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Impart a Spatial Hierarchy of Protein Motion
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Abstract

Elastic network models (ENMs) and constraint-based, topological rigidity analysis are two 

distinct, coarse-grained approaches to study conformational flexibility of macromolecules. In the 

two decades since their introduction, both have contributed significantly to insights into protein 

molecular mechanisms and function. However, despite a shared purpose of these approaches, the 

topological nature of rigidity analysis, and thereby the absence of motion modes, has impeded a 

direct comparison. Here, we present an alternative, kinematic approach to rigidity analysis, which 

circumvents these drawbacks. We introduce a novel protein hydrogen bond network spectral 

decomposition, which provides an orthonormal basis for collective motions modulated by 

noncovalent interactions, analogous to the eigenspectrum of normal modes. The zero modes 

decompose proteins into rigid clusters identical to those from topological rigidity, while nonzero 

modes rank protein motions by their hydrogen bond collective energy penalty. Our kinematic 

flexibility analysis bridges topological rigidity theory and ENM, enabling a detailed analysis of 

motion modes obtained from both approaches. Analysis of a large, structurally diverse data set 

revealed that collectivity of protein motions, reported by the Shannon entropy, is significantly 

reduced for rigidity theory compared to normal mode approaches. Strikingly, kinematic flexibility 

analysis suggests that the hydrogen bonding network encodes a protein-fold specific, spatial 

hierarchy of motions, which goes nearly undetected in ENM. This hierarchy reveals distinct 

motion regimes that rationalize experimental and simulated protein stiffness variations. Kinematic 

motion modes highly correlate with reported crystallographic B factors and molecular dynamics 

simulations of adenylate kinase. A formal expression for changes in free energy derived from the 

spectral decomposition indicates that motions across nearly 40% of modes obey enthalpy–entropy 

compensation. Taken together, our results suggest that hydrogen bond networks have evolved to 
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modulate protein structure and dynamics, which can be efficiently probed by kinematic flexibility 

analysis.

INTRODUCTION

Coarse-grained modeling techniques can provide significant insight into the dynamic 

behavior and biological function of macromolecules. Elastic network models (ENMs1) and 

rigidity theory based flexibility analysis2,3 are two well-known approaches that have been 

applied extensively to study molecular motion. Although they are based on physically 

distinct concepts, both aim to distinguish more flexible regions from compact ones in the 

molecule and to predict large-scale, functional motions.

ENM (Figure 1, right) approximate the potential energy function V via pairwise harmonic 

interactions V =
i j

Ci j pi j − pi j
0 2

, where Cij denotes the stiffness1 or an exponentially 

fading weight4 of the restraint between atoms i, j located at pi, pj, respectively, with pij = pj – 

pi and rest length pi j
0 . The resulting spring-mass network can be formulated in terms of 

dihedral5,6 or Cartesian1,7–9 degrees of freedom (DoF) and analyzed with classical 

Hamiltonian mechanics. Diagonalization of the Hessian matrix leads to a spectral 

distribution of the dynamics in terms of eigenmodes with corresponding eigenfrequencies. 

The simplified energy function of ENM places the native structure at a global minimum, 

circumventing initial minimization necessary in traditional normal-mode analysis (NMA).10 

The motions corresponding to low-frequency modes are robust, often agree with those of 

more detailed models,11,12 and can be functionally relevant.13 Dihedral-based approaches 

often correlate better with experimentally observed conformational changes than Cartesian-

based methods.14,15 Other variants include Gaussian16,17 or anisotropic18 network models.

In rigidity theory, macromolecules are modeled as constraint graphs (Figure 1, left), with 

edges between interacting atoms (vertices) representing covalent and noncovalent bonds. 

Different types of constraint graphs, such as the bar-joint,19,20 the body-bar,21,22 or the 

equivalent body-bar-hinge graph23,24 all share the concept of assigning a number of pebbles 

to atomic vertices as DoF, and a number of bars to each interaction as constraints. Typically, 

rotatable single-covalent bonds and hydrogen bonds retain a dihedral degree of freedom, 

while peptide and double covalent bonds are modeled rigid. Noncovalent interactions, such 

as hydrogen bonds, are added as constraints if their interaction strength exceeds a certain 

threshold. More constraints increasingly rigidify the graph. The remaining flexibility, i.e., 
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the coordinated motion of internal DoF that obey constraints (floppy modes or zero 
modes)19,25,26 can be determined via constraint counting through the pebble game 

algorithm.3,19 Constraint counting on these graphs has been applied to examine 

conformational flexibility in macromolecules,20,27–30 probe the effects of ligand binding,31 

estimate entropic measures,32–34 and help shape perturbation strategies in complex motion 

planning algorithms.35–37

In constraint graphs, an energy threshold measuring the strength of a noncovalent interaction 

determines dichotomically whether to include the corresponding constraint, thereby 

changing the topology, but ignoring the collectivity of network effects. Monitoring changes 

in protein rigidity from diluting the constraint network by gradually raising the energy 

threshold has informed on thermostability38–40 and the evolution of folding cores.29,41 

However, the topological and combinatorial nature of this approach denies explicit access to 

the kinematics of the underlying 3-dimensional molecular structure. Hence, two different 

substates, such as an open and a closed protein conformation, will have the same rigidity and 

flexibility properties, if they share an identical constraint network. Rigidity thus becomes 

dependent only on the energy threshold used, and ensemble-based approaches have to be 

employed to produce robust results.28,42 Importantly, the exact motion vectors determined 

by the constraints (covalent and noncovalent bonds) remain unknown and can only be 

approximated by randomized perturbations36 and iterative loop-closure algorithms such as 

ROCK43 or FRODA.44 While previous efforts tried to combine pebble game rigidity 

analysis with ENM,45,46 these impediments have so far prevented a detailed comparison 

between the two methods.

Here, we overcome these limitations by using a kinematic approach to characterize 

flexibility and rigidity. Our approach explicitly provides basis vectors for motions 

corresponding to floppy modes, allowing us to analyze and compare motions directly from 

ENM and rigidity analysis. We previously established that topological rigidity and kinematic 

analysis yield an identical decomposition of the protein into rigid clusters for fully constraint 

compliant motions in nonsingular configurations.47 Topological rigidity analysis fails for 

protein conformations corresponding to singular kinematic configurations, where kinematic 

analysis gives correct decompositions.47 A singular conformation occurs when two 

constraints or DoF locally become linearly dependent, which can not be detected by simple 

constraint counting. More importantly, our kinematic analysis can provide a basis for protein 

motions when constraints are progressively relaxed, i.e., when non-covalent bond-lengths 

and -angles are collectively allowed to vary. These motion modes are inaccessible to 

topological rigidity analysis. Thus, our approach provides a framework to analytically 

examine the collective and universal effect of, for example, hydrogen bonding patterns on 

protein motion by constraint relaxation, instead of the common practice of omitting selected 

hydrogen bonds (constraints) entirely. In the remainder, we distinguish between topological 
rigidity as counting on constraint graphs via the pebble game and kinematic flexibility as our 

new method.

Our study makes three main contributions. First, we establish that the hydrogen bonding 

pattern of a protein structure, together with its rotatable covalent bonds, encodes a hierarchy 

of protein motions. These orthogonal motion “modes” are ranked by a collective, weighted 
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relaxation of the hydrogen bond network. By contrast, topological rigidity can only provide 

a hierarchy of rigid and flexible regions from ranking and removing individual constraints.
27,41 Second, we show that this motion spectrum is remarkably universal and conserved 

across a large data set of 183 diverse, monomeric high-resolution protein structures, but 

simultaneously reveals fold-specific differences across four large data sets separated by fold-

types α, β, α + β, and α/β. This fold-specific, spatial hierarchy suggests that hydrogen bond 

networks and folds are designed to modulate protein structure and dynamics. Its conserved 

nature allows more robust flexibility and rigidity analysis, insensitive to energy cut-offs on 

individual constraints. Third, we derive a formal, qualitative expression for a mode-specific 

free energy, which displays a near constant regime where increasing energetic cost is 

compensated by elevated entropy. Thus, our kinematic analysis provides a conceptual model 

system for enthalpy–entropy compensation (EEC), with a readily accessible interpretation of 

the controversial phenomenon. We compute and visualize kinematic flexibility modes for 

adenylate kinase. The modes highly and increasingly correlate with molecular dynamics 

simulations and crystallographic B factors when constraints are increasingly relaxed. 

Collectively, our results signify a deep connection between the structure of the hydrogen 

bond network, protein conformational dynamics, and functional motions. Our kinematic 

flexibility analysis is implemented in our KGS software. Source code and data to support 

our analyses are available from https://github.com/ExcitedStates.

KINEMATIC FLEXIBILITY ANALYSIS OF PROTEINS

We start by deriving an expression relating infinitesimally small rotations of dihedral angles 

to changes in the geometry of all hydrogen bonds collectively. We model macromolecules as 

a kinematic linkage, with groups of atoms as rigid body vertices and rotatable covalent 

bonds as directed edges with a single degree of freedom q ∈ 1 (Figure 1, center; Figure 2). 

The linear, branched topology of monomeric molecules can be represented with a single 

kinematic spanning tree, rooted at an arbitrarily selected vertex (yellow). Covalent double 

bonds, peptide bonds, and dihedrals amenable to planarity are modeled as rigid. Proline and 

aromatic rings are also modeled rigid, identical to standard topological approaches.20,24 

Groups of atoms without internal DoF are joined into rigid bodies. Dihedral angles of 

remaining single-covalent bonds are the DoF of the molecule, connecting two neighboring 

vertices (Figure 2).

In contrast to topological rigidity, we distinguish between covalent DoF and noncovalent 

constraints such as hydrogen bonds. Without constraints (red, Figure 1 center), our model 

corresponds to a serial, open kinematic chain, i.e., a kinematic linkage without closed loops. 

Noncovalent interactions form closed kinematic cycles that coordinate dihedral motion 

within two branches leaving from a common anchor vertex (Figure 2A), reducing the 

number of independent DoF. Multichain proteins can be treated within the same framework 

by connecting chains through interchain constraints.48,49 Like topological rigidity theory, 

there are no interatomic forces. We encode hydrogen bonds as 5-fold holonomic constraints, 

i.e., constraints that only depend on the vector q = (q1, …, qn), where n is the number of 

DoF. The 5-fold constraints permit a rotation ωh about the bond axis but constrain all other 

relative motion. More precisely, the distance vector fH – fA between the hydrogen (H) and 

acceptor (A) atom located at fH and fA, the donor–hydrogen–acceptor (D–H–A) angle α = 
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α(fD, fH, fA), and the hydrogen–acceptor–base (H–A–AA) angle β = β(fH, fA, fAA) are 

constrained (Figure 2B).47 This corresponds to a constraint with five bars in pebble game 

algorithms but explicitly specifies its kinematics. In our Kino-Geometric Sampling (KGS) 

software, salt bridges and disulfide bonds can be equally modeled with 5-fold constraints, 

but are not considered here. Likewise, other noncovalent interactions such as hydrophobic 

forces could be accommodated in the same framework through a 2-fold hydrophobic 

constraint. For a molecule with overall n dihedral DoF, we can distinguish between free DoF 

qf ∈ f that do not appear in any closed kinematic cycle and constrained, cycle DoF q ∈ d 

where f + d = n. Free DoF can occur in side chains that do not accept or donate hydrogen 

bonds and are therefore not subject to kinematic constraints. They are not considered in the 

constraint analysis. The m hydrogen bonds define a constraint variety 𝒬, i.e., the roots of the 

algebraic equations Φ, on the cycle DoF

𝒬 = q ∈ 𝕋d ∣ Φ(q) = 0 ∈ ℝ5m (1)

where

Φ(q) = fH, i q − fA, i q T, αi q , βi q T

⋯

⋯
− fH, i q0 − fA, i q0 T, αi q0 , βi q0 T

⋯

⋯
(2)

where [(fH,i(q0) − fA,i(q0))T, αi(q0), βi(q0)]T denotes the geometry of hydrogen bond i, i = 1, 

…, m obtained from the input coordinate file with conformation q0.

Formally differentiating with respect to time yields a linear relationship between 

instantaneous changes in the DoF (“velocities”) and corresponding changes in the 

constraints:

dΦ
dt = Jq̇ = 0, if q̇ constraint observing

≠ 0, if q̇ constraint perturbing (3)

J ∈ ℝ5m×d is known as the constraint Jacobian matrix. Equation 3 characterizes two disjoint, 

orthogonal subspaces corresponding to velocities that observe constraints and those that 

perturb constraints. In practice, derivatives of forward kinematic atom positions f with 

respect to DoF qk can be efficiently calculated using the cross-product

∂f
∂qk

= rk × (f − pk − 1) (4)

for the rotatable covalent bond between atoms located at pk−1, pk with axis of rotation rk = 

(pk − pk−1)/∥pk − pk−1∥ (Figure 2C).
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Constraint observing velocities lie in the nullspace null J q = q̇ ∈ 𝕋d: Jq̇ = 0 . This 

matrix subspace emerges from linearly dependent rows (constraints) or columns (DoF) in J 
and is generally of dimension d – r, with r as the rank of J. In contrast, velocities that do not 

comply with constraints lie in the range of J. Note that r ≤ p = min(d, 5m) due to the 

rectangular shape of J. The singular value decomposition (SVD)50

JV = U Σ (5)

Where U = [u1, …, u5m] ∈ ℝ5m×5m and V[v1, …, vd] = ∈ ℝd×d, provides orthonormal bases 

for the range and nullspace of J. The rectangular matrix ∑ = diag(σ1, …, σp) ∈ ℝ5m×d 

contains the singular values σ on the diagonal, where σ1 ≥ … ≥ σr > σr+1 = … = σp = 0, and 

corresponding ui and vi are the ith left and right singular vector, respectively. Let

range JT = span v1, …, vr :R
null J = span vr + 1, …, vd :N

(6)

Then, any q̇ = [R, N][νR
T, νN

T ]T can be expressed with νi the proportion of velocity pointing 

along vector vi, respectively. For a broader introduction to these linear algebra concepts we 

refer the reader to the literature.50

Since ui and vi are orthonormal vectors, σi encodes nonorthogonality between J and V; the 

singular value is the magnitude of constraint perturbation or constraint relaxation dictated by 

moving along right singular (velocity) vector vi. In molecular terms, right singular vectors vi 

have the dimension of the number of degrees of freedom d (rotatable covalent bonds): vi 

denotes a set of coupled motions in dihedral space. Left singular vectors ui have the 

dimension of the number of hydrogen bond constraints: each element of ui represents either 

a change in length (x, y, or z) or a change in angle (α, β) of a hydrogen bond. Thus, the 

expression Jvi = σiui relates a change in molecular conformation vi to a change in the 

geometry ui of all hydrogen bonds. If σi = 0, the vector of coupled motions vi is in the 

nullspace of J and no change in the hydrogen bond geometry is observed. For σi > 0, 

coupled motions vi result in progressively greater changes in the geometry ui of all hydrogen 

bonds as σ increases (“constraint relaxation”). The singular value σi > 0 denotes the overall 

magnitude of constraint relaxation in the left singular vector ui, i = 1, …, r when moving 

along right singular vector vi, i = 1, …, r.

It follows that null(J) spans all constraint-observing motions. As shown previously, these 

modes are identical to floppy modes from topological rigidity approaches,47 i.e., they are the 

only remaining internal DoF if no constraint relaxation is permitted. Without constraint 

relaxation, dihedrals not part of these floppy modes are rigidified and merge adjacent rigid 

bodies, leading to a rigid cluster decomposition of the molecule, which is a central result 

from topological rigidity analysis. Note that free DoF qf always comply with constraints, as 

they are outside kinematic cycles. The nullspace is highly sensitive to the set of noncovalent 
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constraints and careful tuning of energy thresholds, e.g., for the inclusion of hydrogen bonds 

in protein and RNA, is crucial to prevent over-rigidification.30

Constraint relaxation and kinematic flexibility modes.

The range R provides a spectrum of motions ranked by increasing constraint relaxation. We 

term those motions kinematic flexibility modes. They are not accessible in topological 

rigidity analysis, since they do not respect constraints but can potentially inform on 

hydrogen bonds that need to adapt their configuration during functional rearrangements or 

exchange with solvent. Thus, the full range of protein conformational dynamics encoded by 

the hydrogen bonding pattern is accessible through orthonormal bases spanning both matrix 

subspaces. We therefore refer to the SVD (5) of the constraint Jacobian obtained from the 

hydrogen bonding pattern as the hydrogen bond network spectral decomposition. While 

ENMs provide a spectrum in terms of eigenfrequencies and corresponding eigenmodes, our 

spectral variable σ denotes the norm of constraint relaxation necessary to access the 

corresponding kinematic flexibility mode.

RESULTS

We first provide a graphical interpretation of our kinematic flexibility analysis on two 

secondary structure example systems, before we perform a more theoretical, large-scale 

analysis of fold-specific kinematic motion spectra found in the protein universe. A 

subsequent computational study on adenylate kinase (ADK) demonstrates how hierarchical 

kinematic motion modes efficiently probe protein conformational dynamics.

Kinematic Flexibility Modes of α-Helices and β-Sheets.

We analyzed how the hydrogen bond network spectral decomposition imposes a range of 

collective motions on proteins. To visualize motions across the spectrum and their effect on 

hydrogen bonds, we analyzed an α-helix and a β-sheet in detail. The top panels of Figure 3 

show the perturbation matrix P resulting from the matrix product JV, summed over the five 

constraints per hydrogen bond

Pi, d − j − 1 = ∑
k = 5i

5i + 4
JklV lj

2, i = 0, …, m − 1, j = 0, …, d − 1 (7)

P graphically displays eq 5, visualizing the magnitude of collective perturbations to 

hydrogen bond geometries when constraints are relaxed in successive kinematic flexibility 

modes. Rows correspond to individual hydrogen bonds ordered by first appearance along the 

protein sequence, irrespective of donor or acceptor, while columns correspond to kinematic 

flexibility modes v ∈ V ranked by singular values, increasing from left to right. The 

predicted perturbation of individual hydrogen bonds (rows) for instantaneous motions along 

each kinematic flexibility mode (columns), i.e., values in P, is color-coded, increasing from 

dark to light. Note that the magnitude of the collective perturbation over all hydrogen bonds 

i in each column j, i.e., 
i
Pi j

2 , equals the singular value σj associated with this motion 
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mode. For the α-helix (A), we observe a striking, alternating pattern of constraint 

perturbation, suggesting motions of the dihedral DoF are modulated by concerted hydrogen 

bond fluctuations. We observe a similar, but weaker pattern for the β-sheet (B).

We then projected the conformational change Δq,j for degree of freedom j corresponding to 

selected kinematic flexibility modes vi onto the helix and sheet (Figure 3, bottom panels). 

This conformational change follows from taking a small step δ along the direction of each 

right singular vector

Δq, i = δvi (8)

The vectors vi are all unit length, and therefore, ∥Δq,i∥ = δ, i = 1, …, d.

The left-most, purple-colored set of modes in the matrix correspond to local fluctuations 

(e.g., A11, B5, indices label column numbers), affecting only DoF close to individual 

hydrogen bonds shown as dots. As the mode number increases from left to right, DoF are 

increasingly engaged. For example, in superhelical twisting (e.g., A38) and straight bending 

(e.g., A46) compensating motions of DoF, indicated by alternating blue–red patterns, 

mediate moderate constraint perturbation. By contrast, high constraint perturbations found in 

compression/tension (A54/A55) are a result of changes in DoF that reinforce each other. 

Interestingly, unraveling (e.g., A19) demonstrates significantly less overall perturbation than 

compression/tension (A54/A55), indicating an energetically favorable mode for helix 

dissociation. Similarly, the structure of β-sheets permits twisting and bending motions (e.g., 

B11), while shear (e.g., B33) and especially widening/narrowing (e.g., B38) requires 

substantial distortion of hydrogen bonds. These findings agree with molecular dynamics 

simulations, which revealed high strength of β-sheet proteins in response to shear loading, 

with an elastic modulus of about 240 pN/Å.51 Also, the simulation results predicted an 

initial linear elastic regime during tensile loading of α-helical protein domains. Beyond the 

elastic regime the helix uncoils, releasing one turn at a time. It is worth noting that there are 

no nullspace floppy modes along the backbone in either structure, i.e., topological rigidity 

analysis predicts only flexibility of dangling side-chains, but full backbone rigidity.

Besides the graphical interpretation, these results hint at three important characteristics of 

the motion spectrum. First, the pattern of hydrogen bond perturbations suggest distinct 

motion regimes, separated by allowed constraint relaxation and collectivity, i.e., how much 

of the structure is engaged in each mode. Second, motions hierarchically ranked by 

constraint relaxation seem to correlate significantly with energy required to perturb a 

structure. Third, the hydrogen bonding networks encode fold-specific motions. We examine 

these attributes quantitatively in the next section.

Kinematic Flexibility Modes Hierarchically Rank Collective Hydrogen Bond Energy 
Perturbation.

To establish a predictive relationship between singular values and the collective variation in 

protein hydrogen bond geometry and energy, we monitored geometry and energy changes 

while performing conformational changes via (8). Changes in hydrogen bond geometry 
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follow from ∥Φ(Δq,i)∥ (1), while energies ∥Δ EHB(Δq,i)∥ are evaluated using the Mayo 

energy-potential52 for each individual hydrogen bond

EHB = w0 5
l0
l

12
− 6

l0
l

10
f α, β, γ (9)

with well-depth w0 = 8 kcal/mol, equilibrium distance l0 = 2.8 Å, hydrogen bond donor–

acceptor distance l = ∥fD − fA∥, and angular terms f(α, β, γ) (Figure 2B) that depend on the 

hybridization state of donor and acceptor (Supporting Information (SI), eq 1). Values of EHB 

then range between −8 kcal/mol for strong and 0 for weak hydrogen bonds.

We illustrate our findings using the crystal structure of 189-residue human DJ-1 protein 

(PDB ID 1p5f). Figure 4A shows monotonically increasing singular values (blue) which 

rank-order the kinematic motion modes along the horizontal axis. The magnitudes of the 

corresponding collective geometric perturbations (magenta) and hydrogen bond energies 

(red) are shown for δ = 10−5. The three curves clearly follow similar trends. Strikingly, while 

our kinematic flexibility analysis is informed by only individual, geometric hydrogen bond 

information, singular values of the hydrogen bond network spectral decomposition rank-

order protein motions hierarchically by collective (constraint) geometric relaxation and 

associated energy penalty of the entire constraint network. This suggests that the network is 

designed to selectively favor certain directions of collective motion in conformation space 

over other motions. Except for the kinematic flexibility modes at both ends of the spectrum, 

changes in constraint geometry and energy follow a log–linear regime. Modes outside the 

log–linear regime may correspond to nonfunctional protein dynamics. For example, modes 

with the largest penalties correspond to unfolding motions where tertiary and secondary 

elements lose structure, as graphically displayed in bottom panels of Figure 3. Modes in the 

nullspace, i.e., floppy modes to the left of the indicated nullspace limit, carry no geometric 

penalty.

Next, we examined if the change in internal (hydrogen) bond energy could be predicted from 

the spectral decomposition. Note that the norm of constraint penalty and the singular values 

σi, when taking a small step along a right singular vector are related by a scale factor cV = δ 
= 10−5, i.e., ∥JΔq,i∥ = cVσi (combining (5) and (8)). Fitting the singular values curve (blue) 

to the magnitude of geometric penalties of hydrogen bonds ∥Φ(Δq,i)∥ = cGσi (1), we found a 

scale factor of cG = 10(−5.02±0.05) ≈ δ, indicating that linearization has negligible effects at 

small step sizes. For the highly nonlinear energy function ((9) and SI eq 1), we found cE = 

10(−4.51±0.17) kcal/mol ≈ 3.09 δ kcal/mol. Hence, for a sufficiently small step size δ, the 

hydrogen bond network spectral decomposition predicts the collective hydrogen bond 

energy penalty along mode i by ∥ΔEHB(Δq,i)∥ = cEσi for this example structure. For floppy 

modes inside the nullspace, the difference between singular value prediction and energetic 

cost is larger. This can be explained by sp2–sp2 hybridized hydrogen bonds that observe 

small energetic changes due to a torsional term related to angle γ in the hydrogen bond 

energy function (SI), which is not present in the geometric constraint formulation (Figure 
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2B). The torsional term becomes more relevant if other terms such as distance and angles 

remain small, which is the case inside the nullspace.

This hierarchy of protein motions is remarkably conserved in the protein universe. We 

compiled a diverse benchmark data set of 183 high-resolution, nonredundant crystal 

structures ranging in size from 30 to 555 amino acids in length from the PDB. We observed 

a strong linear relationship between the number of cycle DoF d and the number of 

constraints 5m in the structures (Figure 4B). Table 1 evaluates statistical properties of the 

data set, with the hydrogen bond energy (9) summed up over all hydrogen bonds. The 

fraction of hydrogen bonds per residue agrees well with the literature.53

Similar to our single example crystal structure of human DJ-1 protein, singular values 

spanned many orders of magnitude. We also observed a large range in the number and 

distribution of vanishing singular values across the crystal structures, a median of 34 

nullspace floppy modes, with a maximum of 148 and one (engineered) protein with zero 

floppy modes (PDB ID 5eca). While most structures have slightly more constraints than 

cycle DoF, i.e., 5m > d, it appears that a fairly constant fraction of constraints is linearly 

independent, leading to a linear increase in the number of floppy modes over protein size 

(Figure 4B). This was also observed previously.33 We therefore analyzed kinematic 

flexibility modes corresponding to non-vanishing singular values, i.e., outside of the 

nullspace, for all 183 crystal structures (Figure 4C). For comparison we normalized modes, 

and we grouped modes into 50 bins per structure. Repeating our analysis above, we obtained 

a surprisingly universal law

EHB
q ′ = 1

δ ∥ ΔEHB Δq, i ∥
…

…
= c‒Eσ with c‒E ≈ 3.24 kcal ∕ mol (10)

from fitting the mean curves, where c‒E is independent of mode number, with error on the 

same order as in the single structure before. This suggests that protein hydrogen bonding 

patterns impart a distribution of orthogonal, coordinated motions on the DoF. Kinematic 

flexibility modes identify preferred directions of deformation for the protein in (hydrogen 

bond) internal energy landscapes. Note that EHB
q ′ reports on the collective energy change 

over all hydrogen bonds for individual modes; motions along kinematic flexibility modes i 
do not necessarily increase all hydrogen bond energies. Instead, for each direction, 

fluctuations in hydrogen bond energies can provide compensatory mechanisms, i.e., many 

could marginally reduce in energy to allow a handful to significantly increase. Initial 

constrained minimization of the data set ensures starting structures near a local minimum of 

hydrogen bond energy.

Spectral Distribution of the Hydrogen Bond Network.

To obtain a physical understanding of the distribution of modes across protein structure, we 

performed a full spectral decomposition and computed probability distributions for singular 

values on our benchmark data set. The size distribution of protein structures is reflected in 

the SVD of associated constraint Jacobian matrices J. It is well-known mathematically that 
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the maximum singular values monotonically increase by adding a column (a degree of 

freedom), while the smallest nonzero singular values decrease.50 Physically, a larger protein 

with more DoF can be interpreted by a larger lever arm that allows a larger maximum 

constraint perturbation, or simultaneously provides more motion capabilities to avoid 

perturbation. Adding a row (constraint) will increase the minimum singular value, i.e., there 

are more constraints to be perturbed, and the protein is rigidified. Overall, the spectral range 

becomes size-dependent (Figure 4B), which can also be seen in the widened distributions 

near the spectral limits in Figure 4C. Hence, to compare mode densities across differently 

sized proteins, we normalized singular values of each structure by their maximum σ1 to 

obtain σ ∈ [0, 1] for all modes across all structures and grouped them by σ into ten bins per 

decimal power.

Singular values for the 183 single-chain proteins span several orders of magnitude and show 

well-conserved, sharp peaks near integer exponents (Figure 5A). The two most common 

kinematic flexibility modes occur at σ ≈ 10−2 and σ ≈ 10−3. The peak at lowest σ values 

(Figure 5A, far left) represents floppy modes, which are the only modes considered in 

topological rigidity analysis. Their density is least conserved across the spectrum and shows 

a linear increase over protein size (Figure 4B). Thus, while normalizing by σ1 helps spectral 

comparison in the regime σ > 0, the variability in the number of floppy modes where σ = 0 

remains. Note that we pick a threshold σN = 10−12 to numerically identify vanishing singular 

values. All modes with σ ≤ σN are floppy modes and represented by this peak. There is a 

clear gap of several orders of magnitude between nonzero and vanishing singular values, 

which allows correct and simple identification of floppy modes.47

The spectral distribution relates directly to the stiffness of the protein. Formally, this follows 

from defining a cumulative perturbation

pc =
σ

p(σ)σ dσ (11)

for perturbation-specific probability densities ρ(σ) following the spectral distribution, 

assuming individual modes are enabled at equal probability. Thus, proteins enriched in high-

perturbation modes require overall more energy to access their motion modes, rendering 

them stiffer. Discrete jumps between spectral peaks suggest that modes are distributed across 

different stiffness regimes. Interestingly, atomic force microscopy (AFM) on single antibody 

proteins also found two distinct elastic regions with an ~4-fold increase in stiffness between 

a low- and high-strain regime, before plastic deformation sets in.54 Again, these 

experimental findings agree well with our perturbation analysis.

The geometry of hydrogen bonds in our analysis critically depends on accurately placed 

hydrogen atoms in structure preparation. To exclude the possibility of bias at that stage we 

repeated our analysis using a smaller set of 34 structures from the PDB with experimentally 

determined hydrogen atom positions from neutron diffraction experiments (SI). Its spectral 

signature, i.e., peak locations and heights, was virtually identical, validating the results from 

our initial data set of 183 high-resolution single-chain structures for subsequent analysis. 
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Furthermore, spectral analysis of singular values from a set of random matrices with the 

same dimensions as the original protein data set produced a completely different 

distribution, while a set of random matrices with the same sparsity pattern led to similar 

distributions (SI Figure S1). A control study with the same number of 5-fold constraints 

between randomly selected atoms instead of real hydrogen bonds maintained some of the 

features but generally showed less conservation and higher stiffness. This clearly 

demonstrates that the hydrogen bonding network, together with the covalent kinematic 

structure of the protein, stores this fold-specific dynamic information.

Motions from the Hydrogen Bonding Pattern Are Spatially Distributed.

Besides distinct perturbation levels, we observed various levels of mode engagement, i.e., 

how much of the molecule is involved in a specific motion mode. To measure this 

collectivity s of mode vi, we compute the exponential of the Shannon entropy of its squared 

components14,55

si = 1
d exp −

j 1

d
κi jlog(κi j) (12)

where κi, j = vi, j
2 /

j 1
d vi j

2 . This normalization of v is trivial for singular vectors, since they 

are unit length by definition, but nontrivial for eigenmodes from ENM or NMA. The second 

normalization by the number of modes d (equals the length of v) reduces size differences 

across protein structures, which allows si ∈ [0, 1] to be interpreted as the fraction of 

significant contributors in motion mode i.

Figure 5B plots collectivity computed over modes with similar singular values, grouped into 

ten bins per decimal power. Nullspace floppy modes with zero perturbation at the lower end 

of the spectrum show a relatively low collectivity compared to medium or high-perturbation 

modes. From panels A and B together, we observe that the most collective motion modes are 

also most abundant. Collectivity, and thus entropy, follows a near-exponential regime 

between 10−7 and 10−3, showing a similar trend as energetic perturbations in Figure 4C. 

Finally, modes with strongest constraint perturbation are less collective than medium-

perturbation modes.

Protein Fold Classes Have a Unique Η-Bond Network Spectral Signature.

To analyze protein-fold specific differences encoded by the hydrogen bond pattern, we 

examined the hydrogen bond spectrum and collectivity of kinematic flexibility modes for 

four separate data sets of α-only, β-only, α + β, and α/β proteins, ranging from 655 to 1051 

structures (SI). Figure 5 shows the mean curves for the spectrum (C) and collectivity (D), 

corresponding to the black mean curves of the original mixed-fold data set in parts A and B, 

respectively. Percentiles follow similar patterns as for the previous data set and are omitted 

for visibility. While the location of spectral peaks is conserved across folds, the peak heights 

show clear differences. The class of α-only folds has more modes at higher singular values, 

yielding them stiffer to perturbations (11). In other words, the constraint network requires 
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more relaxation to access these modes. By contrast, β-only proteins are enriched in smaller 

spectral modes, rendering them more flexible, while mixed folds α + β and α/β show 

intermediate spectra. The density of zero-perturbation floppy modes with vanishing singular 

values is highly size-dependent and less informative regarding fold content. Nonetheless, our 

results predict more floppy modes in α-helical folds than β-folds, which can most likely be 

attributed to less interhelical connectivity compared to inter-β-strand connectivity.

Collectivity, computed as before (12), is generally higher for β-folds than α-folds, and 

intermediate for mixed folds. Interestingly, medium-perturbation modes in β-dominated 

folds are more collective than the highest-perturbation modes, indicating localized hinges, 

e.g. in β-turns, that are able to significantly unfold the protein (cf. Figure 3B40). Note that 

floppy modes with zero-perturbation, the only accessible modes from topological rigidity 

analysis, show relatively small and very similar collectivity across folds, rendering them 

more localized compared to medium-perturbation modes and again less informative 

regarding fold content.

To further evaluate predictive capabilities of our method, we analyzed the spectral 

distribution of a set of four hyperstable, designed peptides,56 each with an NMR bundle of 

20 distinct structures (PDB codes 2nd2, 2nd3, 5jhi, 5ji4; details in the SI). Their spectrum 

shows a clear shift toward modes with higher relative perturbation compared to the high-

resolution data set (Figure 6) and an ~3-fold increase in pc (11), identifying their designed 

constraint pattern as a key contributor to increased stability. Collectivity of modes shows 

trends as the other data sets.

Free Energy of Modes.

The hydrogen bond energy perturbations predicted by the magnitude of singular values can 

be formally combined with the conformational entropy contributions encoded by collectivity 

into a dimensionless expression for free-energy changes ΔF related to each mode i

ΔFi = σi − cTsi (13)

with a dimensionless temperature factor cT. For normalized singular values and normalized 

collectivities, the range of ΔF is between −1 and +1 when cT = 1. Clearly, (13) is a formal 

abstraction, since only hydrogen bond energy contributes to internal energy. Surprisingly, 

though, our free-energy changes demonstrate how enthalpic and entropic contributions 

compensate each other in the overall spectrum of conformational motion. Figure 7 depicts 

ΔF over normalized motion modes computed from all 183 structures in the high-resolution 

data set. The red curve averages over individual modes grouped into 100 bins. ΔF roughly 

levels for about 40% of modes (Figure 7, modes between dashed lines) with most favorable 

entropy (collectivity) and medium enthalpic cost. Modes to the right of the interval have 

unfavorably high enthalpic cost; they correspond to unfolding (high-perturbation modes in 

Figure 3). Modes to the left of the interval are more localized, with smaller enthalpic cost, 

but simultaneously less entropic benefit. Nullspace floppy modes are excluded in the graph; 

their enthalpic cost is zero, as encoded by vanishing singular values. Thus, associated free 
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energy is identical to their collectivity as depicted in Figure 5B, which is on average ΔF = 

−0.05 and thus turns out less favorable than the free energy plateau at ΔF ≈ − 0.2.

Comparison with iMOD.

We compared the spectrum and collectivity of motions obtained from kinematic flexibility 

analysis with normal modes from iMOD.4 iMOD is a versatile ENM-based tool to study 

normal modes of macromolecules in internal coordinates, i.e., dihedral angles. Although 

iMOD’s mass matrix is based on a full atom representation, flexibility is limited to main-

chain and χ1 angles, while our model maintains full side-chain flexibility. We carried out 

iMOD simulations with the command line settings −n 10000 to force computation of all 

normal modes, −x to enable the χ1 degree of freedom, and otherwise default parameters. 

Comparison of reduced ENM models to full NMA previously revealed that agreement of 

low-frequency modes is conserved but that higher-frequency modes can differ significantly.
57 Figure 8 shows the iMOD spectrum of eigenfrequencies (A) and collectivity of 

eigenmodes (B) for our 183 single-chain protein data set. Although the spectral variables in 

ENM and our approach are different, this comparison sheds light on general characteristics 

of normal modes, rigidity-theory based and kinematic flexibility modes. Similarly to our 

spectrum, eigenfrequency distributions are broadly conserved across structures, confirming 

results from previous NMA and ENM analysis.11,57 Modes with low to medium 

eigenfrequency are most abundant. Similar to kinematic flexibility, the most abundant modes 

are also most collective. Higher-frequency motions with ω > 1000 cm−1 cannot be obtained 

with this coarse-grained model and require full NMA. Floppy (no-relaxation) modes in 

topological rigidity and our kinematic flexibility analysis correspond to zero-frequency 

modes in ENM,27 i.e., modes with vanishing energetic cost. However, zero-frequency modes 

in ENM are often considered an artifact, as the network breaks down into multiple 

independent ones. These modes are often avoided by increasing the number of weak 

interactions, for example by increasing cutoff distances.13 Floppy motions from topological 

rigidity therefore cannot be directly accessed with ENM.

Floppy modes from topological rigidity analysis are less collective, i.e., correspond to more 

local motions compared to low-frequency normal modes or medium constraint relaxation 

kinematic flexibility modes (compare Figure 5B to Figure 8B). This signifies that 

topological rigidity theory based methods tend to overestimate molecular rigidity and study 

conformational flexibility based on more local motions than ENM or NMA.

When we compared fold-specific spectra (Figure 8C) and collectivity (Figure 8D), we 

observed several important differences between the methods. For example, the location and 

height of the main spectral peak in iMOD is indistinguishable for α-only and β-only and 

shifted slightly to higher frequencies for mixed folds, while kinematic flexibility analysis 

shows stronger differences in peak heights across fold types. Interestingly, α-folds show 

slightly increased density at very low frequencies in iMOD, predicting lower stiffness 

compared to other folds, in contrast to other established methods. Our kinematic flexibility 

analysis, detailed NMA,10,57 and analysis of force–displacement curves from MD 

simulations51,58 all predict that α-folds are stiffer. However, iMOD predicts lower 

collectivity in α-folds, similar to our approach.
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A more detailed comparison between the methods, e.g., analyzing direct mode overlap, 

remains difficult, since iMOD is limited to main-chain and χ1 dihedral motion, while our 

kinematic model maintains full side-chain flexibility, thus demanding lower-dimensional 

projections. Other ENM or NMA tools are mostly formulated in Cartesian coordinates or are 

unavailable for other users, making a comparison even more difficult. Nevertheless, our 

results reveal similarities and differences important for users of ENM, topological rigidity, 

and our new kinematic analysis.

Kinematic Flexibility Modes of Adenylate Kinase.

To illustrate the molecular motions encoded by the hydrogen bond spectral decomposition, 

we analyzed adenylate kinase (ADK). ADK is a ubiquitous phosphotransferase that plays a 

central role in maintaining adenosine triphosphate (ATP) levels in the cell.59 It is a model 

system that has been extensively studied, both experimentally and computationally.60–69 

ADK consists of a large CORE domain and two binding domains, the LID domain that binds 

ATP, and the NMP domain (Figure 9A). The two binding domains open and close during its 

catalytic cycle.

We examined how removing individual constraints using EHB,cut and collectively relaxing 

the constraint network using σcut modulates flexibility of ADK. We used our KGS software 

framework to randomly sample conformations from kinematic flexibility modes, using a 

rapidly exploring random tree (RRT,68,70 SI; conformational ensembles available at https://

doi.org/10.5281/zenodo.1315003). We explored the effects of different constraint network 

relaxations, corresponding to singular value thresholds σcut = {10−10, 10−4, 10−3, 10−2}. At 

each conformation q, we determined the subspace Vq := span{vi, …, vd} such that σi ≤ σcut, 

i.e., we identify the subspace of collective motions in dihedral space that limit the magnitude 

of constraint relaxation up to the level dictated by singular value σcut. For each trial random 

step δq ∈ d generated by the RRT, we obtained a step Δq ∈ Vq consistent with the specified 

constraint relaxation σcut by projecting δq onto the subspace Vq

Δq = VqVq
Tδq (14)

Free DoF qf are unaffected by the projection and can be perturbed randomly. We ensured 

individual entries in Δq ≤ 0.05 rad. A new molecular conformation was obtained as q + Δq 

and accepted if there is no steric overlap between pairwise atoms (van der Waals radii were 

scaled to 0.75). KGS uses spatial hashing to quickly identify neighboring atoms for efficient 

collision detection.

We added hydrogens and performed energy minimization of the open conformation of ADK 

(PDB ID 4ake64) with Maestro and identified hydrogen bonds with KGS at four different 

EHB,cut. For each EHB,cut, KGS randomly generated 2000 samples at the four different 

thresholds σcut. Note that σcut = 10−10 corresponds to motions encoded by topological 

rigidity analysis, which permits no constraint relaxation. The normalized dimensions of 

sampling space dim V‒q
0 dim Vq

0  computed at the initial conformation q0 indicate a strong 
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dependence on EHB,cut, while differences vanish at σcut ≈ 10−2 (Figure 9B), demonstrating 

increased robustness of the geometric hierarchy of motions and to some extent invariance 

with respect to constraint input (Figure 9C). In other words, while the number of floppy 

modes with zero relaxation dramatically depends on the exact value of EHB,cut, the number 

of modes for relaxation at σcut ≈ 10−2 is almost invariant to EHB,cut. The graphs of Figure 

9B simultaneously represent the cumulative distribution function of the spectrum of singular 

values. Finally, we computed per residue root mean squared fluctuations (RMSF, Figure 9D) 

and synthetic B factors (Figure 9E; SI) from heavy atom coordinates and compared them to 

RMSF from a 100 ns MD simulation (SI) and experimentally reported isotropic B factors in 

the PDB file.

Correlations are relatively weak for the (near) absence of constraint relaxation σcut ≤ 10−4. 

Only when all hydrogen bonds weaker than EHB,cut = −3.0 kcal/mol were excluded did 

motion modes from topological rigidity reproduce functional motions (Figure 9D/E, top two 

panels). By contrast, motions with elevated constraint relaxation dramatically improve 

correlations even when the weakest hydrogen bonds are included (Pearson rP,MD ≥ 0.82; 

rP,Bfac ≥ 0.7). Thus, compared to using modes corresponding to those from topological 

rigidity analysis (σcut ≤ 10−10), slightly relaxing the constraint network consistently samples 

functional motions, near-independent of EHB,cut. RMSF correlations between the KGS 

ensemble with constraint relaxation and experimental B factors are comparable to those of 

the MD ensemble (rP,MDvsBfac = 0.75), underscoring the strength of our kinematic approach 

(Figure 9A). Interestingly, in view of free energy of modes (13), correlations appeared to 

improve when constraint relaxation was sufficiently high to access motion modes within the 

lowest free energy regime (cf. Figure 7), but sufficiently low to prevent unfolding motions to 

the right of this regime. Thresholds σcut > 10−2 overstrain the constraint network and unfold 

the protein, leading to high rejection rates that made it impossible to generate 2000 samples 

in adequate time (additional analysis provided in SI, Figure S2). The computational 

complexity of instantaneous flexibility analysis is dominated by the SVD of J, 𝒪 d3  worst 

case. Instantaneous flexibility analysis completes in one to three seconds. Computation 

times to generate the 2000 samples ranged from 90 min to 14 h, increasing with higher σcut 

as the protein increasingly unfolds resulting in rejections due to steric overlap. Several 

improvements in numerical algorithms could improve speed, such as updating the SVD 

rather than resolving the full matrix, replacing the SVD with QR, or GPU-based 

implementations.

Overall, our new hierarchy of motion modes (Figure 9B) based on the SVD of the constraint 

Jacobian matrix demonstrates increased robustness toward constraint topology and 

performance when sampling functional motions, compared to pebble game rigidity, which 

requires careful tuning of the constraint topology via EHB,cut to capture meaningful protein 

dynamics.

DISCUSSION

Our new, kinematic approach to rigidity analysis treats hydrogen bonds as a geometric 

constraint network. Compared to topological rigidity, which admits no constraint relaxation, 

it extends analyses to constraint relaxing motions, providing a full spectral decomposition of 
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motion modes ranked by their collective perturbations of the hydrogen bond network. While 

analyses of the structural dynamics of proteins often implicitly assume that weak hydrogen 

bonds disrupt first, our approach does not require such assumptions. Instead, the network 

imparts a hierarchy of motions and stiffness regimes on the protein, which modulate the 

conformational response. The hydrogen bond spectral decomposition is (1) highly conserved 

in the protein universe and (2) reveals key fold-specific differences.

Kinematic flexibility analysis indicated that zero-perturbation floppy modes, the motions 

obtained from topological rigidity analysis, are more localized than low-frequency modes 

from ENM, suggesting an overly rigidified representation in topological rigidity or 

alternatively, overconnectivity in ENM. Therefore, strict rigidity theory based methods rely 

on exceedingly local motions to estimate conformational flexibility,20,27,28 ligand binding,31 

entropy,33,34 or thermo-stability38–40 compared to ENM or NMA. Nonetheless, they show 

convincing agreement with experimental data, if energy cutoffs to determine constraints are 

carefully chosen. Moreover, kinematic floppy modes that observe hydrogen bond constraints 

have guided conformational transitions36,68,71 and revealed coordinated loop motions,72 

often more successfully than normal mode based methods.49,68

Analyses of motions beyond the floppy modes, i.e., in the kinematic flexibility regime, 

revealed several unexpected insights. First, we found that hydrogen bond networks 

determine structure and modulate structural dynamics. This could have important 

implications for de novo protein design and folding73 or hydrogels,74 where recent attention 

is focused on designing hydrogen bonding patterns to create stable interfaces75 and mediate 

specificity.76,77 For example, our procedure revealed a clear shift toward stiffer modes for 

designed, hyperstable peptides.56 While hydrogen-bond guided designs are often successful 

structurally, i.e., the crystal and predicted structure are near identical, it remains a challenge 

to design dynamic, functional proteins.78 Our procedure could predict motion modes of 

hundreds of designed proteins and hydrogen bond networks in minutes.

Second, the conserved hierarchy and collectivity of protein motions revealed distinct motion 

regimes, which are often observed in experiments. For example, AFM on single antibody 

proteins54 uncovered two elastic motion regimes, separated by a near 4-fold increase in 

stiffness, and a regime of plastic deformation. Our spectral decomposition structurally 

rationalizes the distribution of these motions under different strains. Low strain triggers low-

perturbation modes that are low in collectivity and mostly locally perturb the structure. 

Higher strain engages highly collective modes toward stiffer motion regimes, explaining 

elevated stiffness in the second elastic regime measured with AFM. Interestingly, our EEC 

model suggests that a fraction of the energetic cost could be entropically balanced, rendering 

the deformation elastic and reversible.54,79 Any strain beyond the elastic regime leads to 

plastic deformation, indicated by a sharp increase in hydrogen bond energy perturbation. 

Motion modes in this regime likely completely unfold the protein.

Third, the fold-specific differences we observe in our perturbation analysis suggest distinct 

functional roles of secondary structure, confirming previous simulations.51,58 We found 

more modes at higher energy perturbation in α-helices than β-sheets, yielding helices stiffer. 

This is consistent with experimental data from low-frequency Raman spectroscopy80 and 
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eigenfrequencies from detailed NMA.10,57 Detailed NMA captures additional differences 

between folds in high-frequency regimes such as the amide I, II, or III bands.57 These 

higher-frequency differences can also be detected experimentally with infrared spectroscopy 

and have been used to determine secondary structure content.81,82 Simplified elastic network 

analysis using iMOD failed to identify this shift toward stiffer modes, highlighting a 

limitation in the simplified force-fields of most ENM. Our analysis also predicted that β-

sheets are highly resistant to shear motions, which is confirmed by MD simulations.51 

Simulations on the mechanical response of silk crystalline units under shear loading showed 

high rupture forces due to efficient force distribution in the β-sheet structures.83 Buehler and 

Keten further found an initial linear elastic regime during tensile loading of α-helical 

proteins, after which the helix unravels turn by turn.51 Our analysis also predicted unraveling 

as the favored mode of helix dissociation.

We demonstrated how collective constraint relaxation improves conformational sampling in 

adenylate kinase (ADK). Previous work in topological rigidity analysis required careful 

tuning of energy cutoffs for individual constraints or employed ensemble-based rigidity 

analysis to correctly predict flexibility, such as the distance constraint model (DCM)42 or 

constraint network analysis (CNA).28 We eliminate this drawback by specifying admissible 

constraint relaxation on the entire network, such that weaker areas are automatically 

perturbed more. Our procedure consistently led to higher correlations with MD and 

crystallographic B factors. However, over-relaxation of constraints led to exceedingly 

numerous and severe steric clashes, suggesting a relatively sparse hydrogen bond network 

(≈0.7 h-bond/residue) guided protein motion on a hard-sphere potential “energy” landscape. 

The conserved nature of the associated hydrogen bond network spectral decomposition, 

compared to high fluctuations in the number of floppy modes without constraint relaxation, 

underlines the robustness of our approach.

Our method can provide quick insight into how rigid clusters, collective motions, and 

stiffnesses shift as constraints are added, increasingly relaxed, or fully removed. While we 

found convincing agreement with experiment and simulation, important limitations remain. 

Imperfect correlations between the ADK crystal structure and kinematic flexibility analysis 

could also be related to factors like crystal packing or idiosyncratic artifacts introduced by 

flash-cooling. Anticorrelated RMSF between kinematic flexibility analysis and MD 

simulations on ADK near residue 190 (Figure 9D) could be related to disruption of a 

hydrogen bond in the simulations. This suggests that our method can be improved by 

dynamically removing h-bonds if their strain exceeds a threshold. Here, we considered 

constraint relaxation of hydrogen bonds only to provide a direct comparison to the large 

body of work in topological rigidity theory, ignoring other noncovalent interactions. Bond 

lengths and angles are fixed and only torsional DoF contribute to molecular motion. While 

hydrogen bonds are important determinants of protein structure and dynamics, hydrophobic 

effects, electrostatics, solvent, or protein–protein interactions also modulate structural 

dynamics. The effects of these interactions could be explored with our method. For example, 

the role of hydration layers on protein dynamics is complex and remains poorly understood.
84,85 Neutron diffraction can reveal the position and orientation of hydrogen atoms in waters. 

Adding water-mediated hydrogen bonds can help understand how protein conformational 

fluctuations on the surface are linked to the motions of water, and propagate into protein 
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cavities or internal motions.86 Our new, kinematic flexibility analysis is a versatile method, 

bridging topological rigidity and ENM. By way of a novel spectral decomposition of protein 

hydrogen bonding patterns, it provides explicit access to collective motions and free energy 

of modes, signifying that hydrogen bonds store intrinsic, fold-specific functional motions. 

These quantitative models and insights can help improve de novo protein design and folding, 

help to understand mechanobiology probed by AFM or single-molecule fluorescence 

resonance energy transfer (smFRET) at the molecular level or help interpret experimental 

data such as hydrogen–deuterium exchange.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Coarse-grained protein modeling via topological rigidity analysis (left) and elastic network 

models (ENMs, right). The pebble game represents proteins as constraint graphs (top left), 

with pebble DoF (small dots) and bar constraints (thin lines are single constraints, thick lines 

are rigid links with six constraints) connecting atomic vertices (spheres). It decomposes a 

protein into rigid clusters of atoms (lower left, individually colored), quantifying the number 

of internal “floppy modes” (circular arrow), without an explicit motion basis. By contrast, 

ENM obtains an explicit motion basis (arrows lower right) corresponding to eigenmodes of a 

spring–mass network (top right), with covalent (black) and noncovalent (blue) one-

dimensional spring restraints. Our kinematic flexibility approach (center) models proteins as 

kinematic spanning trees, with a root vertex (yellow), dihedral DoF (arrows between 

vertices), and noncovalent constraints (red dashed lines), for example, hydrogen bonds. It 

combines features from topological rigidity and ENM, providing explicit motion modes 

from a spectral decomposition of the constraint Jacobian matrix.
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Figure 2. 
Kinematic representation of a protein. (A) Directed, kinematic spanning tree of a protein 

fragment. Edges (arrows) represent rotatable bonds, and groups of atoms in the same color 

represent the rigid body vertices. Atoms (circles) that are connected via nonrotatable (single/

double) covalent bonds (thin/bold lines) are merged into a single rigid body vertex. Starting 

from the root vertex (large yellow star), each vertex is visited by a directed edge from its 

parent vertex (arrows to filled circles). Hydrogen bonds constrain two branches leaving from 

a common anchor (small yellow star) at their end effectors to form closed kinematic cycles. 

(B) Constraint parametrization. Hydrogen bond distance fH – fA and angles α and β are 

formulated as constraints, which permits a rotation ωh around the hydrogen bond axis. (C) 

Partial derivative ∂f/∂qk required for the constraint Jacobian matrix is the cross-product rk × 

(f – pk−1).
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Figure 3. 
Hierarchical constraint relaxation in an α-helix (A panels) and an antiparallel β-sheet (B 

panels). The two top panels plot the matrix P, with individual hydrogen bond (rows) 

perturbations associated with instantaneous motions along singular vectors (kinematic 

flexibility modes, columns), increasing from purple to yellow. Modes are ranked by 

collective constraint perturbation σ, increasing from left to right. Bottom panels depict 

snapshots from a finite step along selected, representative kinematic flexibility modes 

(column indices given). The motion amplitude is exaggerated (step size δ = 1) for 

visualization purposes. Color coding indicates increasing change in DoF, from blue to red. 

The original conformation is shown in green.
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Figure 4. 
Analysis of the hydrogen bond network spectral decomposition for human DJ-1 protein (A, 

PDB ID 1p5f) with d = 620 and a large, diverse data set with 183 high-resolution single-

chain proteins (B,C). (A) The singular values σ predict collective kinematic and energetic 

hydrogen bond perturbations associated with each motion mode. Modes (horizontal axis) are 

plotted corresponding to increasing σ. Geometry and energy changes are computed from 

small steps (step size δ = 10−5) along kinematic flexibility modes v. (B) The number of 

hydrogen bond constraints, remaining floppy modes, as well as the magnitude of the largest 

singular value vary fairly linearly (correlation coefficient rp) with the number of DoF d in 

kinematic cycles, which serves as indicator for protein size. (C) The ranking of collective 

changes in hydrogen bond energy by kinematic flexibility modes and the near log–linear 

motion regime are remarkably conserved among all proteins. Motion modes are limited to 

R, and indices are normalized by r to remove size-related differences in the diverse data set.
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Figure 5. 
Kinematic flexibility analysis with hydrogen bond constraints reveals fold-specific motions 

in proteins. (A) Spectrum of normalized singular values for 183 single-chain proteins, with 

striking, well-conserved peaks. The nullspace dimension (peak at lowest σ) highly varies 

with protein size. (B) Collectivity of motion as defined from Shannon entropy. Floppy 

modes with zero perturbation (lowest σ) show relatively small collectivity compared to 

modes at higher perturbations. Over a medium-perturbation range, collectivity increases 

with increasing singular values. (C) Fold-specific, average spectrum for classes of α-only, β-

only, α + β, and α/β proteins (stair representation only for better visibility). Peak locations 

are well conserved across folds, while peak heights are shifted to lower σ from α-only to β-

only. Floppy modes (lowest σ) vary rather with protein size than fold. (D) Average 

collectivity as in part B for fold-specific data sets. Again, floppy modes with zero 

perturbation show relatively small collectivity; they are indistinguishable across folds. 

Throughout the remaining spectrum, β-folds are generally more collective.
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Figure 6. 
Spectrum of normalized singular values for four designed hyperstable, constrained peptides, 

each consisting of 20 NMR structures. The spectrum is shifted to higher perturbation modes 

relative to the high-resolution data set.
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Figure 7. 
Dimensionless free energy of modes demonstrates entropy–enthalpy compensation encoded 

by the hydrogen bonding pattern. A 40% interval of motion modes indicates a near constant 

free-energy level for highly collective modes at acceptable enthalpic cost (dashed lines, inset 

enlarges the blackbox). Motions to the right correspond to unfolding, while motions to the 

left are more localized, with smaller entropic benefit.
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Figure 8. 
Eigenspectrum and collectivity for normal modes computed with iMOD. (A) 

Eigenfrequency spectra of the data set with 183 single-chain proteins. (B) Collectivity of 

eigenmodes. (C) Eigenfrequency spectra of four fold-specific data sets. (D) Fold-specific 

collectivity of eigenmodes.

Budday et al. Page 31

J Chem Inf Model. Author manuscript; available in PMC 2018 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Molecular motions of adenylate kinase (ADK). (A) ADK opens and closes the LID and 

NMP domains during its catalytic cycle. The conformational ensemble colored by RMSF 

from blue to red shows 100 substates from sampling ADK with EHB,cut = −2.0 kcal/mol and 

σcut = 10−2, starting from the open conformation (PDB ID 4ake64). (B) Normalized 

dimensions of sampling space dim V‒q
0 dim Vq

0  show significant dependence on EHB,cut, 

while differences vanish at σcut ≈ 10−2. (C) Hierarchies to tune protein flexibility by 

constraint removal (topological, EHB,cut) and network relaxation (geometric, σcut). (D, E) 

Correlations of KGS motions with RMSF (Å) from MD (D) and experimental B factors (Å2) 

reported in the PDB file (E) are consistently high for medium constraint relaxation σcut = 

10−2 and robust toward constraint input. The previous topological hierarchy without 

relaxation (σcut = 10−l0) highly depends on constraint input and only achieves good 

correlations for strong EHB,cut.
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