
Lawrence Berkeley National Laboratory
Recent Work

Title
LOW-FREQUENCY SPATIAL RESPONSE OF A COLLISIONAL ELECTRON PLASMA

Permalink
https://escholarship.org/uc/item/3cn406jp

Authors
Fried, Burton D.
Kaufman, Allan N.
Sachs, David L.

Publication Date
1965-08-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cn406jp
https://escholarship.org
http://www.cdlib.org/


UCRL-16374 

University of California 

Ernest 0. 
Radiation 

Lawrence 
laboratory 

LOW-FREQUENCY SPATIAL RESPONSE OF A COLLISIONAL 
ELECTRON PLASMA 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy. call 

Tech. Info. Division, Ext. 5545 

Berkeley, California 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



of Fluids 
..... , -· 

.. "\ 
t 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

AEC Contract No. W -7 405-eng-48 

UCRL-16374 

l
'. LOW-FREQUENCY SPATIAL RESPONSE 

OF A COLLISIONAL ELECTRON PLASMA 
\ 

Burton D. Fried, Allan N. Kaufman, and David L. Sachs 

August 20, 1965 

-.' 

; . 



i 

t 

• 

'i' 

UCRL-16374 

* LOW-FREQUENCY SPATIAL RESPOUSE OF A COLLISIONAL ELECTRON PLASMA 

Burton D. Fried 

Physics Department, University of California 
Los Angeles, California 

Allan N. Kaufman 

Physics Department and Lawrence Radiation Laboratory 
University of California, Berkeley, ~alifornia 

a.nd 

David L. Sachs 

Defense Research Corporation, Santa Barbara, California 

August 20, 1965 

ABSTRACT 

A study is ma.de of the linear spatial response of an electron 

· plasma to a localized one-dimensional electric field, whose frequency w 

is low compared with the electron-collision frequency v • For a fully 

ionized plasma, both electron-electron and electron-ion-collisions are 

included·· in the calculations, the ions being treated as fixed scatterers. 

It is shown that the neglect of ion dynamics is justified for a suitable 

choice of parameters. 

decays exponentially, 

( )-1/2 J a wv , where a 

3/2 proportional to w 

In the hydrodynamic regime, the response function 

with decay length equal to a diffusion length 

is electron thermal speed, and its amplitude is 

In the kinetic regime, the amplitude is proportional 

to w ' and the decay is not exponential, with characteristic distance 

being the mean,free path a/v • For a weakly ionized gas, only electron

neutral'Co!l..lisions are included; in the hydrodyneJ!l.iC region 0 the dependence 

of ampli'tude ana decay length on w is the same as for the fully ionized 

gas, but the d~cay is no longer exponential. 
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I. INTRODUCTION 

The linear response of a thermal electron plasma vith zero magnetic 
•' . . \ ' ' . l 

field was tirst studied by Landau, with regard. to both initial conditions 

and boundary conditions, under the assumption that .collisions are negligible-. 

In the present 'paper, ve consider the boundary-value problem tor the case 

in vhich collisions are important. 

Interest in this problem vas stimulated by the·experiments of 

Wong, D'Angelo, and Motley,2 vho subjected the.quiescent cesium plasma ' 

. of a Q-machine3 to a longitudinal field (of fixed frequency w ) produced 

by a plane grid, and observed the plasma response as a function of 
. . 4 

distance from the grid. Gould carried out a theoretical analysis of 

the linear response in the collisionless approximation, replacing the 

single grid. by a pair of closely spaced grids. He found that, tor 

I! 
II 
,' 
I 

'. 

w << wi (the ion plasma frequency), the· response decayed spatially with 

three characteristic distances: (a) . in the distance ··AD (the Debye . · 

length), De?ye shie~ding occurred; (b) in the distance ai/w (ai E ion .. 

thermal speed), ion Landau damping occurred; (c) in the distance a /w e 

(ae ~ electron thermal speed), electron Landau damping occurred. The 

experiments indi'cated good agreement Vith 'loheory inthe region (b), 
I 

the regions .(a) and (c) being too short and somewhat too long tor the 

experimental. situation. 

The _experimental conditions of Wong et al. were such that the 

electron-collisi~n frequency .v e greatly exceeded .-:w • Clearly then, <r 

a study of the electron response ·must take electron collisions into 

account. In this paper we investigate the linear electron response, . 
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treating the ions as fixed scatterers, and including both electron~ion 

and electron-electron collisions.· (In Sec. VI we show that the neglect 

of ion dynamics is Justifiable under. appropriate conditions.) We shall 

in particular be interested in the low-frequency domain w << v. • e 

Section II is devoted to a general formulation of' the problem. 

The response fUnction G(z,w) , defined by Eq. (2;.2}, is expressed in 

terms of' the dielectric. function K(k,w) in Eq. (2.5)~ The behavior 

ot G as a function of' z can thus be discussed in terms of the 

-l singularities of. the analytic continuation of K into the complex 

k-plane. Considering always5 that w << v , we may divide the k-space . 

· into the three regions: · (a) .lkl IV IC :: >.;1 , the Debye region; (b) 

lkl- ).-l :: V/a << IC t the kinetic regime; and (c) lkl « V/a t. the v 

hydrodynamic regime. 

There is no need to study the Debye region, since every plasma 

. I 

. model, whether collisionless or collision-dominated~ yields a zero of' K 

at k • ~ iiC, and thus a contribution to G of exp (-Klzl) • We 

·,: . • therefore always limit our discussion to lkl « IC, thereby allowing . 

some algebraic simplifications. 

The hydrodynamic regime allows a complete explicit solution, based 
' . . . 6 
·on the equations of two-fluid hydrodynamics. This~solution is carried 

out in Sec. III, the results being given in Eqs. (3.16) and (3.15). The · 

:amplitude of the 'response is proportional to w3/ 2 , and the decay distance 

\ 

is a diffusion length A..., a/(wv )112 ·• · ·· 

The kinetic regime is:discussed in Sec. IV. Here only a formal 

solution, Eq. (4.13), is possible without extensive numerical work. The 

•. 

' •, 

"· 

• ... 

.. 

·\ 

\· 



• • 

~ .· 

'• 

-3-

amplitude of the response is proportional to w • and the decay distance . 

is the mean free path . >.. = a/v • The use of the Krook model·, however' 
.. . ' . 'V 

allows an explicit solution. in terms of a quadrature, from which the 

asymptotic behavior for large and small z ,;. in the range is 

obtained [Eqs. {4•20 a,b)] • 

Section V is devoted to the Lorentz model, appropriate to a 

weakly ionized gas, in the hydrodynamic regime. The amplitude and decay 

length are the same as in Sec. III, but the decay is nonexponential. 

The asymptotic behavior is again found, this time in·terms of the velocity 
I 

dependence of the transport cross section. 

II. GENERAL CONSIDERATIONS 

We consider a uniform electron gas in thermal equilibrium, 

il neutralized by fixed positive ions. It is perturbed by an· external 

electric field E0{z,w) ; this field has fixed ·frequency w • has a 

component·only in the z-direction, and varies with z only. Such a 

field is produced by a set of ·plane grids; we assume that they intercept 
I 

. a negligible fraction of the electrons crossing the~, so that their 

only effect is electrical. We.also assume.that.the field E 
0 

extends. 

over only a finite part 6z of the (theoretically infinite in extent) 

plasma, so that its spatial Fourier transform exists: 

00 

) ' ., 
( ) J -ikz ( ) E0 k,w. =. dz e E0. z,w • (2.1) -
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The plasma-response function is defined by the linear relation 

~{z,w~ = J dz' G(z - z'., w) E0(z', ~) ' 
. (2.2) 

where E : E
0 

+ Ee is the total Vlasov field; E is that due to the e 

perturbed electron distribution, and is determined by 

ik E (k,w) = 4wq ~n(k,w) . e t (2•3) 

where ~n .is the perturbed .electron density, and q : -e is the electron 

charge~ 

The object of this paper is the study of the response function 

G{z,w) • By Fourier transforming Eq. {2.2), we ~ee that 

G(k,w) E(k,w} 
= ~0 (k,w) ' 

(2.4) 

where K(k,w) is the (longit"!ldinal) dielectric function. The response 

function is thus given by 

+w 

d( z,w) = J * elkz[K(k 1 1&)) ]-
1 

_oo 

• (2.5) 

Since the unperturbed syst·em is ·isotropic 1 · K is even in k 1 and G 

is even in z ~ We may ~hus limit our attention to z·> 0 • 
~: 

It is eonvenient to introduce the susceptibility x(k,.w) 

L 
x(k,w) - K(k,,.~) - l = -Ee(k,w)/E{k,w) = -4wq6n(k 1 w)/ikE(k,w) • (2.6) ~ 

J 
' 

• 

.. 
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In the kinetic description, we use the electron phase-space density 

,f(r, v; t), and its perturbed part 6f ... ,... 

f(_;;,. ,!; t) = nog(v) + cSf{z, ;!; t) ' (2.7) 

where n0 is the -unperturbed density, and 

(2.8) 

is .the normalized three-dimensional Maxwell distribution. For 6f , we 

introduce the dimensionless function 

where \.1 : v /v , the unperturbed temperature is z 
:. 

2 
ma · 2 • 

• (2.9) 

(2.10) 

and ~ is the total potential (E - -ik~) • Equation (2.6) then becomes 

where 

2'2!3 . x(k,w) = -(K /k) d vg~v)$(v,_l.l; k, w) , 

2 
IC 

is the inverse·square Debye length. 
d-~~ -
).' . 

The· kinetic equation satisfied by f · is 

(2.11) 
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[L+·v · 
a +s a ] f(z, t)" -c (2.12) rz E- v• = ' at z a:vz 

..,., m 

where -c represents the rate of. change of f due to electron-ion and 

electron-electron collisions. For frequencies II) much less than the 

plasma frequency w , and for k << K , the Landau form of the Fokker-Planck e . . . . . . 

equation may be used, .With an accuracy of order . (.in A)-l , i.e., about · 

10%. We linearize Eq. (2.12) about absolute equilibrium, Fourier.transform 

it in space and time, and use the substitutions introduced above. We· 

obtain as the equation for ljl(v, u; k, w) : 

[-i(w - kvu) + v~]ljl = -ikvu • (2.13) 

where v~ is the linear integro-differential collision operator obtained 

from the linearization of C • The factor v. is an arbitrarily defined 

mean collision frequency; therefore ~ is dimensionless • 

The -solution of Eq. (2.13) is to'be substituted·into Eq. (2.11) 
,.,,, 

for X • We now shov that the solution· is ~ique, for real· w , k o 

If it were not, the corresponding homogeneous equation 

i{w - kVlJ)ljl = v ~ljl 

~ 
would have a nonzero solution. Let us multiply both sides of (2.14) by 

' ., 
* g(v}ljl (v) .., and' integrate over all v : 

~ 

i J d\ ~h)(., - k:"' >I ;.(~)[2 = u J d3vg(v );,* (!,li;.( '!) 
. , • 

. ' 

'·· 

-.. 

• 

.. 
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We use the fact7 that ~is real and self-adjoint with respect to the 

weight function g • Hence the right side of {2.15) is real, but the 

left side is purely imaginary. Thus the only solution of (2.14) is 

identically zero, .and {2.13) has a unique solution. 

III. HYDRODYNAMIC DESCRIPTION 

For small k{k « v/a) and ·small. w {w « v) , the hydrodynamic· 

·approximation is ·appropriate. The complete set of two-fluid hydrodynamic 
. I 

6 equations has been derived by one of-us, by the generalization of the 

Chapman-Enskog method to Unequal densitites, temperatures, and flow 

velocities for the two fluids, electrons and ions. In these equations, 

we take the limit · me/mi ~ 0 , thereby neglecting the ion dynamics, the 

justification for which is deferred to Sec. VI. We then have a set of 

equations for the electron fluid vith fixed ions, and the electron · 

subscript is dropped. The equations are linearized about absolute thermal 

equilibrium, ·and are listed below: 

(1) the equation of continuity: 

iwon(k,w) = 

where u is the electron flow velocity; 

(2) . the momentum equat~on: 

·~;,·. 

-iwmn0u(k,w), ·~ n0qE(k,w) 
. i .l .\, . 

1/ t 

I (3.1) 

(3.2) 
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where ~P is the perturbed pressure, n is the electron viscosity, and 

P is the rate and density of momentum transfer from the ions to the 

electrons in.collisions; 

(3) the energy equation: 

3 . 
-iw 2 n0~0(k,w) = -p0iku(k,w) - ikQ(k,w) 

' 

where ~0 is the pertur.bed temperature, :Po = noeo is the unperturbed 

pressure, and Q is the heat flov in the electron frame; 

( 4) .the perturbed equation of state: 

I 

~p(.k,w) = no~0(k,w) + 0oon(k,w) . 
I 

(5) the generalized Ohm's 1av: 

t 

where v is the effective momentumrtransport collision frequency, 

calculated by Spitzer and Harm8 to be 

v = 4 ( 'IT ) 1/2 4 1/2 - 3/2 
- - n e ( tn A )m- ' e ' 
3 2 0 ' 0 • 

! • • 

(3.4) 

(3;5) 

(3.6) 

8 a."ld c1 is the numerical thermoelectric coefficient,:calculated to eq':lal 

0. 7 to 10% ac&tlracy; · . 
' 

·~ . 

(6) the gbheralized Fouriers Law : 
~ 

.. 

• 

~ )~~ 
----~-~<;~: ..... ,.. 
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Q(lt,w) 
.. 00 

= --mv ' 
{3.;7) 

. where c2 is the numerical thermal. conductivity, equa18 to 4.0 (to 10%), 

and c1 is the same as in (3.5), by Onsager's relation; and 

(7) an estimate for t~e viscosity: 

·• (3-.8) 

From the inequality w « v and Eq. (3;;5), we ~ee that the 

inertial term of.Eq. (3.2) may be dropped; likewise from k << v/a and 

(3•8) ,·we may drop the vi;cous term.from (3~2). ·The remaining terms are 

all comparable in our k,w range. 

The solution of the set of equations is most conveniently expressed 

in terms of the generalized conductivity: 

a(k,w) -
noq u(k,w) 

.E(k,oo) 

which is related to the susceptibility by 

• 

x(k,w) = (4w/-iw)a(k,w) ' • 

The solution is straightforwardly found to be 

= ; 2 2(' ,-1 3 [ 2 2( ,-1]2 'it - c 4 k a 3iwv + 2 c 3 k a 31wv . 

(3;9) 

( 3·.10) 

• (3•11) . 

... ~---------·' ·--~-
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where 
'· 

.4 2 -1 
- 11'(1) "V e {3.12) 

. is the de conductivity, being the iimit9 of o(k,w) as k2~2{wv)-l-+ 0 ; 

and 

• .. 
{Spitzer and Harm's values yield c

3 
= 3.5 , c4 = 7.9.). 

The response function :G{z,w) is 

G{z,w) • (3.13) 

Since o(k,w) is a. rational fUnction of k , the only singularities ·or 

the integrand a.re the roots of the equation · 

. 
t 

but since w << v « a0 , the roots a.re simply the zeroes or.· o{k,w) , 

namely 

.. 

k . - !. {3iwv )i/2{c3~2)-l/2 
. + • 

Calculating the. residue·. of the integrand,· we finally. obtain 
'·,T 

' 1 

(3.14) 

(3.15) 

• 
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G(z,w) = 

.. -ll-

. \ '' ' · ·wv 
-:-2 
W., 

e 

k+ exp :t.l< I z I . • (3.16) 

We note that the existence of a singularity in the k-plane, or 

of a zero of o(k,w) , ~equires c3 to be nonzero. Since c3 represents 

the thermal conductivity and.the thermoeiectric effect, it is evident that 

a crude model_based on the standard Ohm's law (c1 = 0) and the adiabatic· 

' equation of state {Q = 0) leads to no hydrodynamic response. 

The response decays as a pure (complex) exponentfal in the . 

hydrodynamic-domain. The decay length is 

t 

which is characteristic of diffusion phenomena. The amplitude of the 

response is proportional to ·J/2 . 
w .• 

IV •. KINETIC DESCRIPTION 

,. 
For · k rv v/a , we must use the. full kinetic equation (2.13) • 

·Since we are interested in w << v, we expand the solution in powers 

of 'w/v : 
·, 
~~ . 

~{v, tJ; k, lib • lji(O)(v, tJ; k) + (w/v)ljl(l)(v, 'tJ; k} + O(w/v)2 
• 

Equation (2.13), to zero order in w}.J , is 

\ ' 

(3.17) 

(4.1) 

~ . ' 
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.. 

Since the operation o:t' ~ on a constant yields.zero 1 representing 

conservation of particles, a solution of (4.2) is 

. 
' 

and by the uniqueness theorem proved at the end of Sec. II,_ it is the 

only solution. From Eq. (2.11), we find the static susceptibility 

I 

which is well known. 

The first-order equation is 

• 

We introduce dimensionless variables 

v' - v/a 
' 

k' ka/v • 

and rewrite (4.S1 as 

.. ·(-k'v'p+.ie)IJI(l){v',\.l;k') = 1·. 
f· 

i 

{4.2) 

{4.3) 

{4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

'· . 
From2·i'tis solution, which must be :t'ound numerically for all k' 1 

·! ~ 

we form 

.. 
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w ( k' ) - J d 3v g ( v) $ ( 
1

) ( v' • l1; k' ) .. (4.9) 

The susceptibility is then, to first order, 

• (4,;10) 

. Since k' is of order unity, $ will be of order unity, and x has no 

zeroes on the real k-axis. Further, since K >~ k , ve have x >> l , 

so that 

+«» 

G{z,w) a~- ~ eikz [x(k,w)]-1 
_ ... 

-2 d
2 

a c..IC -
2 .dz 

+«» 

j * eikz [l + (w/v)w(k' )l:, -
to first order in w/v • The first term of the integrand yields a 

6-function, which must be dropped, since ve are in the kinetic domain 

(4ill) 

• (A more careful·· treatment yields De bye shielding for · z « '-v • ) . · 

We thus obtain 

+a> 

G(z,w) w 
= --v J * eikz. ;(k') ; (4~12) -

in terms of t,h~,dimensionless distance z' - z/>.v , this is 

. "'·~ ' 
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IJ)•l .... d2 

= - 2 2 
28.1Jl dz' 

+oo 

1 • 
'dk' 2rr" ;(k') exp (ik'z') . (4.13) 

e -ao 

The form. (4.13) indicates that the amplitude of the response function is 

proportional to IJl , and its shape is a function of z' , independent 

of co • We have not undertaken the extensive numerical work necessary to 

evaluate this function. 

A more explicit expression for G in the kinetic regime may be 

obtained by using a model for the collision operator ~ ~ The Krook 

10 model conserves particles and energy, and provides for momentum transfer: 

• 
(4.14) 

t 

There is now no need to assume IJl << v; an explicit solution of E~. (2ol3) 

is found, yielding the susceptib~lity 

' 
(4~15)' 

where 

(IJl +·iv)/ka 
' 

(4.16) 

y - iv/ka 
' 

(4,17) 

~ ! . ~ 

;::;\ 
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2 2 . 3 . 2 l J 
T - {y(Z _-- ' ) + [~- yt(l; - ~ ) Z} 

' 
(4.18) 

and. 

Z - Z(r;) f
. +eo -x2 

dx ·_e.___ 
X - l; 

(4.19) 
_w 

is the plasma dispersion function. 11 In the hydrodynamic domain 

. w « v and k .. « ·v/a , the susceptibility reduces to the same form (3.10)

(3.12) as in the exact treatment of Sec. III, with values c
3 

= 2.5 and 

c4 = 5 • 

In the kinetic regime k tV vI a and w « v 11 we· expand ( 4 o 15) 

il • to first order in · -w/v , and obtain the form (4a3) • with $(k') a 
I 

,... lengthy analytic expression involving Z( y) • The function $ therefore · 

has a branch cut along the imaginary k' -axis. .·The contour of ·integration 

.can be moved up to this cut, the integral then taking the form (for z > 0) 

00> J dk"F(k") exp (-k"z') 
0 

• 

The function F is too complicated for analytic quadrature. Rather 

than carrying o~t the numerical quadrature for this model, we cont~nt 
' ~ . 

ourselves wit~ evaluating the asymptotic forms for large and small z' 
.~~ 

tl 
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8 =--
- 2 

iwv 
~ 
8.111 

e 

(f) 5/3 exp [-3 (f) 2/3] f:or 

2 g_ iwv
2 

(z' )-2 = .·ror 
lia.w 

.. 
e 

z' >> 1 .• (4.20a) 

.(4.20b) 

[The inequalities in (4.20) .must still satisf'y (v/w ) << z' ·« (v/w)1/ 2 ,] 
e 

V. LORENTZ MODEL 

FOr a weakly ionized plasma, the Lorentz model is appropriate, 

wherein we neglect electron-electron collisions and treat only the 

collisions of electrons. with the neutral atoms. We assume that the. 

·temperature is so low that the collisions are elastic, and we ignore the 

:recoil of the neutrals. Thus the neutrals are considered as fixed 

scatterers, with a differential scattering cross section .; a ( v 1 e) • 

We shall content ourselves wit"h studying ·the hydrodynamic limit 1 

i.e., w << v and k << v/a • However, the equations of Sec. III do not 

apply here,since in the Lorentz model there is no· relaxation of speed 

toward a local Maxwellian, the speed of an electron being unaltered in 

a collision. The.electron gas thus behaves not like a single fluid, but 

somewhat like a;1tsuperposition of nearly isotropic and momoenergetic fluids~ 
"\l 

We ret~n to the kinetic equations (2.12) and (2.13). The Lorentz 

model collisiah bperator C is already linear, and is given by 
;r,-
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• (5.1) 

where 0 : v/v is- the direction of. v , e is the scattering angle 
~· ~· ~ 

between 0 and O' , and ns is the density of scatterers. Since C - """ 
is linear t v e '.p is given by the same form as { 5 .1) t vi th f replaced by 

.P(v, lJ; k, w) 

It is now convenient to expand 1/J in Legendre polynomials: 

.P(v, lJ; k, w) - L . P1 (lJ).PR.(v; k, w) .1 

R. 

Using the·tegendre addition ~heorem, we then obtain 

where 

ve.p =I v.t(v)PR.(p).p.t(v; k,w) 
R. 

e 

We note that v0 E 0 , v1(v) > 0 for . R. > 0 , .and. that .. v1 (v) is the 

conventional momentum-tr:anspo~ collision frequency. 

(5.2) 

(5.3) 

(5.4) 

Using (5.3) in Eq. (2.13), and projecting the.latter onto P1 , we obtain 

t 

[-i"' + v1 /v),J>I1 + ikv [ 21 ~ ~ ~t-~ + 2~ :·; ~.i.+~] a -i!tv611 , 

(5.5) 

'-··--------------------------------------------------
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, ... 
In particular, for R. = 0 and 1 = 1 , we ha.ve 

w.Po a ! kVl/1 3 1 • (5.6a) 

•· 
(5.6b) 

For 1 > l , we can conclude from Eq. (5.5) that either ~1/.P1;.1 • O(kv/v1) « 1 

or . lP11lP1+1 = O(kv/v1) << l ~ The former choice leads to a convergent series 

· · for (5.3) , and from the uniqueness_ theorem of Sec~ II, ir t~en the only 

solution. . In ( 5. 6b) we thus drop .P 2 · , and also . w . , and then solve 

the set (5.6) for lPo : . 

= 
.. 2 2 

. k v 
2 2 _3iwv1 (v) !"' k v 

The susceptibility is thus 

= 

In contrast to ~he result of Sec. III~ x is _now.no.longer a rational 
. ~ 

(5.8) 

. . . I . 
function of k • but has a branch cut in the k-plane along the line rotated 

\ 
~ 

w/4 _from the r~al axis (see Fig. l) • For the evaluation of the response 

function 



.. .. 
,j ., 

,i 
[., 
i 

j 
I 

·~ ·"I 
1 
·,;. 

., 
~~ ,; 

i 
I; 

t 
I 
l 

·I 
i 

,f 

' 
I 

; \ ... 
~~ 
~~~ 

1 

~ 

..,. 

I 

'I 
I' I 

-19-
. ·, 

+a» 

J · ·dk ikz · · -l 
G(z,w) = . . 2W e [l + x(k,w)] . 

..00 
·' 

we may again neglect unity compared with ·x _, ·ana then deform the contour 

from c1 to . c2 (ror ·.z. > o· ; :recall· th·at G is even .in z). No 

poles are s~ept over in this deformation, as is easily shown by the 

Nyquist method. 

For the integration along c
2 

, we set 
2 2 . 

k ·= i ( p . !. i t) , and 

obtain 

ao 

G(z,w)- = -2 i1f/4 J tC e 
F(p) . . 

( 3i1f/4 ) exp e pz . , (5.10) 
. 0 

where 

• (5.ll) 

· and 
... 

P(p) - ... 

~ 'il . 

It is clear from these formulas that the characteristic decay 

di ·; . . ( -)-l/2 - . . . stance is of ~rd~r .·.a 3.wv , where v is a mean collision frequency; 
'I .. 

1 
i.e., the behlvior is a diffusion process and is characterized by a 
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.diffUsion length. .However, the decay is not exponential, as in Sec. !It, 

because here x has a branch cut rather than a pole. 

Explicit evaluation requires numerical quadrature, given v1 (v) 

for the neutral gas of interest. However, we can obtain the asymptotic (f 

behavior by assuming a power lawfor v1 (v) as v + 0 and .... We 

suppose that 

II (5.13a) 

. (5.13b} 

we note. that the classical interaction of an electron with a polarizable 

molecule yields s = 2 for all v 1 i.e., v1 independent of v • 

i, .The limit v + 0 corresponds to p + ... (for s
0

. > 0}, and thus 
'I 

to z + 0 [by which we mean, of course, a/v « z « a/(wv}1/ 2 ] ; likewise 

v +... corresponds to z + ... • The asymptotic evaluation of (5.13) is 

straightforward, and we find 

-2 -4 1 I ~e: A z ... . . 

• 

.. 
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where 

_Ao 
·-l/2 - a.(3wv

0
) . , .. 

'A - a.(3wv )-l/2 
• 00 CIO , 

VI. ION DYNAMICS 

For an electron-ion plasma., the total response is determined by 

the total susceptibility 

X = X + X e . i • (6.1) 

where Xe and xi .represent the contributions of electrons and ions 

respectively. For the applicability of our results, it is necessary to 

justify the neglect of the ion response, and therefore to show-that there 

exists a parameter range of k,w where 

... .., ' (6;2) > .. 

When, on the other hand, lxil ~ lxel , the responses are comparable; 

this is the range of the quasi-neutral ion-acoustic waves. They occur 

at k .rv w/a
1 

for w « wi , and for all values of the ratio · w/v1 • 

. 4 12 
They have been studied by Gould for vi = "e = 0 • by Kulsrud and Shen · 

' 13 ( for w >> v1 ~ 0 , and by Kivelson and Du Bois for w << vi • The 

subscript !,,_ :refers to purely ion quantities; in particular, is ,, 
the ion-ion collision frequencye and wi is the ion plasma frequency.) 

f?'::~-~ ''i 
~ ... 
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FIGURE CAPTION · 

Fig. l Branch cut and contours in the K-plane tor x · and G , in the 

Lorentz model. 

' . 

. . 
•• 



•,.1 . 
0 

1 
I 

c I c, 
\. 

MU B-7741 



This report was prepared as an account of Government 
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