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Abstract 
Chronic pain syndromes are often refractory to 
treatment and cause substantial suffering and 
disability. Pain severity is often measured through 
subjective report, while objective biomarkers that 
may guide diagnosis and treatment are lacking. 
Also, which brain activity underlies chronic pain on 
clinically relevant timescales, or how this relates to 
acute pain, remains unclear. Here, four participants 
with refractory neuropathic pain were implanted with 
chronic intracranial electrodes in the anterior 
cingulate (ACC) and orbitofrontal (OFC) cortex. 
Participants reported pain metrics coincident with 
ambulatory, direct neural recordings obtained 
multiple times daily over months. We successfully 
predicted intraindividual chronic pain severity scores 
from neural activity with high sensitivity using 
machine learning methods. Chronic pain decoding 
relied on sustained power changes from the OFC, 
which tended to differ from transient patterns of 
activity associated with acute, evoked pain states 
during a task. Thus, intracranial OFC signals can be 
used to predict spontaneous, chronic pain state in 
patients. 
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Introduction 
Chronic pain syndromes pose a major healthcare 
problem and are leading contributors to disability 
worldwide.1 Neuropathic pain syndromes such as 
post-stroke and phantom limb pain are particularly 
refractory to treatment and impose substantial 
suffering. A hurdle to a mechanistic understanding 
of chronic pain, and the development of effective 
diagnostics and therapeutics, is the lack of objective 
measures of pain severity or underlying 
neurophysiology. Of necessity, chronic pain is 
commonly measured by the patient’s subjective 
report, an interrogative approach limited by 
difficulties in quantitation, reliability, and inter-
participant comparability. Objective biomarkers for 
chronic pain would greatly facilitate diagnosis and 
classification of pain pathophysiology, assist with 
disease prognostication or prediction of therapy 
response, and catalyze therapeutic development.2,3  
 Most prior attempts to identify pain 
biomarkers have focused on healthy participants 
and experimental thermal pain, which ignores 
natural, spontaneous fluctuations in patients’ chronic 
pain experience.4–7 Even studies of spontaneous 
chronic pain severity are limited by characterization 
over short time scales (minutes) due to reliance on 
ex vivo technology such as 
electroencephalography7  or  blood-oxygen-level-
dependent functional MRI (BOLD-fMRI)8,9 that are 
not amenable to frequent, long-term measurement. 
Further, interpretation of BOLD-fMRI responses 
associated with chronic back pain is complicated 
due to inclusion of patients with heterogenous 
sources of pain (e.g., inflammatory, myofascial, 
neuropathic). It is unclear whether lessons learned 
from healthy human participants or mixed pain 
syndromes translate to patients with chronic 
neuropathic pain over clinically relevant time 
periods. A growing body of evidence from humans 
and animals suggests that chronic pain processing 
engages the medial frontal cortex in a manner 
distinct from acute, thermal pain10–13.  
 Frontal brain regions harbor important 
signals that integrate the somatosensory, affective, 
and cognitive dimensions of pain. The rostral 
anterior cingulate cortex (ACC) has been 
extensively implicated in affective / emotional 
processing related to both acute and chronic 
pain10,14 and proposed as a therapeutic stimulation 
target to treat chronic pain.15 The orbitofrontal cortex 
(OFC) has rarely been studied in pain, but its 
reciprocal connections with ACC and many other 
regions in the functional pain network such as 

amygdala, insula and ventral striatum16,17 make it 
well positioned to influence pain perception. 
Functional imaging has revealed increased OFC 
activity in response to multimodal sensory stimuli, 
during tasks requiring the integration of bodily 
signals to guide behavior (e.g. interoception)18,19, 
reversal learning, and pain expectation related to 
monetary reward20. Direct recordings from OFC 
have confirmed key signals that track internal 
deliberation of reward choices21 and OFC 
stimulation can improve mood state in depressed 
patients22. Other studies have identified the 
ventromedial prefrontal cortex, a region overlapping 
with definitions of OFC, as an important region 
associated with interindividual variability in acute 
pain perception23 and negative affective responses 
to multimodal stimuli24. Specific coactivation of the 
dorsal ACC and OFC is seen both during opioid 
consumption and in response to placebo 
analgesia,25 implicating these regions in myriad 
functions ranging from sensory perception, 
expectation,  cognitive flexibility and mood 
regulation. While long distance connections 
between ACC/OFC and subcortical structures may 
support plasticity underlying chronic pain, signals 
from either brain region alone may be sufficient to 
track pain state. It remains an open question 
whether previous studies of chronic back pain due to 
heterogenous pain generators generalize to true 
neuropathic pain states or is reflected in direct brain 
activity in vivo. Therefore, we targeted two relatively 
less-studied, non-somatosensory brain regions as 
part of a larger deep brain stimulation clinical trial.  
We hypothesized that neural activity from ACC or 
OFC may provide an integrated biomarker of the 
subjective experience underlying chronic pain 
severity. To our knowledge, long-term direct brain 
measurement of chronic pain-related neural activity 
has never been done.  
 By studying brain biomarkers with high 
resolution across both short (sub-second) and long 
timescales (months) in humans, we aimed to 
develop a sensitive test of high pain states and study 
the neurophysiologic basis of spontaneous chronic 
pain. Such insights potentially bring new clarity to 
pain biology and help to inform personalized 
treatments such as tailored closed-loop deep brain 
stimulation (DBS) therapies for chronic pain.26,27  We 
collected pain reports and intracranial recordings in 
the ambulatory setting using a novel bidirectional 
brain implant (Medtronic Activa PC+S) in four human 
participants with long-standing refractory, chronic 
neuropathic pain over 3-6 months. These are first-
in-human chronic in vivo neural recordings of key 
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pain related cortical regions,8,14 ACC and OFC. We 
analyzed local field potentials (LFP) with machine 
learning to develop personalized neural signatures 
for  chronic pain severity and characterize the 
relative feature importance from each brain region. 
By comparing brain-based signatures for 
spontaneous, chronic pain with signatures derived 
for acute, evoked thermal pain, we identify distinct 
neural substrates for each. Brain biomarkers of 
chronic pain reflected sustained changes in neural 
power features that tended to rely more on OFC, 
which only generalized to the acute pain condition 
within one participant. Acute pain decoding tended 
to reflect greater contributions from ACC with more 
frequent and transient changes in power. Biomarker 
decoding was superior for current vs recent changes 
in pain state and largely stable over time. These data 
provide the first demonstration that spontaneous, 
chronic pain states can be predicted from direct 
brain activity over ecological timescales in the 
ambulatory setting. 

Results 
Longitudinal Pain-State Tracking  
Each participant provided pain score reports multiple 
times daily (range 2-8/day) over a range of 78-184 
days (mean 320 reports/participant, Table S1). All 
participants reported 11-point pain intensity NRS (0-
10) while two participants (CP3,CP4) also provided 
pain intensity visual analog score (VAS), the short-
form McGill Pain Questionnaire (SF-MPQ), and pain 
unpleasantness (NRS and VAS). Pain NRS values 
were high for all participants (mean ±SD 7.8 ±0.9) 
and all ratings exhibited fluctuation exceeding 
established minimal clinically important differences 
(MCID for SF-MPQ >5 28, NRS>2 29,  VAS>1.6, 
Figure 1B,C). To assess internal validity of pain 
score reporting, we computed Pearson’s 
correlations between VAS and NRS for pain 
intensity and unpleasantness, which were highly 
correlated within-participant (Figure 1D, R2 range = 
0.84-0.96). We evaluated periodicity in chronic pain 
fluctuation by computing an autocorrelation for each 
participant’s pain NRS (Figure 1E). While all 
participants showed diurnal cycles in their pain 
states, we also observed clinically significant 
multidien cycles of pain fluctuation, with two 
participants exhibiting pain fluctuation nearly every 3 
days (72h, CP1 and CP3).  
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Figure 1 - Long Term Ambulatory Tracking of Chronic Pain Metrics 
a, Self-drawn body maps corresponding to the anatomical distribution of each of four participants’ spontaneous 
chronic pain location. Red and blue indicate areas of high and low pain, respectively. b, Scatterplot of an example 
participant’s report of overall pain intensity VASs over 105 d (mean 3.2 reports/d), with overlying moving average 
(red line; window = 3 samples), demonstrating a range larger than MCID. Each black point represents one pain 
report simultaneous with a neural recording. c, Histogram of each participant’s reported pain intensity NRS; most 
values were high (>6/10) but similar across participants. d, Group data demonstrating high correlation between 
VAS and NRS for pain intensity and unpleasantness across participants who reported them (CP3–4) with 
associated Pearson’s correlation R. e, Partial autocorrelation stem plots for each participant’s pain NRSs. 
Different pain score reporting frequencies for each participant resulted in different autocorrelation resolution. 
Bold stems indicate time lags achieving statistical significance (P < 0.05) based on two-sided 95% confidence 
intervals (for CP1–4, respectively: ±0.12, 0.14, 0.13 and 0.09) not corrected for multiple comparisons.  
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Cross-Validated Decoding of Chronic Pain State 
To identify biomarkers of chronic pain state, we used 
ambulatory, intracranial local field potential (LFP) 
recordings from ACC and OFC (Figure 2A, B) to 
build models decoding each participants’ pain 
severity scores. Candidate biomarkers consisted of 
spectral power in frequency bands of interest, which 
showed no clear trend over time to suggest non-
neural changes in recordings (Figure S1). We first 
tried predicting exact reported pain metrics using 
cross-validated multivariate LASSO regression on 
neural band-power data (Figure S3). First, we 
created subregion decoding models using band-
power values sub-selected from individual brain 
regions and/or hemispheres and full models using all 
available data (i.e., bilateral ACC/OFC Figure 2C, 
D). For participants with bihemispheric electrode 
implants (CP2-4), there were 9 possible subregion 
models through possible combinations of 
contralateral, ipsilateral, or both hemispheres 
(relative to side of pain) from either the ACC, OFC, 
or both regions. Overall regression-based prediction 
showed mixed results (Figure S3), often poor but at 
other times comparable to classification (below).  
Regression of NRS pain intensity was poor in all 
participants with multivariate coefficients of 
determination (R2) between observed vs predicted 
scores ranging from -0.2 to 0.1 across all subregion 
and full models. LASSO regression performance on 
the alternative metrics of pain intensity VAS and 
unpleasantness NRS in two participants showed R2 

values as high as 0.3 (CP4 UNPNRS).  Even an R2 
value of 0.18 (CP3 VAS) is equivalent to a Pearson’s 
r = 0.42, a moderate effect size which corresponds 
a binary classification AUC = 0.74 assuming 
normally distributed, equal samples30. Notably, 
regression performed well when predicting MPQ in 
two participants, as evidenced by many R2 > 0.7 
(CP4). In summary, regression models performed 
moderately at best, when predicting pain intensity 
(NRS or VAS), but fared better for other pain metrics.  
Specifically for tracking pain intensity, these results 
may further support prior observations that a forced-
choice between low versus high pain states may be 
more pragmatic for clinical application6. 
  To investigate the role of different cortical 
circuits in a forced-choice framework, we turned our 
attention to predicting dichotomized pain scores 
(high vs low divided by median). Using cross-
validated LDA (see Methods) with at least one 
subregion model, dichotomized chronic pain NRS 
could be classified in all participants (Figure 2D, E, 
highest LDA AUCs (p-value) and Figure S4): 0.673 
(0.016), 0.851 (0.001), 0.721 (0.001), 0.802 (0.001) 

for CP1-CP4 respectively. Ranges for chronic pain 
NRS decoding statistics were as follows: positive 
predictive value (PPV) 0.83-0.93, sensitivity 0.62-
0.84, and specificity 0.56-0.82 (Table S2). In 3 
participants, the best decoding performance 
resulted from either full models or combining ACC 
and OFC activity in either hemisphere. Overall, 
chronic pain state could be significantly decoded 
across all patients using contralateral OFC alone. 
Misclassified pain states were distributed across 
timepoints spanning months and the range of pain 
scores (i.e., not only near the dichotomized 
boundary), confirming robustness of prediction 
(Figure S5). Decoding and biomarkers appeared 
stable over time. Compared to the LOOCV method 
(which leaves out power values and pain score class 
associated with one recording clip at a time) we 
observed better performance when we trained LDA 
pain NRS models on the first 70% of data and tested 
on the remaining 30% with AUCs near 0.9 in all but 
in one participant (CP1), with fewest number of 
recordings (Figure S6). This suggests stability in the 
biomarkers tracking pain intensity NRS over the 
timescale of months. 
 To test performance of an independent 
method (LSSM) that may be used to flexibly guide 
brain stimulation, we used full models (Figure S7) to 
predict pain intensity NRS. LSSM had similar 
performance to LDA in all participants except CP1. 
Moreover, two participants reported additional pain 
metrics including pain intensity VAS, pain 
unpleasantness NRS/VAS and SF-MPQ. Full 
models could significantly decode these pain metrics 
using both LDA and LSSM (Figures S7, S8, S4, 
S5A) except for CP3 unpleasantness-VAS using 
LSSM. Using LDA, SF-MPQ decoding showed 
equally high performance using either the full model 
or contralateral OFC/ACC subregion model (AUC 
(p-value) CP3 = 0.623 (0.004); CP4 =  0.995 
(0.001)), with PPV ranging from 0.77 – 0.99 (Table 
S2).  Further, using single region LDA models for 
classification of chronic pain unpleasantness NRS, 
a measure of the affective dimension of pain, 
showed the highest AUCs for data from contralateral 
ACC (AUC 0.69 (CP3) and 0.84 (CP4)) as expected. 
 By visualizing the normalized, mean LDA 
feature weights supporting successful LDA decoding 
(Figure 2E), we observed that the most important 
power features varied across participants. Despite 
this variability, a single brain region was sufficient to 
track chronic pain states in each participant, with 
contralateral OFC being common across all 
participants. 
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 It is possible that neural features may track 
the relative fluctuation of pain, rather than the current 
pain state. To test for this possibility, we constructed 
regression and LDA models of successive pain 
score differences (i.e., prior pain score subtracted 
from current pain score Figures S9a, S9b). 
Dichotomizing these difference values by those 
equal to zero (no change) vs those that were non-
zero (increasing or decreasing) may identify neural 
activity distinguishing stable vs fluctuating pain 
states. Classification of stable vs fluctuating pain 
NRS was broadly significant only in one participant 
(CP4). Consistent with prior results8, we observed 
that stable vs changing pain scores in two 
participants (CP2,3) could be distinguished only 
when models included neural signals from ACC. All 
LDA model AUCs were inferior to contemporaneous 
pain state prediction (Figure S9a). Further, 
regression of pain NRS difference was poor across 

participants (R2 range -0.2 to 0.1) and alternative 
pain metric regression (e.g., VAS) was not 
successful except for unpleasantness NRS and VAS 
each one participant (Figure S9b). The failure of 
regression to robustly predict increases or 
decreases in sequential pain scores over many 
hours may imply that ACC or OFC harbor weak 
signals for prediction errors over these timescales or 
that subjective pain experience is integrated over 
shorter historical durations than many hours. 
Therefore, while LFP from ACC and OFC may 
contain information relevant to recent changes in 
pain, the current chronic pain experience appears to 
be more reliably represented across participants and 
pain related metrics compared to pain fluctuations.  
 
 

Figure 2 - Ambulatory Neural Recordings From ACC And OFC Predict Chronic Pain State 
a, Example X-ray of a participant with bilateral implant of Activa PC + S DBS generators attached to depth leads 
in the ACC and paddle leads in the OFC (red highlights). b, Group localization of all electrode contacts in coronal 
(top) and sagittal (bottom) view. Blue shaded area is the ACC; yellow shaded area is OFC. Below are example 
raw LFP recordings from ACC (top) and OFC (bottom). c, Summary of the chronic pain-state decoding scheme 
for pain VAS using example data from one participant. Normalized power spectra are computed for each 
recording (ordered by increasing pain VAS (overlaid white circles) for display) and power values at each 
frequency are displayed across all recordings for an example participant. Above the color bar scale, a horizontal 
histogram of pain VAS shows the distribution of pain scores, which are split by the median value to define a 
dichotomous response variable (high (1) versus low (0) pain states). Average power values in frequency bands 
of interest serve as predictive features in two complementary decoding schemes. Power features sub-selected 
from either brain region or hemisphere are used to train models that decode high versus low pain states using 
LDA. d, Bar plots of decoding performance with successful pain-state prediction based on NRS for all participants 
using LDA. CP1–CP4 had n = 89, 137, 234 and 452 independent simultaneous recordings and pain score 
reports, respectively. One-sided empirical P values were calculated using permutation tests (n = 1,000; black 
dots), without correction for multiple comparisons ( ) as reported in Supplementary Fig. 4 for all metrics and 
models. P values for NRS models in d from left to right are: CP1: 0.092, 0.801, 0.016; CP2: 0.001, 0.001, 0.001, 
0.001, 0.001, 0.002, 0.001, 0.003, 0.777; CP3: 0.001, 0.005, 0.041, 0.001, 0.002, 0.027, 0.001, 0.001, 0.143; 
CP4: 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.612, 0.001. e, Normalized mean feature weights 
(importance) for each participant from full models (bilateral OFC/ACC) in d. (Note CP1 only has a unilateral 
implant. Contra, brain hemisphere contralateral to participants’ body side with chronic pain; ipsi, ipsilateral. ‡P < 
0.05, *P < 0.01, †P < 0.001).  
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Cross-Validated Decoding of Acute Pain State   
To compare with neural mechanisms supporting 
chronic pain, we next sought to identify biomarkers 
of acute, experimental thermal pain state. Brain 
recordings and pain ratings were collected while 
participants participated in quantitative sensory 
testing (QST, Figure 3A). Background chronic pain 
ratings just before the acute task were equivalent to 
the mode of patients’ reported scores (participants 
CP1-4, NRS, 9, 8, 7 and 8/10, respectively - 
compare to Table S1). Heat stimuli at five different 
temperatures, calibrated for each participant, were 
applied with a thermal probe to the most painful 
region on the side of the body affected by chronic 
pain (aff-ACUTE) and the same body part on the 
unaffected side (unaff-ACUTE) for up to six trials per 
target temperature; pain intensity NRS was reported 
3 seconds after target temperature was reached 
(Figure 3B-D). Participants were extensively trained 
on the task to avoid potential reporting confounds 
with respect to usual chronic pain (see Online 
Methods).  Subregion LDA models demonstrated 
significant prediction of high vs low acute pain in the 
aff-ACUTE condition in two participants, only when 
trained on data including ACC (CP1 AUCLDA =0.738, 
p=0.045; CP2, AUCLDA =0.74, p=0.037, Figures 3E, 
S10). Given unsuccessful decoding from any 
models trained on OFC alone, these data may 
suggest preferential involvement of ACC in circuits 
harboring acute pain signals. Tested models could 
not significantly predict acute pain in the unaff-
ACUTE condition (Figure 3F). In contrast to acute 
pain metrics on the affected side, we found no 
significant decoding of the actual delivered 
temperature on the affected side in any participant 
(Figure S11). One participant (CP4) showed 
significant decoding of temperature when applied to 
the unaffected side. 
 Again, key neural features supporting acute 
pain state prediction varied between the two 
participants in which decoding was possible, with the 
highest magnitude feature weight coming from ACC 
for each (CP1 contra ACC alpha, CP2 contra ACC 
beta, Figure 3G). Notably, features supporting acute 
pain decoding visually differed from those 
supporting chronic pain (compare to Figure 2E). If 
neural features that drive decoding of chronic pain 
state are similarly important for supporting acute 
pain decoding, full LDA models trained on the former 
should perform well when tested on data from the 
latter. We only observed such generalization from 
chronic to acute pain in one participant (CP2) who 
did not have a preexisting brain lesion (Figure S12). 
The lack of such generalization between acute and 

chronic pain representation in the remaining three 
participants suggests distinct neural codes in ACC 
and OFC in these participants.   
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Figure 3  
Acute Pain State Prediction with ACC and OFC Neural Recordings is Unreliable 
Experimental scheme and decoding performance for acute, evoked pain state. Panel A shows QST thermode 
placement at most painful region on the side affected (aff-ACUTE) or unaffected (unaff-ACUTE) with chronic 
pain. Panel B shows acute, thermal pain protocol (see text), with distribution of pain NRS during the task for all 
participants shown in Panel C. Panel D shows example temperature (blue) and NRS (red dot) data for one 
testing session.  LDA decoder performance for high / low acute pain NRS is shown when thermal pain was 
applied on the side of the body either affected (Panel E, for CP1-4, n=13, 20, 25 and 25 independent trials, 
respectively) or unaffected (Panel F, for CP1-4, n=16, 16, 25 and 25 independent trials, respectively) by usual 
chronic pain. Grey points show chance level performance based on permutation tests (n=1000) used to 
calculate one-sided empirical p-values without multiple comparisons correction. Significant P-values from left 
to right in panel E: CP1: 0.045; CP2: 0.012, 0.008, 0.037,0.013. See Figure S10 for all p-values for panel E and 
F. Panel G shows the normalized mean feature weights (importance) from full models for the two participants 
that showed significant acute-affected pain decoding according to the color scale. * indicates p<0.05 (see 
Figure S10). 
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ACC and OFC Distinguish Acute and Chronic 
Pain States 
The extent to which neural representations of 
chronic pain and acute pain states resemble one 
another is a major gap in knowledge. One way to 
gain additional insight into associated 
neurophysiological mechanisms underlying chronic 
vs acute pain is to compare the importance of neural 
features driving prediction of each pain type. We 
assessed the relative importance of  OFC vs ACC 
by subtracting each normalized ACC feature weight 
from the corresponding normalized OFC feature 
weight to obtain a distribution of feature importance 
differences; this difference distribution was then 
compared to a permuted, null distribution to assess 
if activity from OFC or ACC was more important to 
pain decoding than by chance (see LDA Feature 
Importance in Methods, Figure 4A,B). Values 
greater than 0 indicate greater OFC importance. We 

observed that the OFC was more important than 
ACC to chronic pain NRS decoding in a greater 
proportion of all features for 3 participants (OFC 
proportion of significant features: CP1=100%, 
CP3=75%, CP4= 58%). Common for all participants, 
contralateral OFC delta power was consistently 
more important than contralateral ACC delta to 
decoding chronic pain NRS (Wilcoxon rank sum Z 
range = 13 - 36.3, p = 10-6). In contrast, for acute 
pain decoding in two participants, ACC appeared 
more important than OFC for a greater proportion of 
all significant features when compared to chronic 
pain (Figure 4B, acute vs chronic pain ACC 
proportion: CP1 100% vs 0%, CP2=64% vs 58%). 
Because feature importance for acute pain was only 
assessed in two participants showing successful 
acute pain decoding, caution is advised in 
interpretation due to low participant numbers.  
  

Figure 4 - Decoding of chronic and acute pain states are differentially supported by OFC and ACC 
features across participants   
Panel A shows relative importance of OFC vs ACC normalized power features to decoding of chronic pain 
NRS full models in each participant. Individual histograms show distributions of the magnitudes of OFC 
feature weights minus ACC feature weights across all recording sessions for real data (black, left facing) 
and shuffled surrogate data (grey, right facing, see Online Methods). Values above 0 indicate greater OFC 
weights, and below 0 indicate greater ACC weights. Contralateral OFC delta power was more important 
than ACC for discriminating high vs low pain across all participants (red highlight). Panel B similarly shows 
relative feature importance for Acute-affected pain for the two participants that had significant decoding. 
Note that for acute pain, there is shift to greater ACC importance across frequencies compared to chronic 
pain (Two-sided Wilcoxon rank-sum test, p-values corrected for multiple comparisons with Benjamini-
Hochberg method Panel A: *all p<10-4 except CP1† p=0.002, CP2† p=0.043, CP3† p=0.001. Panel B: *all 
p<10-3, except CP1† p=0.046, CP2† p=0.042. 
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Neural Time Dynamics Distinguish Acute and 
Chronic Pain  
We next sought to characterize the temporal 
dynamics of these power bands by analyzing 
patterns of power changes at short-term (seconds, 
within a recoding) and long-term scales (diurnal, 
across recordings). Chronic and acute pain 
decoding model features consisted of band-passed 
power, time-averaged over the duration of the 
recording clip (30s for chronic, 3s for acute), which 
variably showed increases or decreases associated 
with predicting a “high pain” state (Figure 2E, 3G).  
 It is possible that if a feature was important 
to “high pain” decoding, power changes may be 
associated with either transient or sustained 
changes within specific frequency bands over time 
or some combination of the two.  To distinguish 
these possibilities, we calculated the power 
timeseries of each feature over the duration of the 
recording clip and averaged among clips in the high 
vs low pain groups (Figure 5A, S13). This analysis 
gives an impression of how average power 
associated with high or low pain fluctuates in real 
time. As expected, we observed that if a feature 
weight was positive or negative (Figures 2E, 3G), 
then that feature’s average power was respectively 
increased or decreased over time during high pain 
states, compared to low pain states (Figure 5A, 
S13). For example, a negative signed feature weight 
for contralateral OFC delta indicates that the 
contralateral OFC delta power was concordantly 
decreased during high pain states. Across each 30s 
recording clip for chronic pain decoding, the total 
power amplitude maintained this concordant 
relationship 76% of the time (group mean ± std = 
22.8 ± 6.2s, Figure 5B) across all participants. 
Although we observed fluctuations in the power 
values over the 30s duration, the top 5 power 
features were associated with sustained changes 
lasting a mean of 4.4 seconds (± 8.8 std) above or 
below the low pain state average. We rarely 
observed transient bouts of fluctuation among 
chronic pain features, suggesting that temporal 
dynamics in decoding features reflected sustained 
oscillations relevant to ongoing perceived pain.  
 Despite a shorter 3 second recording clip 
duration for acute pain trials, we observed that 
power increases and decreases occupied a similar 
total proportion of recording clip time for both acute 
and chronic pain features (76.4% of total time acute 
vs 76% chronic; acute group mean ± std = 2.1s ± 
0.3s, rank sum p>0.08, Figure 5B). In contrast to 

chronic pain, however, the top 5 acute pain features 
showed more temporal variability with more 
transient bouts of fluctuation lasting an average of 
0.56 seconds (SD = 0.18s, rank sum p<10-14, Figure 
5C). Notably, we rarely observed such bouts of 
increases or decreases approaching 3 seconds, 
which was the theoretical upper limit given acute 
recording duration of 3s. Since these bouts of power 
increases or decreases occurred for a similar 
proportion of recording clip duration for chronic and 
acute pain data, we expected that the more transient 
bouts would occur more frequently for acute pain 
features. As expected, acute pain features showed 
many more frequent bouts of increases or 
decreases compared to chronic pain features (acute 
= 1.3 ± 0.29 bouts per sec vs chronic = 0.23 ± 0.18, 
rank sum p<10-19, Figure 5D).  Therefore, compared 
to chronic pain, the top 5 acute “high pain” 
biomarkers exhibited shorter, more frequent bursts 
of power changes, resulting in a similar total 
percentage of time with increases or decreases 
between high and low pain states.   
 To characterize longer scale time dynamics 
of chronic pain neural features, we performed a 
diurnal analysis by organizing both pain scores and 
neural features by time-of-day of report and 
resampling this diurnal pattern at 3-hour time 
resolution to model diurnal fluctuations (see Online 
methods, Figure S14, Table S3). We did not 
observe significant correlations between the diurnal 
trends of neural features and of pain NRS for any 
feature, in any participant. Overall, chronic pain 
decoding was associated with sustained power 
changes over time, distinct from more transient 
bursts of power changes supporting acute pain 
decoding. Diurnal time dynamics of neural features 
did not appear grossly related to diurnal fluctuations 
in pain metrics, suggesting a possible importance for 
short time scales in encoding subjective pain states.  
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Figure 5 - Temporal dynamics of power features distinguish chronic from acute pain states  
Panel A shows an example power time series plot of a single feature (contralateral OFC delta) averaged 
across all recordings from low (blue line) vs high pain state (red line), for one participant. Colored and shaded 
error bars show s.e.m. The blue square in the upper left corner represents that feature’s average weight as 
plotted in Figure 2E (blue = negative weight ~-1.0). This negative feature weight corresponds to decreased 
mean power during high pain states; periods of decreased power are highlighted with background grey 
shading. Panel B shows boxplots with overlying raw data of the percentage of total recording clip time on 
which increases or decreases occurred for chronic pain features (black dots) and acute pain features (red 
dots).  Panel C shows the mean duration of bouts of increases and decreases similarly. Panel D shows the 
number of increases or decreases per second for chronic and acute pain features; symbol legend in panel D 
applies to panels B-D. In panels B-D for CP1-4 chronic pain features, respectively, n= 215, 455, 880 and 
1765 independent power timeseries. For CP1 and CP2 acute pain features, respectively, n= 35 and 60 
independent power timeseries. Box plot bounds indicate 25th and 75th percentiles, pink line shows median, 
and whiskers show full extent of data from minima to maxima with points outside the whiskers considered 
outliers. (*two-sided Wilcoxon rank sum tests with correction for multiple comparisons) Panel C, ZCP1=7.7 p 

=10-14, ZCP2=11.6, p =10-30 and *Panel D, ZCP1= -8.9 p =10-19, ZCP2= -12.5, p =10-35. (See Figure S13 for 
additional details and top 5 features per participant).    
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Discussion  
Objective biomarkers of spontaneous chronic pain 
severity are requisite for understanding basic 
mechanisms of clinically relevant pain, diagnosing 
pain syndromes, prognosticating disease course, 
and devising new therapies. Using first-in-human 
long-term, ambulatory, intracranial recordings in four 
participants with chronic, neuropathic pain, we used 
LFP signals from ACC and OFC to predict various 
measures of chronic pain severity, with high 
sensitivity. While we could predict dichotomized pain 
state using two different methods, regardless of pain 
etiology, duration of symptoms, or nervous system 
lesion, prediction of continuous metrics using 
regression was not as successful. Chronic pain 
biomarkers appeared stable over months in three of 
four participants and were more predictive of current 
pain state rather than recent transitions in pain 
report. In two participants, we could also predict 
acute, evoked thermal pain during an experimental 
heat pain task. We observed that chronic pain 
decoding tended to rely more on activity in the OFC 
(e.g., contralateral OFC delta) as evidenced by OFC 
subregion models and greater OFC feature weights 
across participants.  Acute pain decoding was 
supported more by ACC activity. Finally, the time 
course of neural activity supporting chronic pain 
decoding reflected sustained increases or 
decreases in power on the order of seconds, while 
acute pain decoding was associated with more 
frequent transient changes in power. These results 
provide a proof of principle that signals from key 
neural hubs can be used to track clinically relevant 
chronic pain states in humans and have important 
implications for understanding circuit mechanisms 
underlying the chronification of pain. 
 While a complex neural network underlies 
the maintenance of chronic pain states17,31, we found 
that activity from either ACC or OFC alone was 
sufficient to track pathological network activity 
underlying chronic pain fluctuation. Previous 
neuroimaging studies of chronic back pain 
established the importance of the ACC and medial 
prefrontal cortex,32,33  though notably failed to 
identify a role for OFC, possibly due to sparse time 
resolution of up to 4 visits over 1 year. Consistent 
with prior studies of spontaneous, chronic back pain 
measured over seconds to minutes in a single visit, 
we observed that ACC activity in three participants 
could discriminate when spontaneous pain was 
stable vs fluctuating.8,12 The present findings 
suggest that signals in OFC can track current 
chronic pain severity for neuropathic pain 

syndromes such as central post-stroke pain (CPSP) 
or phantom limb pain. In the context of prior studies 
supporting a broad role of the OFC in reward, 
punishment and placebo effect18,25, OFC circuits 
may integrate pain expectation and context-
dependent predictions that influence subjective pain 
evaluation which may include rumination or 
engagement of coping mechanisms. Areas we 
indicate as OFC in this study also overlap with prior 
definitions of VMPFC, which has been associated 
with interindividual variability in pain perception and 
aversiveness23,24. In two participants with CPSP, 
decoding of pain unpleasantness was driven more 
by ACC activity, also consistent with prior roles of 
ACC circuits in affective14,34 dimensions of pain 
processing. However, the preferential importance of 
ACC in acute pain decoding (which is described as 
having a smaller affective component than chronic 
pain states) challenges prior concepts of a medial 
pain pathway35 from the medial thalamus to ACC as 
selective for affective processing 11.  
 In contrast to the spontaneous and enduring 
phenomenology of chronic pain, acute thermal pain 
administered to patients reflects a transient, 
externally evoked pain experience.  In two 
participants, acute, evoked pain was associated with 
distinct spatiotemporal activation patterns consisting 
of transient power fluctuations biased toward ACC. 
This observation is consistent with numerous 
imaging studies showing ACC as a key node 
activated with experimental pain stimuli across 
individuals.4,6,12,23,36  Transient bursts of power 
among cingulate neurons may reflect facilitation of 
nociceptive hypersensitivity by recruitment of 
descending serotonergic projections to the spinal 
cord11 or ascending information flow from the medial 
thalamus37. Though most participants exhibited 
thermal allodynia, the transient power change 
patterns underlying acute pain decoding in the 
current study were found in two participants (both 
women): one with severe allodynia and hyperpathia 
(CP1) and one with a normal neurological sensory 
exam (CP2), which may suggest preserved 
information processing mechanisms across 
disparate phenotypes. However, within-participant 
generalization of chronic to acute pain biomarkers 
was only found in one participant with phantom pain 
(CP2), without an ischemic brain lesion, suggesting 
that more robust models that directly incorporate 
acute vs chronic pain classes may potentially aid in 
discriminating pain syndrome subtypes or reflect 
cortical reorganization after a lesion.33 As acute, 
evoked pain was only decodable when the painful 
stimulus was applied to the same body side as 
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ongoing chronic pain, the absence of evidence of 
successful decoding should not be interpreted as 
evidence of absence, possibly due to sample size of 
participants, trial number or environmental context 
(e.g. at home vs in clinic testing).  
 Global cerebral pain networks in all 
participants likely underwent rewiring over many 
years living with chronic pain32. Still, ongoing 
‘background’ chronic pain may have influenced 
acute pain perception even in the unaffected body 
side (but see Methods for testing precautions used). 
Rather, the inability to decode acute pain in the 
unaffected side may suggest that ACC and OFC are 
either sensitive to pain on one side of the body or 
perhaps more sensitive to representing pain in body 
regions where chronic pain is ongoing. It is possible 
that an acute pain signal may be detectable in OFC 
if a task explicitly requires decision making or pain 
anticipation components as seen in prior studies38. If 
the contributions of ascending vs descending 
pathways to acute vs chronic pain processing can be 
elucidated in future studies, this would help to 
explain the common clinical observation that the 
chronic pain experience is not simply a more 
enduring version of acute pain. 
 Classical models of the role of neural 
oscillations propose that frequency-specific activity 
serves to flexibly route information flow through 
networks to support selective attention39 and 
working memory40. Oscillations within a particular 
brain region may represent modulation of 
postsynaptic excitability, which itself impacts input 
gain39. The present observation that chronic pain 
intensity was associated with sustained increases or 
decreases in OFC power may therefore reflect 
maladaptive plasticity or changes in 
excitation/inhibition41 between OFC and afferent 
primary sensory cortices, magnocellular cells of the 
medial thalamus or reciprocal connections with the 
ACC18 to perpetuate pathological sensory 
integration. In contrast, transient burst-like 
oscillatory activity associated with acute pain 
intensity may reflect stochastic packets reflecting 
fast computations42 between ascending medial 
thalamic inputs or descending rostral brainstem 
outputs supporting allodynia or evoked pain. Similar 
transient ‘high current spikes’ in rodent ACC have 
been observed to shift to more transient states in 
response acute noxious stimuli, and more sustained 
spiking states in a rodent model of post-stroke 
pain37. We further speculate that transient burst-like 
power changes may support aberrant sensory, 
affective and cognitive integration in chronic pain in 

a manner analogous to how pathological beta 
bursting influences motor processing in Parkinson’s 
Disease.43 Of note, because our decoder inputs 
consisted of time-averaged power values, it is 
unlikely that the these disparate temporal dynamics 
were responsible for the lack of generalization 
between acute and chronic pain we observed here. 
 Though we could reliably predict multiple 
metrics of chronic pain severity when scores were 
dichotomized into ‘high’ and ‘low’ categories, 
prediction of exact pain scores with linear regression 
faired relatively poorer for metrics tracking pain 
intensity. One reason for this may be that subjective 
pain perception is psychophysically nonlinear44, in a 
manner that binarization may better capture45. 
Binary classification yielded high sensitivities across 
patients which is crucial for practical diagnostic or 
therapeutic biomarkers. Consistent with prior 
suggestions3, such a binary biomarker could be 
more useful for diagnosis or disease classification, 
while continuous measures or grading scales may 
be more useful for assessing treatment response. 
Future analysis of neural signatures that predict 
treatment response would lend further insights to 
basic pain mechanisms.  
 Three of four participants suffered from 
CPSP, due to ischemic brain injuries acquired 
greater than two years before data collection. 
Despite potential concern that a previous stroke may 
have induced brain plasticity specifically related to 
stroke symptoms, all participants had stable 
symptoms and physical exams over the study 
period. While OFC activity was sufficient to decode 
chronic pain in these participants despite varying 
locations of ischemic infarcts or stable use of various 
pain medications, in many cases activity from ACC 
also performed as well. Given the small sample size 
of the present study, and idiosyncratic decoding 
observations in acute pain from 1-2 patients, caution 
must be used to avoid overinterpretation. Further 
studies are required to establish greater confidence 
in the specificity of OFC for chronic pain prediction 
across larger groups. 

A further limitation of the current study is that 
rather than directly predicting pain state per se, it is 
possible that machine learning models may be 
predicting other variables strongly correlated with 
reported pain metrics such as arousal or attention. 
However, as the adaptive value of pain may be to 
alert the organism to impending tissue damage, 
arousal effects may be a fundamental component of 
the complex subjective perception of pain itself.  
Further, in the diurnal analyses, we found many non-
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significant correlation values with large effect size (r 
> 0.5). Because we did not explicitly quantify Bayes’ 
factors related to the null hypothesis, the absence of 
evidence should not be interpreted as evidence of 
absence for a particular effect, particularly in cases 
of non-significant model results where the effect size 
may be high.   
  The development of personalized pain 
biomarkers will be central to accurate diagnosis, 
tracking prognosis and for future therapeutic drug 
and device development. Individualized biomarkers 
are also critical to the growing field of adaptive 
neurostimulation, where a patient’s ongoing neural 
activity may be used to control therapeutic brain 
stimulation46. Personalized biomarkers of chronic 
pain state may be used as input signals in real-time, 
to control the amplitude or frequency of therapeutic 
electrical brain stimulation for treating refractory pain 
as they have for movement disorders. By adaptively 
delivering intermittent bouts of stimulation or 
adjusting parameters based on pain-state 
biomarkers, it may be possible to mitigate known 
effects of adaptation and loss of efficacy 
demonstrated in nearly all open-loop continuous 
deep brain stimulation paradigms. It remains to be 
seen if similar signals may be non-invasively 
recorded using electroencephalography to track 
disease state or inform drug development. 
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Methods  
General Trial Methods 
This current study was undertaken as part of 
ongoing multi-year clinical trial aimed at developing 
closed loop control algorithms for deep brain 
stimulation to treat chronic neuropathic pain. The 
clinical trial protocol (NCT03029884 found at 
www.clinicaltrials.gov) was approved by UCSF 
Human Research Protection Program (IRB) and the 
Food and Drug Administration (FDA). 
 
Inclusion and exclusion criteria are as follows:  
Inclusion Criteria: 
• Age ≥ 21 years 
• Clinical diagnosis of post-stroke pain (thalamic 
pain), spinal cord injury or phantom limb pain with 
allodynia or dysesthesia with pinprick anesthesia or 
hypoesthesia on the affected hemi-body or limb 
(anesthesia dolorosa). 
• For Post-Stroke Pain: Stroke of ischemic etiology 
only. MRI done within one year of surgery showing 
a lesion that involves the contralateral brainstem, 
thalamus, or cortex. The lesion will involve cortical-
subcortical areas in topography consistent with 
sensory thalamocortical connections. This will 
include patients with infarcts in the territory of the 
middle cerebral artery. A more recent MRI may be 
required if the patient's condition changed within 
the previous year. 
• For Phantom limb pain: MRI done within one year 
not showing any contraindication to surgery such 
as mass, lesion, hemorrhage, or other abnormality 
near target 
• For Spinal Cord Injury pain: MRI done within one 
year not showing contraindication to surgery such 
as mass, lesion, hemorrhage, or other abnormality 
near target 
• One year or more of medically refractory severe 
pain (see below) 
• Average daily pain for the past 30 days reported 
as >5 on a 0-10 numeric rating scale (NRS) 
• Failure to respond adequately to at least one 
antidepressant, one anti-seizure medication and 
one oral narcotic with current stable doses of 
medications. 
• Ability to speak / read English 
• Capable of understanding and providing informed 
consent 
• Stable doses of pain medications (e.g., 
anticonvulsant drug, anti- depressants, and opioids 
etc.) for at least 30 days 
• Women of childbearing age must be on regular 
use of an accepted contraceptive method(s). 
   

 Exclusion Criteria: 
• Pregnancy or breast feeding 
• Inability to speak and / or read English 
• Inability to give informed consent 
• Significant cognitive impairment or dementia 
(MoCA < 25) 
• Aphasia severe enough to limit the consent 
process or communication between the 
investigators and the patient. Patients with mild or 
recovering aphasia may be considered candidates 
at the discretion of the PI. 
 • Recommendation of exclusion by evaluating 
psychiatrist based on comprehensive 
neuropsychological evaluation which may include 
the following conditions: Active depression (BDI > 
20) or other untreated or uncontrolled psychiatric 
illness (active general anxiety disorder, 
schizophrenia, bipolar disorder, obsessive-
compulsive disorder (OCD), or personality 
disorders (e.g., multiple personality disorder, 
borderline personality disorder, etc.)  
• Suicide attempt within the prior 12 months or 
imminent suicide risk 
• History of substance abuse in the prior 3 years. 
• Major medical co-morbidities increasing the risk of 
surgery including uncontrolled hypertension, severe 
diabetes, major organ system failure, history of 
hemorrhagic stroke, need for chronic 
anticoagulation other than aspirin, active infection, 
immunocompromised state or malignancy with < 5 
years life expectancy 
• Inability to stop Coumadin or platelet anti-
aggregation therapy for surgery and after surgery. 
Patients taking these medications will need to 
discuss the need/risk of continuing these 
medications with their physicians and the PI or 
study personnel may contact the treating 
physician(s) as well to discuss the risks of 
anticoagulation / antiaggregation therapy 
discontinuation. 
• Coagulopathy. Patients will be excluded unless 
assessed and cleared by hematology. 
• MRI (done within one year of surgery) with 
significant abnormalities other than those 
associated with the neurological disorder causing 
chronic pain. 
• Implantable hardware not compatible with MRI or 
with the study. 
• Inability to comply with study follow-up visits 
• Previous ablative intracranial surgery for the 
management of thalamic pain syndrome. 
• Previously implanted with deep brain stimulation 
system or any previously implanted device 
treatment involving brain stimulation 
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• Major neurological disorder other than the one 
that led to the chronic pain including epilepsy, 
neurodegenerative condition or any history of 
seizure 
• Requires diathermy, electroconvulsive therapy 
(ECT) or transcranial magnetic stimulation (TMS) to 
treat a chronic condition 
• Has an implanted electronic device such as a 
neurostimulator, cardiac pacemaker or medication 
pump 
• Allergies or known hypersensitivity to materials in 
the Activa PC+S system (i.e., titanium, 
polyurethane, silicone, polyetherimide, stainless 
steel). 
• Pregnancy or lack of regular use of 
contraceptives. Patients who become pregnant 
after enrollment may be excluded from the study. 
Patients who become pregnant prior to the surgical 
implantation of the DBS systems will be excluded 
from the study. 
• Patients may be excluded from enrollment due to 
a condition that, in the judgment of the PI, 
significantly increases risk or reduces significantly 
the likelihood of benefit from brain stimulation. 
  
Participants 
Four right-handed participants (CP1-4) with 
refractory neuropathic pain limited to one side of the 
body for >1 year were enrolled in an ongoing study 
to devise adaptive brain stimulation for pain. Three 
participants had post-stroke pain and one had 
phantom limb pain (Figure 1A, Table S1). Half were 
women and the mean (±SD) age was 58.5±3.1 
years; all were free from untreated depression, 
recent substance use disorder and cognitive 
impairment. All participants maintained constant 
doses of medications for three months. Each 
participant signed written informed consent and the 
study was approved by both FDA under an 
Investigational Device Exemption and UCSF 
Committee on Human Research. Participants were 
reimbursed for travel and accommodations, but not 
otherwise compensated. 
 
Brief Patient Descriptions  
(see Table S3 for task related temperature 
calibration quantitatively reflecting allodynia) 
CP1: 58-year-old woman with a history of central 
post-stroke pain syndrome (CPSP), after right 
middle cerebral artery infarct in 2013. Approximately 
12 weeks after her stroke, she began having sharp, 
burning, stabbing pain in the left hemi-body from her 
head to foot, most severely concentrated over the 
left hand/ arm and leg. Pain focused neurological 

exam was notable for hemiparesis in the left arm and 
leg, with reduced sensation to light touch and 
temperature along the whole left arm, ankle and foot. 
She experienced dynamic mechanical, cold and 
heat allodynia with symptoms of hyperpathia 
involving the spatial spread of lingering pain in 
response to rapidly repeated stimuli (interval <3 
seconds). 
CP2: 63-year-old woman with elective right leg 
above-the-knee amputation in 2016 (for pain) and 
refractory phantom limb pain with right leg, calf and 
foot pain involving burning and pressure sensation. 
Her leg pain began 4.5 years prior to enrollment 
resulting from compartment syndrome as a 
complication from total knee arthroplasty. Pain 
focused neurological exam was normal, with no 
stump pain nor evoked sensations on palpation of 
the stump (Negative Tinel’s sign). She did not have 
sensory loss, weakness or allodynia. 
CP3: 56-year-old man with history of hypertension 
and left thalamic infarct in 2014, with persistent 
CPSP involving the right sided face, arm and leg. 
Beginning 5 days post stroke, he developed severe 
burning pain associated with dysesthesias of the 
right bicep, forearm and leg. Pain focused 
neurological exam showed intact motor and sensory 
function with notable hyperalgesia and allodynia in 
the right arm and leg. Allodynia was confined to cold 
and heat allodynia, with minimal mechanical 
allodynia. 
CP4 - 59 year old man with history of prostate cancer 
(no current disease), solitary episode of atrial 
fibrillation and CPSP after left posterior cerebral 
artery infarct in April 2017. Approximately six weeks 
after his stroke, he began having burning and 
stabbing pain in the right arm as well as the right 
ankle which progressed to involve the entire right 
hemi-body after 1 year. Pain focused neurological 
exam was notable for mild hemiparesis in the right 
arm, with intact sensation to light touch and 
temperature all over. There was dynamic 
mechanical, cold and heat allodynia in the right arm 
(worst distal to the elbow circumferentially) and leg 
(worst below mid calf on the right including whole 
ankle and foot). 
 
Device implant surgery 
All participants underwent chronic intracranial 
electrode and neurostimulator implant targeting 
ACC and OFC using Medtronic electrodes 
connected to the Activa PC+S device26 (bilateral in 
three participants, unilateral in CP1 contralateral to 
side of pain). Multi-electrode leads targeted dorsal 
anterior cingulate cortex (models 3389/3387) and 
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subdural surface of orbitofrontal cortex (paddle# 
3587A/0930A) using frame-based stereotaxy under 
general anesthesia. Individual trajectories were 
determined using neurosurgical mapping software 
from BrainLab Inc. and Medtronic Stealth 8.0 based 
on preoperative 3T MRI scans (Figure S1).  
 For dorsal anterior cingulate cortex (ACC), 
target locations for each electrode tip were 
determined by computing diffusion tractography 
images (DTI, 55 directions) and identifying the 
cingulum bundle in a region 20-25mm posterior to 
the anterior border of the lateral ventricle 
(Supplementary Figure 1, Supplementary Methods) 
as in a prior study34. For orbitofrontal cortex (OFC), 
a burr hole was made through the temporal bone to 
allow passage of the paddle lead to the subdural 
surface. Note that we targeted both medial and 
lateral OFC, areas that overlap with definitions of the 
ventrolateral medial prefrontal cortex in other 
studies. Electrodes were advanced through frontal 
burr holes, with correct placement confirmed by 
intraoperative CT and re-confirmed by CT at the 2-
month visit. Stim-loc devices were used for electrode 
lead anchoring, with a strain relief loop anterior to 
the site of anchoring to prevent movement or torque 
on the lead over time. The free ends of the leads 
were then placed in a subgaleal pocket, created by 
blunt dissection in the parietal area.  A lead extender 
was tunneled subcutaneously between the parietal 
incision and a 5 cm incision over the pectoralis 
muscle, where a pocket was bluntly dissected for the 
Activa implantable neurostimulator (INS) system. A 
small amount of Medtronic medical glue was applied 
to the junction of the lead and each barrel of the INS 
to mitigate electrical cardiac artifact. Participants 
had at least 10 days of recovery before neural data 
collection began. 
 
Electrode Localization and Brain Imaging 
Electrode (depth and paddle ECoG) contact 
locations were reconstructed using a CT scan taken 
2-3 months after implantation and fused with the 
preoperative T1-weighted volumetric MRI. The T1 
MRI was used to construct cortical surface models 
in FreeSurfer version 7.1.147,48. We projected ECoG 
contacts onto the cortical surface mesh with the 
imgpipe toolbox49 using a surface vector projection 
method50 . Once we identified locations for each 
ECoG and depth electrode, we projected all patients' 
electrodes onto Montreal Neurological Institute 152 
space for plotting and comparison.  
 In addition to the stereotactic preoperative 
MRI scans, High Angular Resolution Diffusion 
Imaging (HARDI) was acquired on the same 3 Tesla 

MR scanner (General Electric, Inc.), using a spin-
echo echo-planar imaging (SE EPI) pulse sequence 
(TE = 71 ms, TR = 7765 ms, flip angle alpha = 90°), 
FOV 28x28cm, at least 70 axial slices, 2 
mm3 isotropic voxels, b-value = 2000 s mm−2 in 55 
non-collinear gradient directions and a signal to 
noise ratio >60. A single non-diffusion-weighted b0 
image was also obtained. The diffusion-weighted 
tractography was processed using BrainLab 
software (Feldkirchen, Germany).  Preoperative 
MRI, postoperative CT and HARDI scans were 
automatically merged and corrected for distortion. 
The contacts used for recordings were segmented 
on the CT scan based on visible contacts and known 
spacing measurements. The regions of interest 
(ROIs) were created using manual tracing of 
bilateral dorsal anterior cingulate cortex, using a 
fractional anisotropy threshold between 0.2-0.3 and 
a minimum length of at least 8cm. 
 
Ambulatory data collection 
We collected neural recordings coincident with pain 
reports multiple times daily (mean 3.5 per day) from 
morning to evening. The Activa PC+S system is an 
investigational, implantable “bidirectional” neural 
interface, that can sense and store patient triggered 
neural recordings (LFP time series) that can be 
analyzed offline or used for adaptive DBS.26 
Participants initiated a 30-second neural recording 
using their remote control while sitting quietly, 
immediately following a pain report. Each 30 second 
neural recording was self-triggered by participants 
by pressing a button on their remote control. 
Participants were instructed to space out recordings 
at least three times daily, once each in the morning, 
afternoon, and evening. In rare instances (< 10% of 
all recordings), devices were programmed to 
automatically capture a 30 second recording at 
prespecified times throughout the day, to increase 
recording frequency. In such cases, we attempt to 
vary specific times of recordings every 2 weeks to 
more equally sample morning, afternoon, and 
evening periods. Also, in these cases participants 
were notified of the imminent start of a recording via 
text message and prompted to submit a pain report 
via text message or by clicking a hyperlink to a 
Redcap survey page. Neural recordings were 
included in analysis only if they occurred within 15 
minutes of reported scores.  
 Pain metrics were reported using mobile text 
message or the online Redcap platform version 
10.0.33 (Redcap, Vanderbilt Inc.). Reported metrics 
included pain intensity numerical rating score (NRS, 
0-10) and visual analog scale (VAS where 0 is no 
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pain and 10 is the worst pain they have ever 
experienced);  pain unpleasantness NRS and VAS 
(where 0 is not bothersome at all and 10 is most 
bothersome ever felt), and the short form McGill Pain 
Questionnaire version 2 (SF-MPQ).28 Although VAS 
and NRS may provide redundant information, both 
were collected when possible to assess reporting 
consistency within-participant (Figure 1C). While 
data from all metrics were not available from all 
participants, pain intensity NRS was reported by all 
and so prioritized in the study. 
 Participants provided pain reports at least 2 
weeks prior to surgery, and reported score means 
did not change after surgery. To standardize 
reporting, participants were trained to report pain 
intensity NRS values based on a narrative 
description of each number (0-10) from a 
comparative pain severity scale table.51 VAS sliders 
contained only the numbers 0 or 10 at each end and 
were presented horizontally with the slider bar 
starting at a value of 5/10. The short-form McGill 
pain questionnaire version 2 is a multidimensional 
survey tool that requires participants to rate the 
extent (none, mild, moderate, severe) to which each 
of 15 pain words matches their symptoms. We 
reported the SF-MPQ2 score as the sum of all verbal 
descriptor ratings (maximum = 45). The magnitude 
by which pain scores differ between the high and low 
group within each patient was confirmed to be 
clinically significant and surpasses a meaningful 
threshold for each participant. All patients confirmed 
that individual successive numbers in reported 
ranges carried discernable clinical meaning, and so 
a NRS difference of 1 out of 10 was therefore noted 
separately by each participant to have different 
clinical meaning with reliability over repeated reports 
(see Figure 1D). Brain recordings commenced 
immediately after pain reports were submitted. 
 
Activa PC+S neural recordings and 
preprocessing 
Each recording sampled two bipolar referenced time 
series channels capturing local field potentials (LFP) 
at 422 Hz sampling rate. The contacts used for 
sampling were chosen based on those showing the 
largest root mean square voltage in the raw tracings 
as determined by investigators (e.g., for ACC we 
chose 0-3+ as one possible bipolar channel, where 
0 was the deepest contact). Data download of 
collected recordings was performed every 2-3 
weeks by either participants or investigators using 
the Medtronic sensing programmer (ver. 1.5.0.0) via 
a wand resting on the skin over the Activa device.  

 Data analysis used MATLAB 2022b 
(Mathworks, Natick MA) and Python 3.7.4 with the 
Scikit-learn library, version 1.0.2. To identify pain 
state biomarkers, local field potentials (LFP) were 
high-pass filtered above 1 Hz and low-pass filtered 
below 100 Hz, converted to frequency domain using 
multitaper spectral estimation,52 log 10 transformed 
and z-scored within frequency band. Standardized 
power values for each 30s recording were averaged 
within canonical frequency bands: d (1–4 Hz),  q (4-
8 Hz),  a (8-12 Hz), b (12-30 Hz), low g (30-70 Hz), 
and high g (70-100 Hz). Bandwidths containing 
idiosyncratic noise sources (known from Activa 
PC+S by the manufacturer) were visually identified 
for each participant (by an investigator blinded to 
results) and excluded from power averages. Outlier 
recordings were excluded from analysis if power 
within 3 or more frequency bands (of 6 total) 
contained power averages greater than 3 scaled 
median absolute deviations from the median, in a 
manner blinded to the results. 
 
Acute/Experimental Thermal Pain Protocol 
We applied transient heat stimuli of varying intensity 
to each participant’s most painful body part (and 
contralateral side) using the Medoc TSA 2001 while 
recording brain LFP activity. Heat temperatures 
were calibrated separately for each body side and 
participant, such that reported NRS values ranged 
from 0-9 out of 10. Background chronic pain NRS 
were collected before starting acute pain trials. 
Participants underwent five trials at each of five 
intensities, where temperature first increased at a 
rate of 1 deg C/s from a baseline of 32 deg C, was 
held at target intensity for 3 seconds, and then 
returned to baseline. 10 to 15 seconds elapsed 
between trials, and participants were cued to trial 
start though 3s of neural data was only included after 
target temperatures were reached. Target 
temperatures ranged from 34 to 48 deg C. 
Participants verbally reported pain NRS 3 seconds 
after reaching target temperature. Trials with 
movement or uncertain pain report were discarded. 
 To mitigate the possibility that participants 
may “merge” or conflate ratings of chronic and acute 
pain (even subconsciously), we took 3 precautionary 
steps: (1) Participants were exposed to at least four 
different blocks of the acute pain paradigm before 
formal testing, so that they became accustomed to 
the pacing and attention to acute, thermal pain 
phenomenology. (2) Thermal pain was applied 
adjacent to, instead of directly over, anatomical 
regions where background chronic pain was 
experienced, tailored to each participant. This was 



20 
 

done to avoid confounding spontaneous underlying 
pain in the same body part that was in physical 
contact with the thermode. (3) Participants were 
explicitly trained to provide only the pain score 
corresponding in time (by verbal cueing at the 3 
second plateau timepoint) and in space (in only the 
anatomical area contacted by the thermode). To 
specifically train patients to understand this 
difference, they were given visual feedback of the 
temperature as it ramped to target temperature 
during training blocks, so that they could understand 
the relationship between stimulus delivery and 
perceived sensation. However, to avoid bias, they 
were not shown the visual temperature during actual 
testing blocks.   
 
Pain Decoding Models and Biomarker Analysis 
Separate models were constructed for each 
participant and each reported pain score, using as 
input features the standardized mean spectral power 
in each frequency band, per brain region, per 
hemisphere (i.e., CP1 model used 12 features (6 
each from unilateral implants in ACC and OFC); 
CP2-4 models contained 24 features from 
bihemispheric recordings). We computed 
multivariate regularized regression (LASSO) on 
continuous pain metrics and two types of 
classification on dichotomized pain metrics (LDA 
and LSSM).  For classification, binary response 
variables were pain scores dichotomized into “high 
pain state” and “low pain state” categories for each 
participant, based on dividing scores above and 
below that participant’s median value (test data point 
was not included in median calculation for full 
independence, see Cross Validation method). To 
ensure robust decoding of pain state, we used 
independent machine learning approaches: Linear 
Discriminant Analysis (LDA), Linear State Space 
Modeling (LSSM, Figure S2) and LASSO 
regression. While LDA produces directly 
interpretable feature weights which can be 
programmed into currently available adaptive DBS 
devices, LSSM is a dynamical systems approach 
that can more flexibly represent complex brain 
activity.53 
 The approaches below were used to predict 
multiple pain metric responses that were available 
for each participant (see Table S1): All participants: 
chronic pain intensity NRS, acute pain verbal NRS, 
acute pain temperature; CP3 and CP4: pain intensity 
VAS, pain unpleasantness NRS/ VAS, McGill Pain 
Questionnaire- Short Form version 2.  
 

1- Least Absolute Shrinkage and Selection 
Operator (LASSO) regression: In addition to 
predicting binarized chronic and acute pain states, 
we also trained multivariate LASSO regression 
models to predict continuous pain scores.  LASSO 
regression models implicitly perform variable 
selection through regularization whereby the 
weighting factors of multicollinear or extraneous 
input variables are shrunk, thereby having less 
influence on the outcome prediction. Similar to LDA 
models, we stratified our regression analyses by 
constructing models trained on data separately 
from each available subregion. All models were fit 
with a regularization parameter of 0.001 and 
validated with our modified LOOCV. Model fit was 
evaluated by calculating the coefficient of 
determination (R2) values of the models, which can 
range from below 0 to 1, and root mean squared 
error (RMSE). 
 
2- Linear Discriminant Analysis (LDA) decoding: 
Linear discriminant analysis is a common 
supervised classification method used to categorize 
labeled samples into two or more classes by 
determining an optimal decision boundary that best 
separates samples from each class54. LDA makes 
predictions by estimating the probability that each 
input belongs to a particular class based on variance 
in the input features. 
 We used LDA to classify high vs low 
dichotomized pain states for two main reasons. First, 
LDA produces an interpretable set of feature weights 
for each trained model, permitting inference of the 
importance of specific neural features (i.e. brain 
regions, hemisphere, power bands)54. Second, the 
Activa PC+S, Summit RC+S and Percept sensing-
enabled brain stimulation devices (Medtronic Inc.) 
exclusively use device-embedded LDA algorithms 
for ambulatory closed-loop control55,56. Results from 
LDA based decoding can therefore be directly 
implemented for closed-loop control in current 
clinical devices and for future stimulation studies.  
 We constructed multiple LDA classification 
models using data sub-selected from different brain 
regions and/or hemispheres, which we called 
subregion models (e.g., right hemisphere ACC and 
OFC, left ACC, left OFC, etc.). One model consisting 
of all available data (e.g., both hemispheres and 
brain regions) was termed the full model (i.e., 
Contralateral ACC/OFC for CP1 and Bilateral 
ACC/OFC for CP2-4 represent the full model). 
Separate full and subregion models were 
constructed to classify each available pain metric 
per participant (i.e. pain intensity numerical rating 
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score (NRS) and visual analog scale (VAS), pain 
unpleasantness NRS and VAS, and short-form 
McGill Pain Questionnaire  version 2 (SF-MPQ)28). 
However, pain intensity NRS was reported by all 
participants and so is emphasized in the main study.  
For the acute pain data, we also sought to predict 
the delivered temperature as a response variable. 
For all participants, we optimized the shrinkage 
parameter used for discriminant analysis, which was 
set to the default value for all participants except for 
CP1 for whom it was set to a value of 1, indicating 
maximum shrinkage. Shrinkage is a form of 
regularization used to improve model estimation in 
scenarios when the number of training samples is 
low relative to input features57. Setting shrinkage to 
a value of 1 effectively maximizes regularization. All 
other hyperparameters were set to default values 
(e.g. prior probabilities = 0.5 for each class) in 
Python 3.7.4 with the Scikit-learn library, version 
1.0.257. 
 Area under the curve (AUC) was calculated 
using the predictions from all test points compared 
to the ground truth pain states for all models. We 
also calculated sensitivity, specificity, positive 
predictive value, and accuracy of binary 
classification.  
 To determine whether neural features 
correlated with chronic pain may generalize to acute 
(experimental) pain, we used full models trained on 
the chronic pain dataset to classify acute pain scores 
from the experimental thermal pain dataset, and vice 
versa (see Figure 4A). Specifically, for this 
acute/chronic generalization analysis, a particular 
participant’s neural features and pain reports from 
the chronic pain dataset were used as the training 
set, while that same participant’s neural features and 
pain reports from the acute, experimental thermal 
pain dataset were used as the test set. The same 
analysis was done by reversing the test and training 
sets for completeness.  Neural input features and 
pain score response variables were standardized by 
subtracting the mean and dividing by standard 
deviation for each model.  
 
3- Linear State Space Model (LSSM) decoding:  
Neural decoding of pain may benefit from dynamic 
models that can predict how neural dynamics lead to 
pain score variations over time. Such an approach 
was previously used to decode interindividual mood 
state in epilepsy patients and can reduce the 
dimensionality of neural features to fewer ‘latent 
states’ which can then be used to guide stimulation 
in a potential future control scheme (Figure S2). We 
thus independently assessed the feasibility of 

decoding chronic pain state using dynamic linear 
state space models (LSSM)53.  
 In this case, in non-overlapping 1s windows, 
we computed log of signal power within the 6 
canonical frequency bands (see Methods) resulting 
in power timeseries with 30 time-steps during each 
30s recording. We modeled the dynamics of the 
power timeseries as the outputs of an LSSM with a 
latent state and used the subspace identification 
algorithm and Akaike’s information criterion to learn 
the LSSM parameters and determine its latent state 
dimension53. Given the learned LSSM, we then 
applied the associated Kalman filter to the power 
timeseries in each recording to extract the latent 
state timeseries and decoded the pain state from the 
latent state at the end of each recording. Decoding 
was evaluated as above with a modified LOOCV and 
performance was quantified by computing the AUC. 
As LSSM methods may predict neural dynamics 
over time, they could hold promise for informing 
closed-loop adaptive DBS system58, though present 
technology relies on LDA approaches26,46.  
 
Cross-Validation 
To mitigate model overfitting, we used leave-one-out 
cross-validation (LOOCV) in which one test sample 
was iteratively omitted from the training set (see 
Table S1 for number of recordings for each 
participant). Specifically, for all models, we predicted 
each test data point individually using a model 
trained on all other points. For all models, the 
median value used for dichotomizing pain scores 
was computed using only the training dataset 
(excluding the test data sample) to maintain strict 
independence between training and testing sets. 
Decoding AUCs were averaged across all runs to 
compute the model average AUC reported in the text 
and figures. 
 It is possible that autocorrelations in the pain 
score metric timeseries could result in potentially 
overfitted models and inflate prediction accuracy. 
Therefore, we performed a separate ‘modified cross 
validation’ procedure which omitted ± 3 samples 
around the test point, from the training data. We 
chose a window of 3 samples based on the average 
number of pain scores reported per day across 
participants (3.2 reports/ day). For participants CP2-
4, the ‘modified cross validation’ method resulted in 
significant decoding of pain intensity NRS for all 
subregion models containing the ACC or OFC from 
the contralateral hemisphere (6 of 9 models per 
participant).  For the one participant with the smallest 
number of data samples (CP1), this method failed to 
produce significant classification of pain intensity 
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NRS, due to the omission of substantially more 
training data than the standard LOOCV method. 
Consistent with shown results for the two 
participants with pain unpleasantness NRS 
reporting, the ‘modified cross validation’ method 
resulted in significant decoding when ACC was 
included in subregion models (CP3: 7 of 9 models, 
CP4: 6 of 9 models).  For SF-MPQ II, all subregion 
models were significant for CP3 and 7 of 9 models 
were significant for CP4 (excluding those containing 
ipsilateral OFC).   
 
Sequential Pain Difference / Pain Fluctuation 
Analysis  
Predicting changes in successive pain scores vs 
state (Figures S9a, b): We were interested in 
understanding whether the neural features tracked 
fluctuations or differences between sequential pain 
ratings (instead of the actual reported individual pain 
scores/states). Pain score differences were 
calculated by subtracting the immediately preceding 
pain score from the current one to generate a metric 
of whether pain state recently increased or 
decreased. Therefore, pain scores that were 
previously higher than the current one would result 
in negative difference scores, while those that were 
previously lower would result in positive difference 
scores.  To assess whether neural features 
discriminated changes in pain, we generated binary 
LDA classification models trained to distinguish 
stable (0 change in pain NRS) vs fluctuating pain 
scores (non-zero changes in pain NRS). We also 
built regression models trained to predict the change 
from the prior pain score to the current score. We 
performed the same subregion model stratification 
and validation methods as described for other 
models.  
  
Decoding Stability (70/30 split):  To test whether 
the important neural features were stable across 
the ambulatory data collection period, we 
additionally performed a 70/30 train/test split 
validation protocol using an LDA classifier. For 
each patient, we train an LDA model on the first 
70% of their collected data and test the model on 
the remaining 30%. We then calculated the AUC on 
the test set. If AUC from this analysis is comparable 
to the AUC computed using modified LOOCV, this 
suggests that neural features important for 
decoding are stable over time.  
 
LDA Feature Importance: Model feature 
importance (Figure 2E, 3G) was calculated by 

taking the mean value of each feature coefficient 
weight across all cross-validation runs (using LDA) 
and linearly rescaling the resulting values between -
1 and 1 for each feature and participant. The feature 
importance values were visualized by plotting 
colored heatmaps ranging from blue to red to 
compare across participants. 
 OFC vs ACC feature comparison: To further 
assess the relative contribution of OFC vs ACC 
features on chronic and acute pain decoding, we 
computed the difference between the absolute 
magnitudes of each power band feature from OFC 
and ACC in the same brain hemisphere (OFC minus 
ACC) for all recording clips. Values greater than 0 
indicate greater OFC than ACC feature importance. 
To compare the distributions of these feature 
importance differences to a null hypothesis 
distribution, we generated null permuted 
distributions by randomly shuffling the OFC/ACC 
labels and recalculating feature differences 1000 
times. Real vs shuffled feature difference 
distributions were compared using two-tailed 
Wilcoxon rank sum tests. Multiple comparisons 
correction was performed across all features within 
each participant using FDR correction as below. 
 
Temporal Feature Analysis:   
1- To assess the time-varying characteristics of 
power features supporting pain state decoding, we 
first computed multitaper spectrograms of neural 
recordings from each brain region52. Spectrograms 
were computed on 500 msec windows, with 50 
msec window step, TW =3 (1.5 Hz resolution) and 
5 tapers, with signals zero padded to the next 
power of 2 number of samples. We then averaged 
power values within canonical frequency bands as 
above (i.e., delta, theta, alpha, etc.) to obtain power 
timeseries plots for each feature from each brain 
region. To understand the relative changes in 
power that underlie decoding of high vs low pain 
states, we next averaged the feature power 
timeseries clips belonging to each of the high vs 
low pain state group (Figure 5A, S13A). The same 
method was carried out for the acute affected pain 
features for the two participants that had successful 
acute pain decoding (Figure S13B).  Note that 
because the 30s neural recording clips were 
collected at various times of day within 5 minutes 
preceding a pain report, there is no well-defined 
task onset/offset for each 30s recording as there is 
for each 3s recording clip in the acute pain task. 
Therefore, one may expect to see reliable 
increases/ decreases in power if there were 
sustained power changes across this time. 
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However, one might not see any difference 
between low vs high pain power curves if power 
only fluctuated in transient bursts because the 
timing of such bursts may cancel out when 
averaged across sessions.  
  To quantify increases or decreases in power 
change patterns for chronic and acute pain 
features, we computed three metrics (Figure 5B-
D): (1) the number of bouts per second. A bout was 
defined as an event where the higher power curve 
crossed above the low power curve before crossing 
below if at all (e.g., if a feature had a negative 
feature weight sign, then low pain state was 
associated with higher power than high pain state 
for that feature). Instances where the higher power 
curve did not intersect with the lower power curve 
were counted as one bout. We divided the number 
of bouts by clip duration to obtain bouts per second. 
(2) mean bout duration was computed by taking an 
average duration of all detected bouts for that 
feature. (3) the total proportion of recording clip 
time where the higher curve was sustained above 
the lower curve (i.e., equivalent to summing all bout 
durations and dividing by clip duration). 
 
2- To investigate diurnal patterns in the time series 
of each chronic pain neural feature, we separately 
plotted pain NRS and each feature’s clip averaged 
power as a function of time of day from midnight to 
midnight (Figure S14). Because the time of day 
was non-uniformly sampled by each participant in 
the ambulatory setting, we resampled these diurnal 
plots with shape-preserving piecewise cubic 
interpolation (‘pchip’) using a uniform time 
resolution of 3 hours to obtain a summary diurnal 
trend line for each feature.  We chose a resolution 
of 3 hours because this was the shortest time 
interval across each participant’s reports, and 
because doing so did not introduce visible 
artifactual trends.  The resampled trend lines for 
each feature were then correlated with the pain 
NRS trend line using Pearson’s correlation, within 
participant, to assess for correlated patterns 
between neural features and pain reports (Table 
S3).  
   
General Statistical Methods 
False discovery rate correction for multiple 
comparisons used the Benjamini-Hochberg-
Yekutieli procedure59.  
Autocorrelation: Sample partial autocorrelations 
were calculated on reported pain intensity NRS 
using default parameters in MATLAB60. Because 
pain NRS was reported on an irregular time scale for 

each participant, we uniformly resampled the 
original pain NRS timeseries using shape-
preserving piecewise cubic interpolation, rounded to 
the nearest 6 minutes (i.e., 1/10 of 1 hour).  
 
Permutation Tests: Empirical p-values: All machine 
learning model results (AUCs for LDA and LSSM  
and Coefficient of determination R2 for regression) 
were compared against 5000 (n) permuted results 
from null models (AUCs or R2) obtained by randomly 
shuffling the true response class labels or values 
(e.g., randomly shuffling high or low pain class label) 
to obtain a distribution of chance level performance. 
We conservatively calculated empirical one-sided p-
values by comparing the number of randomly 
permuted AUCs or R2(k) greater than the actual 
model AUC or R2 using the following correction to 
avoid underestimation as previously demonstrated 
61: pcorr = k+1 / n+1. Note that because R2 values can 
be < 0, it is possible for very low R2 values to 
sometimes be significant, if the R2 results from 
shuffled / permuted, null models were largely 
negative.   
 
Data availability Statement 
The datasets generated during and/or analyzed 
during the current study will be available in the NIH 
Brain initiative data sharing platform within one 
month of publication at the following link 
(https://dabi.loni.usc.edu/). Data sets will include 
raw neurophysiology data including metadata.  
 
Code Availability Statement 
MATLAB and Python analytical software code used 
to generate the main results and figures is available 
on the NIH Brain Initiative platform above and at 
Github at the following address: 
https://github.com/shirvalkarlab/ChronicPain2023_
NatNeuro.git 
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