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RESEARCH

Quantitative trait loci for cell wall 
composition traits measured using near-infrared 
spectroscopy in the model C4 perennial grass 
Panicum hallii
Elizabeth R. Milano1*, Courtney E. Payne2, Ed Wolfrum2, John Lovell1, Jerry Jenkins3,4, Jeremy Schmutz3,4 
and Thomas E. Juenger1

Abstract 

Background: Biofuels derived from lignocellulosic plant material are an important component of current renewable 
energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass 
yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall 
contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysac-
charides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore 
the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum 
hallii, a model lignocellulosic grass system. Diversity in the mapping population was generated by crossing xeric and 
mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared 
spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell 
wall components.

Results: Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. 
We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to 
localize to a single linkage group.

Conclusions: Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switch-
grass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in 
leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will 
lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding 
programs.
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Background
Second-generation biofuels such as ethanol, butanol, 
and hydrocarbons are derived from vegetative lignocel-
lulosic plant material [1–3] and are a critical component 
for current renewable energy strategies. These biofuels 

are advantageous over the current first-generation grain-
based biofuels, because they use whole plant biomass 
and can have reduced ecological impact on land and 
water resources [3–5]. Lignocellulosic feedstocks include 
perennial prairie grasses such as switchgrass and big 
bluestem, tropical grasses such as Miscanthus and Sor-
ghum, hardwoods such as poplar, and agricultural resi-
dues such as corn stover and sugarcane bagasse. These 
feedstocks have the potential to generate two to three 
times more biomass than first-generation grain-based 
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feedstocks [6, 7] annually on marginal or non-agricul-
ture land, or as secondary agricultural products. Current 
second-generation fuel conversion methods estimate 
70–90% recovery of glucose and other soluble carbohy-
drates necessary for bioethanol and other types of biofuel 
conversions from these feedstocks [8, 9].

Historic improvement efforts in lignocellulosic biofu-
els have been primarily focused on increasing biomass 
feedstock production yield [4, 7, 10]. Decades of forage 
research has found that the quality of feedstock can affect 
the digestibility of forage in rumen guts [11] and can lead 
to increases in milk, fiber and biofuel conversion yields 
[12–15]. Feedstock quality for lignocellulosic plants is 
dependent on the composition of the cell wall. The fuel 
precursor carbohydrates in lignocellulosic feedstocks are 
bound in crystalized polysaccharide polymers and inter-
woven with a lignin matrix that provides both structure 
to the plant and protection from herbivores and patho-
gens [16, 17]. High-quality biofuel feedstocks have large 
quantities of accessible carbohydrates while maintaining 
structural integrity and defense mechanisms in the field.

Cellulose, hemicellulose, and lignin are the three main 
components of the cell wall in lignocellulosic plants [18]. 
Cellulose is a polymer of β linked d-glucose units. Hemi-
cellulose is a polysaccharide composed of a mix of 5- and 
6-carbon monosaccharides with the primary component 
in monocotyledons being 5-carbon xylan [8, 19]. Crys-
talline cellulose and hemicellulose molecules are inter-
twined with a phenylpropanoid polymer lignin matrix 
and provide both structural support and protection 
against natural enemies [17].

Biofuel conversion technologies are in a state of contin-
uous development and improvement, but typically begin 
with a combination of mechanical, chemical, or thermal 
stresses. Pretreatment is followed by saccharification and 
fermentation, either sequentially or simultaneously [20, 
21]. Independent of the specific method used, all biofuel 
conversion processes will benefit from well-defined plant 
tissue characteristics. Phenotypic and genotypic charac-
terization of cell wall components and their interaction 
with agronomic growing conditions in the field will con-
tribute to quality biomass production.

Plant tissue characterization in forage crops has been 
historically well-studied in the field of agronomy and is 
based on a number of longstanding methods. However, 
some popular methods can be inaccurate or impractical 
for large-scale studies. The long used detergent analy-
sis method only provides a coarse quantification of cell 
wall components and has many known biases for ligno-
cellulosic tissue [22–24]. Current procedures based on 
the Uppsala method [25] are more accurate but can be 
time- and cost-prohibitive for large sample studies. Near-
infrared spectroscopy (NIRS) paired with multivariate 

analysis can be a quick, and non-invasive method for 
studying cell wall components. Primary analytical data 
and near-infrared (NIR) spectral data are used to build 
a multivariate predictive model that can then be used to 
predict composition based on spectral data from a sam-
ple of unknown composition. In this work, we use estab-
lished laboratory analytical procedures (LAPs) based 
on an updated Uppsala method [5] to generate primary 
compositional analysis data for a subset of ‘calibration 
samples’. We then collect NIR spectral data from the cali-
bration dataset, and use multivariate analysis to build a 
predictive model that can be applied to a larger spectral 
dataset of samples. NIRS has been used for a variety of 
agricultural applications from estimating seed fat content 
to green tea leaf alkaloids [26]. In biofuels, NIRS has been 
used to characterize cell wall components of switchgrass 
[27], corn stover [28], Miscanthus [29], Sorghum [30, 31], 
mixed grasses [32], and mixed wood [33] among others. 
Calibration models are most accurate when used to pre-
dict strict tissue composition [32] but can also include 
derived components such as total carbohydrate release 
[28, 30] and theoretical ethanol yields [27]. Several 
important applications have resulted from using NIRS 
for rapid analysis of cell wall traits. It is now convenient 
to assess biomass quality upon arrival at a biorefinery 
and quantify quality differences across environments, as 
water and other abiotic factors are known to have a large 
impact on yield and other biomass traits [34].

Understanding the genetics of cell wall components 
will lead to a better understanding of cell wall recalci-
trance [10] as well as aid the generation of high-quality 
feedstock. The genetic architecture of economically rel-
evant traits is important for locating large effect func-
tional variants in the genome and for understanding how 
a quantitative trait, like tissue composition, will respond 
to selection in breeding programs. Genetic mapping of 
quantitative trait loci (QTL) is the first step in locating 
large effect variants and determining the genetic archi-
tecture of a trait and in implementing marker-assisted 
selection in breeding programs. Thus far, genetic analy-
sis of cell wall traits using NIRS is limited to two stud-
ies in corn stover [28, 35]. To date, the authors are only 
aware of one published study that maps QTL for tissue 
characteristics as predicted by NIRS. In that study, Lor-
enzana et al. [28] find significant genetic variation, mod-
erate heritability, and many QTL with small effects. There 
are a number of QTL studies for tissue characterization 
in forage crops based on the detergent system of analysis 
[36]. However, results from these analyses are known to 
underestimate lignin and bias cellulose and hemicellulose 
estimates due to incomplete solubilization of protein and 
other inhibitory elements, such as phenolic compounds, 
furans, and weak acids, in lignocellulosic tissue [22]. 
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Whole genome surveys like QTL mapping and genome 
wide association studies (GWAS) have short-term ben-
efits for marker-assisted breeding programs and long-
term benefits in fine mapping, characterization of genetic 
architecture, and the ultimate discovery of genes involved 
in important biological processes.

Hall’s panic grass (Panicum hallii Vasey) is an impor-
tant genetic model system for C4 perennial grasses and 
for lignocellulosic biofuel crops in general [37–39]. P. hal-
lii has a small (~  550  Mbp) diploid genome, small stat-
ure, short generation time, and is self-compatible [39]. P. 
hallii has two distinct varieties, var. hallii found in xeric 
(dry) habitats and var. filipes found in mesic (moderate 
moisture) habitats (Fig. 1). The varietal distinction is sim-
ilar to northern upland and southern lowland ecotypes 
in switchgrass [38], making P. hallii a good ecological 
as well as genetic model system. Current genomic tools 
include an annotated reference genome (http://phyto-
zome.jgi.doe.gov/), transcriptome datasets, and a number 
of genetic mapping resources [37–39]. P. hallii shared a 
common ancestor with Panicum virgatum approximately 
5 million years ago [40]. This phylogenetic proximity 
allows for close synteny and genomic resources, while the 
small tractable genome and self-compatibility are useful 
for functional assays and laboratory functional genomic 
experiments.

The purpose of this study is to explore the genetic archi-
tecture of tissue characteristics in a biofuel feedstock 

model grass. We do so using a QTL mapping approach 
in P. hallii. We use primary analytical methods of analy-
ses for composition of reference samples and NIRS to 
build a P. hallii specific calibration model and quantify 
the cell wall composition and phenotypic correlations 
of tissue characteristics in an  F2 mapping population 
between mesic and xeric varieties. We compare the cell 
wall composition of calibration samples to other lignocel-
lulosic feedstocks to evaluate P. hallii as a model lignocel-
lulosic grass. We estimate the number and effect size of 
QTL underlying cell wall components. Both the P. hallii 
specific NIRS calibration model and exploration into the 
genetics of lignocellulosic cell wall traits provide valuable 
resources for crop improvement in bioenergy grasses and 
further investigation into cell wall recalcitrance.

Results
Cell wall compositional analysis of calibration samples
Our study involved both laboratory compositional analy-
sis and near-infrared spectral data analysis of a subset of 
samples to build a predictive model for cell wall compo-
sition. This model was then used to predict composition 
based on spectral data for the entire mapping popula-
tion. We first report a full compositional analysis of the 
cell wall components for the 113 calibration samples in 
Table  1. Further details regarding the development of 
the predictive model are included as an additional file 
(Additional file  1). As expected, the P. hallii cell wall is 

Fig. 1 Panicum hallii var. filipes and var. hallii. P. hallii var. filipes (left) and P. hallii var. hallii (right) growing in 1-gallon containers

http://phytozome.jgi.doe.gov/
http://phytozome.jgi.doe.gov/
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composed primarily of lignin, glucan and xylan. We 
report 7.3% acetyl content in the calibration samples. 
Soluble sugars such as sucrose, glucose, and fructose are 
found in trace amounts and comprise 3.3% of the total 
biomass. Ash includes structural and non-structural 

inorganic compounds such as silica, potassium, calcium, 
sulfur, and chlorine and comprises 7.3% of the biomass.

Panicum hallii has comparable cell wall composition to 
other perennial grass feedstocks. We evaluated the phe-
notypic similarity of P. hallii cell wall composition traits 
to three C4 grasses (switchgrass: [27]; Sorghum: [30]; 
Miscanthus: [29]) and one hard wood (poplar: [41]). We 
report the mean and standard deviation of percent dry 
biomass for ash, lignin, glucan, and xylan from NIRS 
calibration datasets with LAPs analogous to this study 
(Fig. 2; Additional file 2). We find that the composition of 
P. hallii cell walls is comparable to switchgrass and Sor-
ghum across all four traits and that relative xylan content 
is conserved across species (Fig. 2; Additional file 2).

Parent means and phenotypic correlations for NIRS 
predicted traits
We found minimal parental divergence and significant 
phenotypic correlations for NIRS predicted cell wall 
traits. Model uncertainty was relatively low and simi-
lar to the uncertainty associated with primary methods 
of measurement, as indicated by the root mean square 
error of calibration (RMSEC) values for each trait (ash: 
0.47, lignin: 0.46, glucan: 0.76, xylan: 0.67). All trait values 
are presented in units of percent total dry biomass. To 
assess patterns of parental divergence, we performed a t 
test of the difference between mean HAL2 and FIL2 trait 
predictions. Two of the four major cell wall components, 
ash and xylan, differed significantly between the parental 

Table 1 Composition of calibration samples

Composition statistics for 113 calibration samples reported as % of total dry 
biomass

SE standard error, Max maximum value, Min minimum value

Composition component Mean SE Max. Min.

Extractives

 % Sucrose 1.6 0.21 6.3 0

 % Soluble glucose 0.7 0.07 2.2 0.1

 % Soluble fructose 1.0 0.11 5.2 0.1

 % Water extractable others 10.3 0.26 13.7 6.3

 % Ethanol extractives 3.8 0.06 4.8 3.2

Cell wall

 % Lignin 14.4 0.13 15.7 12.2

 % Glucan 28.8 0.19 32.8 25.6

 % Xylan 18.5 0.14 21.1 16.7

 % Galactan 1.7 0.06 3.0 1.2

 % Arabinan 3.7 0.07 5.4 2.6

 % Acetyl 7.3 0.23 11.1 4.2

 % Total ash 7.3 0.23 11.1 4.2

 % Total protein 1.2 0.03 1.7 0.9

 Total % 93.9 0.2 96.9 91.2

Ash Lignin Glucan Xylan

P. hallii
Switchgrass
Sorghum
Miscanthus
Poplar

%
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Fig. 2 Comparison of major cell wall composition components in five lignocellulosic plant species. Mean and standard deviation values for NIRS 
calibration datasets are reported for P. hallii, switchgrass [27], Sorghum [30], Miscanthus [29], and poplar [41]
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lines (Table 2, Fig. 3). We tested for heterosis and found 
that the mean trait predictions for the  F1 hybrid were sig-
nificantly lower than both HAL2 and FIL2 for all traits 
except xylan (p < 0.05). There is some evidence for trans-
gressive segregation, where the range of the  F2 popu-
lation exceeds that of the mean predictions for HAL2 
and FIL2 (Fig. 3), in the traits without significant paren-
tal divergence, glucan and lignin. To explore patterns of 
trait correlations, we calculated phenotypic correlations 
among traits for parent lines and for the recombinant  F2 
progeny. The significance of correlations did not change 
across generations, so we only report the correlations 
for the mapping population. The three major cell wall 

structural components, glucan, xylan, and lignin are posi-
tively correlated. Ash is negatively correlated with lignin 
and xylan, and has no significant correlation with glucan 
(Table 3).

QTL analysis
We developed a new dense genetic linkage map for P. 
hallii based on expression polymorphisms derived from 
RNA-seq studies. This new map allowed an extensive 
study of genetic architecture for tissue characteristics 
using stepwise model building procedures in R/qtl. Four-
teen QTL and one epistatic interaction were identified 
from four NIRS predicted cell wall traits using stepwise 

Table 2 Trait predictions for mapping population

Mean (SE) for cell wall trait predictions. N is the number of replicates for the parental lines and the number of  F2 individuals measured for each trait, pval significance is 
the result of a t test for difference between the parental (HAL2 and FIL2) lines. Trait values presented as % dry biomass

Ash N Lignin N Glucan N Xylan N

F2 7.0 (0.08) 262 14.3 (0.04) 262 28.4 (0.07) 262 18.5 (0.04) 262

F2 range 3.0–11.4 – 12.7–16.6 – 25.3–31.8 – 17.0–20.9 –

F1 6.7 (0.11) 25 14.3 (0.09) 25 28.3 (0.17) 25 18.6 (0.09) 25

FIL2 7.2 (0.13) 25 15.0 (0.13) 25 29.0 (0.21) 25 18.8 (0.11) 25

HAL2 10.1 (0.25) 13 14.8 (0.16) 13 29.3 (0.23) 13 17.7 (0.13) 13

pval < 0.0001 – 0.405 – 0.411 – < 0.0001 –
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Fig. 3 Phenotypic trait distributions for the  F2 mapping population. Parent and  F1 hybrid means are indicated by vertical arrows and standard error 
indicated by horizontal line
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model selection (Fig. 4, Table 4). We found the most QTL 
for ash (totally 7) and detected at least one QTL for all 
the cell wall traits at an alpha of 0.1. Six QTL colocalize 
to linkage group (LG) 3 in addition to colocalizing QTL 
for pairs of traits on LGs 5, 8 and 9. Ash and xylan have 
a significant negative phenotypic correlation and have 
collocating QTL on both LGs 5 and 8. The allelic effects 
for these QTL are all in the expected direction of diver-
gence, where the HAL2 allele increases ash content and 
decreases xylan content, at each location. We only find 
two occurrences where the allelic effects are not in the 

expected direction of parental divergence. These occur 
on LG 1 and LG 3 for ash. The QTL for ash on LG 3 have 
an epistatic interaction and contrasting allelic effects 
with substantial dominance.

The largest percent variance explained (PVE) by a sin-
gle additive QTL is 10% for ash on LG 3. However, two 
additive ash QTL that also share an epistatic interaction, 
explain 18.6 and 26% of the variance. Total PVE, calcu-
lated using a full QTL model for each trait, is 67.5% for 
ash, 7.1% for glucan, 20.8% for lignin, and 23.0% for xylan. 
Additive effects range from 0.06 to 0.9% total biomass 
and dominance effects range from 0.03 to 0.5% total bio-
mass. We calculated the mean difference between HAL2 
and FIL2 for ash and xylan and found that the percent of 
parental divergence (PPD) explained by each loci ranges 
from 9.33 to 64.79% for ash and from 42.82 to 53.52% for 
xylan.

Discussion
We found almost half of cell wall QTL localize to LG 3 
in P. hallii. In addition, we discovered significant positive 
correlations between cellulose, hemicellulose, and lignin 
suggesting a potential for pleiotropic genetic architecture 

Table 3 Phenotypic trait correlations for  F2 population

Pairwise Pearson product-moment correlation (r) and significance (pval)

Trait 1 Trait 2 r pval

Ash Lignin − 0.23 < 0.0001

Ash Glucan 0.07 0.24

Ash Xylan − 0.54 < 0.0001

Lignin Glucan 0.54 < 0.0001

Lignin Xylan 0.53 < 0.0001

Glucan Xylan 0.50 < 0.0001
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Fig. 4 Panicum hallii genetic linkage map with QTL for cell wall traits. QTL plotted to the left of respective linkage groups. Color bars represent 1.5-
LOD interval and horizontal line indicates location of QTL
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among these traits. This has implications for recalci-
trance and the trade-off of diverting energy to sugar 
storage or building a structural matrix. Production of cel-
lulose, hemicellulose, and lignin is sequential in the life 
stages of a plant. Cellulose is the first structure to form 
in new cell walls, then hemicellulose is added to the cel-
lulose, joined with a series of covalent and non-covalent 
bonds, and lignin is the last component to be made. The 
hardening of a plant stem late in maturity is termed ligni-
fication. Understanding the timing and trade-offs in this 
process is important for biomass harvest, so as to avoid 
unnecessary hindrance to fuel conversion. Interestingly, 
using the same P. hallii  F2 mapping population, Lowry 
et  al. [38] localized 9 QTL to LG 3. These QTL include 
morphological traits such as tiller, leaf, and reproduc-
tive characteristics, and physiological traits such as  CO2 
assimilation rate, stomatal conductance. The density of 
functional alleles in this chromosome region suggests the 
possibility of a major developmental regulator controlling 
growth with concomitant impacts on important cell wall 
characteristics.

Ash content is a composite trait driven by the accu-
mulation of inorganic molecules in plant tissues [42]. 
Primarily, high ash content reduces the overall density 
of energy convertible material in biomass. However, ash 
is inclusive of all structural and non-structural inorganic 
material and the type and function of inorganic mol-
ecules in plants are diverse. It is not surprising that we 
found the largest and most numerous QTL in our study 
associated with ash content. Wang et al. [43] found that 
switchgrass ash was composed of 67%  SiO2, 12% CaO and 

many other mineral oxides in small concentrations. The 
high silica content can melt and fuse together when bio-
mass is thermochemically pretreated [44], thereby caus-
ing problems when scaling up fuel conversion methods at 
the biorefinery. However, if harvested, the inorganic resi-
due can be recycled into fertilizer [45] or a cement addi-
tive [43, 46]. Silica content has many functions in plant 
tissue including defense from abiotic and biotic stress 
[47, 48]. While there is mixed evidence regarding trade-
offs in silica and carbon-based defenses [49, 50], silica has 
been found to reduce herbivory in both switchgrass and 
Miscanthus [51].

Hemicellulose is one of only three main structural com-
ponents in the cell wall, therefore removal of any compo-
nent would presumably lead to less structural integrity of 
stem tissue. However, there is tantalizing evidence that 
xylan, the primary structural pentose in monocotyledon 
hemicellulose, is linked to xylem production. Brown et al. 
[52] found that Arabadopsis xylan knockouts result in 
dwarfing and collapsed xylem. Reduced xylan in rice and 
corn leads to a droopy stature [53]. We found that paren-
tal HAL2 line contains, on average, 1.1  mg/g less xylan 
than FIL2 and no significant parental divergence between 
glucan or lignin. We also observe that filipes stems are 
more upright and erect in stature than hallii (Fig. 1).

Lignocellulosic feedstock species vary in cell wall 
quality and composition as well as in availability of 
genomic resources for crop improvement. This is only 
the second study to use NIRS for QTL mapping of cell 
wall traits. Many of the well-developed grass genome 
resources come from long domesticated crops such as 

Table 4 QTL and main effects for each cell wall trait

LG linkage group, Pos position of QTL on LG in cM, 1.5-LOD 1.5 LOD drop confidence interval for each QTL in cM, LOD logarithm of odds score, a (SE) additive effect and 
standard error, D (SE) dominance deviation and standard error, PVE percent of additive variance explained by each QTL, PPD percent of parental divergence explained 
if applicable
a Epistatic interaction

Trait LG Pos 1.5-LOD LOD a (SE) D (SE) PVE PPD

Ash 1 61.17 56–65.2 7.73 − 0.449 (0.076) − 0.026 (0.102) 5.55 − 31.23

Asha 3 5.08 3.5–6.9 28.88 0.847 (0.091) − 0.198 (0.119) 26.06 58.87

Asha 3 71.11 69.7–73.8 22.17 − 0.932 (0.092) − 0.145 (0.117) 18.57 − 64.79

Ash 4 36.48 31.4–39 5.06 0.134 (0.075) 0.493 (0.105) 3.53 9.33

Ash 5 1.63 0–4.7 9.15 0.563 (0.088) − 0.136 (0.11) 6.67 39.16

Ash 8 47.65 42.1–50.7 13.09 0.629 (0.079) 0.132 (0.107) 9.95 43.74

Ash 9 161.45 131.5–167.1 6.57 0.379 (0.07) − 0.092 (0.103) 4.66 26.31

Glucan 3 61.07 37–71.1 3.64 − 0.398 (0.097) − 0.13 (0.136) 7.14 NA

Lignin 3 21.15 16.3–28.1 4.48 − 0.187 (0.054) − 0.246 (0.074) 7.57 NA

Lignin 3 77.27 61.1–85.4 4.38 − 0.224 (0.056) − 0.18 (0.074) 7.39 NA

Lignin 9 167.14 162.3–169.2 3.55 0.064 (0.051) − 0.291 (0.074) 5.94 NA

Xylan 3 26.24 21.1–29.7 5.84 − 0.293 (0.059) 0.082 (0.078) 9.62 53.52

Xylan 5 6.52 0–20.4 4.80 − 0.275 (0.059) 0.049 (0.082) 7.82 50.26

Xylan 8 56.39 46–66.4 4.77 − 0.234 (0.058) − 0.187 (0.077) 7.76 42.82
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corn, sugarcane, and sorghum. These crops have been 
bred for high-quality land use and intensive agricultural 
practices. Whereas perennial grasses such as switch-
grass, Miscanthus and Andropogon are only recently 
being cultivated for agriculture and their genomes have 
not been subject to 8–10,000  years of anthropogenic 
selection. Variation in types and composition of ligno-
cellulosic feedstocks is advantageous in that it broadens 
the range of acceptable habitats that can be used to pro-
duce substantial biomass material to meet global demand 
for renewable energy sources. However, diversity in the 
composition and quality of lignocellulosic feedstocks 
is disadvantageous for the biofuel conversion process, 
because biorefineries require uniform and high-quality 
biomass. Understanding the underlying genetic architec-
ture of these quality biomass composition traits will lead 
to a better understanding of the structure and function of 
cell walls. We did not find significantly large effect QTL, 
but the loci we did detect account for two-thirds of the 
observed variation in ash and one-fifth of the observed 
variation in both lignin and xylan. Future studies that 
build on this research, including fine mapping and addi-
tional environments, will contribute to breeding efforts 
and crop development of bioenergy feedstocks.

Conclusions
Panicum hallii serves as the genomic model for the 
emerging biofuel crop, switchgrass (P. virgatum). Near-
infrared spectroscopy (NIRS) provides a rapid and 
economical approach for compositional analysis. We 
developed a new NIRS calibration model for P. hallii to 
quantify natural variation in tissue quality and discov-
ered many clustered QTL underlying the genetic archi-
tecture of tissue quality in this emerging C4 perennial 
grass model system. Our model, and future explora-
tions into the genetics of lignocellulosic cell wall traits, 
can provide valuable resources for crop improvement in 
bioenergy grasses and further investigation into cell wall 
composition.

Methods
Plant material and genetic map
The mapping population was generated by crossing single 
inbred accessions of two morphologically distinct varie-
ties of P. hallii, where var. hallii (HAL2 genotype) was the 
dam and var. filipes (FIL2 genotype) was the sire. Both 
accessions were collected from wild populations in 2010 
and the cross was made in 2011. A single self-pollinated 
 F1 hybrid generated all the seeds for the  F2 mapping pop-
ulation. The  F2 progeny were grown under 16 h days in 
a glasshouse at the University of Texas at Austin in the 
fall of 2011. Details of greenhouse propagation as well 
as QTL for morphological and physiological traits are 

detailed in Lowry et  al. [38]. A linkage map was gener-
ated by genotyping 264  F2 individuals. The map contains 
3541 markers derived from RNA-seq based expression 
polymorphism data and spans 1045  cM with an inter-
marker map distance of ~ 0.5 cM. Details of linkage map 
construction can be found in supporting experimental 
procedures (Additional file 3). The linkage map itself and 
genotypes of the mapping populations are provided as 
supplemental data (Additional file 4).

Clonal replicates of the parental genotypes and their 
 F1 hybrid, and individual  F2 progeny were planted in the 
field in October 2012. The field experimental site was 
located in a prairie field (30.182° N, 97.879° W) at the 
south end of the Ladybird Johnson Wildflower Center 
(Austin, TX). Prior to planting, the field was covered 
with weed barrier cloth (Sunbelt 3.2  oz., Dewitt, Sikes-
ton, MO, USA). For planting, holes were cut in the cloth 
and a mechanical auger was used to drill holes in the 
soil. Plants were arrayed into rows with 1.2  m spacing 
between rows and 40 cm spacing between plants, along 
rows. Due to exceptionally low rainfall in the fall of 2012, 
plants were watered as needed through November and 
early December to ensure establishment. Irrigation was 
ceased once plants entered winter dormancy. The experi-
mental plants emerged from dormancy in the spring of 
2013.

NIRS phenotyping and model building
Plant tissue for NIRS analysis was harvested at the end 
of the growing season in 2013. Approximately 20–40 
R3 stage tillers [54] were harvested from each of 262  F2, 
13 HAL2, 25 FIL2, and 25  F1 plants. Tillers were dried 
to  <  4% moisture at 50  °C and knife-milled to ≤  2-mm 
particle size (Thomas Model 4 Wiley Mill, Thomas Scien-
tific, Swedesboro, NJ, USA). Samples were homogenized 
by riffling (Gilson Spinning Riffler SP-230, Gilson Com-
pany Inc., Lewis Center, OH, USA) for uniform particle 
size distribution. A Thermo Antaris II Fourier Transform 
(FT)-NIR spectrophotometer (Thermo Scientific Inc., 
Madison, WI, USA) was used to scan each sample. The 
details of this process have been provided in Additional 
file  1 and are similar to the scanning procedures previ-
ously reported by Payne et  al. [32] for high throughput 
scanning. A subset of 113 samples was chosen for model 
calibration based on their spectral distribution in multi-
dimensional space. The sample selection and analytical 
methods used for the calibration dataset are detailed in 
supporting experimental procedures (Additional file  1) 
but outlined here for convenience. In summary, we per-
formed a multi-step analytical procedure involving two-
stage solvent extraction of the biomass samples (water 
then ethanol) followed by two-stage acid hydrolysis of the 
extracted biomass following the established protocol by 
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Sluiter et al. [5]. We report the following values (all with 
units of % dry matter): water extractives, ethanol extrac-
tives, structural carbohydrates (glucan, xylan, galactan, 
arabinan), lignin (both acid soluble and acid-insoluble), 
and structural and non-structural inorganics, collectively 
termed “ash”. We also measured the sucrose, free glucose 
and free fructose concentration in the water extractives 
fraction. Structural carbohydrates are measured as solu-
ble monomeric sugars using HPLC, and then converted 
to a structural (anhydro) basis.

We developed a preliminary partial-least-square (PLS-
2) multivariate calibration model using near-infrared 
spectral data for the prediction of the most abundant 
cell wall components glucan, xylan, lignin, and ash. The 
model was fully cross-validated using the “leave-one-
out” method, where a single sample is removed from 
the model, and the model rebuilt without the sample. 
Model uncertainty was approximated using RMSEC 
and the root-mean-square-error of the cross-validation 
(RMSECV). We then used the model to calculate a pre-
diction for structural carbohydrates, lignin, and ash con-
tent for all remaining samples. Each sample prediction 
was associated with a measure of uncertainty or devia-
tion from the mean predicted value. Any sample predic-
tion, where twice its deviation was greater than or equal 
to the model’s RMSEC, was not used in the subsequent 
analysis. All laboratory procedures, NIRS analysis, and 
model development were performed at the National 
Renewable Energy Laboratory in Golden, CO. Phenotype 
data for the mapping population is provided as supple-
mental data (Additional file 5).

QTL analysis
We mapped QTL for cell wall traits in the mapping 
population using a stepwise multiple-QTL model fitting 
method as implemented in the R package R/qtl [55]. All 
QTL scans were performed using a normal model and 
Haley–Knott regression based on a dense 0.5  cM grid 
of pseudomarkers generated using the calc.genoprob 
function. We calculated logarithmic odds-ratio (LOD) 
penalties for main effects and interactions for each trait 
through 1000 permutation of the scantwo function at an 
alpha of 0.1. The QTL significance threshold is relaxed, 
because this is an exploratory study in a new plant system 
and minimizing the number of false negative results is of 
greater importance than detecting false positive results. 
We conducted a forward/backward stepwise search for 
models with a maximum of 10 QTLs that optimized the 
penalized LOD score criterion. We calculated the 1.5 
LOD drop interval of the QTLs in the best-fit models. 
We also used the best-fit stepwise model for each trait to 
calculate the additive effect, dominance deviation, and 
percent of variance explained (PVE) for each QTL using 

the makeqtl and fitqtl functions of R/qtl. We calculated 
the phenotypic difference between parental HAL2 and 
FIL2 lines and the percent of parental divergence (PPD) 
explained by the additive effect of each QTL for the traits 
with significant mean differences between parents.
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