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Secrecy Throughput of ANECE Assisted
Transmission of Information in Finite Blocklength

Ishmam Zabir, Student Member, IEEE, Ananthram Swami, Fellow, IEEE, Yingbo Hua, Fellow, IEEE

Abstract—Anti-eavesdropping channel estimation (ANECE)
among two or more cooperative full-duplex radio devices allows
these devices to obtain their receive channel state information
(CSI) with respect to each other but at the same time prevents
eavesdropper (Eve) from obtaining any consistent estimate of
its receive CSI, which improves the secrecy of subsequent
transmission of information between the devices. This paper
presents an analysis of secrecy throughput of ANECE assisted
transmission of information between such single-antenna devices
against Eve with multiple antennas. The analysis is based on
finite blocklength coding and assumes that Eve applies a standard
approach for information detection. Easy-to-compute analytical
expressions of secrecy throughput in terms of various controllable
parameters are obtained. Numerical results are discussed.

Index Terms—Finite blocklength, physical layer security, se-
crecy throughput, full-duplex, ultra-reliable low-latency commu-
nications.

I. INTRODUCTION

Anti-eavesdropping channel estimation (ANECE) was pro-
posed in [1] to allow two or more cooperative full-duplex
radio devices to obtain consistent estimates of their receive
channel state information (CSI) but at the same time it disables
eavesdropper (Eve) from obtaining any consistent estimate of
its receive CSI. This property of ANECE is useful to maintain
a non-zero secrecy rate of the subsequent transmissions of in-
formation between these devices against Eve with any number
of antennas [2].

In this paper, we provide an analysis of an averaged secrecy
throughput (AST) of ANECE assisted transmission of infor-
mation from one single-antenna device to another against Eve
with multiple antennas. This analysis assumes that Eve applies
a standard method for information detection.

Furthermore, we consider a relatively short or often called
finite blocklength (FBL) transmission of information between
devices, which is important for applications such as Internet-
of-Things (IoT) [4]-[5]. Prior AST analyses of FBL trans-
missions are available in [6]-[8] where the CSI anywhere is
assumed to be known everywhere. In particular, Eve’s receive
CSI is assumed to be known to Eve. In the ANECE assisted
case, Eve no longer knows its receive CSI perfectly, which
makes the prior results inapplicable.
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However, we will apply some of the techniques in [9]-[10]
to the ANECE assisted case. We also assume that the forced
channel estimation error at Eve (due to ANECE) is only treated
by Eve as a source of additional noise at Eve. In other words,
Eve does not apply advanced methods such as blind detection
[2] to mitigate the effect of ANECE.

In section II, we provide details of system model and
briefly describe ANECE. Also derived in that section are the
effects of ANECE pilots, the SNRs at Bob and Eve, and
the basic expression for AST. In section III, we provide a
detailed analysis of AST in order to obtain easy-to-compute
expressions of AST. In section IV, we illustrate the effects of
various parameters on AST. Concluding remarks are provided
in section V.

II. SYSTEM MODEL

We consider N single-antenna cooperative full-duplex de-
vices/users subject to a covert/passive eavesdropper (Eve) with
NE antennas, at an unknown location. To combat eavesdrop-
ping, all users apply anti-eavesdropping channel estimation
(ANECE) [1] as follows. In phase 1, all users transmit ANECE
pilots simultaneously, where the pilot transmitted by user j
over n1 time slots is denoted by pj(k) with k = 1, · · · , n1,
and n1 ≥ N − 1. The pilots can be also represented by
pj = [pj(1), .., pj(n1)]T , ∀j and P = [p1, ..,pN ]T . For
ANECE, we need rank(P) = rank(P(i)) = N−1, ∀i, where
P(i) results from removing the ith row of P. The reduced-
rank condition of P and the full-rank condition of P(i) ∀i
are the required properties of ANECE pilots. An example of
such a pilot matrix is P = DQV where D is a diagonal
matrix for power control, Q is a N × (N − 1) submatrix of
the N × N discrete Fourier transform (DFT) matrix and V
is a (N − 1) × n1 matrix satisfying VVH = IN−1, e.g., see
[1], [3]. We will assume that each row of P has squared norm
equal to P1n1.

In phase 1, the n1 × 1 signal vector received by user i is

yi =

N∑
j 6=i

hi,jpj + ni = PT
(i)h(i) + ni, (1)

where hi,j is the complex channel gain from user j to user i,
h(i) is the vertical stack of hi,j for all j 6= i, and ni is the
background noise (including residual self-interference of the
full-duplex user). We assume that hi,j equals hj,i (reciprocal



channels), hi,j is CN (0, σ2
i,j), and ni is CN (0, I). The NE ×

n1 signal matrix received by Eve can be expressed as

YE =

N∑
i=1

hE,ip
T
i + NE = HEP + NE , (2)

where hE,i is the channel vector from user i to Eve, and HE

(Eve’s receive channel matrix or CSI) is the horizontal stack
of hE,i for all i.

As shown next, the ANECE pilots allow every user to have
a consistent estimate of their channel gains but do not allow
Eve to have a consistent estimate of Eve’s receive channel
matrix.

A. Effect of the ANECE Pilots

We will consider minimum-mean-squared-error (MMSE)
channel estimation at users and Eve. Let Kx,y = E [xyH ]
denote the covariance matrix between two zero-mean random
vectors x and y, and let Kx = Kx,x. Then the MMSE
estimate of the channel vector h(i) at user i is

ĥ(i) = Kh(i),yiK
−1
yi yi

= Σ2
(i)P

∗
(i)(In1

+ PT
(i)Σ

2
(i)P

∗
(i))
−1yi

= Σ(i)

(
IN−1 + Σ(i)P

∗
(i)P

T
(i)Σ(i)

)−1
Σ(i)P

∗
(i)yi, (3)

where Σ2
(i) = diag{σ2

i,1, · · · , σ2
i,i−1, σ

2
i,i+1, · · · , σ2

i,N}. The
(N − 1) × (N − 1) covariance matrix of the MMSE error
vector ∆h(i) = ĥ(i) − h(i) is

K∆h(i)
= Kh(i)

−Kh(i),yiK
−1
yi Kyi,h(i)

= Σ2
(i) −Σ2

(i)P
∗
(i)(In1

+ PT
(i)Σ

2
(i)P

∗
(i))
−1PT

(i)Σ
2
(i)

= Σ(i)

(
IN−1 + Σ(i)P

∗
(i)P

T
(i)Σ(i)

)−1
Σ(i). (4)

Let βi,l = (K∆h(i)
)l,l be the l-th diagonal element of K∆h(i)

,
which is the MMSE estimation error variance of the channel
between user i and a user j 6= i. In Appendix A, we show
that as n1P1 →∞, then βi,l → 0 for all i and l.

Assume that Eve also uses MMSE for channel estimation.
Let yE = vec(YE) and hE = vec(HE). Then (2) becomes

yE = (PT ⊗ INE )hE + nE . (5)

The MMSE estimate of hE (assuming P is also known to
Eve) is

ĥE = KhE,i,yEK−1
yEyE

= (Σ2
EP∗(In1

+ PTΣ2
EP∗)−1 ⊗ INE

)
yE , (6)

where Σ2
E = diag{σ2

E,1, · · · , σ2
E,N}. The covariance matrix

of ∆hE = ĥE − hE is

K∆hE = Σ2
E ⊗ INE −KhE ,yEK−1

yEKyE ,hE

= Σ2
E(INE −P∗(In1

+ PTΣ2
EP∗)−1PTΣ2

E)⊗ INE

= ΣE(IN + ΣEP∗PTΣE)−1ΣE ⊗ INE , (7)

where βE,i = (ΣE(IN + ΣEP∗PTΣE)−1ΣE)i,i is the
variance of each elements of ∆hE,i. It is shown in Appendix
A that as n1P1 → ∞, we have βE,i → ci > 0 where ci is
invariant to n1P1.

B. SNRs at Bob and Eve

In phase 1, ANECE is applied cooperatively by N users
as shown previously. We now consider phase 2 where we
assume an information transmission between a pair of users.
Assume that user i (Alice) transmits the information symbols
xi(k), k = 1, · · · , n2, to user j (Bob), with transmit power
P2. Then the received signal at Bob is

yj(k) = hj,ixi(k) +nj(k) = ĥj,ixi(k) + ∆hj,ixi(k) +nj(k).
(8)

The SNR of yj(k) is γb =
(σ2
i,j−βi,lj )P2X2,b

1+βi,ljP2X1,b
where X1,b =

|∆hj,i|2
βi,lj

and X2,b =
|ĥj,i|2

σ2
i,j−βi,lj

are independent exponentially
distributed random variables with unit means.

Similarly, in phase 2, Eve receives

yE,i(k) = ĥE,ixi(k) + ∆hE,ixi(k) + nE(k). (9)

Since Eve knows ĥE,i, we assume that Eve applies maxi-
mum ratio combining to achieve a maximum SNR equal to

γe =
‖ĥE,i‖2P2

1 + ‖ ĥHE,i

|ĥE,i|
∆hE,i‖2P2

=
(σ2
E,i − βE,i)P2X2,e

1 + βE,iP2X1,e
, (10)

where X1,e = ‖ ĥHE,i

|ĥE,i|
∆hE,i√
βE,i
‖2 is exponentially distributed

with unit mean and X2,e =
‖ĥE,i‖2
σ2
E,i−βE,i

follows the Chi-squared
distribution with 2NE degrees of freedom (DoF). We will also
assume that Eve applies a conventional method to detect the
information transmitted by Alice. In other words, Eve treats
ĥE,i as the true channel vector with respect to user i.

C. Achievable Secrecy Rate under FBL

For a finite-block-length (FBL) transmission with n2 <∞,
there are decoding errors at both Bob and Eve. The maximal
achievable secrecy rate R(n2, ε, δ) with target decoding error
probability ε at Bob and information leakage δ to Eve can be
approximated (according to [11]-[12]) as follows

R(n2, ε, δ) = log

(
1 + γb
1 + γe

)
−
√
Vb
n2

Q−1(ε)

ln 2
−
√
Ve
n2

Q−1(δ)

ln 2
,

(11)
where Vb and Ve are the channel dispersions at Bob and Eve
respectively, which can be expressed by Vx = 1− (1 + γx)−2

with x ∈ {b, e}. It is typical to choose δ ∈ (0, 1/2). Let the
number of secret information bits transmitted by Alice in every
n2 time slots be nb. Then, the transmission rate R(n2, ε, δ) is
set to a constant transmission rate R∗ = nb

n2 (details of secrecy
coding are discussed in [11]). Therefore, the decoding error ε
at Bob is no longer constant and subject to random realizations
of γb and γe. Now (11) implies

ε = Q

(√
n2

Vb

(
ln(

1 + γb
1 + γe

)−
√
Ve
n2
Q−1(δ)− nb

n2
ln 2

))
,

(12)
where ε ∆

= ε(γb, γe) is now a function of γb and γe.



Similar to [10] and [13], we consider an averaged achievable
secrecy throughput (in bits per channel use) defined by

Ts
∆
= Eγb≥γe

[
nb
n2

(1− εγb,γe)
]

(13)

where we have excluded the contribution from γb < γe.
Treating γb and γe as independent random variables, it follows
that

Ts =
nb
n2

∫ ∞
y=0

(∫ ∞
x=y

(
1− ε(x, y)

)
fγb(x)dx

)
fγe(y)dy

=
nb
n2

∫ ∞
y=0

Φ(y)fγe(y)dy, (14)

where
Φ(y) =

∫ ∞
x=y

(
1− ε(x, y)

)
fγb(x)dx. (15)

The rest of the paper focuses on the computational simpli-
fication of Ts and the numerical investigation of the tradeoffs
among system parameters n1, n2, nb, N , NE on Ts.

III. AVERAGED SECRECY THROUGHPUT

To compute the averaged secrecy throughput Ts, we need
to compute (15) first where ε(x, y) makes the integral an
intractable task. As in [9]-[10], we will use the following
approximation of ε(x, y):

ε(x, y) ≈


1, x < x0 + 1

2k
1
2 + k(x− x0), x0 + 1

2k ≤ x ≤ x0 − 1
2k

0, x > x0 − 1
2k

(16)

where x0 is such that ε(x0, y) = 0.5, i.e., x0 =

exp
(√

Ve
n2
Q−1(δ) + nb

n2
ln 2
)

(1 + y) − 1, and k =
dε(x,y)
dx |x=x0 = −

√
n2

2πx0(x0+2) . This approximation holds well

if |k| is large. Assuming a large |k|, it follows from (16) and
(15) that

Φ(y) ≈
∫ ∞
x0+ 1

2k

(1− ε(x, y))fγb(x)dx

= 1− Fγb
(
x0 +

1

2k

)
−
∫ x0− 1

2k

x0+ 1
2k

(
1

2
+ k(x− x0)

)
× fγb(x)dx

= 1 + k

∫ x0− 1
2k

x0+ 1
2k

Fγb(x)dx, (17)

where Fγb(x) is the CDF of γb. Since |k| is large, we have∫ x0− 1
2k

x0+ 1
2k

Fγb(x)dx ≈ −1
k Fγb(x0) and hence

Φ(y) ≈ 1− Fγb(x0). (18)

where x0
∆
= x0(y) is a function of y.

From Appendix B, we have Fγb(x) = 1− aj
aj+x

e
−
bj
aj
x

where

aj =
σ2
j,i

βj,i
− 1 and bj = 1

βj,iP2
. Thus, (18) becomes

Φ(y) ≈ aj
aj + x0(y)

e
−
bj
aj
x0(y)

. (19)

From (14), for any γ1 > 0, we have

Ts =
nb
n2

∫ γ1

y=0

Φ(y)fγe(y)dy︸ ︷︷ ︸
T1

+
nb
n2

∫ ∞
y=γ1

Φ(y)fγe(y)dy︸ ︷︷ ︸
T2

.

(20)

To compute T1, we let g(y) = Φ(y)fγe(y). Then using the
Gaussian-Chebyshev quadrature method [14], it follows that

T1 ≈
nb
n2

γ1

2

M∑
n=1

( π
M
g
(γ1

2
(tn + 1)

)√
1− t2n

)
, (21)

where tn
∆
= cos( 2n−1

2M π) and the parameter M determines the
complexity and accuracy trade-off.

To compute T2, we simplify x0(y) by choosing γ1 suf-
ficiently large such that Ve = 1 − (1 + y)−2 ≈ 1 for
y ≥ γ1, which implies x0(y) ≈ α(1 + y) − 1 with constant
α = exp

(
Q−1(δ)√

n2
+ ln 2nbn2

)
. Then, it follows that

T2 ≈
nb
n2
e
−
bj
aj

(α−1)
∫ ∞
y=γ1

aje
−
bj
aj
αy

αy + α− 1 + aj
fγe(y)dy. (22)

To further simplify T2, we will consider two special cases:
Case 1 is for βE,iP2 � 1, and Case 2 is for βE,iP2 � 1. Case
1 applies when ANECE is not applied, and Case 2 applies
when ANECE is applied. In both cases, we will use γ =
αγ1 + α− 1 to simplify equations.

A. Case 1

In this case, βE,iP2 � 1 and Eve mainly suffers from
the channel background noise. Using bx = be → ∞ in

Appendix B, the PDF of γe is fγe(x) =
dFX2

( x

(σ2
E,i

−βE,i)P2
)

dx =

( beae )NE x
NE−1e

− be
ae
x

Γ(NE) where ae =
σ2
E,i

βE,i
− 1 and be = 1

βE,iP2
.

Then the integral in (22) can be expressed in terms of Γ
functions and, as shown in Appendix C, (22) becomes

T2 ≈ aj
nb
n2

(
be
αae

)NEebj+
be
αae

(α−1+aj)
NE−1∑
n=0

(γ + aj)
n

Γ(NE − n)

× (αγ1)NE−1−nΓ
(
− n, ( bj

aj
+

be
αae

)(γ + aj)
)
. (23)

B. Case 2

In this case, βE,iP2 � 1 and hence we can ignore the
channel background noise at Eve. Thus,

γe =
(σ2

E,i − βE,i)P2X2,e

1 + βE,iP2X1,e
≈ ae

X2,e

X1,e
, (24)



and hence fγe(x) = NEaex
NE−1

(ae+x)NE+1 (which also follows from
Appendix B). Then T2 in (22) becomes

T2 ≈
nb
n2

ajae
α

NE

∫ ∞
y=γ1

e
−
bj
aj

(αy+α−1)
yNE−1

(y +
α−1+aj

α )(ae + y)NE+1
dy

=
nb
n2

ajaee
−
bj
aj

(α−1)

α− 1 + aj
NE

[ ∫ ∞
y=γ1

e
−
bj
aj
αy
yNE−1

(ae + y)NE+1
dy

−
∫ ∞
y=γ1

e
−
bj
aj
αy
yNE

(y +
α−1+aj

α )(ae + y)NE+1
dy
]
, (25)

after applying the change of variable x = 1
y in (25), we get

T2 =
nb
n2

ajaee
−
bj
aj

(α−1)

α− 1 + aj
NE

[ ∫ ∞
y=γ1

e
−
bj
aj
αy
yNE−1

(ae + y)NE+1
dy︸ ︷︷ ︸

Ω(γ1)

−
∫ 1

γ1

x=0

e
−
bj
aj

α
x

(1 +
α−1+aj

α x)(1 + aex)NE+1︸ ︷︷ ︸
h(x)

dx
]

≈ nb
n2

ajaee
−
bj
aj

(α−1)

α− 1 + aj
NEΩ(γ1)− nb

n2

ajaee
−
bj
aj

(α−1)

α− 1 + aj

× NE
2γ1

M∑
n=1

(
π

M
h
( 1

2γ1
(tn + 1)

)√
1− t2n

)
, (26)

where we have applied the Gaussian-Chebyshev quadrature
method on the function denoted as h(x). Furthermore, Ω(γ1)
in (26) is shown in Appendix D to be

Ω(γ1) = e
−
bj
aj
αγ1

Γ(NE)

NE−1∑
n=0

1

Γ(NE − n)

γNE−1−n
1

(ae + γ1)NE−n

× U
(
n+ 1, n+ 1−NE ,

bj
aj
α(ae + γ1)

)
. (27)

IV. NUMERICAL RESULTS

In this section, we show numerical results of the averaged
secrecy throughput Ts of secret information transmission from
user 1 to user 2 among N ≥ 2 cooperative single-antenna full-
duplex users for which σi,j = 1 for all i and j 6= i. Unless
otherwise specified, we use P1 = P2 = 25dB, δ = 0.001,
NE = 4, σE = 1, n1 = 4, n2 = 300, and nb = 200. To
compute T1 and T2 in (20), we use γ1 = 10 and M = 16. To
verify our theoretical results (TR), we also conducted a 104-
run Monte Carlo (MC) simulation to compute the expectation
in (13).

In Fig. 1, we show Ts versus n2 for different NE , which
also compares the cases of “with ANECE” (under ideal full-
duplex) and “without ANECE”. The case of “with ANECE”
is based on N = 4 cooperative users in phase 1, but only
user 1 transmits secret information to user 2 in phase 2. For
the case of “without ANECE”, only user 1 sends a pilot in
phase 1 which allows both user 2 and Eve to obtain consistent
channel estimates. We see a significant gap of Ts between the

Fig. 1. Ts versus n2 for NE = 1, 2, 4 and N = 4.

cases of “with ANECE” and “without ANECE”. We also see
that as n2 increases, Ts increases initially and then decreases.

Fig. 2. Ts versus n2 for NE = 2 and N = 2, 4, 8.

In Fig. 2, we show Ts versus n2 for NE = 2 and
N = 2, 4, 8. We observe that with ANECE, the averaged
secrecy throughput Ts from user 1 to user 2 is maximum
when only users 1 and 2 (i.e., N = 2) perform ANECE
cooperatively. However, we should note that using N > 2
cooperative users for ANECE, multiple pairs of users can then
transmit secret information to each other without the need for
additional phases of channel training. The sum of pair-wise
secrecy throughput of all users can scale up linearly with the
number of pairs if Eve only applies conventional methods for
channel estimation and information detection.

Fig. 3. η vs n2 for n1 = 4, 8, 16, NE = 2 and N = 4.

In Fig. 3, we present the ratio η ∆
=

T (withANECE)
s

T
(withoutANECE)
s

versus
n2 for n1 = 4, 8, 16, NE = 2 and N = 4. We observe that η
is an increasing function of n1, and η > 1 for all n1 and n2.



Fig. 4. Ts vs n1 and n2 for the ANECE-assisted case.

In Fig. 4, we show Ts vs n1 and n2 for the ANECE-assisted
case with N = 4, P1 = P2 = 25dB and NE = 4. We see
that Ts is an increasing function of n1. Fig. 5 depicts the
ANECE-assisted Ts versus n2 and nb (the number of secret
bits transmitted per block). Here we also observe the quasi-
concave nature of Ts with respect to n2 for each fixed nb.
Thus, the theoretical results can be used to accurately find the
optimal n2. Furthermore, the optimal n2 increases with nb.

Fig. 5. Ts vs n2 and nb for N = 4 and NE = 4.

V. CONCLUSION

We have analysed AST of ANECE assisted transmission
between single-antenna full-duplex devices against an eaves-
dropper with multiple antennas. The resulting expressions for
AST are easy to compute and consistent with the results from
costly Monte Carlo simulations. This analysis reveals a large
gain of secrecy achievable from ANECE. Furthermore, this
analysis is done in the context of finite blocklength transmis-
sion, which is important for latency sensitive applications.

APPENDIX A
PROPERTIES OF βi,l AND βE,i

Let the eigenvalue decomposition (EVD) of
Σ(i)P

∗
(i)P

T
(i)Σ(i) with descending eigenvalues be∑N−1

k=1 λi,kui,ku
H
i,k = UiΛiU

H
i . It follows from (4)

that

K∆h(i)
= Σ(i)Ui(I + Λi)

−1UH
i Σ(i) =

N−1∑
k=1

vi,kv
H
i,k

1 + λi,k
, (28)

where vi,k = Σ(i)ui,k. From (28) we get

βi,l = (K∆h(i)
)l,l =

N−1∑
k=1

(vi,kv
H
i,k)l,l

1 + λi,k
. (29)

Clearly, βi,l → 0 if mink λi,k = λi,N−1 →∞.
As discussed in Section II, the ANECE pilot matrix P =

DQV, where Q is the N × (N − 1) submatrix of F, the
DFT matrix of size N , with entries exp(−j2πmn/N). Then,
to get a constant row norm of

√
P1n1, D must have constant

diagonal entries equal to d =
√
P1n1/(N − 1).

Let Qi denote the matrix obtained by dropping the i-th row
of Q. Then P(i) = dQiV. By the interlacing property of
eigenvalues, we know that N − 2 of the N − 1 eigenvalues
of QiQ

H
i are equal to N . It can be verified that the diagonal

elements of QiQ
H
i are all equal to N−1. Thus, from the trace

property it follows that the smallest eigenvalue of QiQ
H
i is

(N − 1)2 − N(N − 2) = 1. Thus the matrix P(i)P
H
(i) =

d2QiQ
H
i has full rank; its smallest eigenvalue is d2. Since

the matrix Σ(i) has full rank, it follows that λi,N−1 > 0, and
hence this eigenvalue goes to infinity as P1n1 →∞.

Similarly, let the EVD of the N ×N matrix ΣEP∗PTΣE

with descending eigenvalues be
∑N
k=1 λE,kuE,ku

H
E,k =

UEΛEUH
E where λE,N = 0. Let vE,k = ΣEuE,k. Then,

it follows from (7) that

K∆hE =

(
N−1∑
k=1

vE,kv
H
E,k

1 + λE,k
+ vE,NvHE,N

)
⊗ INE

≥ (vE,NvHE,N )⊗ INE , (30)

where the lower bound is achieved when n1P1 → ∞.
Consequently, βE,i = (

∑N−1
j=1

vE,jv
H
E,j

1+λE,j
+ vE,NvHE,N )i,i ≥

(vE,NvHE,N )i,i
∆
= ci, which is positive.

APPENDIX B
CDFS AND PDFS OF γe AND γb

SNRs γe and γb, defined in Sec. II-B, can be written as

γx =
axX2

bx +X1
, (31)

where X1 and X2 are independent, X1 is exponentially
distributed with unit mean, and X2 is Chi-square distributed
with DoF equal to 2Nx. Then the CDF of γx is

Fγx(z) = P
[
X1 >

axX2

z
− bx

]
= 1− P

[
X1 <

axX2

z
− bx

]
= 1−

∫ ∞
x= bx

ax
z

(
1− e−( axz x−bx)

)
fX2

(x)dx

= FX2
(
bx
ax
z) +

ebx

Γ(Nx)

∫ ∞
x= bx

ax
z

e−x( axz +1)xNx−1dx

= FX2
(
bx
ax
z) +

ebx
∫∞
y= bx

ax
z+bx

e−yyNx−1dy

(axz + 1)NxΓ(Nx)

= FX2
(
bx
ax
z) +

ebx
(
1− FX2

( bxax z + bx)
)

(axz + 1)Nx
, (32)



where FX2
( bxax z) = 1− Γ(Nx,

bx
ax
z)

Γ(Nx) , and the second term in the
last expression of (32) is zero if bx → ∞. Then the PDF of
γx is

fγx(z) = bx
ax
fX2

( bxax z) + ebx

Γ(Nx)

[
0− bx

ax
e−( bxax z)(

ax
z +1)

×( bxax z)
Nx−1 + ax

z2

∫∞
x= bx

ax
z
e−x( axz +1)xNxdx

]
= axe

bx

Γ(Nx)
zNx−1

(z+ax)Nx+1 Γ(Nx + 1, bxax z + bx). (33)

For γe, Nx = NE , ax = ae =
σ2
E,i

βE,i
−1 and bx = be = 1

βE,iP2
.

For γb, Nx = 1, ax = aj =
σ2
j,i

βj,i
− 1 and bx = bj = 1

βj,iP2
.

APPENDIX C
PROOF OF (23)

T2 = aj
nb
n2

( beae )NEe
−
bj
aj

(α−1)

Γ(NE)

∫ ∞
y=γ1

e
−
bj
aj
αy− beae yyNE−1

αy + α− 1 + aj
dy

(a)
= aj

nb
n2

( be
αae

)NEe
−
bj
aj
γ− beae γ1

Γ(NE)

×
∫ ∞
z=0

(αγ1 + z)NE−1

z + γ + aj
e
−(

bj
aj

+ be
αae

)z
dz

= aj
nb
n2

( be
αae

)NEe
−
bj
aj
γ− beae γ1

Γ(NE)

NE−1∑
n=0

(
NE − 1

n

)
× (αγ1)NE−1−n

∫ ∞
z=0

zn

z + γ + aj
e
−(

bj
aj

+ be
αae

)z
dz

(b)
= aj

nb
n2

( be
αae

)NEe
−
bj
aj
γ− beae γ1

Γ(NE)

NE−1∑
n=0

(
NE − 1

n

)
× (αγ1)NE−1−n(γ + aj)

ne
(
bj
aj

+ be
αae

)(γ+aj)

× Γ(n+ 1)Γ
(
− n, ( bj

aj
+

be
αae

)(γ + aj)
)

= aj
nb
n2

(
be
αae

)NEebj+
be
αae

(α−1+aj)
NE−1∑
n=0

(γ + aj)
n

Γ(NE − n)

× (αγ1)NE−1−nΓ
(
− n, ( bj

aj
+

be
αae

)(γ + aj)
)
, (34)

where step
(a)
= follows from the variable change z = α(y−γ1),

and step
(b)
= follows from the equation (3.383.10) in [15].

APPENDIX D
PROOF OF (27)

Ω(γ1) =

∫ ∞
y=γ1

e
−
bj
aj
αy
yNE−1

(ae + y)NE+1
dy

(a)
=

∫ ∞
x=0

e
−
bj
aj
α(γ1+x)

(γ1 + x)NE−1

(ae + γ1 + x)NE+1
dx

=
γNE−1

1 e
−
bj
aj
αγ1

(ae + γ1)NE+1

∫ ∞
x=0

e
−
bj
aj
αx

(1 + x
γ1

)NE−1

(1 + x
ae+γ1

)NE+1
dx

(b)
=
γNE−1

1 e
−
bj
aj
αγ1

(ae + γ1)NE

NE−1∑
n=0

(
NE − 1

n

)
(ae + γ1)n

γn1

×
∫ ∞
z=0

e
−
bj
aj
α(ae+γ1)z

zn

(1 + z)NE+1
dz, (35)

where steps
(a)
= and

(b)
= follow from the changes of variables

x = y − γ1 and z = x
ae+γ1

respectively. After applying∫∞
z=0

ta−1e−zt

(1+t)a+1−b dt = Γ(a)U(a, b, z) from [15] in (35), we get

Ω(γ1) = e
−
bj
aj
αγ1

Γ(NE)

NE−1∑
n=0

1

Γ(NE − n)

γNE−1−n
1

(ae + γ1)NE−n

× U(n+ 1, n+ 1−NE ,
bj
aj
α(ae + γ1)). (36)
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