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Evolutionary processes of natural selection may be expected to
leave their mark on age patterns of survival and reproduction.
Demographic theory includes three main strands—mutation accu-
mulation, stochastic vitality, and optimal life histories. This paper
reviews the three strands and, concentrating on mutation accumu-
lation, extends a mathematical result with broad implications
concerning the effect of interactions between small age-specific
effects of deleterious mutant alleles. Empirical data from genomic
sequencing along with prospects for combining strands of theory
hold hope for future progress.

senescence | hazard functions | biodemography |
evolutionary demography | genetic load

Darwinian natural selection is a story about demographic
success. Creatures pass on their genes thanks to the survival

and fertility they achieve as they age across the life course. It
makes sense to try to understand the age-specific patterns realized
in demographic schedules from species to species in the light of
evolution. Three main lines of inquiry are being actively pursued
by demographers, mutation accumulation, stochastic vitality, and
optimal life histories, described below. Of these, the first, mu-
tation accumulation, draws the most specific connections between
genomes and demographic outcomes. The last few years have seen
the consolidation in refs. 1 and 2 of mathematical theory for the
demographic consequences of this evolutionary process. This
paper situates mutation accumulation within the context of the
other demographic approaches, extends a mathematical result
with demographic implications, and considers emerging empirical
and theoretical opportunities.
Mutation accumulation is an idea of Sir Peter Medawar (3). It

posits large numbers of deleterious alleles, each with small age-
specific effects on survival, imposing genetic load on the pop-
ulation. Natural selection weeds out more slowly bad alleles that
only or mainly affect an organism when its days for procreating,
parenting, and grandparenting are running short. More late-
acting alleles will be found in any equilibrium state where inflow
of new mutations balances outflow in “mutation–selection bal-
ance.” Basic theory is found in refs. 4 and 5 extended to de-
mographic settings in refs. 6 and 7. It has gained relevance from
discoveries of large numbers of rarely occurring single-nucleotide
variants (SNVs) in sequenced genomes by the authors of ref. 8,
many apparently of the kind posited for mutation accumulation.
Stochastic vitality, a second approach, aims to represent pop-

ulation heterogeneity as it affects survival across the life course.
Differing genetic endowments and vagaries of development
create heterogeneity in physiology and susceptibility to environ-
mental shocks. Unobserved heterogeneity fixed across life is
called frailty, modeled by ref. 9 within a demographic framework
of proportional hazards. Stochastic vitality generalizes fixed
frailty; “vitality” changes across life in a stochastic, usually
Markovian process.
Large-scale models have been developed over many years by

Kenneth Manton, Anatoli Yashin, and many collaborators (e.g.,
ref. 10) in the form of “stochastic risk factor models” that are
Markov processes with high-dimensional state spaces. States of
a system represent large suites of physiological indicators, with
transitions estimated from data in longitudinal surveys. Small-

scale, stylized models have also proved useful in identifying
generic properties and demographic implications of stochastic
vitality. Exemplars are refs. 11–14. In one example easy to
picture, vitality is represented by a unidimensional Brownian
motion and death by hitting a lower barrier or by remaining
below a lower barrier for some random waiting time. Proba-
bility models developed to study bankruptcy of firms are
enriching the mathematical tools for demographic analysis.
Optimal life history theory, a third approach, is familiar from

a long tradition in biology studying organisms making adaptive
trade-offs over the life course to maximize reproductive success.
Trade-offs can be viewed as being programmed into the genome
or implemented as dynamic behavioral responses. They could
be manifest in genetic variation along the lines of “antagonistic
pleiotropy” or they could be found in norms of reaction estab-
lished by alleles long gone to fixation. The “disposable soma”
approach of Thomas Kirkwood (15) has inspired work within
this framework emphasizing investments in growth, mainte-
nance, reproduction, and repair.
The demographic side of the enterprise, represented for in-

stance by refs. 16–20, emphasizes roles for intergenerational and
intergroup transfers in social species. Analysis of returns to in-
vestments in different background environments give insight into
differences among species and taxa, especially into a distinction
between “fast” and “slow” life histories. The optimization at issue
is optimization under constraints. In practice, in formal models for
demographic schedules, constraints tend to have to be invented to
produce desired shapes, and the mathematics on its own does not
add much predictive power. However, the descriptive pictures
provided by these models give a wide range of qualitative insights.
It might well be feared that the baffling diversity of body plans

and environmental challenges among living things might make
the linkages between natural selection and demographic sched-
ules too complicated for words. Reassurance comes, however,
from discoveries of commonalities in the shapes of survival curves
in populations of organisms as diverse as fruit flies, primates, and
worms. These discoveries helped define an agenda for a new
field of “biodemography” seeded by remarkable findings in refs.
21–24 and consolidated in the 1997 volume Between Zeus and the
Salmon (25). As a practical goal, biodemographers seek to give
an account of how our human evolutionary heritage allows our
extended survival and whether and how it gives scope for yet
further enhancements.
Chief among the commonalities highlighted by biodemo-

graphic research are exponential increases in mortality rates
with age at moderately old ages (“Gompertz hazards”) and
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abating increases or “plateaus” at extreme ages. Alongside these
patterns are a host of allometric scaling relationships connecting
life span parameters with physical size and metabolic rate.
Processes of mutation accumulation, stochastic vitality, and

life history optimization are not alternatives, but complements. It
is to be hoped that the future will bring models that show these
processes working in combination. So far, though, these lines of
research have barely intersected.
Each strand has its advantages. Mutation accumulation has

the advantage of focusing on features of demographic schedules
that are fairly ubiquitous across the tree of life. It has strong
connections to genomic observations through its explicit modeling
of alleles subject to mutation, selection, and recombination. The
highly specific content of models for natural selection endows
mathematical results with predictive power and potential for
surprises.
Stochastic vitality has the advantage of being well-suited to

accommodating physiological realism. High-dimensional models
can draw on extensive survey data and assimilate medical knowl-
edge. Low-dimensional models bring out mathematical relation-
ships clearly.
The subject of optimal life histories has the advantage of a vast

array of field observations and studies of natural history and po-
tential for explicit modeling of environments. It permits an em-
phasis on explaining demographic differences, from niche to niche,
population to population, and species to species. It finds applica-
tion to many timescales from evolutionary time to short-term
adaptive strategies. It helps provide understanding of “negative
senescence” in populations from some species—some turtles
are examples—where mortality rates fall rather than rising with
age (26). Optimal life history theory has proved well-suited for
taking account of benefits of cooperation and sharing in social
species. On the mathematical side, its flexibility reduces predictive
force, but it directs attention firmly toward the conceptualization
and investigation of constraints.
In this paper, our primary focus is mutation accumulation, the

age-specific manifestation of genetic load. Agrawal and Whitlock
(27) give a recent review of the broad subject of genetic load.
They list six topics calling for elaboration: epistasis, asexual re-
production, nonrandom mating, spatial effects, temporal effects,
and genetic drift. Epistasis is the one under study here. The
spotlight is being directed at a particular source of epistasis
grounded in the logic of age-specific demographic schedules.
Among geneticists, the word “demography” typically comes up
with regard to histories of effective population size. Demography
here is much more. It is the warp and woof of fitness. Fitness is to
be calculated from rates of fertility and mortality depending
systematically on age across the life course, reflecting batches of
alleles carried by individual members of a population.
Three features of our modeling of epistatic genetic load stand

out. First, we are not concerned with mutant alleles at specific
sites but rather with sets or “teams” of alleles. Alleles are assigned
to teams on the basis of their age-specific profiles of demographic
action. Alleles belonging to one team may act through very dif-
ferent physiological pathways, but the resulting impact on age-
specific rates is shared. Widely scattered sites contribute members
to each team. Whereas genetic drift plays its usual role in driving
the highly random trajectories of counts of derived alleles in the
population for each site, we are looking at aggregate counts for
teams of alleles, for which mean values are paramount.
Second, in this paper, we are concerned only with one piece of

the whole load of deleterious mutant alleles. Although the model
of ref. 1 also applies to fertility and to infant and child mortality,
here we are restricting attention to adult mortality. This restriction
has a benefit. It gives a handle on what is often, as Agrawal and
Whitlock point out, an elusive abstraction, the “load-free geno-
type.” Adult survival across ages of reproduction and nurturing
cannot be better than 100% and cannot plausibly be better than

curves implied by reasonable levels of age-independent, extrinsic
mortality. As described under Discussion, anthropologists’ life
tables for contemporary hunter-gatherers bring a load-free
baseline and bounds on fitness costs from this particular piece
of genetic load within reach of empirical assessment.
Third, for this piece of genetic load, an adjustment for epis-

tasis can be directly calculated when a rate for new mutations is
to be compared with a total fitness deficit. Haldane’s principle,
which equates the two in the absence of epistasis, has a closed-
form generalization proved in ref. 2.
We adhere to a demographers’ point of view in expecting size

and density-dependent homeostatic feedbacks to keep net pop-
ulation growth near zero on a short-term timescale from one gen-
eration to the next across prehistory. Levels of fertility and offspring
survival are taken to be compensating for what would otherwise be
a loss in population viability. Optimal life history theory should shed
light on processes of compensation and on pathways through which
genetically determined biochemical differences work themselves
out in impacts on age-specific demographic schedules.
We now turn to a specific result in mutation accumulation

theory and its interpretation. The result is to be understood in
the light of an idea of Brian Charlesworth (28). Charlesworth
assumed (i) a linear approximate model for mutation accumu-
lation; (ii) mutant alleles with effects restricted to each and every
range of later ages; (iii) heavy constant background exogenous
mortality. He showed that these assumptions taken together
would arrange for mutant alleles to imprint a Gompertz-like
exponential pattern on mortality rates by age. Numerous pro-
posals have been made over the decades for explaining Gompertz
mortality schedules. However, many manage to get exponential
patterns out by putting exponential patterns in. In Charlesworth’s
story, the exponential pattern arises spontaneously from condi-
tions that are highly generic and fairly ubiquitous.
Charlesworth’s model is a linear one derived via approx-

imations that hold when overall effects of genetic load are low. It
equates the selective cost of a batch of deleterious mutant alleles
to the sum of their separate selection costs. However, nonlinearity
is an essential feature of mutation accumulation. The loss of net
reproduction from one mutant allele reduces what is left to be lost
by other mutant alleles. In any full model, the selective cost of
a batch of mutant alleles has to be less than the sum of the costs
of each of them separately. Thus, in a full model, natural se-
lection has less force for weeding out mutant alleles over gen-
erations to preserve mutation–selection balance.
In ref. 2, we proved that under a full nonlinear model, within

the setting investigated by Charlesworth, taking nonlinear in-
teractions into account destroys the equilibrium and drives sur-
vival to zero at all reproductive ages. That proof required somewhat
stringent conditions on the age-specific profiles of demographic
effects restricted to later ages. We conjectured that those re-
strictive conditions were unnecessary. We now go on to establish
that conjecture and prove the result in greater generality.

Results
We preview our nonlinear model for mutation accumulation
with some brief heuristics. We are interested in a description
with a resolution along the time axis of, say, fifties of generations.
On this timescale, recombination events, more than one per
chromosome per generation, break up most linkage between
sites numbering in, say, the hundreds, widely scattered across
the genome. Thus, it is reasonable to expect something like sta-
tistical independence when adding up, across different sites, alleles
belonging to the same team. At each separate site, Wright–Fisher
resampling may be taken to govern the random fates of derived
mutant alleles, whereas team-by-team totals of load for population
members are sensibly described in terms of distributions of sums
around mean values and by a deterministic model governing mean
values over time.
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In this setting, recombination is rapid compared with mutation
and selection, and both are rapid compared with aggregate
effects of genetic drift. Effective population sizes on the order of
10,000 or more are contemplated. The theory applies to alleles
that are mildly deleterious, intermediate between those that are
strongly selected and those for which selection is negligible com-
pared with drift. At any one site, when effective population size
is not very small and counts of derived alleles are not very large,
each round of (suitably scaled) Wright–Fisher resampling from
the population as it selects the next group of carriers should not
differ too much from low-probability Bernoulli trials. Adding up
across sites, loads for individuals should not differ too much from
Poisson-distributed independent variates. At this level, the argu-
ment remains informal, but formal results relating recombination
to Poissonization are given in chapters 4–6 of ref. 1, where
assumptions about the rapidity of the recombination process
are made precise.
In short, demographic applications call for a model in which

the genetic load for a randomly selected member of the popu-
lation is represented by some form of Poisson process on some
space indexing teams of alleles. Poisson processes are uniquely
determined by intensity measures or intensity functions, so some
such object should play a central role. When aggregate effects of
drift are small, an infinite population model is indicated. When
relevant intervals of time encompass many generations, a con-
tinuous-time model is indicated; hence, the model of ref. 1.
Our formal model for mutation accumulation with demographic

selective costs from ref. 1 is presented in this section with sup-
porting details in Materials and Methods, where the proof of our
theorem is also to be found. As we have mentioned, the model
can accommodate effects on fertility and juvenile mortality, but
in this paper we restrict attention to adult mortality schedules.
The model has four essential constituents. First is a space M
indexing teams that are each composed of mutant alleles sharing
a profile of demographic action. This index space may be any
complete, separable metric space and is sometimes just a finite
set. Here, it is the positive real axis. Second are the action profiles
themselves. For each m in M, we define an age-specific profile
θðm; xÞ specifying the effect ofm at age x. Formally, θ is a bounded
measurable function from M×R+ to R+ nondecreasing in age x
for every m. For flexibility in comparing effects of different sizes,
a positive scaling parameter η is taken to multiply all of the pro-
files θðm; xÞ. Often (as in our theorem) η is set to 1. Our third
constituent is a mutation rate qðmÞ. It is a nonnegative mea-
surable real function on M. Our fourth constitutent is a family
of intensity functions. For each time t≥ 0, rtðmÞ is a measurable
function representing the predicted mean density of alleles
from team m at time t in the population.
The model is an infinite population model in continuous time

with weak selection and random mating. At sites contributing to
any team, alleles are either wild type or semidominant delete-
rious mutants with no backmutation. This framework builds on
the well-known work of Kimura and Maruyama (29), but re-
combination leads to different and simpler formulas. For de-
mographic calculations, the genotype of an individual is identified
with the collection of elements m carried by the individual, each
repeated as many times as there are alleles from the team indexed
by m. A genotype is specified by an element g taken from the
space G of integer-valued Borel measures on M. An individual
with the “null” genotype g≡ 0 has wild-type alleles at every
contributing site.
Demographic structure enters the model through the profiles

θ. They determine the survival function through the cumulative
hazard. The survival function ℓxðgÞ is the probability of an in-
dividual with genotype g surviving to age x. The logarithm of its
reciprocal is the cumulative hazard, whose slope, when it exists,
is the hazard function itself (see, e.g., chapter 8 of ref. 30). In the
model, the cumulative hazard implied by g is formed from adding

up a baseline cumulative hazard plus an increment θðm; xÞ for
each m carried in the genotype g. The selective cost of mortality
due to these alleles is measured by the reduction in a net re-
production ratio (NRR) calculated from the product of ℓxðgÞ
times a baseline fertility schedule fx. The product (the “net ma-
ternity function”) is assumed to be nonnegative, integrable, and
bounded with support ½α; β� with 0≤ α< β≤∞]. Its integral is the
NRR. The model does not distinguish individuals by sex and
selective cost is calculated for individuals rather than couples,
but inheritance is diploid. (See ref. 2, p. 10,141.) For any in-
tensity function r, an age-specific force of natural selection Fr can
be calculated from formulas given in Materials and Methods. A
fixed-point argument in chapter 2 of ref. 1 shows that a family of
intensity functions rtðmÞ varying over time can be defined as the
unique solution (given r0) to a dynamical equation as follows:

drtðmÞ
dt

= qðmÞ− rtðmÞFrtðmÞ: [1]

The outcomes under scrutiny in our theorem occur when each
mutant allele is associated with an age of onset. Effects on the
cumulative hazard are restricted to ages beyond the age of onset.
We identify the index m with the associated age of onset and
require that the mutation rate qðmÞ be bounded below by some
constant q0 > 0 for m within the support (possibly infinite) of the
net maternity function. We let q vanish outside the support.
In linear approximate models that ignore interactions, these

kinds of profiles lead to well-behaved equilibrium limits for rtðmÞ
as t→∞ starting from the null genotype. In noteworthy cases
inspired by W. D. Hamilton and featured by Charlesworth (28),
the profiles are taken to be step functions with a single step of
some size η at m, so called “point-mass increments.” For con-
trasts in qualitative behavior between linear and nonlinear pre-
dictions, shapes of profiles beyond their ages of onset turn out
not to matter. However, until now, it has been an open question
as to whether some minimal step in profiles at age of onset is
behind the disappearance of equilibria.
In ref. 2, we proved that a finite limit for rtðmÞ as t→∞ fails to

exist for the setup just described under the special condition that
there exists η0 > 0 such that θðm; xÞ≥ η0 for all x>m and all m. In
other words, the proof depends on assuming some minimal step
at the age of onset. This condition is undesirable. A step added
onto a cumulative hazard function is like a Dirac delta function
added onto the hazard function itself. Such abstractions are
unrealistic for actual effects on mortality. In ref. 2, we conjectured
that the condition could be removed, but the specter that it might
turn out to be required or that some complicated alternative
might be necessary has hung over the subject. The following
theorem, proved in Materials and Methods, confirms that the
condition can indeed be relaxed.

Theorem. Let the mutation rate qðmÞ be bounded below by a con-
stant q0 > 0 beyond an age of maturity α≥ 0 and vanish for m< α.
With effect sizes η0 ≡ 1, let the action profiles θ satisfy

θðm; xÞ= 0 for x≤m;

θðm; xÞ> 0 for x>m:

Then, starting from r0 ≡ 0, the intensity function rtðmÞ diverges
monotonically to infinity as t→∞ for all m> α.
The eventually unbounded increase of the intensity function

described in the theorem can be pictured in terms of changes in
the predicted hazard function over time. At all times, each age is
subject to alleles arriving in the population with the capacity to
drive up hazards at and beyond that age. At older ages, there is
never much selective pressure removing alleles that only affect
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such older ages, and the frequencies of these alleles increase
linearly with time and head toward infinity. At younger ages,
early on, there is plenty of remaining reproductive potential to
be lost by death and selective pressure removes many of the
incoming alleles, temporarily keeping hazard rates low. In cross-
section, there is a stretch of low young-age hazards, a stretch of
rising hazards where remaining net fertility is dropping off, and
a stretch of high old-age hazards steadily trending upward. As
time goes by, remaining reproductive potential at middling ages
is gradually driven down. Under the assumptions of the theorem,
no selective pressure is arising from ages before the age of onset
for the effect of each allele. Thus, for alleles with onsets at
middling ages, it comes to be the case that selective pressure can
no longer keep outflow close to inflow. The stretch of rising
hazards shifts toward ever younger ages, until hazards at all ages
are marching toward infinity.

Discussion
The theorem delineates an outcome which nature has to avoid. It
reveals hidden dangers lurking in a kind of adaptive change that
would have been expected, on the face of it, to be advantageous.
Alterations in coding or in the regulation of gene expression that
postpone processes of deterioration to later ages would seem to
offer an efficient path to higher fitness. The theorem shows, to
the contrary, that there can be too much of a good thing. If early-
age effects of many deleterious alleles are altogether erased and
onsets turn up widely scattered late in the span of reproductive
or nurturing ages, then control over mutation accumulation can
be utterly lost.
One way to forestall the destruction of equilibria is easy to

envision but has far-reaching implications. Instead of erasing
early-age effects, processes of postponement can merely reduce
them, leaving some traces in hazard functions at early ages of
pathways of debilitation or vulnerability that come to be largely
concentrated at later ages. In other words, there is an important
difference between effects restricted to older ages and effects
only concentrated at older ages. Conditions that impose lower
bounds on selective costs including effects at early ages are proved
to be sufficient to guarantee the existence of mutation–selection
equilibria in corollary 3.17 of ref. 1. Small fixed costs independent
of age would be indistinguishable from lower bounds on early-
age effects.
Another plausible way to keep mutation accumulation from

running amok is to have mutation rates drop off for very late-
acting alleles. On its own, this alternative would not be efficient. It
only suffices if mutation rates drop all of the way to zero, and then
only under certain conditions. According to the theorem, even the
tiniest lower bound on qðmÞ spells trouble. However, in com-
bination with early-age effects for late-acting alleles, diminishing
mutation rates for very late-acting alleles offer a realistic antidote.
There is something particularly interesting about these ways of

avoiding equilibrium destruction. Under ordinary conditions,
they imply plateaus in hazard rates at extreme ages. The age-
specific force of natural selection trends downward as the age
profile of effects is concentrated at later and later ages, but even
when there is next to no selective cost to the late-age effects, the
costs of trace effects, if bounded below, hold the representation
of the alleles in check at equilibrium. Thus, mutation accumula-
tion with demographic cost functions inherently promotes pla-
teaus as a late-age concomitant of early accelerating increases in
hazard functions.
Other processes featured in the other approaches described at

the beginning of this paper also give good reasons for expecting
plateaus. Plateaus in hazard functions are a generic feature of
a wide class of Markovian stochastic vitality models, thanks to
the property of quasistationarity leading to powerful results by
refs. 12, 14, and 31. Heterogeneity in fixed frailty models pro-
motes plateaus, and there are ways of arranging for plateaus in

optimal life history models. Mutation accumulation must be
regarded as only one of several contributors to the occurrence of
plateaus. However, it is especially interesting as an enabling fea-
ture, a kind of prerequisite. Each of the other processes remains
vulnerable to disruption by deleterious mutations and the plateaus
that they foster could be destroyed, if mutation accumulation
were not being held in check.
A contrary view is expressed by Danko et al. (32), who claim

that “mutation accumulation may be a minor force in shaping life
history traits.” However, these authors impose an arbitrary upper
bound of 10 on the load of mutant alleles, excluding most of the
effect. Under their model with the bound removed, mutations do
accumulate in large numbers (see theorem 5.1 in ref. 33), sup-
porting the opposite conclusion.
Evolutionary demography is at a stage where new infusions of

empirical findings are needed. It is not to be hoped that age-
specific profiles for the action of the kinds of alleles involved in
mutation accumulation can be estimated from data, because these
are alleles with small effects, likely below any attainable threshold
of detectability. Estimation of age-specific action is rather un-
certain even for the few alleles so far identified with measurable
effects on longevity, like polymorphisms in the human forkhead
box gene FOX03A. However, statistical findings from whole-
genome sequencing efforts hold out promise for calibrating the
parameters of mutation accumulation models and for confront-
ing predictions with data.
Mutation accumulation is a story about small effects. Small

effects have long clearance times. In hazard functions, we view
the outcome of interaction between genetic vulnerabilities and
environmental challenges, challenges progressively reduced at
least over the last thousands of years and impressively over the
last few hundreds of years. Such reductions slow clearance fur-
ther. One implication is that deleterious alleles found today in
human genomes may often have ancient origins. Their frequencies
may reflect long periods of culling by natural selection in older,
more arduous environments. We expect their age-specific impacts
to reflect selective forces from times when much more severe
mortality impinged on ages of reproduction and nurturing than is
true today.
How might results from genome sequencing be brought to

bear? Our infinite-population model with epistasis does not in-
corporate genetic drift and does not apply directly to single sites.
Trajectories for derived alleles from a mutation at any single site
should obey a standard Wright–Fisher model with selection. The
heuristic arguments under Results suggest that the random site
trajectories should be compatible at appropriately coarse time-
scales with the mean totals for teams predicted by our model.
The model presupposes a picture in which senescence is sha-

ped by individual endowment with a modest sample from a very
large stockpile of reasonably rare deleterious alleles. The first
test is whether such a stockpile exists. Only recently has it be-
come possible to answer this question clearly in the affirmative.
Relevant results from ref. 8 are discussed below. More delicate
empirical questions, such as how many of these alleles have effects
that vary with age and what the nature and distribution of age
specificity might be, have hardly been addressed.
Predictions within our model concern a special class of dele-

terious alleles—dubbed MA alleles for this discussion—with age-
specific effects on adult survival chances held at equilibrium in
mutation–selection balance. This special subset of mildly dele-
terious alleles, although only one part of the broader phenom-
enon, is perhaps more amenable than others to comparisons with
genome studies.
Some empirical findings bear primarily on stocks, others on

flows. We first consider stocks. An accounting of SNVs based on
full sequencing of coding regions for 2,044 individuals is given
in ref. 8. Some of these SNVs occur with sufficiently high fre-
quency to qualify as SNPs. Figure 4C of ref. 8 shows more than
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75% of functional SNVs per individual with frequencies above
5% in their European population. However, among all SNVs,
functional or not, 86% are found with minor allele frequencies
less than 0.005. The 23 authors of ref. 8 observe that individuals
carry on average 13,959 SNVs out of a pool of 503,481 SNVs de-
tected in their sample. In the pool, 58% of SNVs are non-
synonymous, entailing differences in protein products. The authors
apply seven criteria for separating out functional SNVs. Although
47% of SNVs are categorized as deleterious by at least one cri-
terion, overlap is small, and the authors arrive at figures of 318 and
580 for average numbers carried per individual by combined cri-
teria of varying strictness.
By this reckoning, as expected, most SNVs are either alto-

gether neutral or nearly neutral. Deleterious SNVs constitute a
small minority. Mildly deleterious alleles are surely more common
than any highly deleterious alleles still to be found in an individual.
Among mildly deleterious alleles, MA alleles affecting adult
mortality are presumably themselves a minority.
Comparisons with mutation accumulation models depend on

inferences about genetic load for populations that could still
have been in mutation–selection equilibrium. Reductions in mor-
tality within environments altered by processes of civilization leave
us far from equilibrium today. An important question thus con-
cerns the number and character of SNVs detected today that
derive from mutations occurring long enough in the past to have
been shaped by natural selection when a mutation–selection
equilibrium could have been in force. The authors of ref. 8 do
not report estimated distributions for the antiquity of deleterious
alleles, but a variety of methods, reviewed in ref. 34, could be
marshalled for the purpose.
The authors of ref. 8, in line with others, attribute the large

aggregate numbers of neutral and nearly neutral SNVs to pop-
ulation growth. The demographic model that they fit to their
data exhibits an NRR for their European population of 1.0038 up
to 5,115 y ago and an NRR of 1.0195 thereafter, corresponding
to a population growth rate a little less than 1 per thousand per
year. The later NRR for their African population is 1.0166. For
the European population, the end-state effective population size
quoted at 512,000 implies an effective population size around
10,000 at the estimated time of transition to higher growth,
conveniently close to the date of the ancient Egyptian palette of
Narmer and the dawn of recorded history.
Demographic scenarios are undergoing rapid refinement as

datasets expand (see, e.g., ref. 35). The timing and pace of pop-
ulation growth certainly affect numbers of neutral and nearly
neutral alleles. However, the authors of ref. 36, p. 969, observe
that “while population growth dramatically increases the number
of deleterious segregating sites in the population, it only mildly
increases the number carried by each individual.” Similarly,
Simons et al. (37) find that the “deleterious mutation load is
insensitive to recent population history,” using simulations that,
unlike our model, incorporate back mutation. Overall, on our
reading of the literature, the last several hundred generations of
population growth do not appear to be a dominant influence on
counts per person of the kinds of alleles featured in our mutation
accumulation models.
The counts in the hundreds from ref. 8 are for deleterious

SNVs per individual detected within the exome, within protein-
coding regions of the genome. The counts need to be increased
by an as-yet-uncertain allowance for mildly deleterious alleles
per individual from other parts of the genome. They need to be
decreased by a fraction reflecting the share of MA alleles among
all mildly deleterious alleles. These adjustments may be expected
to offset each other to some extent. Progress may soon bring
greater clarity. In the meantime, working forward from ref. 8, a
guess in the hundreds for the stock of MA alleles held in
mutation–selection equilibrium seems compatible with what is
known so far.

From stocks, we turn to consideration of flows. Estimation of
total rates of new mutations in humans is a topic of active re-
search reviewed in ref. 38. See also ref. 39. Rates on the order of
70 mutations per individual per generation have been proposed
(ref. 38, p. 299). Most new mutations are altogether neutral or
nearly neutral. A small fraction is expected to be mildly delete-
rious. A portion of those are the MA alleles on which we are
focusing. Possible distributions of fitness effects can be studied
through simulations as in ref. 40.
When MA alleles on their own are under consideration, as we

have mentioned, the demographic structure in our model has the
useful feature that a rough estimate of total mutation rate for the
class can be ventured. The estimate relies on comparisons of
survivorship schedules for a presumed baseline and a possibly
observable outcome. It rests on a generalization of the principle
of J. B. S. Haldane (41). Haldane’s principle applies to linear
approximate models, that is to say, it applies in the absence of
epistasis, where it dictates that the total mutation rate for rele-
vant alleles should equal the total loss in fitness at equilibrium.
This equality breaks down in the face of interactions, but
a closed-form generalization turns out to hold in the full non-
linear model, encapsulated in theorem 3 of ref. 2.
An illustrative calculation is described in ref. 42 with param-

eters specified under Materials and Methods. The calculation is
informed by the near-contemporary hunter-gatherer life tables
reported in ref. 43 and enhanced by an allowance for fitness effects
from nurturance on the part of surviving parents and grand-
parents. It generates an estimate on the order of 13% for loss in
fitness from a load of MA alleles, which the generalized Haldane’s
principle transforms into a rate of 0.20 per individual per gener-
ation for new MA mutations. Extreme cases from ref. 43 generate
rates for MAmutations no higher than 0.50. These rates are subject
to downward revision, the greater the extent to which adaptive life
history processes are shaping baseline adult survival and contrib-
uting to long-term signatures of senescent mortality. However,
pegging MA mutation rates very much lower would be hard to
square with the numbers of alleles turning up in genome sequences.
Taken together, an estimate of flow along with an estimate of

stock for the special class of MA alleles yield an estimate of
average selective cost. For the right-hand side of Eq. 1 to vanish,
the average value of the age-specific force of natural selection
Fr(m) at equilibrium, averaged over earlier-acting and later-
acting alleles, has to equal the quotient of the total mutation
rate for MA alleles per individual divided by the average count of
MA alleles per individual. For example, 0.20/300 would be 1/1,500,
a selective cost qualifying as mildly deleterious when effective
population sizes equal or exceed 10,000. Ages of derived alleles
at single sites spreading out around as much as 1,500 generations
would be plausible.
As we have said, mortality reduction accompanying the march

of civilization has transformed present-day manifestations of our
genetic legacy. Mutation accumulation models describe equilib-
ria shaped by natural selection when loss of life during ages of
reproduction and nurturing was much more severe. With small
effect sizes and extended clearance times, frequencies of alleles
will be long in adjusting to recently beneficent environments, if
beneficent environments are indeed sustained. All strands of
biodemography face the need for an account of how patterns
shaped by evolution are to be translated into patterns in the
demographic schedules of nowadays.
Formally speaking, our mutation accumulation model allows

for simple adjustments in level preserving features of shape, by
retaining the equilibrium intensity rtðmÞ and profiles θðm; xÞ
while reducing a scaling parameter η, which governs sizes of
effects. Exogenous mortality reflected in the baseline schedule can
also be removed. However, this simple expedient is not empirically
adequate. Regularities in hazard functions—exponential increa-
ses and incipient plateaus—are now seen at ages that are too far
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beyond the reach of ages primarily subject to selective pressure.
Contributions by grandmothers to their descendants’ fitness,
along with contributions from parenting and grandparenting and
extended male ages of fertility are all now well appreciated, but
they do not reach far enough into extreme old age to account for
the regularities we continue to see.
A puzzle remains: Why are mortality rates today in human

populations at extreme ages not irregular functions of age? All
strands of evolutionary demography face this challenge.
Hints of an answer to this question may perhaps be found in

what demographers are observing in recent patterns of mortality
decline. A thoughtful overview is given in ref. 26. As James
Vaupel points out there, it appears that the pace of increase of
mortality with age, the senescent component reflected in the
slope parameter for Gompertz curves, has been relatively steady
over a number of decades. Steady increases in life expectancy
have been associated with steady decreases in level. With an ex-
ponential hazard curve, sinking the level of the curve is equiva-
lent to sliding the curve along the age axis toward higher ages.
Popular sayings like “sixty is the new fifty” actually capture the
formal structure of hazard rate changes. The extreme ages above
100 at which plateaus in hazard rates in contemporary humans
appear to form are also compatible with the idea that there are
processes that have been sliding schedules outward in age.
In such an account, regularities shaped by natural selection at

younger, reproductive and nurturing ages would now be seen at
older ages, translated into postreproductive life. The study of
formal models that might give this idea substance offers a pro-
ductive direction for future research. Mutation accumulation de-
pends upon a fund of potential mutations, which impinge upon
realized demographic schedules and so are shaped by natural se-
lection. These demographic influences must be mediated by in-
fluence on biochemical pathways, whose abstract structure could be
modeled by effects on transition rates in stochastic vitality models.
Reductions in environmental challenges might be represented in
terms of a lowered threshold of lethality as well as in terms of
exogenous changes in transition rates governing vitality trajectories.
Whether or not this particular approach turns out to be pro-

ductive, we believe that future progress demands models that
combine mutation accumulation with stochastic vitality and ul-
timately with optimal life history theory. The three approaches
described at the beginning of this article, largely pursued along
separate lines, offer in concert better hope for understanding the
evolutionary shaping of demographic schedules.

Materials and Methods
The ingredients of the model and conditions on the profiles θðm,xÞ and
baseline survivorship ℓx and fertility fx are stated under Results. The same
model is described at more length in ref. 2 and in full detail in ref. 1, where
our specification of demographic selective costs is treated in sections 1.4 and
3.9 and existence and uniqueness of a solution rtðmÞ satisfying Eq. 1 are
established in theorems 2.9 and 2.10 and remark 2.13. This solution is jointly
measurable in t and m and continuously differentiable in t for all m. The
solution is determined by the choice of formula for the age-specific force of
natural selection FrðmÞ, in our case given by the following:

FrðmÞ=
Z∞

α

�
1− e−ηθðm,xÞ

�
fx   LðrÞ

x   dx: [2]

In other settings, the scaling parameter η can depend on m, but for present
purposes we take η fixed, typically at unity. The function LðrÞ

x is the aggre-
gate population survivorship function given by the following:

LðrÞ
x dEr ½ℓxðGÞ�= ℓxð0Þexp −

Z

M

�
1− e−η  θðm′,xÞ�r�m′

�
dm′

0
@

1
A: [3]

These formulas are derived from measuring the selective cost of carrying
a batch of mutant alleles by the associated decrease in the NRR and from
taking the genotype of a randomly selected member of the population to

be the realization of a Poisson process with intensity rtðmÞ. (See ref. 2,
p. 10,146.) Selective costs are based on the NRR rather than on the more
familiar parameter Lotka’s r, because alleles are not invading the population
but are being maintained in an equilibrium.

Useful properties of rtðmÞ, LðrÞ
x , and FrðmÞ are collected in the following

lemma proved in ref. 2, supplementary information, p. 1.

Lemma. The solution rtðmÞ to Eq. 1 starting from r0 ≡ 0 is a nondecreasing
function of t for every m. The aggregate population survivorship function
Lrt
x is a nonincreasing function of t for every x. The age-specific force of

natural selection Frt ðmÞ is a nonincreasing function of t for every m.
We now proceed to the proof of the theorem.

Proof: The lemma implies that the intensity rt increases pointwise onM to an
extended real-valued limit r*. Similarly, Lrt

x is nonnegative and nonincreasing
in t and converges pointwise in x to some (always finite) limit Lx*. The limit is
nonincreasing as a function of x and, by monotone convergence, may be
written as Lx*=expð−HxÞℓxð0Þ, where the genetic contribution Hx to the
aggregate cumulative hazard at equilibrium is given by the equation

Hx d

Z

M

�
1− e−θðm′,xÞ�r*

�
m′

�
dm′:

We define the maximum age of survival ω by the expression

ωd inf
�
x : Lrt

x ↓0
�
, [4]

with the usual convention that inf 0==∞. It follows from the dynamical
equation (Eq. 1) via monotone convergence arguments spelled out in detail
in the proof of theorem 1 of ref. 2 that r*ðmÞ<∞ implies m∈ ðα,ωÞ and on
any such interval qðmÞ= r*ðmÞ  Fr*ðmÞ. Thus, it suffices to prove ω= α.

We divide our proof by contradiction into two cases, one starting with an
assumption that α<ω<∞ and the other starting with α<ω=∞. Consider
first the case where ω is assumed finite.

We begin by showing that limx↑ωe−Hx = 0, which implies limx↑ωLx*= 0. The
latter limit is obvious if θðm,xÞ and ℓxð0Þ are continuous functions of x for eachm,
because by two applications of monotone convergence we have the equalities

lim
x↑ω

Lx*=Lω*= lim
x↓ω

Lx*=0:

However, we are not excluding profiles with jumps that might bunch up at ω
and raise the threat of a discontinuity at ω in Lx*.

We rule out such a discontinuity with another set of monotone convergence
arguments. At an equilibrium, as we have said, we have qðmÞ= r*ðmÞ  Fr*ðmÞ
for all m in ðα,ωÞ. Because ð1−e−θðm,xÞÞ vanishes for x in ðα,mÞ, we can write
the equilibrium condition in terms of an integral over x in ðm,  ωÞ:

q0 ≤qðmÞ=
Zω

m

r*ðmÞ
�
1− e−θðm,xÞ

�
fx   Lx*  dx: [5]

Thanks to the upper bound on the baseline net maternity function and the
inequality Lx*≤ ℓxð0Þ, we have the inequality

q0 ≤ sup
y

�
fy ℓyð0Þ

� Zω

m

r*ðmÞ
�
1− e−θðm,xÞ

�
dx: [6]

For eachm, the monotone nondecreasing function ð1− e−θðm,xÞÞ has a limit
u(m) defined by the condition

uðmÞd lim
x↑ω

�
1− e−θðm,xÞ

�
:

Integrating over x and using the upper bound on the integrand provided by
u, we have the result

Zω

m

r*ðmÞ
�
1− e−θðm,xÞ

�
dx ≤ ðω−mÞr*ðmÞuðmÞ: [7]

Hence, we obtain the relationship

q0

supðfx ℓxð0ÞÞ
1

ω−m
≤ r*ðmÞuðmÞ:
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For any δ in ð0,ω− αÞ, we integrate both sides over values of m from
α to ω− δ:

q0

supðfx ℓxð0ÞÞ log
�ω− α

δ

�
≤

Zω−δ

α

rðmÞuðmÞdm:

Letting δ go to zero, we have shown that the integral of r*ðmÞuðmÞ from α
to ω is infinite.

By another application of monotone convergence for the equilibrium
aggregate cumulative hazard Hx , we find:

lim
x↑ω

Hx =
Zω

α

r*ðmÞuðmÞdm=∞:

Thus, as x↑ω, we have e−Hx ↓0, implying along the way that Lx* is continuous
at x =ω.

We now suppose that ω is strictly greater than α and derive a contradic-
tion. Thanks to the limit at x =ω which has just been established, for any
e> 0 we can find δ> 0 such that x >ω−2δ implies e−Hx < e, and δ can be
chosen so that α<ω− δ.

For any Borel subset B⊆ ½α,ω� and each age x, define

YBðxÞ=
Z

B

r*ðmÞ
�
1− e−θðm,xÞ

�
dm: [8]

The function Y is measurable, thanks to the joint measurability of θ, and Y is
nondecreasing in x for every B.

When, as in our case, ω is finite, set z=ω− 2δ and partition the whole
of ½α,ωÞ into three intervals I= ½α,zÞ and J= ½z,z+ δÞ and K = ½z+ δ,ωÞ. Then
Hx =YIðxÞ+YJðxÞ+YKðxÞ. When x ≤ z, we have YJðxÞ=YKðxÞ= 0 so that
Hx =YIðxÞ.

At an equilibrium, as before, we have qðmÞ= r*ðmÞ  Fr*ðmÞ for all m in
ðα,ωÞ, which means that qðmÞ equals the integral

Zω

α

r*ðmÞ
�
1− e−θðm,xÞ

�
e−YI ðxÞe−YJðxÞe−YK ðxÞ   ℓxð0Þfx   dx: [9]

We concentrate on the middle interval J of length δ, integrate both sides
over m in J, and use the nonnegativity of the integrands to justify reversing
the order of integrations over x and m, obtaining a factor of YJðxÞ inside the
integral with respect to x:

Z

J

qðmÞdm=
Zω

α

YJðxÞe−YI ðxÞe−YJ ðxÞe−YK ðxÞ   ℓxð0Þfx   dx: [10]

On the right, the lower limit of integration α can be replaced by z, because
YJðxÞ vanishes for smaller values of x. We have chosen δ so that the factor
e−YIðxÞ = e−Hx is smaller than « over this range of integration. The product
YJðxÞ  e−YJ ðxÞ is bounded above by 1=e= supðy expð−yÞÞ. The factor e−YK ðxÞ is
always less than 1. The range of integration ðz,ωÞ has length 2  δ. The right-
hand side of Eq. 10 is therefore bounded above by ðeÞð1=eÞðsupðfx ℓxð0ÞÞð2  δÞ.
The left-hand side is bounded below by q0   δ. Dividing out δ, we find that

q0 < eð2supðfx ℓxð0ÞÞ=eÞ:

We can therefore choose « small enough to make the right-hand side of Eq.
10 strictly smaller than the left-hand side, contradicting the equilibrium
condition. Thus, we conclude that ω<∞ implies ω= α.

We now turn to the case with ω=∞. For this case, we choose any fixed
δ> 0, and for any e> 0 we use the integrability of ℓxð0Þfx to choose z large
enough so that

R∞
z ℓxð0Þfx   dx < e. We bound expð−YIðxÞÞ by unity. Eq. 10 then

forces q0   δ< e=e, and for fixed δ and small enough «, we again have a con-
tradiction. We conclude that ω must be finite and so, as before, equal to the
minimum age of reproduction α as claimed.

Q.E.D.
The generalized form of Haldane’s principle from theorem 3 of ref. 2 may

be applied using a formula given there in supplementary equation S8:

Z
qðmÞdm=

Z
Hxe−Hx   fx ℓxð0Þdx: [11]

The illustrative calculation mentioned under Discussion is based on the esti-
mated average hunter-gatherer life table in ref. 43. The function Hx is set equal
to

R x
α ð0:013ζ + 0:000147 expð0:086yÞÞdy and ℓxð0Þ= expð−ð1− ζÞð0:013Þðx − αÞÞ.

Here, ζ = 0:50 is the share of age-independent mortality attributed to genetic
load and α= 13. The fx schedule is proportional to the density for a gamma
distributed random variable with shape parameter 2 and scale parameter 9
shifted to start at age α and normalized so that

R
fx   Lx*  dx = 1. This schedule

gives good fit at reproductive ages to a standard Coale–Trussell schedule for
natural fertility (ref. 30, section 6.8) along with a tapering contribution for
benefits to children and grandchildren from surviving parents and grand-
parents. Motivation and discussion may be found in ref. 42; future research
should refine the picture.
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