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EPIGRAPH

If you do nothing unexpected, nothing unexpected happens.

And who wants a life like that?

—Sue Black
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ABSTRACT OF THE THESIS

Building and Breaking Burst-Parallel Systems

by

Elizabeth Izhikevich

Master of Science in Computer Science

University of California San Diego, 2018

Professor George M. Porter, Co-Chair
Professor Geoffrey M. Voelker, Co-Chair

This thesis explores, from both a systems and security perspective, a relatively new

serverless cloud computing model that runs on stateless container invocations. This thesis

demonstrates that the responsiveness, concurrency, and cost of the serverless cloud computing

model, on the one hand, enables making design decisions that were not possible before, yet on

the other hand, introduces security vulnerabilities that potentially increase the attack surface due

to a high probability of achieving co-residence.

This thesis extends a serverless video processing framework for the cloud, Sprocket,

that takes advantage of the container computing model in its design in order to provide runtime

xi



performance, resource efficiency, and a highly configurable developing environment. Sprocket

demonstrates all three qualities when running both a facial recognition and streaming video

pipeline. Sprocket can be configured to process a 30-minute video 1000-way parallel in under

a minute for less than $1. This thesis also presents an increased attack surface in the container

service that Sprocket runs on, AWS Lambda, and shows how to detect co-resident containers

on physical machines across victim and adversary accounts. Co-residency is achieved in three

unique Amazon data centers, with as many as 30 co-resident containers during one 30-second

“attack.” This thesis demonstrates that the scalability of the serverless cloud computing model, in

particular, inherently increases the probability of co-residency and that existing mitigations for

co-residency must be re-evaluated.
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Chapter 1

Introduction

Cloud computing has given programmers the ability to scale their software and workloads

in an arguably revolutionary way [2]. For instance, using the Amazon Web Service computing

platform, EC2 [4], users are able to run tens of powerful servers (virtual machines) concurrently

and scale based on the job at hand. Moreover, with the introduction of data-parallel frameworks

such as Hadoop and Spark, virtual machines can easily be orchestrated in large clusters to process

highly-intensive data processing jobs in an optimized and parallel way. Virtual machines indeed

provide a plethora of computing power at the fingertips of the everyday programmer. This

thesis, however, demonstrates that a relatively new serverless cloud computing model that runs

on stateless container invocations can provide computing power with increased responsiveness,

parallelism and cost efficiency for certain tasks.

1.1 A Containers Perspective

Though instantiating a virtual machine is at the immediate request of the user, this thesis

presents that it can take up to a minute per machine. A one-minute latency is arguably negligible

for running long-lived or non-time-sensitive computations, such as parsing a massive social-media

dataset using Spark. For time-sensitive computations, such as pulling data from a database in
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response to an event, however, the one-minute latency is no longer insignificant. Amazon’s

container service, AWS Lambda [21], invokes containers consistently in less than a second, thus

making it a better candidate for time-sensitive lightweight compute jobs [34]. Invoking one

lambda container takes on average 500ms whereas invoking one EC2 VM takes 40 seconds, as

will be shown in Section 2.7. Moreover, this thesis demonstrates that, to run an extremely parallel

job (e.g., using thousands of threads to apply a filter on frames of a video) performance on a

Spark cluster of 30 powerful VMs is worse and more expensive than running 1,000 lightweight

containers (AWS EC2’s and Lambda’s default concurrency limits, respectively).

Container services such as AWS Lambda undeniably have their drawback: short timeouts,

no root privileges, limited memory, just to name a few. However, this thesis shows that these

restrictions have not stood in the way of developing in this new environment and moreover, are a

good match for compelling system applications. It is for these reasons that this serverless cloud

computing model has seen a growth in popularity and every major cloud provider (Amazon,

Google, Microsoft, IBM) now offers their own version of the same serverless container model

[17].

In this thesis we demonstrate a system application, Sprocket, that is designed to run

on any serverless container service. Nonetheless, we use the AWS Lambda serverless cloud

computing framework as a case study to design and evaluate Sprocket. Introduced in 2014,

Amazon’s Lambda service provides a model where developers can run code without provisioning

or managing servers. Amazon implements Lambda through the use of containers: resource-

isolated processes. Lambda restricts the size of a container to be anywhere in the user specified

range of 128MB to 3GB. Lambda also restricts the runtime of code, within the container, to be

less than 5 minutes. Lambda bills a customer only for the running time of a container on the

granularity of 100ms. Developers can either manually invoke up to 1,000 concurrent “lambdas”/

(containers), or they can set up an event driven system where AWS Lambda containers are

automatically triggered and invoked.
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1.2 A Security Perspective

Cloud computing has also introduced the security concern of having multiple VM tenants

using the same physical host [28]. Research examines the ease and likelihood of an adversary

being able to place her VM on the same physical host as a victim and break the expected isolation.

Co-residency of VMs allows an adversary to share physical resources with a victim, thereby

leaking information about the victim to the adversary. For example, by measuring a victim’s cache

usage, an adversary can steal a victim’s password [28]. This thesis analyzes the co-residency

threat in container services, as opposed to VMs, and explores how the ephemeral and parallel

nature of stateless container invocations contributes to achieving co-residency.

1.3 Thesis Contributions

This thesis explores a serverless cloud computing model that runs on stateless container in-

vocations from two perspectives: designing a system and evaluating security. Concretely, Chapter

2 presents the design of a video processing framework that uses the intrinsic properties of video

and the light-weight nature of containers to deliver its performance goals of high parallelism, low

latency and low cost. Chapter 3 then focuses on the serverless container framework — including

the container scheduler, the CPU scheduler, and shared hardware resources — underlying the

video processing system to explore and achieve hardware co-residency among containers in the

cloud.

1.3.1 Developing and Optimizing Sprocket: A Serverless Video Processing

Framework for the Cloud

Frameworks that are optimized to efficiently process terabytes of numerical and text data

have received significant attention, such as MapReduce [9] and Spark [30]. However, frameworks
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optimized to process video data in particular have largely been absent due to the complexity

of video data (e.g., size, compression dependencies, etc.). In Chapter 2 I will first present an

efficient video processing framework, Sprocket, that takes advantage of the low latency and

high parallelism of container services to achieve its goals. I then describe an extended design

of Sprocket which implements a complex application involving external cloud services, such as

facial recognition, and discuss the challenges of using such external services. I then focus on the

implementation of a “streaming scheduler” that takes advantage of a container’s highly responsive

invocation and tear-down performance. Lastly, I evaluate the performance of the discussed

designs as well as compare the performance to a proposed alternative pipeline implemented in

Spark. I show that Sprocket can be configured to process a 30-minute video 1000-way parallel in

under a minute for less than $1.

1.3.2 Pushing Lambda to the Limit: Detecting and Evaluating Co-residency

in the Serverless Cloud

Due to the lightweight nature of containers, serverless cloud container services are more

restrictive in runtime environment, size, and permissions, yet consequently less restrictive in

scalability, performance, and cost. In Chapter 3 I use the AWS Lambda container service as a case

study to investigate what security vulnerabilities arise when customers are given the freedom to

scale their lightweight computing resources in the thousands in a fraction of a second and at a cost

of pennies. In particular I investigate vulnerabilities in the container scheduler, the CPU scheduler,

and shared hardware resources across containers and host operating systems. I demonstrate

vulnerabilities used to achieve co-residency of containers across adversarial and victim accounts

in three different AWS data centers, as well as analyze the general threat that cloud providers

face when allowing customers to scale their computing resources. Finally, I discuss existing

mitigations in the VM and container space against adversarial co-resident behavior, and argue

why they may no longer be appropriate and should be re-examined.
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1.4 Thesis Scope

This thesis explores a serverless cloud computing model that runs on stateless container

invocations. Specifically, we first explore the benefits of the model through the design of a

burst-parallel system, Sprocket. We subsequently explore the security risks of the burst-parallel

framework by analyzing the ease of achieving co-residency between adversarial and victim

accounts within AWS Lambda. Finally, this thesis discusses the opportunity for future work at

the intersection of the two projects. Specifically, we discuss going beyond the covert channels we

present and being able to identify an uncooperative victim lambda container, with the overall goal

of leaking the behavior of an entire burst-parallel system.

5



Chapter 2

Developing and Optimizing Sprocket: A

Serverless Video Processing Framework

for the Cloud

2.1 Introduction

Video is one of the most dominant types of data today: 70% of consumer internet traffic

is compressed video content [6]. Moreover, new forms of machine learning are enabling the

extraction of meaningful information from individual video frames, allowing algorithms to “peer

inside” the video content and thus provide crucial insight (e.g., recognizing a criminal in a

snapshot of security footage [15]). Video is also one of the most non-trivial formats of data,

since video encoding takes advantage of both spatial and temporal similarity for compression.

Video thus cannot easily be processed in the same way that numerical or text data can be, as there

are costly steps that need to be taken to decode and later encode the video back into its original

format. Known frameworks that are optimized to efficiently process terabytes of data, such as

MapReduce [9] and Spark [30] are unfortunately also not optimized to process video data, as will
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Table 2.1: Details of input videos used in the experiments.

Name Length FPS Content Resolution

Earth [10] 10 hours 25 Nature 1080p
Synthetic Earth Variable 25 Uniform 1 second chunks from Earth 1080p
Nature [25] 60 sec 25 Trailer/Contains no faces 720p
Avengers Trailer [3] 35 sec 24 Trailer/Action/Contains faces 720p
Interview [7] 45 sec 24 Interview/Contains faces 720p

be shown in Section 2.7. Due to video’s prevalence as a data type however, the need for a system

with low latency, low cost, and high scalability for video processing is imperative.

2.2 System background

The following framework in Section 2.2 is implemented by co-authors Lixiang Ao,

George Porter and Geoffrey Voelker. Table 2.1 lists the test videos and their properties used in

the experiments throughout Chapter 2.

Sprocket is a serverless, scalable, cheap, programmable stage-based pipeline used for

video processing. To achieve this, Sprocket takes advantage of the serverless cloud and runs

on the AWS Lambda container infrastructure. Sprocket’s framework enables containers to be

immediately spawned up or torn down in an on-demand fashion, based on both the properties of

the video being processed (e.g., video length, video resolution ) and the job itself (e.g., simple

filter, machine learning). Via a modified version of Mu [12], Sprocket maps different tasks (e.g.,

decode, filter, encode) in the video pipeline to particular lambda workers. In this fashion, Sprocket

is able to start processing video 1000-way parallel within seconds.

2.2.1 A simple application: video filter

To better understand how the Sprocket system is designed, we first describe a relatively

simple application.

In the early design stages of Sprocket, the system supported applying simple video filters,

7
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Figure 2.1: Logical overview of the Video Filter pipeline.

such as grayscale, to all frames of an input video in a highly parallel manner (up to 1,000

parallel “threads”). To achieve this, Sprocket first processes an input, which can be in various

formats (video link, local mp4, cloud-local file hosted on S3) and sends segments of the input to

multiple lambda workers in parallel. Each worker then decodes a chunk of video into a set of

sequential frames. The lambda worker then invokes the FFmpeg binary to each frame. Finally,

each transformed frame is encoded into an output format and stitched together to form the final

output video.

This video filter pipeline (Figure 2.1) consists of the following three stages:

Decode: This stage decodes a specified chunk of input video into individual uncompressed

frames (in PNG format). Decode receives video metadata as input, along with the timestamp

of where in the video to begin decoding, and how many frames to output to the downstream

worker. After processing, the decode stage emits the decoded frames to the S3 intermediate

storage system.

Filter: The Filter stage applies the FFmpeg binary to a chunk of frames. Filter is spawned

directly after the Decode stage and receives metadata along with references to the location of the

frames stored on intermediate storage. Filter collects the frames from S3 and applies one of its

internal filters as specified in the pipeline’s pipespec configuration file, described in Section 2.2.3.

Encode: This stage is responsible for encoding frames. Encode is also implemented with

a separate copy of FFmpeg, running in a different lambda worker, which receives metadata along

with references to the location of the frames in S3. Encode collects the frames from S3, encoding

them using the specified encoder format, and finally writes them either in MPEG-DASH format

or a single compressed output file generated by ExCamera [12], a highly parallel video encoder

8



that stitches small chunks of video together in parallel. The final result is stored in S3.

2.2.2 Delivery functions

To capture the dependencies between different stages and send correct events from

“upstream” stages (e.g. decode) to “downstream” stages (e.g. filter), Sprocket defines a delivery

function for every stage which specifies the dependencies of its inputs.

An example of a dependency between Sprocket stages is within a pipeline that takes two

input videos, Video A and Video B, and “blends” each sequential frame from Video A and Video

B into one frame to create Video C. In this example, a delivery function would need to wait for

the ith frame of both Video A and Video B to be ready before it can pair together both frames

and send the pair to the downstream blend stage. If for some reason Video B’s ith frame is not

ready, the delivery function will hold that frame and not deliver Video A’s ith frame alone to the

downstream blend stage.

2.2.3 Programming Sprocket applications

To program a Sprocket application, a programmer uses a domain-specific pipeline specifi-

cation language to create a pipeline specification (pipespec) file. In the file, a user specifies the

set of stages that make up the pipeline (e.g., decode, filter), the edges between the stages (i.e.,

upstream vs. downstream stages), and the dependencies between the stages (i.e., through the

specification of a delivery function). Figure A.1 illustrates an example of a pipespec file for a

facial recognition application, further described in Section 2.3.

2.3 A complex application: facial recognition

To demonstrate Sprocket’s ability to implement a complex pipeline, we describe a facial

recognition pipeline (Figure 2.2). This application consists of a sophisticated set of operations,

9
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Figure 2.2: Logical overview of Facial Recognition pipeline stages.

including calling out to other cloud services to implement the facial recognition support. To

evaluate the capabilities of Sprocket, we implement a pipeline that, given an actor’s name and a

reference video URL as input, draws a box around the given actor’s face in all scenes of the video.

2.3.1 Stage design

The Facial Recognition pipeline consists of six stages: MatchFace, Decode, SceneChange,

FacialRecognition, Draw, and Encode (Figure 2.2). At the beginning of the pipeline, an actor’s

name, provided by the user, will be used to locate candidate images from a Web search for later

use in facial recognition. In parallel, the provided input video URL is fetched and decoded into

fixed-length chunks of frames, currently one second each. Workers in parallel will then run a

scene change algorithm on each chunk of frames to bin them into separate scenes. For each set of

chunks grouped in scenes, a worker will then run a facial recognition algorithm to determine if

the target face is present in that scene. If a face is identified in the scene, the chunk of frames will

have a bounding box drawn on all the frames at the appropriate position returned by the vision

algorithm API, which is then sent downstream to the Encode stage. If no face is detected, then

the group of chunks will be sent directly to Encode.

Along with the stages described in Section 2.2, the following stages are used in the Facial

Recognition pipeline:

MatchFace: The MatchFace stage searches for a target image for the face of a person

whose name is specified as a parameter. Sprocket currently uses Amazon’s Rekognition API [27],

but could also use other service offerings: Microsoft offers a computer vision API as part of

10



its Cognitive Services cloud offering [24], and Google offers a cloud-hosted vision system for

labeling and understanding images through its Google Cloud Vision API [14].

MatchFace invokes one of these third-party image search services (in our case Amazon

Rekognition) to find the top-k images returned given the provided name. The stage then iterates

through the returned images and runs a face detection algorithm, via external API call, to make

sure that the chosen target image contains a face. The first image to pass the facial detection

algorithm becomes the selected target image. MatchFace then stores the selected image in S3 for

eventual use by downstream stages. Unlike other stages, MatchFace itself does not emit any data

directly to downstream stages.

SceneChange: The SceneChange stage detects scene changes in a set of decoded frames.

It is invoked after the Decode stage, and is sent a reference to the decoded frames stored in S3.

SceneChange collects the frames from S3 and, after detecting the scene change offsets (using

an algorithm internal to FFmpeg), emits an event containing a list of these references to frames

stored in S3, paired with a boolean value marking which frames serve as the boundaries of the

scene change.

FacialRecognition: The FacialRecognition stage detects if a group of frames contains a

target face (e.g., of the provided actor). The FacialRecognition stage is spawned once for every

group of frames that make up one scene. We chose this design point, rather than running on

every frame in the scene, due to the performance limitations of invoking third-party computer

vision algorithms at that rate. FacialRecognition downloads the frames from S3 and calls the

facial recognition algorithm once on every n frames in the scene. The facial recognition algorithm

returns whether or not the target image was detected in the frame, and a bounding box of the

identified face in the original frame. If at least one frame in the scene is found to contain the target

face, all frames in the scene are marked as having the target face. The stage then emits an event

containing a list of references to the frame in S3 paired with a bounding box of the identified

face. If no target face is identified, FacialRecognition emits a list of frame references paired with
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empty bounding boxes.

Draw: The Draw stage draws a box at an arbitrary position in the frame, in this case

provided as a bounding box around a recognized face. Draw is instantiated from the FacialRecog-

nition stage and only continues if a scene was labeled as containing a recognized face. Otherwise,

Draw automatically skips to its final state and sends references to the frames in S3 directly to

the downstream stage. Draw only uses the dimensions from one bounded box to draw the same

bounding box on all frames. Therefore, Draw assumes that there is little movement of faces in

a single scene. We leave as future work interpolating the position of the box based on sampled

points throughout the scene. Draw writes the new frames to S3 and emits an event containing a

list of frame references.

An alternative version of a Facial Recognition pipeline can also choose to emit scenes that

only contain the recognized face. In this case, the Draw stage would be replaced by a SceneKeep

stage that only emits references to frames if a face is recognized. Otherwise, the stage will emit

an empty list and those particular frames will never be encoded. SceneKeep would be employed

to implement a version of a pipeline that edits out all scenes of a theatrical production that do not

include a given actor.

Note that there are a variable amount of lambda workers dedicated per stage, largely

depending on the properties of the input video. For example, the amount of Decode and

SceneChange workers can be arbitrarily determined by the amount of seconds in the video

(e.g., one worker per second). However, the amount of scene changes a video contains will

determine how many downstream FaceRecognition workers get spawned. Furthermore, the

amount of recognized faces in a scene will determine how many Draw workers get spawned.

2.3.2 Calling external cloud services

Calling an external API to run a facial recognition algorithm creates different challenges

for Sprocket. The first is that there is always extra latency for calling the external service that is
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beyond Sprocket’s control. For the AWS Facial Recognition service, there is an average latency

of 1.43 seconds (SD = 0.22 seconds) per “detect face” call, and 2.28 seconds (SD = 0.08) per

“compare face” call, when we attempt to recognize Thor in 14 frames, with and without the

presence of Thor, in the Avengers Trailer. We run the same experiment using Microsoft’s facial

recognition service; the“detect face” and “compare face” operations have an average latency of

0.87 seconds (SD = 0.16) and 0.26 seconds (SD = 0.05), respectively.

Sprocket may also encounter an API call throughput limit that slows down the execution

time of stages. This execution latency increases as the parallelism of the pipeline increases, since

more concurrent calls create a faster overload of the external API. To address this, Sprocket does

two things. First, the facial recognition pipeline includes the scene detection stage, reducing

the number of calls to the facial recognition API within one scene. Second, the pipeline has the

option to use the streaming scheduler, described in more detail in Section 2.5, which adaptively

calculates whether new lambdas need to be invoked to meet a streaming deadline throughout

execution. In this way, Sprocket limits the amount of concurrent API calls needed, thus avoiding

API call throughput limits.

2.4 Customizing delivery functions

Sprocket defines a delivery function for every stage which specifies the dependencies on

its inputs. Moreover, delivery functions can also be used to mitigate challenges and optimize

complex pipelines. For example, the Facial Recognition pipeline can incur new scheduling

challenges based on the properties of the input data. Stragglers might arise, not just based on

performance variation within the cloud platform (e.g. a slow lambda worker), but rather as a

data-dependent result of whether or not a given frame contains a face, as has been reported in

other contexts [20]. Scenes with recognized faces must eventually go through the Draw stage,

thereby unavoidably taking a longer time to complete. Customizing different delivery functions
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Figure 2.3: The effects of the serialized arbitrary segment delivery function.

can help address the recognized face straggler problem.

We create a serialized arbitrary segment delivery function to address face stragglers. The

serialized arbitrary segment delivery function splits up the the delivery of downstream events

based on cut-off markers provided by the upstream stage. With this design, the FacialRecognition

stage is able to request the next downstream stage, draw, to receive only one frame per worker.

By dedicating one lambda worker per frame, the Draw stage completes almost instantly and takes

minimal overhead compared to the rest of the pipeline.

Figure 2.4 shows a simplified pseudocode for the serialized arbitrary segment delivery

function.

To evaluate the performance gain due to the serialized arbitrary segment delivery function,

we run Sprocket on the Interview video, from Table 2.1, where approximately 90% of the frames

go through the Draw stage, with and without the use of the serialized arbitrary segment delivery

function.
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1 def serialized_arbitrary_segment_deliver_func(input_events ,deliver_events):
2 sort input_events by lineage number
3 curr ,start = 0
4 while input_events exist:
5 if input_events[curr][’lineage’] != expected_lineage:
6 return
7 else if input_events[curr][’cut_here’]:
8 merged_events = input_events[start:curr]
9 add merged_events to deliver_events

10 remove merged_events from input_events
11 start = curr
12 else:
13 curr+=1

Figure 2.4: Serialized arbitrary segment delivery function pseudocode.

In Figure 2.3 we compare the difference in Draw stage runtimes, across 1,080 frames

total, when an upstream delivery function splits the delivery of downstream frames based on

runtime markers (arbitrary cut) as opposed to a pre-specified constant number of downstream

frames (fixed cut). Without the use of the serialized arbitrary segment delivery function, the Draw

stage takes on average three seconds longer to complete.

We also compare the overall runtimes of the pipeline with and without the optimized

delivery function and report that, for the Interview video, the use of the optimized delivery

function eliminates approximately 1.5 seconds of overall runtime. Running the same experiment

with the Avengers video, however, in which only about 7% of the frames go through the Draw

stage, the optimization adds no significant performance gain nor overhead.

2.5 Optimizing for streaming

Though Sprocket can be used as a batch system focusing on completion time for the entire

video, we design Sprocket to operate equally well as a streaming system. Sprocket’s ability to

seamlessly allocate and deallocate resources also allows it to change its scheduling behavior in

real-time, based on the pattern of the current job. Concretely, Sprocket’s streaming scheduler

continuously keeps track of the amount of time it is taking to process the current frames to
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Figure 2.5: Streaming the Earth video through the grayscale pipeline.

determine if it will meet the streaming deadline. If Sprocket is currently ahead of schedule, the

streaming scheduler will speculatively put the current pipeline to sleep for the number of seconds

nearly equivalent to the difference between the streaming deadline and the current execution time.

Putting the executing pipeline to sleep not only optimizes for use of minimum lambda resources,

as the number of new lambda invocations drops down to zero for the current pipeline during that

time, but also lends itself well to achieving load balancing so a simultaneous different pipeline

can be run on Sprocket.

In streaming mode, once Sprocket finishes processing the first result frame, users can start

to stream the video. Recall from Section 2.2 that workers encode video chunks into standalone

DASH segments. As a result, even if a video is hours in length it does not need to be serialized

into a single final video file before viewing. Sprocket is also able to handle streaming input, thus

being able to process input video that is most recent. Hence, streaming is seamless as long as

Sprocket processes and delivers subsequent video chunks in time.
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To demonstrate this behavior, we execute the video filter pipeline on the first hour of

the Earth video. Figure 2.5 shows the completion time of each worker and its chunk of video

for the variable amount of workers determined by the streaming scheduler. The dashed line

corresponds to the deadline that Sprocket needs to meet for seamless streaming. The line starts

at the completion time of the first chunk since users have to wait for Sprocket to process it. But

once started, Sprocket can easily meet the deadline for the remainder of the video, using minimal

resources.

2.6 Evaluating complex pipeline behavior

Sprocket’s behavior is highly dependent on the properties of the input video. Straight-

forward filters or transformations of video chunks perform the same work on each frame. The

behavior of a more complex pipeline that recognizes and draws a box around a given actor’s face,

however, greatly depends on whether the input video contains a face, and whether that face is

the one being queried. To demonstrate, we run the FacialRecognition pipeline on the Nature and

Avenger videos (we use these short videos due to rate limits of Amazon’s Rekognition API, as

discussed in Section 2.3.2).

Figure 2.6 illustrates the bimodal execution times of the pipeline’s lambda workers in

the FacialRecognition stage, depending upon the presence of a face in a given frame. Lambda

workers processing the Nature video, which has no faces, take between 1.5 and 4 seconds to

complete the FacialRecognition stage. This execution time consists of the time it takes to invoke

Amazon Rekognition to detect any faces present. Since no input frames contain faces, the stage

passes along the frames immediately. For the Interview video, all the frames have faces, so the

lambda workers will experience increased execution times. When Rekognition does detect a face

in a frame, it makes a second API call to compare the detected face with the target face. This

second call adds another 1.5 to 3.5 seconds of execution time, resulting in the bimodal execution
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Figure 2.6: FacialRecognition stage behavior with and without faces.

times. In general, the total execution time for the 60-second Nature video with no faces was 32

seconds, and the execution time for the 45-second Interview video with faces was 45 seconds.

Figure 2.7 illustrates similar behavior in the downstream Draw stage for the same experi-

ment as above. If a given face was not recognized, the Draw stage will immediately call the next

downstream stage, adding less than a second of execution time. However, if a frame was marked

as having a recognized face in the upstream facial recognition stage, then an extra half second will

be spent drawing a bounding box around the actors face in the frame. Note that the experiment

uses the serialized arbitrary segment delivery function as an optimization for the Draw stage.

2.7 Evaluating Sprocket against alternatives

Cloud providers do provide elastic offerings of more established parallel data processing

systems such as Hadoop and Spark, but they are not a good match for Sprocket’s goals. In terms

of responsiveness, allocating and provisioning clusters potentially takes minutes before the new
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Figure 2.7: Draw stage behavior with and without positive face recognition.

cluster can begin accepting jobs. Processing video with even simple transformations often does

not involve any reduction in the data (input and output sizes are similar); efficiencies afforded by

reductions in MapReduce-style computations do not apply to a wide range of video processing

tasks.

To make this argument more concrete, we perform a couple of experiments to illustrate

the performance of a simple video processing application on Amazon’s EMR Spark, an EC2

instance, and Sprocket. We use the Earth video as input, segmented into two-second video chunks,

and performed a simple grayscale operation using the FFmpeg tool in all frameworks. The Spark

implementation used an 18-node cluster, with each node processing a partitioned set of video

chunks into resulting mp4 output files. The EC2 implementation executed a batch script running

64 FFmpeg processes in parallel on an m4.16xlarge instance, which has 64 virtual cores and 256

GiB of memory. Sprocket used a simple 3-stage filter pipeline (Decode, Grayscale, and Encode)

executing a variable number of Amazon lambdas, one per chunk, using up to 1,000 instances.
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Figure 2.8: Comparing the runtime of 3-stage pipeline implementations.

Intermediate data was stored locally and the final output written to S3.

Figure 2.8 shows the execution time of the application on each platform as a function of

video length. For Spark we show two lines, one including the time to provision and bootstrap

the resources on AWS and the other with just the application time after the cluster is ready. Our

goal in presenting this comparison is not to present this experiment as a “bakeoff” among the

most optimized versions possible, but to illustrate the benefits of using serverless infrastructure

for a single job. In particular, the startup time of provisioning cluster resources is significant in

existing commercial offerings, which Sprocket avoids using the on-demand nature of lambdas.

We further run the same experiment on a more complex 5-stage pipeline (Decode,

Grayscale, Rotate, Scale, and Encode) and present the execution times in Figure 2.9. Sprocket

and Spark exhibit a relatively similar behavior as in the previous experiment, again showing that

Sprocket exhibits less of an overhead when computing.

Figure 2.10 shows the price of our different implementations for the 3-stage filter pipeline

20



0 5 10 15 20 25 30
Length of Video (m)

0

2

4

6

8

10

12

P
ro

ce
ss

 T
im

e
 (

m
)

Spark Cold

Spark Warm

Sprocket

Figure 2.9: Comparing the runtime of 5-stage pipeline implementations.

experiment. Note that the Spark prices do not include the overhead of provisioning and bootstrap-

ping a cluster on AWS (approx. 5 minutes). Across all implementations Sprocket is currently the

cheapest, largely because Sprocket’s execution time is the shortest.

Figure 2.11 illustrates the time it takes for the first encoded mp4 chunk to appear in

AWS S3. This measurement is important for streaming applications in which the earlier the

first chunks appear, the earlier the result can be streamed back to the client. Thus, the rest of

the chunks can finish being computed upon as the beginning of the video is already streaming.

Sprocket’s time to first byte time is less than 1/4th of the best performing Spark cluster, not

including provisioning and bootstrapping overhead, with regards to overall runtime. Clearly there

is a scheduling overhead that Spark consistently encounters which inhibits it to efficiently finish

an arbitrary first job.
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Figure 2.10: Comparing the price of 3-stage pipeline implementations.

2.8 Related Work

AWS recently released a framework that allows one to build applications that run on

scalable lambdas [31]. To build a scalable lambda application an AWS Step Function is used

to create a state machine that assigns lambdas to different stages of the state machine. AWS

Step thus allows for a stage-based system to be built that can also run thousands of lambdas

concurrently.

Sprocket differs from AWS Step in primarily two ways. First, AWS Step cannot implement

a pipeline. A parallel state in AWS Step that executes many lambdas at once will wait for

all lambdas to terminate before processing the next state. A work-around that the developer

community has found has been to make multiple copies of each state machine so that they can

run independently. However, such a solution does not lead to an obvious approach to make AWS

Step dynamically re-size the amount of lambdas devoted to parallel intermediate stages, as the

amount of parallel stages must be determined from the beginning of execution. AWS Step can
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Figure 2.11: Comparing the time to first byte of 3-stage pipeline implementations.

scale the amount of lambdas based on an overall increased workload but it is not evident how to

scale based on the dynamic request of a previous stage. Consequently, an intermediate Sprocket

stage such as FacialRecognition, for example, would not be able to be implemented using AWS

Step as it dynamically decides how many downstream Draw stages to spawn based on the amount

of faces it has recognized in the previous stage.

2.9 Summary

Sprocket achieves easy configurability and low latency by taking advantage of the scalable

and responsive serverless container framework that Amazon Lambda provides. We demonstrate

Sprocket’s configurability by first introducing a simple video processing pipeline that applies a

filter to individual frames. We then extend the frameworks of that pipeline to allow for a more

complicated facial recognition task. We also demonstrate Sprocket’s scheduling configurability
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by describing a streaming scheduler which adapts the amount of container resources being used

to achieve a streaming deadline. Finally, to demonstrate Sprocket’s low latency, we benchmark

Sprocket against a similar video processing implementation in Spark and show how Sprocket is

faster, more scalable, and cheaper.

2.10 Open Problems and Directions

Though Sprocket is an already sophisticated system, there are ways in which Sprocket can

be further developed on its own, as well as influence the development of more general processing

pipelines.

Sprocket’s streaming scheduler currently assumes a fairly symmetric workload across

stages and therefore assigns a constant amount of lambda workers whenever the pipeline is not

sleeping. Future work will involve assigning a variable amount of lambda workers throughout all

of the data processing stages. Sprocket will need to behave speculatively for this to be efficient

and will need to take advantage of straggler mitigation not from the perspective of recovering

from abnormal expected runtimes due to platform behavior (e.g., the lambda worker is being

slower than expected), but rather from abnormal unexpected runtimes due to input data behavior

(e.g., the data has an unpredictable number of faces and thus requires more facial recognition

calls).

As a general system, Sprocket has a unique “burst-parallel” behavior. Within a second

granularity, Sprocket is able to invoke up to 1,000 containers to process a stage. It would therefore

be interesting to investigate the concept of burst-parallel systems in general and what type of

tasks can be efficiently completed in a highly parallel yet extremely short period of time (e.g.,

1,000 containers in one second).
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Chapter 3

Pushing Lambda to the Limit: Detecting

and Evaluating Co-residency in the

Serverless Cloud

3.1 Introduction

The utilization of third-party infrastructures for compute power has become increasingly

popular because of its flexibility and ease of use. With the rise of providing customers the ability

to rent out virtual machines on public clouds (Amazon EC2, Microsoft Azure, Google Compute

Engine), customers are able to rent out tens of powerful VMs at once, without the need to worry

about infrastructure set up or scheduling (the current default concurrency limit for EC2 is 30

VMs). The security of having multiple VM tenants using the same physical host in the public

cloud is also of great interest. Research continues to be done to examine the ease and likelihood,

within the constraints of default account limits, of an adversary being able to place her VM on

the same physical host as a victim and break the expected isolation. Being co-resident allows an

adversary to share physical resources with a victim, thereby leaking information about the victim
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to the adversary. For example, by measuring a victim’s cache usage, an adversary can steal a

victim’s password [28].

Moreover, within the past couple of years, the same public cloud services have also

begun to offer containers on demand (AWS Lambda, Microsoft Azure Containers, Google

Cloud Functions). Customers now no longer need to worry about directly provisioning compute

resources in advance and can use an event driven environment to scale these containers in the

thousands while being billed less than a penny at a millisecond granularity. However, the new

container services are also more restrictive to users with regards to image size (less than 3GB),

runtime environment (pre-set libraries), and execution time (less than 5 minutes), in order to

be able to provide the fast and inexpensive service. Nonetheless, cloud container services are

especially useful for event-driven business models such as Netflix, where containers can be scaled

in response to variable traffic [26]. It is therefore no surprise that over 1,000 companies are using

Amazon’s Lambda service [8].

With these new freedoms and restrictions that public cloud container services offer, it

highlights the need to re-evaluate the same original fears that public cloud VMs brought about

[28] [33] [35]. Concretely, we investigate the ease and likelihood, within the constraints of default

account limits, of an adversary being able to place her ephemeral container on the same physical

host as a victim container by using the AWS Lambda container service as a case study. First,

we investigate weaknesses in the container placement scheduler and leverage the weaknesses

to increase an attack surface. Second, we examine the container CPU scheduler and identify a

covert channel wherein an adversary is able to determine whether or not a neighbor is running a

similar expensive job. Third, we take advantage of a shared hardware resource and see how it can

be used to break container isolation. Fourth, we combine the previously explored weaknesses

to achieve co-residency of containers across adversarial and victim accounts in three different

AWS data centers, as well as analyze the general threat that cloud providers face when allowing

customers to scale their computing resources. Finally, we explore existing mitigations in the VM
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and container space against adversarial co-resident behavior, and argue why they may no longer

be appropriate and should be re-examined.

3.2 Related Work

Isolation of virtual machines and containers is defined and compared in Soltesz et al.

[29], where they define two major categories of isolation: resource and security. They show that

general purpose containers are more efficient than VMs, yet still attain a similar level of isolation

with regards to resource and security.

Co-residency of virtual machines in the public cloud was first explored by Ristenpart et

al. [28]. The research focuses on exploiting VM placement policies and developing a series of

co-residency checks, both using the network and hardware, to ensure placement on the same

machine. The scale of available adversarial resources was restricted to less than 100 virtual

machines. The smaller footprint and scalability of AWS Lambda, however, allows us to explore

co-residency at a much wider, faster, and cheaper scale than has been done before.

Subsequent work with VMs has focused on finding faster and cheaper ways to detect and

exploit co-residency [33] [35]. Furthermore, focus has shifted towards physical resource con-

tention, as opposed to network cartography, as most public clouds have adopted VPC technology

that makes earlier networking co-residency strategies ineffective.

Co-residency of public cloud containers, to our knowledge, has only been explored in

Zhang et al. [37], but only on a scale of running up to 30x30 containers. They work with long-

lived container frameworks, such as AWS Elastic Beanstalk, and find that the highest probability

of co-residency happens approximately one hour after the victim has been invoked. Their work

deviates from the ephemeral nature of AWS Lambda, which allows containers to be created and

destroyed at a second granularity, and thus leads to a different style of threat heavily influenced

by burst scheduling.
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Serverless container infrastructures in general are explored in Wang et al. [34], where

scalability in the thousands, cold-start latency, and resource efficiency is addressed. They detect

severe contention between AWS Lambda functions and a bin-packing-like strategy for lambda

scheduling. However, co-residency of containers across customer accounts and security in general

is not discussed.

Container vulnerabilities have also been explored with regards to leakage channels [13]

[32]. However, the research has mostly worked under the assumption that containers share the

same host operating system. We show that sharing a host OS with other customers in the AWS

Lambda infrastructure does not seem possible, and thus we focus on hardware leakage channels

to identify containers that may not share the same operating system but are still placed on the

same physical machine.

To our knowledge, there has been no prior work done on assessing the inherent risk that

different sized data centers might face from brute force attacks when allowing users to scale

computing resources to a much larger scale than before (tens to thousands).

3.3 AWS Lambda

Amazon implements Lambda through the use of containers: resource-isolated processes.

Lambda restricts the size of a container to be anywhere in the user specified range of 128MB to

3GB. Lambda also restricts the runtime of code, within the container, to be less than 5 minutes.

Lambda bills a customer only for the running time of a container on the granularity of 100ms.

Developers can manually invoke up to 1,000 concurrent lambdas.

Multiple lambda containers can get scheduled on one host operating system and multiple

host operating systems can get scheduled on the same hypervisor and physical machine. To

identify whether two lambda containers share the same host operating system, we employ a

couple of existing OS co-residency checks. By checking static identifiers such as the host id,
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internal IP address or public IP address, we can identify which containers correspond to the same

host OS [13]. Furthermore, we are able to prove OS co-residence by draining the OS supplied

/dev/random pseudorandom number generator in one container and checking the available entropy

across any container that is sitting on the same host OS [32].

We report that a host operating system, on average, schedules up to 3GB worth of

containers on one host OS. We also report that, after running our OS co-residency checks with

1,000 victims on account A and 1,000 adversaries on account B in over 20 trials across two data

centers, we have not been able to identify a shared host OS across accounts. For this reason,

evaluating container security across accounts in the AWS Lambda environment poses a different

challenge than the common state of evaluating container security where a shared host OS is often

assumed [13] [32]. Thus, we will choose to focus on hardware vulnerabilities that exist across

containers, as well as weaknesses in the lambda placement and CPU scheduler.

3.4 Lambda Placement Scheduler

The lambda placement scheduler schedules lambda containers on particular host operating

systems. We found that AWS Lambda, on average, schedules up to 3GB of containers per host

OS. Therefore, with every 3-GB lambda that is invoked, a new host OS and potentially a new

physical machine will be assigned. On the other hand, for every 128-MB lambda container that is

invoked, it is likely to be placed on the same host OS as its concurrently invoked sibling, until the

3-GB limit is reached.

Another property of the container scheduler is the distinction between “warm” and

“cold” containers [22]. To optimize for container instantiation time, AWS Lambda will try to

reuse previous instantiations of containers. In this way, if the same lambda function is invoked

sequentially, the container will be “cold” the first invocation, but “warm” during the second

invocation because it will use the same original container [34]. If, however, a lambda function’s
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Figure 3.1: Sorted IP Address overlap between container invocations.

behavior is changed (e.g., new package dependency, different uploaded code, long inactivity

period), the container will be torn down and any following invocation will be a fresh “cold” start.

We report that “cold” containers can experience an average invocation latency of up to 5 seconds,

depending upon the number of concurrent invocations.

3.4.1 Manipulating the Lambda Scheduler

To increase the surface of an attack, it is better for an attacker to spawn 1,000 3-GB

lambdas as opposed to 1,000 128-MB lambdas, thus increasing the attack surface by a factor of

24. By spawning 3-GB lambdas the adversary should never be co-resident with another lambda

on the same OS, yet will still have the ability to be co-resident with a victim physical machine, as

a physical machine can host multiple operating systems. Choosing the 1,000 3-GB attack strategy

has a cost more expensive than invoking 1,000 128-MB lambdas, but notably by a factor smaller

than 24: $0.13 vs $1.45 (for a 30-second attack).

Another method to increase the surface of an attack is to invoke more “cold” lambdas.

Invoking a “cold” lambda increases the probability of being scheduled on a new host OS, and thus

potentially a new physical machine. We test the probability of being scheduled on a new host OS

by comparing the amount of unique IP addresses generated as a result of invoking 1,000 instances
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of four independent lambda functions (each being cold) vs. invoking 1,000 instances of the same

lambda function four times (the last three times being warm). Each unique IP address identifies a

unique host OS, as discussed in Section 3.3. Figure 3.1 shows that invoking four lambda functions

creates less IP address overlap, where each lambda invocation number is assigned to more unique

IP addresses across the four independent functions. Concretely, invoking four different lambda

functions results in 1,728 unique IP addresses and consistently invoking the same lambda function

results in 487 unique IP addresses.

By being assigned to more unique IP addresses, an adversary is therefore able to reach

new host operating systems, thereby increasing the attack coverage. We repeat the experiment

over a dozen of times in different data centers and find that similar trends are always seen and

even more prominent in larger data centers where there are more IP addresses available (e.g.,

us-east-1 and us-east-2). In some cases, we have seen near 4,000 unique IP addresses across 4

independent lambda functions.

To our knowledge there are currently two techniques for increasing the probability of

hitting a “cold” lambda/new host OS within a short period of time. (1) Constantly create fresh

lambda functions between sequential invocations. (2) Change the uploaded code/ lambda function

behavior. We discuss both strategies further in Section 3.7.1 and how they interact with potential

mitigations.

3.5 CPU Scheduler

AWS Lambda uses a variant of the Linux Completely Fair Scheduler (CFS) to partition

the use of CPU cores across multiple lambda containers [5]. The amount of CPU time a lambda

container is given is proportional to the size of a lambda container. For example, a 1024-MB

lambda container should receive 8 times more CPU usage time than a 128-MB lambda container.

To test this expected behavior, we run one 128-MB lambda and one 1024-MB lambda concurrently
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Figure 3.2: Sampling instruction latency across different container sizes.

and report that the 128-MB lambda uses roughly 25% total CPU across all running processes

whereas the 1024-MB lambda uses roughly 200% total CPU.

We further test this behavior by sampling the execution time of the rdrand instruction

and show that, as the size of the lambda increases, the amount of execution time outliers begin

to decrease, and completely disappear with the 3-GB lambda. Figure 3.2 shows that the largest

execution time a 3-GB lambda experiences is below 105 clock cycles, whereas the smaller lambda

sizes experience execution times above 107 clock cycles. We believe these execution time outliers

are demonstrative of context switches and imply that a container with more dedicated CPU time

(e.g., 3-GB) experiences context switches for a shorter amount of clock cycles.

Another property of the Linux CFS is the scheduler allocation of extra CPU resources to

waiting jobs when the CPU is idle. In the context of AWS Lambda, if there are no other lambda

containers on the same host as one 128-MB lambda, then the 128-MB lambda will see an increase

in performance. We test the behavior of the CPU scheduler by comparing the performance of
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Figure 3.3: The effects of a 1024-MB adversarial container on a 320-MB container.

different size containers with and without the presence of another container.

In Figure 3.3 we show the number of clock cycles an rdrand query takes, across 200,000

trials, with and without the presence of one 1024-MB “adversarial” lambda that is constantly

querying the rdrand instruction. We report that the majority of rdrand queries take between

101 and 102 clock cycles (group A). All measurements above 103 clock cycles (groups C and

D) are consistent with context switch measurements as depicted in Figure 3.2. We believe that

the increased latencies between 102 and 103 clock cycles (group B) are due to contention over

rdrand, as those latencies dramatically increase only when the adversarial lambda is running.

For simplicity in measurement, we will thus be using the average time across n instruction

latency measurements to determine whether an adversary is increasing contention of the rdrand

instruction.

It is important to note though, as seen in Figure 3.2, that for a 3-GB lambda the context

switch times overlap in the 102 to 103 clock cycle range. Consequently, it is hard to tell whether
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Figure 3.4: The effects of a 1024-MB adversarial container across container sizes.

those samples are due to context switches or rdrand contention and it thus prompts us to use the

smaller, 320-MB lambda to measure contention in our subsequent experiments.

To further explore the contention effect across lambda sizes, we execute the same ex-

periment as described previously across different lambda sizes with and without the presence

of one 1024-MB lambda that is increasing contention over the rdrand instruction. Figure 3.4

shows an increase in the average amount of clock cycles to a successful rdrand call when there

is contention present. Moreover, the decrease in performance is relatively stronger in the smaller

lambdas, where the 128-MB lambda sees an average decrease in performance of 42% with the

adversary present . We take advantage of the amplification in contention when running smaller

containers in experiments described below.
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3.6 Determining Co-Residence

We take advantage of the container scheduler, the CPU scheduler, and a shared hardware

resource (rdrand) to show hardware co-residency of lambda containers across accounts, even

when they do not share the same underlying OS.

3.6.1 Attack strategy

Intel’s hardware random number generator, invoked by the rdrand instruction, is shared

among all physical cores of a machine and is therefore an ideal candidate for being a contested

hardware resource. Previous work has established a covert channel across cores using the

hardware random number generator, yet we are the first, to our knowledge, to use rdrand [11] as

a method of co-residency checking across containers.

Thus, the generalized attack strategy is as follows:

1. Schedule one small container (e.g., 128MB, 320MB): record the average latency for an

operation (preferably an operation using a resource that faces contention over cores (e.g.,

rdrand).

2. Sequentially schedule one large container (e.g., 1024MB+) on the same hardware host:

create contention over the chosen operation (e.g., create an infinite loop calling rdrand).

3. Concurrently schedule the original one small container (e.g., 128MB, 320MB): record the

average latency for the chosen operation. It will noticeably go up because it can no longer

use as many of the free pool of CPU resources on the physical host, as the adversarial

container is now using those resources.

4. To run the same attack strategy again: invoke cold lambdas, as discussed in Section 3.4, so

as to not get penalized by the CPU scheduler, as discussed in Section 3.7.1.
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To achieve a greater probability of co-resident placement across accounts, we design an

experiment with a large attack surface within the default AWS account limits. Concretely, on the

victim account, we invoke 1,000 concurrent 320-MB victim containers each of which measure

the average runtime of an rdrand call across 25,000,000 trials, go to sleep for 50 seconds, and

again record the average runtime of an rdrand call across 25,000,000 trials. It takes roughly

30 seconds to determine the average runtime of an rdrand call across 25,000,000 trials. On the

adversary account, we invoke 1,000 adversarial 3-GB containers which infinitely loop the rdrand

instruction for only 30 seconds after the first batch of victim containers have run, thereby only

creating a contention of resources for the second reported average from the victim containers. We

then analyze the victim container averages with and without the adversary containers running,

and see if we find a significant performance gain without the presence of adversarial containers.

3.6.2 Evidence of co-residency

Figure 3.5 shows the behavior of 10 of the 1,000 victim account containers when running

1,000 adversarial account containers. The co-resident behavior is similar to the expected co-

resident behavior seen in Figure 3.4, where there is nearly a 20% decrease in performance

during the second measurement when the adversary is running. We plot the behavior of a “safe”

container group during the same experiment that does not exhibit any significant changes between

measurements, thus implying that no adversarial containers were scheduled on the same physical

host. We also include the behavior of a “control” container experiment when no adversarial

containers were run. The control experiment highlights the fact that even with the inherent

noise present from executing the experiment in a public cloud, the co-resident results are still

significant.
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Figure 3.5: Measuring the effects of co-residency.

3.6.3 Evaluation of Co-Residency

We run our attack strategy with both victim and adversary containers and report our results

in Table 3.1. We run our experiments across different regions, different days of the week, and

different times of the day. We report the minimum number of victim containers needed to be

invoked in order to begin seeing the co-residency effects, similar to Figure 3.4, in a select number

of victim containers. As the number of available IP prefixes/size of the data centers increase, the

number of victims needed to achieve co-residency also increases. We also report the total number

of co-resident victim containers after spawning 1,000 victim containers. Note that the number

of co-resident containers is often a multiple of 10 as the lambda scheduler schedules 320-MB

containers in batches of 10 on the same host OS, and thus the entire host OS becomes victim to

the adversary container.

The price of the co-residency attack sums up to less than $1.45 [23], the total cost of

spawning 1,000 3GB lambda containers for 30 seconds.

38



Table 3.1: Results of running co-residency attacks with 1,000 adversary containers.
Region Available IP Min # victims # Co-resident # Co-resident

prefixes to achieve co-residency victims host OS

ap-south-1 44 406 10 1
ap-south-1 44 545 20 2
ap-south-1 44 210 30 3
us-east-2 60 997 10 1
us-east-1 226 934 2 1

3.6.4 General threat of co-residency in data centers

When cloud providers allow customers to scale computing resources in the thousands, it

is important to evaluate the potential threat that customers could face. To asses the general threat,

we create a probabilistic model based on the following formula:

chance o f co− residency = 1− ((hosts−adversaries)/hosts)victims

where hosts is the number of physical machines in a data center that a victim or adversary

container could run on, adversaries is the number of adversary containers invoked, and victims is

the number of victim containers invoked.

To apply this model to AWS Lambda, we choose to evaluate the general threat of the

ap-south-1 region. To assess the size of the ap-south-1 region, we count the number of IP

addresses derived from the ip-range prefixes that AWS assigns to AWS services [16]. By doing

so, we estimate that, at maximum, there are 531,720 unique IP addresses in the ap-south-1 region.

We therefore set the number of hosts to be 531,720 as an absolute maximum bound on the

number of physical machines a lambda container could be scheduled on in the ap-south-1 region.

Though we know that IP addresses get assigned to unique host operating systems and a physical

host can run multiple host operating systems, we still choose to keep one physical machine =

unique IP Address as the maximum number of hosts, as a conservative example. We also set
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adversaries to a constant 1,000 containers, the default maximum for an account. Since the attack

strategy previously described involves invoking 3-GB adversary containers, each container will

be assigned to its own host OS and thus its own IP address. In this way, 1,000 containers is

equivalent to 1,000 IP addresses. We vary the number of victims needed to asses the general threat.

It is important to note that our model assumes that there is a uniform scheduling distribution (i.e.,

it is not taking into account that an existing third party load might be on a victim’s physical host

and thus the adversary is less likely to hit it).

Nonetheless, it can be seen that the data in Table 3.1 roughly matches with our model.

Figure 3.6 plots the model and the general threat that the AWS ap-south-1 data center faces with

the AWS Lambda service. We report that if ap-south-1 does in fact have 531,720 physical hosts

dedicated to AWS Lambda (which we hypothesize is a gross overestimate), then it only takes

roughly 400 victims for an adversary to have over a 50% chance of achieving co-residence, a

number that is quite reasonable for a target company such as Netflix to be running. Furthermore,

one could interact and overload an event-driven service so as to have it to inadvertently invoke

more containers to thus increase the attack surface and probability of co-residency [1].

The attack strategy presented in this model and overall work is a brute-force strategy

and has no way of targeting a particular victim. However, since the total cost of a 30-second

attack is $1.45, as mentioned previously, cost is not a drawback to executing an attack through a

brute-force strategy. Furthermore, attacks that are exploited through the use of a shared hardware

resource, such as Spectre [19], would be a good candidate to deploy at this brute-force scale, as

an adversary could just attempt to read all possible out of bound memory across 1,000 containers,

and then just parse the results.

The general threat also illuminates the fact that smaller data centers have an increased

likelihood of a chance of collision and thus are more vulnerable to co-residency. In this way, it is

most likely safer for a customer to use a larger data center.
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Figure 3.6: Amount of victim containers needed for a more probable collision.

3.7 Potential mitigations and their limitations

We will look at different aspects of the vulnerabilities introduced throughout this work

and asses the current available mitigations, their effectiveness, and potential future directions for

mitigations.

3.7.1 Tricking Amazon’s CPU scheduler mitigation

When running our experiments we notice that AWS Lambda mitigates the container’s

abuse of CPU resources by having the Completely Fair Scheduler occasionally limit the amount

of available CPU resources a lambda container uses during subsequent runs. CFS can thus hinder

our co-residency detection strategy, if a victim container is no longer seeing a significant enough

change in runtime. However, this penalty can be avoided in two ways:

1. Invoke an identical, yet brand new, lambda function with no prior history of average
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Figure 3.7: Tricking the Completely Fair Scheduler with different container behavior.

resource usage.

2. Invoke the same lambda function to run a program that sleeps, thereby lowering the history

of average resource usage.

The first proposed method is by far the fastest and cheapest. However, it is also, as we

have discovered, detectable by AWS if done too often and thus not favorable.

The second proposed method requires careful execution. We conduct an experiment where

we invoke a container with a resource intensive job (querying rdrand 20,000,000 times), and

then put the job to sleep. We measure the execution time of the resource intensive job before and

after the container is put to sleep. Figure 3.7 shows the average latency of the resource intensive

job decreases by over 100 clock cycles immediately after the container is put to sleep. However,

the latency of the resource intensive job increases again if the container is not immediately put

back to sleep. We run the same experiment across 4 trials and consistently see the same behavior.

Beyond the current mitigation introduced by AWS, a way to mitigate an attack using

the CFS is to enforce the scheduler not to give up available resources to lambdas which are not

initially entitled to them (i.e., smaller lambdas). However, this mitigation would be unfavorable

to a cloud provider, like Amazon, as it is not work conserving and leads to an idle CPU.
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3.7.2 Malicious behavior mitigations

Previous work has monitored and mitigated malicious tenant behavior on the cloud.

However, none of the mitigations have been explored at the speed and scale that a brute force

attack on AWS Lambda could achieve. For example, Zhang et al. propose a malicious behavior

mitigation that collects samples at 30-second intervals. However, this mitigation would need to be

re-evaluated for a finer-grained sampling rate, for services such as AWS Lambda, as containers are

often spawned and shut-down in smaller time periods [36]. Also, collecting samples for history

can become irrelevant once new containers are created and old ones are torn down. The Sherlock

system also involves profiling a container, but at the granularity of minutes; again, minutes are

too long for ephemeral containers [18].

3.8 Open Problems and Directions

In this work we have presented a covert channel where both the “victim” and “adversary”

accounts are working together to detect if they are co-resident by creating contention over rdrand.

Future work will involve demonstrating a side channel where the adversary account can profile

the victim without him being aware. Profiling an uncooperative victim presents its own challenge

in that the current nature of serverless computations are often ephemeral, thereby restricting

attacks to complete within seconds. Furthermore, the ephemeral nature prompts two research

questions: what valuable information can be extracted from a victim container that is running at

millisecond granularity and to what extent does the ephemeral nature of containers protect the

victim from attackers?
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3.9 Summary

The AWS Lambda service introduces an easy way to achieve co-residency of containers

across accounts using a brute force strategy. Giving customers the ability to scale compute

instances in the thousands instantly presents cloud providers a challenge to scheduling and

isolating abnormal behavior. As cloud providers give customers more flexibility and freedom to

scale computing resources, it is important to asses the inherent risk that results. In this chapter,

we demonstrate that co-residency can easily be achieved at scale in data centers all around world,

all while the adversary stays within the default limit her account provides. Moreover, multiple

attack accounts only amplify the threat of achieving co-residency.
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Chapter 4

Conclusion and Future Directions

This thesis explores a serverless cloud computing model that runs on stateless container

invocations. We show that the responsiveness, concurrency, and cost of the serverless cloud

computing model, on the one hand, enables building systems with new designs and tradeoffs, yet

on the other hand, introduces potential security risks due to an increased probability of achieving

co-residence.

This thesis first describes Sprocket, a serverless video processing framework for the cloud,

and shows its modular structure by demonstrating how a simple filter application can be turned

into a complex facial recognition application. Sprocket can be configured to process a 30-minute

video 1000-way parallel in under a minute for less than $1. We further show how Sprocket takes

advantage of the scalable nature of container invocations by designing a streaming scheduler

that seamlessly invokes a variable amount of containers based on the current content delivery

deadline.

While the serverless cloud computing model enables burst-parallel systems like Sprocket

to be built, there are also certain risks that the serverless cloud computing model introduces.

Concretely, we present a covert channel in the AWS Lambda framework using the rdrand

instruction to demonstrate evidence of co-residency of containers across accounts in three different
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data centers. We find as many as 30 co-resident containers during one 30-second “attack.” We

further define a model which illustrates that, if cloud providers allow customers to scale their

compute resources in the thousands, then co-residency becomes probabilistically achievable.

The contributions of this thesis present the first steps of designing a sophisticated serverless

video processing system and demonstrates the potential security vulnerabilities of the serverless

computing model. More work, however, can be done at the intersection of the two projects.

Specifically, we demonstrate our ability to detect context switches and contention of resources in

the AWS Lambda computing environment. Since our burst-parallel system, Sprocket, runs on

AWS Lambda in the public cloud and uses a large amount of concurrent container invocations, it

therefore appears possible that Sprocket’s system behavior should be detectable by an adversary

in the same data center.

The techniques we describe to detect contention of resources currently do not have the

ability to fingerprint where the contention is coming from (e.g., our targeted victim or another

resource consuming container). However, with the ability to identify a victim, it seems that

one should be able to leak information about a running burst-parallel system’s behavior. By

demonstrating a side channel on the behavior of an entire system like Sprocket, we would begin

to uncover security implications of burst-parallel systems in general and perhaps begin to think

about how to obfuscate such systems against adversaries in the same data center.

The cost effectiveness and scalability of the serverless computational model is ideal for

highly parallel and time-sensitive systems, and it will undoubtedly further gain popularity in

upcoming years. It is also for these reasons that it is imperative that we focus on the security of

such frameworks to ensure that the integrity and privacy of burst parallel serverless systems are

not compromised.
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Appendix A

Facial Recognition Pipespec

This appendix chapter provides an example “pipespec” for the Facial Recognition pipeline

discussed in Section 2.3. The pipespec demonstrates the stage dependencies for the facial

recognition pipeline as well as the delivery functions used to organize and send data from the

upstream to the downstream stage. Note that input 0, input 1, and output 0 are bound to runtime

parameters.
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1 {
2 ["nodes":
3 {
4 "name": "parallelize_link",
5 "stage": "parallelize_link",
6 "config": {
7 }
8 },
9 {

10 "name": "matchFace",
11 "stage": "matchFace",
12 "config": {
13 }
14 },
15 {
16 "name": "decode",
17 "stage": "decode",
18 "config": {
19 }
20 },
21 {
22 "name": "scenechange",
23 "stage": "scenechange",
24 "config": {
25 }
26 },
27 {
28 "name": "rek",
29 "stage": "rek",
30 "delivery_function": "serialized_arbitrary_segment_delivery_func",
31 "config": {
32 }
33 },
34 {
35 "name": "draw",
36 "stage": "draw",
37 "delivery_function": "serialized_arbitrary_segment_delivery_func",
38 "config": {
39 }
40 },
41 {
42 "name": "encode",
43 "stage": "encode_frame_list",
44 "delivery_function": "serialized_frame_delivery_func",
45 "config": {
46 }
47 }
48 ],}

Figure A.1: The Facial Recognition pipespec example.
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1
2 "streams":
3 [
4 {
5 "src": "input_0:video_link",
6 "dst": "parallelize_link:video_link"
7 },
8 {
9 "src": "input_1:person",

10 "dst": "matchFace:person"
11 },
12 {
13 "src": "parallelize_link:chunked_link",
14 "dst": "decode:chunked_link"
15 },
16 {
17 "src": "decode:frames",
18 "dst": "scenechange:frames"
19 },
20 {
21 "src": "scenechange:scene_list",
22 "dst": "rek:scene_list"
23 },
24 {
25 "src": "rek:frame",
26 "dst": "draw:frame"
27 },
28 {
29 "src": "draw:frame",
30 "dst": "encode:frame_list"
31 },
32 {
33 "src": "encode:chunks",
34 "dst": "output_0:chunks"
35 }
36 ]
37
38 }

Figure A.1: The Facial Recognition pipespec example, continued.
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