization, 5230 of 16,265 zip codes are classified
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as “treated.” Using this dichotomized treatment variable, the authors then con-
duct one-to-one nearest neighbor propensity score matching after using logistic
regression to estimate the propensity score. The observed confounders included
in this analysis are median household income, percent black, percent Hispanic,
percent college graduates, and population density. In addition, the authors em-
ploy several different matching methods as robustness checks, including kernel
matching. The authors found that advertising in noncompetitive states led to a
statistically and substantively significant increase in the level of campaign contri-
butions.

However, dichotomization makes the interpretation of the results difficult be-
cause the naive interpretation—the reported estimate represents the effect of airing
1000 advertisements instead of 0—is incorrect. Additionally, balancing covariates
on the dichotomized treatment variable does not guarantee that the covariates will
be balanced on the underlying continuous treatment variable. The estimate may
be biased by this hidden imbalance. Elsewhere in their paper, Urban and Niebler
(2014) estimate the dose-response curve using the original nonbinary treatment
variable without matching. Thus, it is clear that the authors are interested in the
underlying treatment variable rather than its dichotomized version. The goal of
this paper is to develop a method to reliably estimate the generalized propensity
score when the treatment is not binary.

3. The proposed methodology. The motivating application in Section 2 high-
lights the need for a methodology to estimate the propensity score for general treat-
ment regimes. Currently, fitting a parametric model under the framework of max-
imum likelihood is the most commonly used method for a continuous treatment
[e.g., Robins, Hernán and Brumback (2000), Hirano and Imbens (2004), Imai and
van Dyk (2004)]. In this section, we first aim to improve the parametric estimation
of generalized propensity score (Section 3.2). Specifically, we extend the covariate
balancing propensity score (CBPS) methodology of Imai and Ratkovic (2014) to a
continuous treatment and call this new methodology the Covariate Balancing Gen-
eralized Propensity Score (CBGPS). We then develop a nonparametric approach,
which is refereed to as the nonparametric CBGPS (npCBGPS) (Section 3.3). The
key feature of both approaches is that they estimate the generalized propensity
score such that the resulting covariate balance is optimized.

3.1. Notation and assumptions. Suppose that we have a continuous treatment
Ti for unit i whose support is T ⊆ R. Consider also observed covariates Xi ∈ RK

where K is the number of pretreatment covariates. We assume a sample of ob-
servations {Yi,Xi , Ti} for i ∈ {1, . . . ,N} is drawn independently from a common
joint distribution f (Y,X, T ).

Throughout this paper, we maintain the strong ignorability and common support
assumptions with respect to the original nonbinary treatment variable,

(1) Ti⊥⊥Yi(t) | Xi and p(Ti = t | Xi) > 0 for all t ∈ T ,
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where Yi(t) is the potential outcome given the treatment value Ti = t , and Xi is a
vector of observed pretreatment covariates. Note that the potential outcomes must
be defined with respect to the original treatment variable in order to satisfy the sta-
ble unit treatment value assumption or SUTVA [Rubin (1990)]. Furthermore, the
conditional distribution of treatment p(Ti | Xi ) is called the generalized propen-
sity score [Imbens (2000), Hirano and Imbens (2004), Imai and van Dyk (2004)].
Finally, as part of the SUTVA, we assume no interference among units. Through-
out this paper, we maintain these assumptions. The main quantity of interest is the
dose-response function, E(Yi(t)).

We begin by centering and orthogonalizing the covariates,

X∗
i = S−1/2

X (Xi − X),

where X = ∑N
i=1 Xi/N and SX = ∑N

i=1(Xi − X)(Xi − X)�/(N − 1) are the sam-
ple mean vector and sample covariance matrix of X, respectively. Similarly, we
transform the treatment variable,

T ∗
i = s

−1/2
T (Ti − T ),

where T = ∑N
i=1 Ti/N and sT = ∑N

i=1(Ti − T )2/(N − 1) are the sample mean
and variance of T , respectively. The transformed covariates X∗ and treatment T ∗
thus have zero mean and unit variance. In addition, the covariates are uncorrelated
with each other.

3.2. Parametric approach. We first consider a parametric approach by balanc-
ing covariates such that weighted correlation between X∗ and T ∗ is minimized.
The weight is given by f (T ∗

i )/f (T ∗
i | X∗

i ) where the numerator is a required stabi-
lizing factor [Robins, Hernán and Brumback (2000)]. Formally, the covariate bal-
ancing condition is given by the weighted cross moment between these centered
variables,

E

(
f (T ∗

i )

f (T ∗
i | X∗

i )
T ∗

i X∗
i

)
=

∫ {∫
f (T ∗

i )

f (T ∗
i | X∗

i )
T ∗

i dF
(
T ∗

i | X∗
i

)}
X∗

i dF
(
X∗

i

)
= E

(
T ∗

i

)
E

(
X∗

i

) = 0.

For the parametric CBGPS, we follow a common practice of assuming a ho-
moskedastic linear model as done in our application [e.g., Robins, Hernán and
Brumback (2000), Hirano and Imbens (2004), Imai and van Dyk (2004)]. Then
the generalized propensity score is given by the following conditional normal den-
sity:

fθ

(
T ∗

i | X∗
i

) = 1√
2πσ 2

exp
[
− 1

2σ 2

(
T ∗

i − X∗
i
�
β

)2
]
,
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where θ = (β, σ 2). In addition, we follow a typical parametric modeling approach
described by Robins, Hernán and Brumback (2000) and assume the marginal dis-

tribution to be standard normal (due to centering and scaling), that is, T ∗
i

i.i.d.∼
N (0,1). Then the stabilizing weight is given by

f (T ∗
i )

fθ (T
∗
i | X∗

i )
= σ exp

[
1

2σ 2

(
T ∗

i − X∗
i
�
β

)2 − T ∗
i

2

2

]
.

Under the method of moments framework, we have the following moment con-
ditions if we combine the score condition for σ 2 and the covariate balancing con-
ditions so that θ is just identified:

(2) E
{
mθ (Ti,Xi)

} = E

⎛
⎜⎜⎝

1

σ 2

(
T ∗

i − X∗
i
�
β

)2 − 1

σ exp
[

1

2σ 2

(
T ∗

i − X∗
i
�
β

)2 − T ∗
i

2

2

]
T ∗

i X∗
i

⎞
⎟⎟⎠ = 0.

The estimate of θ , which we denote by θ̂ , is obtained by numerically solving this
equation.

One advantage of this parametric approach is that we can derive the asymp-
totic variance of the estimated causal effects by taking into account the estimation
uncertainty of the generalized propensity score. This avoids the use of a more
computationally intensive procedure such as bootstrap. To illustrate this feature,
suppose that we wish to estimate the average causal effects via the weighted linear
regression of Yi on a set of covariates Zi , which may include a subset of Xi as
well as the intercept and the treatment variable, for example, Zi = (1, Ti,X�

i )�.
The weight is given by f (T ∗

i )/f
θ̂
(T ∗

i | X∗
i ) where θ̂ is obtained via the parametric

CBGPS methodology described above. If we let δ denote the vector of regression
coefficients, then the moment condition is given by

(3) E
{
s(θ,δ)(Yi, Ti,Xi)

} = E

{
f (T ∗

i )

fθ (T
∗
i | X∗

i )

(
Yi − Z�

i δ
)
Zi

}
= 0.

To derive the asymptotic variance of the weighted linear least squares estimator
δ̂, we view it as the method of moments estimator based on equations (2) and (3)
[Newey and McFadden (1994), Theorem 6.1]. Then the asymptotic variance of δ̂

is given by

S−1
δ E

[{
s(θ,δ)(Yi, Ti,Xi) − SθM−1mθ (Ti,Xi)

}
× {

s(θ,δ)(Yi, Ti,Xi) − SθM−1mθ (Ti,Xi)
}�]

S−1
δ

�
,

where

Sδ = E

{
∂

∂δ
s(θ,δ)(Yi, Ti,Xi)

}
= −E

{
f (T ∗

i )

fθ (T
∗
i | Xi)

ZiZ�
i

}
,
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Sθ = E

{
∂

∂θ
s(θ,δ)(Yi, Ti,Xi)

}

= E

(
− 1

σ 2

f (T ∗
i )

fθ (T
∗
i | Xi )

(
T ∗

i − X∗
i
�
β

)(
Yi − Z�

i δ
)
ZiX∗

i
�

1

2σ 2

f (T ∗
i )

fθ (T
∗
i | Xi)

{
1 − 1

σ 2

(
T ∗

i − X∗
i
�
β

)2
}(

Yi − Z�
i δ

)
Zi

)
,

M = E

{
∂

∂θ
mθ (Ti,Xi)

}

=

⎛
⎜⎜⎝

− 2

σ 2

(
T ∗

i − X∗
i
�
β

)
X∗

i
�

− 1

σ 2

f (T ∗
i )

fθ (T
∗
i | Xi )

T ∗
i

(
T ∗

i − X∗
i
�
β

)
X∗

i X∗
i
�

− 1

σ 4

(
T ∗

i − X∗
i
�
β

)2

1

2σ 2

f (T ∗
i )

fθ (T
∗
i | Xi)

{
1 − 1

σ 2

(
T ∗

i − X∗
i
�
β

)2
}
T ∗

i X∗
i

⎞
⎟⎟⎠ .

Finally, note that the asymptotic variance of θ̂ is given by

avar(θ̂) = (
M�M

)−1M�
E

{
mθ (Ti,Xi)mθ (Ti,Xi)

�}
M

(
M�M

)−1
.(4)

In practice, the estimation of this asymptotic variance in a finite sample may suffer
from numerical instability with M being near singular. To address this issue, we
add a small constant, for example, 0.01, to the diagonal elements of M whenever
the ratio of smallest and largest eigenvalues of M falls below a certain threshold.

3.3. Nonparametric approach. We next consider a nonparametric extension
of the CBGPS we refer to as npCBGPS. This method does not involve direct es-
timation of the generalized propensity score, and thus does not require the model
to be correctly specified. Rather, we use an empirical likelihood approach to chose
weights that represent the stabilizing inverse generalized propensity score, and si-
multaneously ensure balancing conditions (zero correlation with the treatment) are
met in the sample. Owing to the potential need for extreme weights to achieve these
conditions in some samples, we further develop the method to allow some degree
of finite sample imbalance. This makes the approach suitable in a wide range of
conditions in which the investigator would prefer not to choose a functional form
for the propensity score, but at a computational cost.

3.3.1. The formulation. We begin by defining the stabilizing weight as

(5) wi = f (T ∗
i )

f (T ∗
i | X∗

i )
,
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where no parametric restriction is placed on the generalized propensity score
f (T ∗

i | X∗
i ), nor on the marginal distribution of treatments f (T ∗

i ). This stabiliz-
ing weight is already normalized in that its expectation taken over joint density
f (T ∗

i ,X∗
i ) equals unity:

(6) E(wi) =
∫ ∫

f (T ∗
i )

f (T ∗
i | X∗

i )
f

(
T ∗

i ,X∗
i

)
dT ∗

i dX∗
i = 1.

In the current framework, the covariate balancing conditions are derived such
that after weighting with wi , T ∗

i and X∗
i are uncorrelated (hence, the original vari-

ables, Ti and Xi , are also uncorrelated). Specifically, we have shown that the co-
variate balancing conditions is equal to

E
(
wiT

∗
i X∗

i

) = E
(
T ∗

i

)
E

(
X∗

i

) = 0.(7)

Similarly, it can be shown that weighting with wi also preserves the marginal
means of X∗

i and T ∗
i . This provides two additional covariate balancing conditions,

E(wiX∗
i ) = E(X∗

i ) = 0 and E(wiT
∗
i ) = E(T ∗

i ) = 0. Altogether, the constraints on
the mean of wi , on the marginal means of X∗ and T ∗, and on the crossproducts
X∗T ∗ give rise to the sample conditions,

(8)
N∑

i=1

wig
(
X∗

i , T
∗
i

) = 0 and
N∑

i=1

wi − N = 0,

where g(X∗
i , T

∗
i ) = (X∗

i , T
∗
i ,X∗

i T
∗
i )�, whose dimensionality is 2K + 1. Although

we do not discuss it in detail, in general, categorical and multidimensional treat-
ments can be accommodated analogously within this framework.

We now choose weights wi that satisfy the moment conditions given in equa-
tion (8) while maximizing the empirical likelihood of observing the data. That
is, through equation (5), we can express the joint density of each observation in
relation to the weights as f (T ∗

i ,X∗
i ) = 1

wi
f (T ∗

i )f (X∗
i ). The likelihood function

for the whole sample is thus
∏N

i=1 f (T ∗
i ,X∗

i ) = ∏N
i=1

1
wi

f (T ∗
i )f (X∗

i ). We wish to
maximize the empirical likelihood of the data by choosing wi , but also require wi

to satisfy the constraints in 8 above [Owen (2001)]. Thus, we maximize

N∏
i=1

f
(
T ∗

i ,X∗
i

) =
N∏

i=1

1

wi

f
(
T ∗

i

)
f

(
X∗

i

)

subject to the following constraints:

N∑
i=1

wig
(
X∗

i , T
∗
i

) = 0,

N∑
i=1

wi = N,

N∑
i=1

wiX∗
i T

∗
i = 0

and

wi > 0 for all i.
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This is equivalent to maximizing

N∑
i=1

logf
(
T ∗

i

) + logf
(
X∗

i

) − logwi

in which only the final term involves wi . Therefore, the estimation of the
npCBGPS reduces to the simply finding

argmin
w∈RN

N∑
i=1

logwi

subject to the above constraints. We note that wi chosen this way estimates stabi-
lizing inverse (generalized) propensity scores weights, with the desired covariate
balancing properties built in through the constraints.

3.3.2. The numerical algorithm. We follow an approach similar to the stan-
dard Lagrange multiplier technique for numerically solving this optimization prob-
lem [Owen (2001)]. Construct the Lagrangian,

L(wi, λ, γ ) =
N∑

i=1

logwi + λ

(
N −

N∑
i=1

wi

)
+ γ �

N∑
i=1

wig
(
X∗

i , T
∗
i

)
,

where λ and γ are Lagrange multipliers. The first-order conditions are given by

∂L
∂wi

= 1

wi

− λ + γ �g
(
X∗

i , T
∗
i

) = 0,

∂L
∂λ

= N −
N∑

i=1

wi = 0,
∂L
∂γ

=
N∑

i=1

wig
(
X∗

i , T
∗
i

) = 0.

We now sum wi
∂L
∂wi

= 0 over i to obtain λ = 1. Plugging this into ∂L
∂wi

and
solving for wi yields

wi = 1

1 − γ �g(X∗
i , T

∗
i )

.

Thus, the minimization of
∑N

i=1 logwi can be done over γ , which has only
(2K +1) dimensions rather than N . As a result, our constrained optimization prob-
lem is solved by the unconstrained maximization,

argmax
γ∈RK

N∑
i=1

log
(
1 − γ �g

(
X∗

i , T
∗
i

))
.

This optimization is relatively straightforward, and is well handled by the standard
BFGS procedure. At the solution, if it exists, γ corresponds to nonnegative val-
ues of wi . However, during the optimization, the argument inside the logarithmic
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function can be nonpositive. To handle this, when the argument to the logarithmic
function falls below 1/N , we instead use the second order Taylor series approxi-
mation to the log around the point 1/N . Once a solution is reached, we evaluate
wi by using the original formula, 1/{1 − γ �g(X∗

i , T
∗
i )}.

Since the the empirical likelihood is not generally convex, there is no guarantee
that the optimization procedure described here finds the global optimum. This con-
trasts with some other methods such as entropy balancing and stable weights that
solve a convex optimization problem [Hainmueller (2012), Zubizarreta (2015)].
Although these methods are not based on likelihood inference, they may still pos-
sess appealing statistical properties [Zhao and Percival (2017)]. Future research
may consider the extension of these methods to a continuous treatment.

3.3.3. A penalized imbalance approach. The flexibility of the nonparametric
approach comes with a cost. In many practical situations, the numerical algorithm
described above fails to find a solution. This failure occurs especially when the
number of covariates is large and/or the treatment Ti is strongly predicted by Xi .
In such cases, we may wish to avoid forcing the covariate balancing conditions
given in equation (7) to hold exactly in sample. Instead, we allow some finite
sample correlation, but penalize the degree of sample imbalance that remains.

Specifically, we consider the sample weighted correlation, η = 1
N

∑N
i=1 wi ×

X∗
i T

∗
i . The above empirical likelihood approach maximized f (T ∗

i ,X∗
i | η) where

η = 0. However, replacing our original constraint that
∑n

i=1 wiX∗
i T

∗
i = 0 with the

constraint that
∑n

i=1 wiX∗
i T

∗
i − η = 0 allows us to obtain and maximize the em-

pirical likelihood conditional on any other level of weighted sample correlation, η.
Conditional on η, the Lagrangian for the likelihood maximization problem is then

L(wi, λ, γ | η) =
N∑

i=1

logwi + λ

(
N −

N∑
i=1

wi

)
+ γ �

(
n∑

i=1

wiX∗
i T

∗
i − η

)
.

The optimization of the dual is then

argmax
γ∈RK

N∑
i=1

log
[
1 − γ �(

g
(
X∗

i , T
∗
i

) − η
)]

.(9)

We do, however, maintain the exact constraint that 1
N

∑N
i=1 T ∗

i wi = 0 and∑N
i X∗

i wi = 0 because these are centering choices that are not costly and with-
out which the constraints

∑N
i=1 wiX∗

i T
∗
i = 0 would no longer correspond to the

zero-correlation conditions.
What remains is to determine the appropriate penalty for a given level of im-

balance, η, so that we can choose both wi and η according to a single penalized
optimization objective. To motivate our choice of penalty, we consider the like-
lihood of jointly observing both the data and the selected level of finite sample
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imbalance, f (T ∗
i ,X∗

i , η), which factors into f (T ∗
i ,X∗

i | η)f (η). The first com-
ponent, f (T ∗

i ,X∗
i | η), is given as above by empirical likelihood. For f (η), we

assume

η = 1

N

N∑
i=1

wiX∗
i T

∗
i ∼NK(0, ρIK),

where ρ > 0 is a tuning parameter or penalty that can be set by the investigator to
determine how severely finite sample imbalances should be penalized. We discuss
the appropriate choice of ρ in Section 3.3.4 below.

Having given f (η) this form, we can now choose wi so as to maximize
f (X∗, T ∗ | η)f (η) over the sample. The log (penalized) likelihood maximization
problem becomes

argmin
w∈RN,η∈RK

[
N∑

i=1

logwi − logf (η)

]
= argmin

w∈RN ,η∈RK

[
N∑

i=1

logwi + 1

2ρ
η�η

]

subject to the modified balance constraints,
∑N

i=1 wiX∗
i T

∗
i = η and the addi-

tional constraints as before, that is,
∑N

i=1 wi − N = 0,
∑N

i=1 wiX∗ = 0, and∑N
i=1 wiT

∗
i = 0.

The optimization is now more difficult because of the additional parameter η,
which is multidimensional. We first consider the optimization with respect to wi

given the value of η, which is given by equation (9). For the “outer” optimization
over η, we initialize η0 to the unweighted correlation of X∗

i and T ∗
i . This returns a

solution with all equal weights. We then reparameterize η as αη0 for the scalar α,
and then line search over α ∈ [0,1],

(10) argmin
w∈RN ,α∈[0,1]

[
N∑

i=1

logwi + 1

2ρ
(αη0)

�(αη0)

]
.

We thus do not search all possible values of η, but rather those that correspond to
equal proportional imbalance reductions.

3.3.4. Choice of ρ. We note that by the central limit theorem, for X∗
i and T ∗

i

that have zero correlation in expectation, the distribution of finite sample imbal-
ance one would see, ignoring weights, would be NK(0, 1

N
IK). Thus, ρ = 1

N
would

seem the correct choice. However, the weights complicate this and without further
assumptions, this result does not hold on the weighted correlation. Moreover, our
general aim in developing covariate balancing scores is to achieve better balance
(lower correlation) than one expects by chance alone had X∗

i and T ∗
i been uncor-

related in expectation.
Thus, we consider ρ a tuning parameter which the investigator can manipu-

late [using the corprior argument in the npCBGPS() function in the CBPS
package]. This can be increased to ensure the allowable finite sample imbalance
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is large enough to prevent extreme weights, while being small enough to re-
sult in weights that achieve fine balance. However, as a starting point, we pro-
vide a default option of ρ = 0.1/N . We choose this because it implies better
balance than would be expected by chance, and because in practice it has pro-
vided a reasonable tolerance and generally allows convergence. To interpret this
value, suppose we had only 10 observations. Then, setting ρ = 0.1/N = 0.01 im-
plies that we expect the finite sample correlation of Ti and Xi (that are uncorre-
lated in the population) to have a distribution such that 95% of the time it falls
in [−1.96

√
ρ,1.96

√
ρ] = [−0.196,0.196]. At N = 100, this default ρ implies

that 95% of the time we expect to find a finite sample correlation in the range
[−0.062,0.062]. By making the allowable finite imbalance somewhat generous
but lower than we expect by chance alone given uncorrelated treatment and covari-
ates, this choice ensures the algorithm converges almost without exception while
improving balance. Once run, researchers may check balance and opt to reduce ρ

to obtain finer balance. If ρ is set too small and convergence fails, the weights will
no longer sum to one, and balance will be poor.

4. Simulation studies. To examine the finite sample properties of the pro-
posed estimators, we conduct simulation studies under four different scenarios.
We vary whether the true treatment assignment is correctly specified, and whether
the data generating process for the outcome is linear in the covariates or not. Our
guiding motivation in designing the simulation settings is to use simple data gen-
erating processes that reveal the failings of each estimator, while still replicating
the fundamental difficulties researchers will face in practice. For example, when
a nonlinearity is required in some simulation settings below, a very simple one
proves sufficient in which a measured covariate (e.g., X) enters the treatment (and
outcome) model not linearly but as (X + c)2 for a small constant c.

We are also sensitive to the concern that investigators will often attempt to adjust
for many or all available measured pretreatment covariates, of which only some
are actually important. Our aim of obtaining balance on all covariates can thus
be costly, as some of these covariates may actually be irrelevant. We thus ensure
this cost is borne in the simulations shown below. Specifically, all simulations are
run assuming the investigator has 10 (correlated) covariates to consider, though
only up to five appear in the true treatment assignment model. Moreover, only four
of these appear in the true outcome model, meaning that some variables that are
deliberately imbalanced due to their role in treatment assignment will actually be
irrelevant in the outcome model. This ensures that we pay a penalty for methods
that expend effort to balance all of these covariates, despite some of them not
explicitly influencing the outcome.

4.1. Four data generating processes. For all data generating processes,
K = 10 covariates are drawn independently from a multivariate normal distribu-
tion with mean 0, variance 1, and covariances of 0.2, though not all these covariates
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appear in the treatment or outcome equations. In the first simulation setting, we
assume that both the treatment assignment and outcome models are linear in the
covariates as given, with true data generating process given by

Ti = Xi1 + Xi2 + 0.2Xi3 + 0.2Xi4 + 0.2Xi5 + ξi,(11)

Yi = Xi2 + 0.1Xi4 + 0.1Xi5 + 0.1Xi6 + Ti + εi,(12)

where ξi
i.i.d.∼ N(0,4) and εi

i.i.d.∼ N(0,25) are error terms, and the true average
treatment effect is set to 1. Note that because the outcome model is linear in co-
variates, weights that achieve mean covariate balance will be sufficient for the
(weighted) difference in means estimator to be unbiased for the average treatment
effect.

Under the second simulation setting, we introduce misspecification of the treat-
ment assignment model by including a nonlinear term in the true data generating
process,

Ti = (Xi2 + 0.5)2 + 0.4Xi3 + 0.4Xi4 + 0.4Xi5 + ξi,

where ξi ∼ N(0,2.25) and while the outcome equation remains the same as equa-
tion (12).

The third simulation setting correctly specifies the treatment assignment model,
returning to equation (11). However, it now uses an outcome that is not linear in
the covariates as given. Specifically,

Yi = 2(Xi2 + 0.5)2 + Ti + 0.5Xi4 + 0.5Xi5 + 0.5Xi6 + εi.

Finally, the fourth simulation setting uses the nonlinear data generating process
for the treatment, ensuring misspecification of the treatment assignment in later
analysis, while also including a nonlinearity in the outcome data generating pro-
cess:

Ti = (Xi2 + 0.5)2 + 0.4Xi3 + 0.4Xi4 + 0.4Xi5 + ξi,

Yi = 2(Xi2 + 0.5)2 + Ti + 0.5Xi4 + 0.5Xi5 + 0.5Xi6 + εi.

4.2. Results. For each of the above four settings, we run 500 independent
Monte Carlo simulations and examine the covariate balance across these repli-
cations. We try five weighting approaches for purposes of examining the resulting
balance and ATE estimates. First, we use the original, unweighted observations
(Unweighted). Then we use methods the derive weights from the maximum
likelihood estimate of the generalized propensity score (MLE), from the exactly-
identified CBGPS, the nonparametric npCBGPS, and finally the gradient-boosting
approach of Zhu, Coffman and Ghosh (2015) (GBM), which selects the number of
trees such that covariate balance is optimized. For the GBM, we present the results
based on the Pearson correlation coefficients as the measures of covariate balance
so that it is comparable to our methods.
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FIG. 1. Covariate balance for simulation studies: F -statistics obtained from the regression of Ti

on Xi with weights determined by each method. The MLE estimator achieves unreliable balance even
when the treatment assignment is correctly specified (left), and is highly unstable when treatment
assignment is misspecified (right). By contrast, weighting with either CBGPS or npCBGPS produces
excellent balance (F -stats near zero) on nearly every iteration of every simulation scenario. The GBM
methods provides little control over imbalance.

Figure 1 visualizes the degree of covariate balance achieved by each method
when applied to data from either the correctly specified (left) or incorrectly spec-
ified (right) treatment assignment. The plots show the distribution of F -statistics
obtained from the regression of Ti on Xi , to give a global summary of covariate
balance, across the 500 simulations. We note the limitation that, because we lin-
early regress Ti on Xi to produce the F -statistics shown, they only indicate the
quality of balance on the covariate means, and not on their higher or multivariate
moments.

The estimates using weights based on MLE are not reliable especially when
the treatment assignment is misspecified (right). In this case, MLE makes balance
far worse on some iterations than it was without adjustment (Unweighted). By
contrast, weighting with either CBGPS or npCBGPS produces F -statistics very
close to zero on nearly every iteration of every simulation scenario. These pro-
posed methods also outperform GBM. The poor balance achieved by GBM relative
to the CBGPS and npCBGPS methods is not surprising: the GBM approach at-
tempts to optimize balance by estimating a propensity score, but the only scope
for improving balance is in the choice of how many trees are employed by the gra-
dient boosting algorithm. This does not provide as direct control over finite sample
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imbalance as can be obtained by directly satisfying balance constraints as in the
CBGPS and npCBGPS methods. Under an incorrectly specified propensity score,
GBM outperforms MLE, but the balance remains poor and highly unstable—in many
cases worse than using no weights at all.

Covariate balance is important because imbalances may lead to biased causal
effect estimates. Figure 2 shows the distribution of the estimated ATE. Here, we
use a (weighted) difference in means estimator with the weights determined by
each method. The uncertainty resulting from each procedure is apparent in the
variability of estimates across Monte Carlo replicates. The dotted horizontal line
shows the true ATE of 1.

We find, first, that the distribution of unweighted difference in means estimate
(Unweighted) has no overlap with the truth under any of the four simulations.
Second, when both the treatment assignment and outcome models are misspeci-
fied, all methods fail although the bias is particularly severe for the estimates based
on MLE (bottom right). Third, adjustment by MLE produces low bias estimates
whenever the treatment assignment is correctly specified, regardless of whether
the outcome is also correctly specified (top left) or incorrectly specified (bottom
left). However, the MLE procedure generates more widely varying estimates than
either CBGPS or npCBGPS. This is unsurprising, as we saw that balance was
not as finely controlled by MLE. Moreover, when the outcome is linear in X but
the treatment assignment is misspecified, both CBGPS and npCBGPS are able to
recover good estimates, while MLE fails widely (top right). This is the expected
behavior. The balancing criteria added to npCBGPS and CBGPS allow it to cir-
cumvent misspecified treatment assignments.

We also find that GBM performs well when only the propensity score is misspec-
ified, as the GBM technique is sufficiently flexible to still estimate a reasonable
propensity score. The improved covariate balance achieved by the CBGPS and
npCBGPS under misspecified propensity scores helps with the estimation of ATE,
but only produces unbiased estimates when the outcome is linear in X because
balance is achieved only on the covariate means and not necessarily on higher
moments. While GBM is able to estimate the propensity score reasonably well
even when it is nonlinear in X, this is evidently not enough to ensure good es-
timates when the outcome model is also misspecified. We note however that GBM
tends to produce less biased ATE estimates than the npCBGPS and CBGPS in
the doubly-misspecified case, when the sample size is much larger. For example,
while N = 200 in this exercise, at N = 1000, the bias of GBM drops to approxi-
mately 0.5, about half that of CBGPS. With a large sample size, GBM appears to
more accurately estimate the generalized propensity score.

Finally, using the first data generating process with no misspecification (where
we expect the least bias), we examine the coverage rate of confidence intervals
constructed using the asymptotic variance formula given in equation (4). After
10,000 iterations, we find that the coverage rate of the resulting 95% confidence
interval is quite accurate at 95.5%.
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FIG. 2. Difference in means estimates of ATE using weights determined by each method. True ATE
(1) shown by dotted horizontal line. The simple difference in means estimate (Unweighted) has
no overlap with the truth under any of the four simulations. Adjustment by MLE produces low bias
estimates whenever the treatment assignment is correctly specified (top left and bottom left), but with
greater uncertainty than CBGPS or npCBGPS. When the outcome is linear in X but the treatment
assignment is misspecified, both CBGPS and npCBGPS are able to recover good estimates, while
MLE fails substantially (top right). However, when the outcome is also nonlinear in X (bottom right)
all methods fail. GBM generally performs similarly to CBGPS while npCBGPS generally outperforms
it slightly.

5. Empirical application. We apply the proposed CBGPS methodology to
the observational study described in Section 2. The treatment variable, that is, the
number of political advertisements aired in each zip code, has a skewed distribu-
tion in which 12.1% of the observations are 0. To make our assumption that T ∗ is
normally distributed more reasonable, though far from perfect, we search across
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Box–Cox transformations of the form {(T + 1)λ − 1}/λ [taking log(T + 1) when
λ = 0] to find a transformation of the treatment whose marginal distribution is the
closest to the standard normal. We use λ = −0.16, which yields the greatest corre-
lation between the sample quantiles of the transformed treatment variable and the
corresponding theoretical quantiles of the standard normal distribution.

The pretreatment covariates X in the generalized propensity score model in-
clude the log population, population density, log median income, percent Hispanic,
percent black, percent over age 65, percent college graduates, and a binary indica-
tor of whether it is possible to commute to the zip code from a competitive state.
This list includes all of the variables used in the original analysis as well as several
variables available in the author’s data set that were not included in the original
propensity score estimation. We add the squares of all nonbinary pretreatment co-
variates to the model in order to balance both their first and second moments.
The outcome model includes the treatment variable (on its transformed scale), the
square of the treatment variable, and unit fixed effects for states.

Figure 3 shows two metrics of covariate balance. The left plot shows the Pearson
correlations between each covariate (including the square terms) and the trans-
formed treatment variable in the original unweighted sample, after propensity
score matching on the dichotomized treatment variable in which the logistic re-
gression is used to estimate the propensity score (as in the original analysis), and
after weighting based on the estimated generalized propensity score in four ways
(MLE, GBM, CBGPS, and npCBGPS). Matching based on the dichotomized treat-
ment variable (second left boxplot) only slightly improves the covariate balance
with respect to the original treatment variable (far left). Weighting based on the
MLE of the generalized propensity score (middle) makes the covariate balance far
worse than in the original sample. While weighting based on the GBM substantially
improves covariate balance, both parametric CBGPS (second right) and npCBGPS
(far right) virtually eliminates the imbalance.

The right plot presents the F -statistics calculated by regressing the transformed
treatment variable on each pre-treatment covariate one at a time. The pattern is
essentially the same as the one for correlation. Using all covariates in a single
regression, the F -statistic is 29.3 in the original sample, 38.3 in the post-matching
sample, 215.3 with MLE weighting, 2.60 with GBM weighting, 9.33 × 10−5 with
parametric CBGPS weighting, and 0.406 with nonparametric CBGPS weighting.

Table 1 shows the absolute Pearson correlation balance metric on a variable-
by-variable basis using the original scale. Even though CBGPS and npCBGPS
orthogonalize the covariates before optimizing balance, they still achieve superior
balance for every covariate on their original scales. In contrast, MLE worsens the
covariate balance for virtually all variables. While GBM improves balance for each
variable, the degree of improvement is less than npCBGPS and CBGPS, which
virtually eliminate the imbalance.

We use the bootstrap to obtain confidence intervals for the average dose re-
sponse while incorporating uncertainty over the choice of weights. Each of the
5000 bootstrap replicates finds the best Box–Cox transformation for the outcome,
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FIG. 3. Two measures of covariate imbalance in the Urban and Niebler (2014) data. The figure
presents the absolute Pearson correlation between the treatment and each covariate after weighting
as well as the F -statistic from the regression of the treatment on each covariate after weighting
(fourth root scale). Weighting via MLE (middle left) yields worse covariate balance than the original
unweighted sample (far left) or the matched sample using the dichotomized treatment (second left).
Weighting via GBM (middle right) yields better balance, but weighting via CBGPS (second right)
and npCBGPS (far right) improves the covariate balance most.

fits the treatment model for the bootstrapped sample using each of the four proce-
dures, and estimates the outcome model with these weights. The outcome model
regresses contributions on the treatment, the square of the treatment, and state-
level fixed effects (to approximate the within-state matching employed by Urban
and Niebler). The covariate imbalance in these bootstrap iterations follows the
same pattern as in the full sample. The interquartile range for the F -statistic in
the full post-weighting treatment model is (11.00,45.88) for MLE, (2.61,4.62) for
GBM, (7.4 × 10−5,3.31) for parametric CBGPS, and (0.44,0.99) for npCBGPS.
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TABLE 1
Variable-by-variable comparison of the absolute Pearson correlations presented in Figure 3.

Maximum likelihood estimation (MLE) makes the covariate imbalance worse for virtually every
variable. While GBM improves balance for each variable, the degree of improvement is

less than npCBGPS and CBGPS, which virtually eliminates the imbalance

Unweighted MLE GBM CBGPS npCBGPS

log(Population) −0.059 −0.034 0.016 0.000 −0.001
% Over 65 0.006 −0.162 −0.004 −0.000 0.000
log(Income + 1) −0.021 −0.384 0.014 −0.000 −0.001
% Hispanic −0.043 0.053 0.007 0.000 −0.002
% Black −0.076 0.295 −0.003 0.000 0.003
Population density −0.088 0.405 0.016 −0.000 0.008
% College graduates −0.032 −0.145 0.018 −0.000 0.004
Can commute 0.054 0.161 0.027 −0.000 0.003
log(Population)2 −0.057 −0.049 0.018 0.000 −0.000
% Over 652 0.010 −0.071 −0.001 0.000 −0.001
log(Income + 1)2 −0.028 −0.338 0.018 −0.000 −0.001
% Hispanic2 −0.013 −0.010 0.006 0.000 0.001
% Black2 −0.057 0.291 −0.007 0.000 0.003
Population density2 −0.072 0.406 0.003 −0.000 0.003
% College graduates2 −0.028 −0.079 0.022 0.000 0.007

Table 2 shows the estimated average effect of 1000 ads on campaign contribu-
tions as well as its standard error and 95% confidence interval (the same dose that
was investigated in Urban and Niebler’s dichotomized analysis). For the sake of
comparison, the original results based on dichotomized matching are presented,
showing that the estimated average effect is positive and statistically significant.
Note, however, that the Abadie and Imbens (2006) standard errors do not account
for the uncertainty regarding propensity score estimation (although they do ac-

TABLE 2
The estimated effect of 1000 political advertisements on campaign contributions. The standard
errors from dichotomized matching (in the first row) are obtained from the Abadie and Imbens
(2006) standard errors, which, unlike the other procedures, do not account for uncertainty in

the estimates of the propensity scores. The standard errors and confidence intervals
for the other estimates are based on 5000 bootstrap replicates

Method Estimate Standard error 95% confidence interval

Matching (original) 6800 1655 (3556, 10,043)
MLE 477 4629 (−345, 17,532)
GBM 11,162 2555 (6105, 16,095)
CBGPS 4935 3865 (−1032, 13,989)
npCBGPS 6518 3668 (−415, 13,840)
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count for the uncertainty of the matching procedure). The standard errors and 95%
confidence intervals for the other estimates are based on 5000 bootstrap replicates.

We have already shown that the propensity score estimated by MLE produced
poor balance in this sample, so its estimates may be severely biased. The point es-
timate based on MLE is much smaller than those based on the other estimates, and
its bootstrap distribution is quite skewed due to the existence of extreme weights.
The weighting estimate based on GBM, which achieves a moderate level of balance,
yields a point estimate that is far larger than any other estimator and is statistically
significant. In contrast, the estimates based on the CBGPS and npCBGPS, both of
which achieve excellent covariate balance, are of moderate magnitude and yield
the 95% confidence intervals that contain zero. Finally, the estimates based on the
CBGPS and npCBGPS have narrower confidence intervals and smaller standard
errors than MLE does. Thus, these methods appear to yield more efficient esti-
mates than the standard MLE method.

One advantage of CBGPS is that it is possible to obtain standard errors that
account for uncertainty in the estimation of weights without relying on a compu-
tationally intensive method such as bootstrap. In the current case, we obtain the
asymptotic 95% confidence interval of (−2028,11,898) with the standard error
of 3552. This is quite similar to the bootstrap confidence interval, but it can be
computed much more quickly.

6. Concluding remarks. Despite advances in generalizing propensity score
methods to nonbinary treatments, applied researchers often dichotomize nonbinary
treatment variables in order to utilize propensity score methods. One reason for this
gap between statistical theory and practice is the absence of a reliable method for
estimating the generalized propensity score. In this paper, we extend the covariate
balancing propensity score (CBGPS) of Imai and Ratkovic (2014) to a continu-
ous treatment. We estimate the generalized propensity score such that the resulting
covariate balance is optimized. Our empirical analyses show that the proposed
methodology results in better covariate balance than the standard method and can
yield substantive insights which may be difficult to obtain by analyzing a dichoto-
mous treatment. We also find that CBGPS reduces sensitivity to misspecification
of the generalized propensity score model. Finally, we consider a nonparametric
extension of the CBGPS methodology based on maximizing the empirical like-
lihood of the data given the desired moment constraints. While computationally
more demanding, this method avoids the distributional assumptions made in the
parametric CBGPS approach.
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package=CBPS). We thank Marc Ratkovic and Dylan Small for their comments
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