
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
What underlies dual-process cognition? Adjoint and representable functors

Permalink
https://escholarship.org/uc/item/3ck317c1

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Author
Phillips, Steven

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ck317c1
https://escholarship.org
http://www.cdlib.org/

What underlies dual-process cognition? Adjoint and representable functors
Steven Phillips (steve@ni.aist.go.jp)

Mathematical Neuroinformatics Group, Human Informatics Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 JAPAN

Abstract

Despite a general recognition that there are two styles of think-
ing: fast, reflexive and relatively effortless (Type 1) versus slow,
reflective and effortful (Type 2), dual-process theories of cogni-
tion remain controversial, in particular, for their vagueness. To
address this lack of formal precision, we take a mathematical
category theory approach towards understanding what under-
lies the relationship between dual cognitive processes. From
our category theory perspective, we show that distinguishing
features of Type 1 versus Type 2 processes are exhibited via
adjoint and representable functors. These results suggest that
category theory provides a useful formal framework for devel-
oping dual-process theories of cognition.
Keywords: dual-process; Type 1; Type 2; category theory;
category; functor; natural transformation; adjoint

Introduction
Intuitively, at least, human cognition involves two starkly dif-
ferent styles of thinking: one style appears to be fast, reflexive
and relatively effortless; the other slow, reflective and effortful
(Evans, 2003; Kahneman, 2011). The former is called Type 1
and the latter Type 2 (Evans & Stanovich, 2013). Distinguish-
ing features are listed in Table 1.

ID Type 1 Type 2
D1 no working memory working memory
D2 autonomous decoupled, simulation
F1 fast slow
F2 high capacity low capacity
F3 parallel serial
F4 unconscious conscious
F5 biased responses normative responses
F6 contextualized abstract
F7 automatic controlled
F8 associative rule-based
F9 experience-based consequence-based
F10 ability-independent ability-dependent
F11 evolved early evolved late
F12 animal human
F13 implicit explicit
F14 basic emotions complex emotions

Table 1: Definitions/Features (D/F) of Type 1/2 processes
(adapted from Evans & Stanovich, 2013, Table 1).

Dual-process theories of such styles of thinking are con-
troversial. Evans and Stanovich (2013) reviewed five general
criticisms of dual-process theories, which are summarized in
Table 2. Foremost is the acknowledgement that dual-process
theories are multitudinous and vaguely defined. The Inter-
vention model attempts to address this problem (see Evans

& Stanovich, 2013, for the model and responses to the five
criticisms). According to this model, cognition defaults to
Type 1 processes that can be intervened upon by Type 2 pro-
cesses in response to task demands. However, this model is
still far from the kinds of formal, computational explanations
that prevail in cognitive science.

ID Criticism of dual-process theories
C1 Theories are multitudinous and definitions vague
C2 Type 1/2 distinctions do not reliably align
C3 Cognitive styles vary continuously, not discretely
C4 Single-process theories provide better explanations
C5 Evidence for dual-processing is unconvincing

Table 2: Five criticisms of dual-process theories (Evans &
Stanovich, 2013).

We propose a category theory (Mac Lane, 1998) approach
to understanding dual-process cognition. The attraction of
this approach is the precise formalization of the relationships
between cognitive processes that have some of the distinctive
features of Type 1 versus Type 2 cognition. An intuitive basis
for the category theory that supports this approach is given in
the next section. Examples are sketched in the section that
follows, and this approach is discussed with regard to the five
criticisms in the final section. Technical support appears in
the appendix.

Categories and functors
Here, we provide an intuitive overview of the supporting the-
ory given in the appendix (see, e.g., Awodey, 2010; Mac Lane,
1998, for introductions to category theory). To aid intuition,
formal concepts are interpreted in terms of the more familiar
notion of an analogy between source and target domains. Our
main interest is in adjoint and representable functors, which
depend on the concepts of category, functor and natural trans-
formation. So, we proceed in that order. Some conceptual
correspondences are summarized in Table 3.

Category theory Cognitive science
category (sub)system, source/target
functor construction, analogy
natural transformation comparison (of analogies)
adjoint (functor) inverse/obverse, Type 1 ↔ 2
representable (functor) representation

Table 3: Corresponding categorical and cognitive concepts.

A proportional analogy serves to bootstrap basic intuitions

2253

about categories, functors and natural transformations: Pre-
decessor is to successor as one is to two; as Monday is to
Tuesday. Analogy is generally recognized as a map of entities
in a source domain to entities in a target domain that pre-
serves their relations (Gentner, 1983): e.g., next(predecessor,
successor) in the order domain maps to next(one, two) in
the number domain; likewise, next(Monday, Tuesday) in the
days-of-the-week domain. In this context, we can interpret:

• a category (definition 1) as a source/target domain, which
consists of a collection of objects (e.g., predecessor, suc-
cessor), a collection of morphisms (e.g., next) between
objects, and a composition operation for combining mor-
phisms (e.g., next of next);

• a functor (definition 3) as an analogy (e.g., days-of-the-
week) from one category (source) to another category (tar-
get) that “preserves structure” (e.g., next of next in the order
domain maps to next of next in the number domain); and

• a natural transformation (definition 4) as a comparison of
analogies (e.g., next number and next day) so that the result
of applying a relation to a transformation is the same as the
transformation of the result of applying a relation (e.g. the
day after the first day is the same as the second day).

Natural transformations also appear to be like analogies, but
the appearance belies an important distinction: natural trans-
formations are maps between functors, whereas functors are
maps between categories: 2nd-order contra 1st-order analogy.

With these concepts we can proceed to adjunction, re-
garded as the centrepiece of ordinary category theory (Mac
Lane, 1998), and the related notion of representable func-
tor. Our motivation is the observation that Type 1/2 processes
are distinguished by counterposing features and immediacy
(e.g., autonomous versus simulated). To illustrate, consider
approximation and precision as conceptual inverses, though
not actual inverses since approximation discards information:
e.g., reals are approximated by integers, but their sets are not
isomorphic. Yet, there is a “second-order isomorphism” be-
tween their orders affording comparisons with reals in terms
of integers without loss of precision. We can interpret:

• an adjunction (definition 5) as an “inverse” (obverse) rela-
tion between two “anti-parallel” functors: e.g., one functor
sends each real to its ceiling (approximation: e.g., 2.3 7→ 3)
and the other functor sends each integer to its corresponding
real (precision: e.g., 3 7→ 3.0); and

• a representable functor (definition 6) as a construction that
can be represented, or simulated by another functor (e.g.,
comparisons with reals in terms of integers).

The integers, likewise reals, with the usual order form a cat-
egory (example 1(a)). The two number systems are related
by adjunctions (example 6(a, b)) and associated representable
functors (example 7). Effectively, comparisons of reals to
upper and lower (integer) bounds can be computed in terms

of integers, thus avoiding a need for infinite precision. In
a cognitive context, the infinite real-world is represented by
finite resources. This example also shows how representable
functors convey a second-order isomorphism even though a
first-order isomorphism does not exist.

Categorical perspective on dual-processes
Type 1 and Type 2 processes are distinguished by counter-
posed features, suggesting adjoint and representable functors
as the formal connection. We sketch cases centred on pairs of
adjoint functors. In each case, we lead with an aspect of cog-
nition that motivates a particular adjunction, which suggests
related distinctions that follow,

Whole/part: diagonal-product functors
One commonly held distinction is whether cognitive processes
operate on cognitive representations wholistically or compo-
nentially (whole/part). For example, kicked the bucket can
be interpreted wholistically (idiomatically) as died, or com-
ponentially as an act of kicking. The first interpretation is
characteristically associative and the second rule-based (F8).

This whole/part distinction is expressed by functors that
pertain to a componential object called a product. Products
are constructed by the product functor, which is right adjoint to
the diagonal functor (example 6(c)). This case is a conceptual
inverse in the sense of combining parts to form wholes in
one direction (product functor) and contextualizing wholes as
parts in the other direction (diagonal functor).

This adjoint situation was tested in a paired-associates task:
subjects learned to associate pairs of letters to coloured shapes,
where say first letters were associated with colours and second
letters to shapes (Phillips, Takeda, & Sugimoto, 2016). In this
situation, the dual processes are a map of letter pairs versus
of pair of letter maps. Performance on generalization (novel)
trials indicated associative versus rule-based processes, which
correlated with conscious awareness (F4) of the underlying
rule. Unaware subjects did not show correct responses to cues
beyond the context of those seen in training trials: did not
infer an abstract rule that extended to novel letter pairs (F6).
Thus, the diagonal-product functor expresses three distinctive
features of Type 1/2 processes: F4, F6 and F8.

Parallel/serial: product-exponential functors
A second common distinction is between parallel versus serial
cognitive process (F3). Visual search, for example, is clas-
sically regarded as involving either a parallel process when
the time to find a target item is independent of the number of
non-targets, or a serial process when time increases linearly
with the number of non-targets (Treisman & Gelade, 1980).

The parallel/serial distinction is expressed by the product-
exponential adjunction (example 9). As applied to functions,
this adjunction is called the (un)curry transform in computer
science: e.g., +(x,y) ⇔ +(x)(y). Here, the general advantage
of parallel processing is speed, since multiple arguments are
applied concurrently. Thus, the product-exponential adjoint
expresses distinctions F1 and F3.

2254

Automatic/controlled: free-forgetful functors
A third distinction pertains to automatic versus controlled pro-
cesses (F7). For example, counting a small number of items,
subitizing, is automatic whereas counting a large number of
items is controlled by an incremental process.

The free-forgetful adjunction (example 10) expresses this
distinction. Counting is modelled as a monoid: the natural
numbers with addition, and zero as the identity element—
counting is a serial process (F3) starting at zero and adding
one until all items are counted. The free functor sends a set
to the free monoid on that set, which affords the counting
process. The forgetful functor sends a monoid to its underly-
ing set, forgetting the monoid operation. So, the free functor
constructs the control process, whereas the forgetful functor
constructs the corresponding automatic process, a map that
obviates the control steps, expressing the distinction between
automatic and controlled processes (F7). The automatic pro-
cess associates lists of items to their count, the controlled
process steps through each list item (F8), hence the automatic
process is fast (F1) and effectively parallel (F3) since the inter-
mediate counting steps are obviated. Thus, the free-forgetful
adjoint expresses distinctions F1, F3, F7 and F8.

Autonomous/simulated: representable functors
A fourth distinction is between autonomous versus simulated
processes (D2). This distinction is regarded as definitive of
Type 1 versus Type 2 processes, and is sometimes distin-
guished as on-line versus off-line processing (Halford, Wil-
son, Andrews, & Phillips, 2014). The central advantage of
off-line processing is that one can assess the potential effects
of an action without having to incur its consequences. That
is the advantage of working with a representation, or mental
model of the world, in place of the world itself.

Representable functors express this difference between au-
tonomous and simulated processes. Every adjunction induces
a pair of representable functors (remark 7). So, all the previous
examples of adjoint functors involve representable functors. A
representable functor does two things: (1) preserves the struc-
ture of the domain category in the form of sets and functions
in the category Set, and (2) in such a way that the structure is
represented (or, modelled) by a hom-functor (example 3). For
adjoint functors between categories C and D, the domain of
associated representable functors consists of pairs of objects
and morphisms from C and D. The interaction between these
categories in the form of an adjunction is represented by sets
and functions in Set (D2). Forgetful functors are representable
functors (example 12), so the forgetful functor in the previous
example is representable. This functor is represented by the
natural numbers monoid and its generator (remark 9). This
representation makes explicit the relationship between each
natural number (F13). The natural numbers are represented
by a process that generates them. Thus, representable functors
express distinctions D2 and F13.

This categorical method of representation is generalized
further, by the Yoneda lemma (lemma 1) and functor (defi-

nition 7), in terms of morphisms between objects. Suppose,
e.g., a world as a 2-dimensional space (example 13). In this
context, the Yoneda functor affords a coherent representation
of this world with respect to given reference points A and B
(diagram 3), such as a cognitive agent’s binocular sensors.
Moreover, isomorphisms are preserved (remark 11), in which
case, one view can be used to calibrate the other.

Discussion
In this section, we discuss our category theory approach in
terms of the five general criticisms levelled against dual-
process theories, which were summarized in Table 2, and
then provide some overall perspective.

C1 Dual-process theories are criticized for their vagueness.
Category theory provides a formally precise foundation for
the relationship between cognitive dual-processes, in terms
of adjoint and representable functors. Moreover, although
we have presented several different pairs of adjoint and rep-
resentable functors, all such situations derive from the same
general form. Thus, our categorical approach addresses this
criticism with precision and parsimony.

C2 Another criticism is that distinguishing features do not
align with Type 1 and Type 2 processes. Evans and Stanovich
(2013) countered that only D1 and D2 are supposed to be
definitive of Type 1 and Type 2 processes, wheres F1–14 are
only supposed to correlate with process type. The analogous
situation, here, is that all representable functors derived from
adjoints have the same form, thus they all align with D2. The
correlated features cluster with different adjoints. Thus, the
categorical approach is consistent with the role of these fea-
tures. Note, however, the categorical approach currently does
not say anything about working memory (D1), and several
other correlated distinctions (F2, F5, F9–12, and F14).

C3 To some extent, the categorical approach is neutral with
regard to the criticism that dual-route theories imply discrete-
ness, whereas the data suggest continuity of alternatives. That
is because the nature of the alternative path via natural trans-
formations depends on the nature of the functors being related.
Natural transformations also apply to relations between con-
tinuous maps, and were originally introduced to address such
situations. The categorical approach does not necessitate dis-
creteness or continuity of process type. Even for discrete
alternatives, decision criteria may lie on a continuous dimen-
sion, such as a cost/benefit trade-off (see Phillips, Takeda, &
Sugimoto, 2016), giving the appearance of a continuity.

C4 Whether or not category theory provides a better expla-
nation for dual-process cognition remains to be determined.
However, the close relationship between adjoint functors, uni-
versal constructions, and systematicity points in favour of a
categorical approach. Adjunctions are another kind of (cate-
gorical) universal construction, universal constructions were

2255

employed to explain systematicity (Phillips & Wilson, 2010),
and one can argue that dual-process is a general systematic
property of human cognition. Thus, category theory provides
a better explanation in this regard.

C5 Evidence favouring dual-process over single-process
theories has been given (see, e.g., Evans & Stanovich, 2013;
Kahneman, 2011). Support for an adjoints approach was pro-
vided in an experiment designed to test the diagonal-product
basis for dual-processes (Phillips et al., 2016). With enough
parameters, a single-process model can be devised to fit the
same data. The question is whether such parameters (assump-
tions) are ad hoc: serve only to fit rather than explain the data.
This question relates to the previous response (C4), so one
area of inquiry is data showing systematicity as a property in
the context of dual-styles of thinking.

Perspective
The main advantage of a categorical approach is the pre-
cise formalization of the relationship between dual processes.
This advantage is particularly important as dual-process theo-
ries are applied to cognitive development (Evans, 2011), since
one needs to know how they are related. The use of adjoints
is particularly relevant to cognitive science, which predom-
inantly bases the notion of structure-sensitive processing on
isomorphism. However, as illustrated, isomorphism is of-
ten too strict to be a useful criterion, hence the relevance of
the often cited quote, “Adjoints and everywhere” (Mac Lane,
1998). An adjunction can be regarded as a kind of local (as
opposed to global) isomorphism: bijections between hom-sets
(remark 2), without requiring that the collections of objects
(between the respective categories) be isomorphic. So, one
can reasonably expect adjoint and representable functors to
play a role in other distinctive forms of dual-processing, which
we have not addressed here.

Nonetheless, there are three general issues to be addressed
in further work. The first issue concerns the adjoint basis for
dual-process. Adjunctions pertain to equalities between the
alternative computational paths. Thus, the current approach
does not address cases where the dual processes supply con-
tradictory responses. One possibility is to use adjunctions in
higher category theory where the paths are themselves related
by isomorphisms, instead of equalities.

A second issue concerns the link between the theory and
empirical data. Some work has been done in this direction.
Experiments were designed around the diagonal-product ad-
junction to test the empirical basis for non-systematic ver-
sus systematic properties of cognition (Phillips et al., 2016),
which one can see as an aspect of the associative/rule-based
distinction (F8). A question for any dual-process theory is to
explain why one process is executed over the other. Further
empirical work suggested a kind of cost/benefit trade-off as an
account of which route (Phillips, Takeda, & Sugimoto, 2017).
The theoretical challenge for our approach is to provide a
categorical basis for such trade-offs.

A third issue concerns computational mechanisms. Cate-
gory theory also provides a rigorous foundation for compu-
tation, particularly recursion (see, e.g., Hinze & Wu, 2016).
Thus, we expect that category theory will also afford compu-
tational methods for cognitive dual-processes.

As a final remark, note the expository style of this work as
an illustration of our adjoint basis for dual-process cognition:
an informal main text on one hand and a formal appendix on
the other. The main text is an approximate, yet more read-
ily accessible exposition with links to the latter more precise,
yet densely written alternative. Ideally, space permitting, the
appendix would also provide links back to the main text (cf.
approximation and precision as adjoints). Bidirectional ex-
ploitation of such trade-offs, in general form, is seen as the
quintessential advance of human cognition (Phillips, 2017).

Acknowledgements
This work was supported by a Japanese Society for the Pro-
motion of Science Grant-in-aid (16KT0025).

References
Awodey, S. (2010). Category theory (2nd ed.). New York,

NY: Oxford University Press.
Evans, J. S. B. T. (2003). In two minds: Dual-process accounts

of reasoning. Trends in Cognitive Sciences, 7(10), 454–459.
Evans, J. S. B. T. (2011). Dual-process theories of reason-

ing: Contemporary issues and developmental applications.
Developmental Review, 31, 86–102.

Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process
theories of higher cognition: advancing the debate. Per-
spectives on Psychological Science, 8(3), 223–241.

Gentner, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7(2), 47–59.

Halford, G. S., Wilson, W. H., Andrews, G., & Phillips, S.
(2014). Categorizing cognition: Toward conceptual coher-
ence in the foundations of psychology. MIT Press.

Hinze, R., & Wu, N. (2016). Unifying structured recursion
schemes: an extended study. Journal of Functional Pro-
gramming, 26, e1.

Kahneman, D. (2011). Thinking, fast and slow. New York,
NY: Farrar, Straus and Giroux.

Mac Lane, S. (1998). Categories for the working mathemati-
cian (2nd ed.). New York, NY: Springer.

Phillips, S. (2017). A general (category theory) principle for
general intelligence: duality (adjointness). In T. Everitt,
B. Goertzel, & A. Potapov (Eds.), Artificial general intelli-
gence (Vol. 10414, pp. 57–66). Springer.

Phillips, S., Takeda, Y., & Sugimoto, F. (2016). Why are
there failures of systematicity? The empirical costs and
benefits of inducing universal constructions. Frontiers in
Psychology, 7, 1310.

Phillips, S., Takeda, Y., & Sugimoto, F. (2017). Dual-routes
and the cost of determining least-cost. Frontiers in Psychol-
ogy, 8, 1943.

Phillips, S., & Wilson, W. H. (2010). Categorial composition-
ality: A category theory explanation for the systematicity

2256

of human cognition. PLoS Computational Biology, 6(7),
e1000858.

Treisman, A. M., & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive Psychology, 12(1), 97–113.

Appendix A: Category theory
Definition 1 (Category). A category C consists of a collec-
tion of objects, O (C) = {A,B, . . .}, a collection of morphisms,
M (C) = { f ,g, . . .}—a morphism written in full as f : A → B
indicates object A as the domain and object B as the codomain
of f —including for each object A ∈ O (C) the identity mor-
phism 1A : A → A, and a composition operation, ◦, that sends
each pair of compatible morphisms f : A → B and g : B →C
(i.e. the codomain of f is the domain of g) to the composite
morphism g◦ f : A →C, that together satisfy the laws of:

• identity: f ◦1A = f = 1B ◦ f for every f ∈ M (C), and

• associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for every triple of
compatible morphisms f ,g,h ∈ M (C).

Remark 1. A morphism f : A → B with an inverse g is called
an isomorphism: f ◦g = 1B and g◦ f = 1A. We write A � B.
Example 1 (Category). The following are categories.

a The integers with the usual order relation, (Z,≤), form a
category that consists of objects x ∈ Z and morphisms x ≤ y
(identities are x≤ x), with composition given by transitivity.

b The category Set has sets for objects, functions for mor-
phisms, and function composition as the composition oper-
ation. Identity functions are the identity morphisms.

c The opposite category Cop has C-objects with morphisms
reversed, i.e. f : A → B in C is f : B → A in Cop.

d Product category C×D has {(A,B)|A ∈ O (C),B ∈ O (D)}
for its collection of objects, {(f ,g)| f ∈ M (C),g ∈ M (D)}
for its collection of morphisms, and pointwise composition.

Remark 2. HomC(A,B) is the set of morphisms in category C
with domain A and codomain B. C is elided when understood.
Definition 2 (Post/precomposition). Given a morphism f ,

• postcomposition with f is the operation f ∗ : h 7→ f ◦h and

• precomposition with f is the operation f∗ : h 7→ h◦ f .

Remark 3. Postcomposition and precomposition combine,
for example, f∗g∗ : h 7→ f∗(g◦h) = g◦h◦ f .
Definition 3 (Functor). A (covariant) functor is a “structure-
preserving” map from a category C to a category D, written
F : C → D, sending each object A and morphism f : A → B in
C to the object F (A) and the morphism F (f) : F (A) → F (B)
in D (respectively) that satisfies the laws of:

• identity: F (1A) = 1F (A) for every object A ∈ O (C), and

• compositionality: F (g◦C f) = F (g) ◦D F (f) for every pair
of compatible morphisms f ,g ∈ M (C).

Example 2 (Functor). The following are functors.

a Incl : (Z,≤) → (R,≤);x 7→ x, see example 1(a).

b Ceil : (R,≤) → (Z,≤);x 7→ ⌈x⌉, e.g., ⌈2.4⌉ = 3.

c Floor : (R,≤) → (Z,≤);x 7→ ⌊x⌋, e.g., ⌊2.4⌋ = 2.

d ∆ : C → C×C;A 7→ (A,A), f 7→ (f , f).

e Π : C×C → C; (A,B) 7→ A×B, (f ,g) 7→ f ×g.

Functors a, b and c preserve order: e.g., x ≤ y ⇒ ⌈x⌉ ≤ ⌈y⌉.
Remark 4. F : Cop → D is called a contravariant functor.
Example 3 (Hom-functor). The following are hom-functors.

a The covariant hom-functor pertains to postcomposition:
Hom(A,−) : C → Set;X 7→ Hom(A,X),g 7→ g∗.

b The contravariant hom-functor pertains to precomposition:
Hom(−,B) : Cop → Set;X 7→ Hom(X ,B), f 7→ f∗.

c The bivariate hom-functor combines postcomposition and
precomposition: Hom(−,−) : Cop × C → Set; (A,B) 7→
Hom(A,B), (f ,g) 7→ f∗g∗, see remark 3.

Example 4 (Bivariate hom-functor). Two additional bivariate
hom-functors are obtained by precomposing with functor

a F : C → D on the left argument: Hom(F−,−) : Cop×D →
Set; (A,B) 7→ Hom(F (A),B), (F (f),g) 7→ F (f)∗g∗ and

b G : D → C on the right argument: Hom(−,G−) : Cop ×
D → Set; (A,B) 7→ Hom(A,G(B)), (f ,G(g)) 7→ f∗G(g)∗.

Definition 4 (Natural transformation). Let F,G : C → D be
functors. A natural transformation η : F .→ G is a family
of D-morphisms {ηA : F (A) → G(A)|A ∈ O (C)} such that
G(f) ◦ηA = ηB ◦F (f) for every morphism f : A → B in C.
Remark 5. A natural isomorphism is a natural transformation
where every ηA is an isomorphism, see remark 1.
Example 5 (Natural hom). Hom-functors relate naturally.

a Covariantly, Hom(h,−) : Hom(A,−) .→ Hom(B,−).

b Contravariantly, Hom(−,h) : Hom(−,A) .→ Hom(−,B).

Remark 6. The functors C → D (objects) and their natural
transformations (morphisms) form a category, denoted DC.
Definition 5 (Adjunction). An adjunction from category C to
category D is a tuple, (F,G,η,ε) : C ⇀ D, consisting of func-
tors F : C → D and G : D → C, and natural transformations
η : 1C

.→ G◦F and ε : F ◦G .→ 1D such that Gε◦ηG = 1G and
εF ◦Fη = 1F . F is the left adjoint of G (G is the right adjoint
of F), denoted F ⊣ G, and η (ε) is the (co)unit.
Example 6 (Adjunction). The following are adjunctions.

a Ceil ⊣ Incl with unit x ≤ ⌈x⌉ and counit y ≤ y.

b Incl ⊣ Floor with unit x ≤ x and counit ⌊y⌋ ≤ y.

2257

c ∆ ⊣ Π with unit ⟨1,1⟩ : Z → Z × Z and counit (π1,π2) :
(A×B,A×B) → (A,B). In Set, π1 : (a,b) 7→ a, etc.

Remark 7. Every adjunction induces a natural isomorphism:
ϕ : Hom(F−,−) � Hom(−,G−) : ψ (Mac Lane, 1998), as
indicated by the following commutative diagram:

HomD(F (A),B)

Hom(F (h),k)
��

ϕA,B // HomC(A,G(B))
ψA,B

oo

Hom(h,G(k))
��

HomD(F (A′),B′)
ϕA′,B′ // HomC(A′,G(B′)) ,
ψA′,B′

oo

(1)

which states that Hom(F (h),k) =ψA′,B′ ◦Hom(h,G(k))◦ϕA,B
and Hom(h,G(k)) = ϕA′,B′ ◦Hom(F (h),k) ◦ψA,B.
Example 7 (Bounds). Instantiating F ⊣ G as:

• Ceil ⊣ Incl yields ⌈x⌉ ≤ y ⇔ x ≤ y, and

• Incl ⊣ Floor yields x ≤ y ⇔ ⌊x⌋ ≤ y (see example 2).

Example 8 (Diagonal-product). The diagonal functor is left
adjoint to the product functor (∆ ⊣ Π, example 6(c)), hence
the bijection Hom((Z,Z), (A,B)) � Hom(Z,A×B). In Set
with Z = 1, i.e. singleton set {∗}, the bijection is between two
sets of “points”—a point is a map a : 1 → A;∗ 7→ a, where
a ∈ A. Thus, diagram 1 specializes and simplifies to

(A,B)

(f ,g)
��

ϕ // A×B
ψ

oo

f×g
��

(A′,B′)
ϕ′ // A′×B′ ,
ψ′

oo

(2)

i.e. the equivalence between a map of pairs and a pair of maps.
Example 9 (Product-exponential). The product functor ΠB :
C → C;A 7→ A×B, f 7→ f × 1B is left adjoint to the expo-
nential functor ΛB : C → C;C 7→ CB, f 7→ f B. In Set, the
object CB is the function space { f : B →C}, hence the bijec-
tion Hom(A×B,C) � Hom(A,CB), which specializes to the
equality: f (a,b) = f̃ (a)(b), where f̃ : a 7→ fa and fa : b 7→ c.
This equivalence is called curry-uncurry in computer science.
Example 10 (Free-forgetful). A monoid is a set together with
a binary operation and an identity element, e.g., the naturals
with addition and 0 as the identity, (N,+,0). Mon is the
category of monoids and monoid homomorphisms. The free
functor F : Set → Mon;S 7→ (S,⋆,e) sends each set S to the
free monoid on S, e.g., the free monoid on an alphabet A is
the set of all “words” A∗ with the concatenation operation ·
and e as the empty word. The forgetful functor U : Mon →
Set; (M,⋆,e) 7→ M sends each monoid to its underlying set,
forgetting the operation, which is right adjoint to the free
functor, F ⊣U . In this situation, the correspondence between
the monoid homomorphism h : (A∗, ·,e) → (N,+,0) and the
function h : A∗ → N is word length.

Definition 6 (Representable functor). A representable functor
is a functor F : C → Set such that there exists a hom-functor
Hom(A,−) : C → Set naturally isomorphic to F : there exists
a pair (A,ϕ) where A ∈ O (C) and ϕ : Hom(A,−) � F .
Remark 8. Contravariantly, we require ψ : Hom(−,B) � F .
Example 11 (Hom-functor). Hom-functors are representable
functors being isomorphic to themselves.
Example 12 (Forgetful). Forgetful functor U : Mon → Set
(see example 10) is a representable functor, being naturally
isomorphic to the hom-functor Hom(F (1),−), where F (1) is
the free monoid on the singleton set 1 = {∗}. In example 10,
(N,+,0) is the free monoid on {1}.
Remark 9. The pair (N,1) is called a representation of U ,
where 1 is the generator of the natural numbers.
Lemma 1 (Yoneda). Given functor F : C → Set and object
A ∈ O (C), there is a bijection from the set of natural transfor-
mations Nat(Hom(A,−),F) to the elements of F (A) that is
natural in F and A, written yF,A : Nat(Hom(A,−),F) � F (A).
Remark 10. Setting F to hom-functor Hom(B,−) yields the
bijection Nat(Hom(A,−),Hom(B,−)) � HomC(B,A).
Definition 7 (Yoneda functor). A Yoneda functor is a functor
Y : Cop → SetC;A 7→ Hom(A,−),h 7→ Hom(h,−).
Remark 11. Y is an embedding: injective on objects and
bijective on hom-sets (remark 10), so A � B ⇔ Y (A) � Y (B).
Example 13 (Yoneda functor). The coordinate spaceR2 is the
category whose objects are points (Ax,Ay) ∈ R2, morphisms
AB : A → B are translations (Bx −Ax,By −Ay)—identities are
zero translations—and composition is addition. The Yoneda
functor Y : R2 → Set sends:

• each object A ∈ O (C) to hom-functor Hom(A,−) : X 7→
{AX}, f 7→ f+, where f is an f -translation, and

• each morphism h : B → A to the natural transformation
Hom(h,−), where h is an h-translation.

Objects/morphisms are indicated in the following diagram:

X

f

��

Hom(h,X) //

Hom(A, f)

��
Hom(B, f)

��

A

AX

33

AY

++

Bhoo

BX

kk

BY

ss

Hom(h,Y)
//

Y

(3)

where the arrows between arrows are functions in Set and all
other arrows are translations in R2. Conceptually, consider A
and B as points of reference with regard to entities X and Y
and their relationship f in the world, R2, and the commutative
rectangle as a coherent view (representation) of that world.

2258

