
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Patterns and statistics on words

Permalink
https://escholarship.org/uc/item/3cp1j3qb

Author
Tiefenbruck, Mark

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cp1j3qb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Patterns and Statistics on Words

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Mark Tiefenbruck

Committee in charge:

Professor Jeff Remmel, Chair
Professor Adriano Garsia
Professor Ronald Graham
Professor Ramamohan Paturi
Professor Alexander Vardy
Professor Jacques Verstraete

2012



Copyright

Mark Tiefenbruck, 2012

All rights reserved.



The dissertation of Mark Tiefenbruck is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2012

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Words and other common combinatorial objects . 1
1.1.2 Permutation patterns and statistics . . . . . . . . 3
1.1.3 Formal series . . . . . . . . . . . . . . . . . . . . 5

1.2 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Chapter 2: Consecutive Patterns . . . . . . . . . 8
1.2.2 Chapter 3: Generalizations of the Major Index . . 11
1.2.3 Chapter 4: Partially Marked Patterns . . . . . . . 13

Chapter 2 Consecutive Patterns . . . . . . . . . . . . . . . . . . . . . . . 18
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Consecutive patterns in permutations . . . . . . . . . . . 19

2.2.1 Selected examples . . . . . . . . . . . . . . . . . . 21
2.2.2 Solving Q2 solves Q2no . . . . . . . . . . . . . . 21

2.3 Consecutive patterns in compositions . . . . . . . . . . . 22
2.3.1 Two revealing examples . . . . . . . . . . . . . . 22
2.3.2 Fédou’s bijection: PS ⊂ PC . . . . . . . . . . . . 23
2.3.3 Compositions by two-term patterns and variation 26

2.4 Factors and consecutive patterns in words . . . . . . . . 27
2.5 Application of Theorem 2.4 to PS (and PC) . . . . . . 30

2.5.1 Permutations by (i,d)-peaks and permutations of
up-down type . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Uniform range distributions . . . . . . . . . . . . 36
2.5.3 Permutations by peaks and twin peaks . . . . . . 37
2.5.4 Permutations and up-down permutations by (i,m)-

maxima . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Ridge patterns in CCPs . . . . . . . . . . . . . . . . . . 41

iv



2.6.1 Verification that PC ⊂ PCCP ⊂ PW . . . . . . 42
2.7 Application of Theorem 2.4 to the set PCCP . . . . . . 43

2.7.1 DCCPs by two-column ridge patterns . . . . . . . 43
2.7.2 DCCPs by valleys along the upper ridge . . . . . 46

2.8 The pattern algebra method . . . . . . . . . . . . . . . . 47
2.8.1 A general strategy . . . . . . . . . . . . . . . . . 48
2.8.2 Key formulas . . . . . . . . . . . . . . . . . . . . 49
2.8.3 Up-down and down-up words . . . . . . . . . . . 52
2.8.4 A q-analog of a distribution due to Kitaev . . . . 54
2.8.5 The twin peak problem revisited . . . . . . . . . . 56

2.9 The Temperley method . . . . . . . . . . . . . . . . . . . 60
2.9.1 Two-column ridge patterns in CCPs . . . . . . . . 60
2.9.2 CCPs by peaks . . . . . . . . . . . . . . . . . . . 65
2.9.3 Compositions by mesas . . . . . . . . . . . . . . . 66
2.9.4 Permutations by (i,m)-maxima revisited . . . . . 67
2.9.5 Permutations by left-to-right minima and patterns

beginning with 1 . . . . . . . . . . . . . . . . . . 68

Chapter 3 Generalizations of the Major Index . . . . . . . . . . . . . . . 72
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 The main theorem . . . . . . . . . . . . . . . . . . . . . 74
3.3 Examples and extensions . . . . . . . . . . . . . . . . . . 76

3.3.1 Colored permutations . . . . . . . . . . . . . . . . 76
3.3.2 Pairs of permutations by common descents . . . . 78
3.3.3 Descents at positions congruent to i mod j . . . . 79
3.3.4 Permutations by alternating descents . . . . . . . 81
3.3.5 Compositions with number of even-to-odd and odd-

to-even transitions . . . . . . . . . . . . . . . . . 83
3.3.6 Directed column-convex polyominoes . . . . . . . 85

Chapter 4 Partially Marked Patterns . . . . . . . . . . . . . . . . . . . . 87
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 A conjecture due to Claesson and Linusson . . . . 99
4.3.2 A conjecture due to Jones . . . . . . . . . . . . . 101
4.3.3 Permutation patterns . . . . . . . . . . . . . . . . 105
4.3.4 Rook placements . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



LIST OF FIGURES

Figure 1.1: The Ferrers diagram for λ = 5331 in French notation . . . . . . 3
Figure 1.2: A column-convex polyomino . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1: Sketch of the permutation σ = 256143 . . . . . . . . . . . . . . 19
Figure 2.2: Sketch of the composition w = 377254 . . . . . . . . . . . . . . 23
Figure 2.3: Common classes of CCPs . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.1: ν and w(i) for w = 021044203 and λ = ε . . . . . . . . . . . . . 75
Figure 3.2: ν and w(i) for w = 021024203 and λ = 001169 . . . . . . . . . . 76

Figure 4.1: Schematic setup for the involution principle . . . . . . . . . . . 97
Figure 4.2: The matching M = {(1, 3), (2, 7), (4, 6), (5, 8)} . . . . . . . . . . 99
Figure 4.3: Occurrence of the pattern in π = 351426 . . . . . . . . . . . . . 99
Figure 4.4: The Ferrers board F(0,1,1,2,3,3) . . . . . . . . . . . . . . . . . . 108
Figure 4.5: The rook placement associated with a function f ∈ F5,6 . . . . 109
Figure 4.6: The code of a marked rook placement in F7,10 . . . . . . . . . . 114
Figure 4.7: Directed graph associated with a rook placement . . . . . . . . 115

vi



LIST OF TABLES

Table 2.1: Results implied by Corollary 2.7 . . . . . . . . . . . . . . . . . . 46

Table 4.1: Table of values of cat(σ) and nalrmin(σ) for S3 . . . . . . . . . . 88

vii



ACKNOWLEDGEMENTS

A portion of Chapter 1 has been published in the Electronic Journal of

Combinatorics. Rawlings, Don; Tiefenbruck, Mark. “Consecutive Patterns: From

Permutations to Polyominoes and Back”, Electronic Journal of Combinatorics,

Volume 17, 2010. In addition, a portion of Chapter 1 has been submitted for

publication in Pure Mathematics and Applications. Remmel, Jeff; Tiefenbruck,

Mark. A portion of Chapter 1 is also currently being prepared for submission for

publication of the material. Remmel, Jeff; Tiefenbruck, Mark. The dissertation

author is an author for all of these papers.

Chapter 2, in part, has been published in the Electronic Journal of Com-

binatorics. Rawlings, Don; Tiefenbruck, Mark. “Consecutive Patterns: From

Permutations to Polyominoes and Back”, Electronic Journal of Combinatorics,

Volume 17, 2010. The dissertation author was an author of this paper.

Chapter 3, in full, has been submitted for publication in Pure Mathematics

and Applications. Remmel, Jeff; Tiefenbruck, Mark. The dissertation author is an

author of this paper.

Chapter 4, in full, is currently being prepared for submission for publication

of the material. Remmel, Jeff; Tiefenbruck, Mark. The dissertation author is an

author of this material.

viii



VITA

2004 Bachelor of Science, Northwestern University

2006-2007 Teaching Associate, California Polytechnic State University,
San Luis Obispo

2007 Master of Science, California Polytechnic State University,
San Luis Obispo

2008-2012 Graduate Teaching Assistant, University of California, San
Diego

2012 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

M. Tiefenbruck, Enumerating Compositions with Bounded Parts by Variation,
2003 REU report

R. Angeles, D. Rawlings, L. Sze, and M. Tiefenbruck, The expected variation
of random bounded integer sequences of finite length, International Journal of
Mathematics and Mathematical Sciences 2005, no. 14, 2277-2285

D. Rawlings and M. Tiefenbruck, Consecutive Patterns: From Permutations to
Column-Convex Polyominoes and Back, Electronic Journal of Combinatorics 17
(2010), #R62

M. Tiefenbruck, 231-avoiding permutations and the Schensted Correspondence,
Pure Mathematics and Applications 22 No. 2 (2011), 269–272

D. Grabiner and M. Tiefenbruck, More Probabilistic Proofs of Hook Length For-
mulas Involving Trees, in preparation

J. Remmel and M. Tiefenbruck, Generalizations of the Major Index, submitted to
Pure Mathematics and Applications

J. Remmel and M. Tiefenbruck, Extending from bijections between marked occur-
rences of patterns to all occurrences of patterns, in preparation

S. Kitaev, J. Remmel, and M. Tiefenbruck, Marked mesh patterns in 132-avoiding
permutations I, submitted to Pure Mathematics and Applications

S. Kitaev, J. Remmel, and M. Tiefenbruck, Marked mesh patterns in 132-avoiding
permutations II, in preparation

ix



ABSTRACT OF THE DISSERTATION

Patterns and Statistics on Words

by

Mark Tiefenbruck

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Jeff Remmel, Chair

We study the enumeration of combinatorial objects by number of occur-

rences of patterns and other statistics. This work is broken into three main parts.

In the first part, we enumerate permutations, compositions, column-convex poly-

ominoes, and words by patterns relating consecutive entries. We show that there

is a hierarchy of enumeration problems on these sets of objects, such that the

problems in one set may be reformulated in terms of the higher sets, then solved

using powerful techniques developed for those sets. We use this viewpoint to solve

an open problem due to Kitaev and to produce many extensions of existing results

and interesting new results. In the second part, we use the same viewpoint to gen-

eralize a theorem due to Garsia and Gessel on the major index statistic. We give

many specializations and slight extensions of this result to apply it to a variety of

x



combinatorial objects and variations of the statistic. In the third part, we present a

general method for finding bijections between sets of objects that preserve various

statistics. We use this method to solve problems posed by Claesson and Linusson

and by Jones, and we also present several new results.

xi



Chapter 1

Introduction

1.1 Basic definitions

1.1.1 Words and other common combinatorial objects

An alphabet is a set with distinguishable elements, called letters. A word

on the alphabet X is a finite sequence of letters from X. The length of a word w,

denoted `(w), is the number of letters in w, including multiplicity. Every alphabet

permits a single word of length zero, called the empty word and denoted by ε. The

set of words of length n on the alphabet X is denoted by Xn. The set of all words

on the alphabet X, including the empty word, is denoted by X∗, while the set of

all non-empty words is denoted by X+.

If w ∈ Xn, then for 1 ≤ i ≤ n, wi will denote the i-th letter of w, and w

may be written as w = w1w2 · · ·wn. Given two words u, v ∈ X∗, the product (or

concatenation) of u and v, written uv, is the word consisting of the letters of u

followed by the letters of v. That is, if w = uv, then `(w) = `(u) + `(v), wi = ui

for 1 ≤ i ≤ `(u), and wj = vj−`(u) for `(u) + 1 ≤ j ≤ `(w). Given two sets of words

U, V ⊆ X∗, UV = {uv : u ∈ U, v ∈ V }. Since UV is a set, it does not contain

multiple copies of words that can be formed in multiple ways by different choices

of u and v.

In this work, we study many combinatorial objects that can be expressed

intuitively as words on some alphabet. We will make heavy use of the natural

1
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numbers, i.e. N = {0, 1, 2, . . . }, the positive integers, i.e. P = {1, 2, 3, . . . }, and

the set [n] = {1, 2, . . . , n} as alphabets. Other alphabets will be formed from

Cartesian products of these, or we will introduce them separately.

One important combinatorial object is the permutation. A permutation of

[n] is a bijection mapping [n] to itself. The set of all permutations of [n] is denoted

by Sn. A permutation σ ∈ Sn may naturally be thought of as a word on the

alphabet [n] by letting σi = σ(i). From that point of view, which we will adopt

for the entirety of this work, Sn ⊆ [n]n.

Another important combinatorial object is the composition. A composition

of m into n parts is a sequence of n positive integers that sum to m. Thus, Pn

is the set of all compositions with n parts. A weak composition is similar to a

composition, except that the parts are taken from the natural numbers. Given a

(weak) composition w of length n, we define sum(w) =
∑n

i=1wi, so that w is a

(weak) composition of sum(w) into n parts.

Related to compositions are partitions. A partition of m into n parts is a

collection of n positive integers that sum to m, where two partitions are considered

distinct only if they have a different number of parts of a given size, regardless of

which order we write them in. For example, 21 and 12 are distinct as compositions

but the same as partitions. The set of partitions with n parts is denoted by Λn.

For convenience, we will also let Λ =
⋃
n≥0 Λn. We commonly give a canonical

representation to partitions by sorting their entries, usually in decreasing order.

Thus, if λ ∈ Λn, then λ = λ1λ2 · · ·λn such that λ1 ≥ λ2 ≥ · · · ≥ λn. We will define

a weak partition in the obvious way, as well as sum(λ).

It is common to display a partition graphically using a Ferrers diagram.

In such a diagram, each part λi of the partition λ is represented by a row of λi

square cells with shared edges. These rows are then stacked and left-aligned. In

French notation, the rows are sorted with the largest row on the bottom, as in the

Ferrers diagram for λ = 5331 in Figure 1.1 (in English notation, they are sorted

with the largest row on top). To retrieve the partition λ from this diagram, we

read the lengths of the rows from bottom to top. However, it is clear that reading

the heights of the columns from left to right gives another partition of the same



3

Figure 1.1: The Ferrers diagram for λ = 5331 in French notation

integer, the conjugate of λ, denoted by λ′. Thus, the conjugate of 5331 is 43311.

In general, λ′i is the number of parts of size i or larger in λ.

One more combinatorial object that we will study is the column-convex

polyomino (CCP). A column-convex polyomino is constructed by successively glu-

ing a finite sequence of columns, each consisting of a finite number of unit square

cells, together in the xy-plane so that each pair of adjacent columns shares an edge

of positive integer length. CCPs with the same sequence of column heights and

overlaps are considered equivalent, so we give a canonical representation by saying

that the bottom left corner of the left-most column is at (0, 0). Figure 1.2 gives

a diagram of a CCP. Let CCP be the set of column-convex polyominoes, which

Figure 1.2: A column-convex polyomino

we will regard as a set of words whose letters are columns. The area of Q ∈ CCP
is denoted by area(Q), which is also the sum of the heights of the columns. The

perimeter of Q is denoted by per(Q), and the height of the column Qi in Q will

be denoted by |Qi|. The CCP in Figure 1.2 has area(Q) = 29, per(Q) = 38, and

`(Q) = 8.

1.1.2 Permutation patterns and statistics

A statistic on a set of words W is a function mapping W to the set of

integers, i.e. Z = {. . . ,−1, 0, 1, . . . }, although most statistics commonly of interest
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map to N. For example, the length, sum, and area functions discussed earlier are

statistics. We will define many more.

Permutation patterns give rise to a common type of statistic on permuta-

tions. Given a sequence a = a1, a2, . . . , am of distinct numbers, define the reduction

of a, denoted by red(a), to be the permutation τ ∈ Sm whose letters have the same

relative order as the elements of a. That is, for all i, j ∈ [m], τi < τj if and only

if ai < aj. For example, red(2853) = 1432. Then, given σ ∈ Sn and τ ∈ Sm, an

occurrence of the pattern τ in σ is a subsequence of the letters in σ whose reduc-

tion is τ . If the subsequence consists of consecutive letters of σ, then it is called a

match, a consecutive occurrence, or an occurrence of the consecutive pattern τ . If

σ has no occurrences of a (consecutive) pattern, then σ avoids that (consecutive)

pattern. The set of permutations in Sn that avoid τ is denoted by Sn(τ). For

example, if σ = 31452, then 314 and 315 are occurrences of 213 in σ, the first of

which is consecutive, and σ avoids 321, so σ ∈ S5(321).

For τ ∈ Sm, we define the statistics τ, τ -mch :
⋃
n≥0 Sn → N such that τ(σ)

is the number of occurrences of τ in σ and τ -mch(σ) is the number of consecutive

occurrences. For example, if σ = 31452, then 213(σ) = 2, 213-mch(σ) = 1, and

321(σ) = 0. A consecutive occurrence of 12 is frequently called an ascent or

rise, and a consecutive occurrence of 21 is frequently called a descent. We will

thus define asc(σ) = 12-mch(σ) and des(σ) = 21-mch(σ). An occurrence of 21

is frequently called an inversion, and an occurrence of 12 is frequently called a

co-inversion. We will thus define inv(σ) = 21(σ) and coinv(σ) = 12(σ).

We will also frequently consider sets of patterns. For example, a peak in σ

is a subsequence σiσi+1σi+2 such that σi < σi+1 and σi+1 > σi+2. Thus, we see

that a peak is a consecutive occurrence of either 132 or 231. We will define the

statistic peak(σ) to be the number of peaks in σ. Similarly, a valley is a consecutive

occurrence of either 213 or 312, and we define val(σ) to be the number of valleys

in σ. In general, if P is a set of patterns, then P (σ) will be defined as
∑

τ∈P τ(σ),

and P -mch(σ) will be defined as
∑

τ∈P τ -mch(σ).

Another common permutation statistic is the major index. Roughly speak-

ing, the major index of a permutation σ ∈ Sn is the sum of the positions of its
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descents. More precisely, if Des(σ) = {i ∈ [n − 1] : σi > σi+1}, then the major

index of σ, denoted maj(σ), is given by
∑

i∈Des(σ) i. MacMahon [44] showed that

inv and maj have the same distribution on Sn. We will also define the co-major

index, denoted by comaj(σ), to be the sum of the positions of the ascents in σ.

1.1.3 Formal series

Consider the sequence a = a0, a1, a2, . . . . The ordinary generating function

for a is given by the function f(x) =
∑

n≥0 anx
n = a0+a1x+a2x

2+· · · . We will use

the notation f(x)|xn to refer to the coefficient of xn in a generating function; in this

case, f(x)|xn = an. Given a sequence we wish to study, we will typically try to find

an algebraic expression for its generating function. For example, the generating

function for the Fibonacci numbers, defined by F0 = 0, F1 = 1, and Fn = Fn−1 +

Fn−2 for n > 1, is given by f(x) = x
1−x−x2 . Once an algebraic expression for the

generating function has been obtained, we can use standard techniques to calculate

elements of the sequence quickly or to find good approximations for them. To a

combinatorist, a generating function is nearly as good as (and sometimes better

than) an explicit formula.

A common variant on the ordinary generating function is the exponential

generating function. The exponential generating function for the sequence a =

a0, a1, a2, . . . is given by the function f(x) =
∑

n≥0 anx
n/n!. In other words, it is

the ordinary generating function for the sequence b, where bn = an/n!. Exponential

generating functions are useful in some cases when the ordinary generating function

cannot be written as a simple algebraic expression. For example, if an = n!, there

is no simple expression for the ordinary generating function, but the exponential

generating function is simply 1 + x + x2 + · · · = (1 − x)−1. Given an exponential

generating function, it is a simple exercise to retrieve the original sequence a,

making it a useful variant. Clearly, many other variants are possible, and we will

often need to choose one that suits the problem.

We will treat generating functions as formal power series, meaning that x

is merely a symbol that is not meant to stand in for an unknown quantity and

that the sum will never be evaluated. Instead, the function notation and sum are



6

used for notational convenience, indicating that the algebraic properties of formal

power series, e.g. their sum and multiplication rules, are the same as for ordinary

power series. In this way, we avoid questions of convergence that, while giving

information about the asymptotic behavior of the sequence, will not be considered

in this work. We will also consider formal power series in several variables.

The sequence a = a0, a1, a2, . . . can be thought of as a function a mapping N
to some other set, such that a(i) = ai. However, as suggested in Subsection 1.1.2,

we will frequently consider functions whose domains are sets of words. We would

thus like to extend the notion of generating functions to encompass these cases. If

W ⊆ X∗ is a set of words and h is a function whose domain is W , then we can

define the generating function for h to be f =
∑

w∈W h(w)w. Again, we will define

f |w to be the coefficient of w in f , so that f |w = h(w). As there is no conventional

definition for a sum of words, f is clearly considered a formal series, with algebraic

properties defined naturally: multiplication distributes over sums, and if c1, c2 are

coefficients and u, v are words, then (c1u)(c2v) = c1c2uv and c1u+c2u = (c1 +c2)u.

For example, if X = {a, b}, then (3a + ab)(2ε + 4b) = 6aε + 12ab + 2abε + 4abb =

6a + 14ab + 4abb. Note that, since uv 6= vu in general for u, v ∈ X∗, the order of

the terms in a product is important. It is never necessary to explicitly write ε, so

we will refrain from doing so in the future.

As an illustration, we will derive the generating function for h : Λ → N
such that h(λ) = 1 for all λ. In order to avoid confusion, we will let the letters of

λ be represented by x1, x2, . . . rather than 1, 2, . . . . Also, we will sort the letters

in increasing order. It should be clear that any partition can then be decomposed

uniquely into some number (possibly zero) of x1s, followed by some number of

x2s, and so on. Also, any word composed of some number of x1s, followed by

some number of x2s, and so on, corresponds to a partition. Thus, we see that

(1 + x1 + x1x1 + · · · )(1 + x2 + x2x2 + · · · ) · · · =
∏

i≥1(1 + xi + xixi + · · · ) expands

to the generating function we seek.

Next, we claim that (1− xi)−1 = 1 + xi + xixi + · · · . Indeed, if we multiply

the right-hand side by 1−xi, we find that 1 is the only term that doesn’t cancel out.

Two formal series f and g are considered equal if they have the same coefficients,
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i.e. if f |w = g|w for all w. Thus, (1 + xi + xixi + · · · )(1− xi) = 1 as formal series.

By definition, then, 1 + xi + xixi + · · · = (1− xi)−1. Therefore, we see that∑
λ∈Λ

λ = (1− x1)−1(1− x2)−1 · · · =
∏
i≥1

(1− xi)−1. (1.1)

Such a generating function can give us a wealth of information by substi-

tuting different quantities for the xis. For example, if we replace xi = xi, then we

get the generating function for p(m), the number of partitions of m:∑
m≥0

p(m)xm =
∏
i≥1

(1− xi)−1. (1.2)

Similarly, by substituting xi = xiz, we get the bivariate generating function for

the number of partitions of m into n parts:∑
λ∈Λ

xsum(λ)z`(λ) =
∏
i≥1

(1− xiz)−1. (1.3)

Thus, Equation (1.1) generalizes both of these results and many more.

A notable feature of Equation (1.3) is the form of its left-hand side. We see

that the coefficient of xmzn in this generating function is the number of partitions

with sum m and length n. This form is a common paradigm, and we will say that

this is the generating function for partitions by sum and length. Equation (1.2) is

the generating function for partitions by sum.

Define the q-shifted factorial of n by (a; q)n = (1 − a)(1 − aq) · · · (1 −
aqn−1). Then, we may rewrite the right-hand side of Equation (1.2) as (x;x)−1

∞

and the right-hand side of Equation (1.3) as (xz;x)−1
∞ . The q-shifted factorial will

commonly play a role in our generating functions, behaving similarly to n!. For

example, we define the q-exponential function, the q-sine function, and the q-cosine

function as follows:

eq(z) =
∑
n≥0

zn

(q; q)n
= 1 +

z

(q; q)1

+
z2

(q; q)2

+ · · · ,

sinq(z) =
∑
n≥0

(−1)nz2n+1

(q; q)2n+1

=
z

(q; q)1

− z3

(q; q)3

+
z5

(q; q)5

−+ · · · , and

cosq(z) =
∑
n≥0

(−1)nz2n

(q; q)2n

= 1− z2

(q; q)2

+
z4

(q; q)4

−+ · · · .
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1.2 Synopsis

1.2.1 Chapter 2: Consecutive Patterns

Define an up-down permutation to be a permutation σ ∈ Sn such that if

i ∈ [n− 1], then σi < σi+1 if i is odd and σi > σi+1 if i is even. In 1881, André [1]

derived the exponential generating function for up-down permutations by length.

That is, if UDSn is the set of up-down permutations of length n, then André

showed that ∑
n≥0

∑
σ∈UDSn

zn

n!
= sec(z) + tan(z). (1.4)

Later, Gessel [27] generalized this classic result to include inversions, showing that∑
n≥0

∑
σ∈UDSn

qinv(σ)zn

(q; q)n
=

1

cosq(z)
+

sinq(z)

cosq(z)
. (1.5)

Define an up-down composition to be a composition w ∈ Pn such that if

i ∈ [n− 1], then wi ≤ wi+1 if i is odd and wi > wi+1 if i is even. If UDPn is the set

of up-down compositions, then we show that the generating function for up-down

compositions by length and sum is given by∑
n≥0

∑
w∈UDPn

qsum(w)(z/q)n =
1

cosq(z)
+

sinq(z)

cosq(z)
. (1.6)

Comparing this to Equation (1.5), one may suspect that these problems are related.

In fact, there is a natural correspondence between certain enumeration problems

on permutations and compositions. The bijection ∇n, defined in the following

paragraph, gives the connection.

Let w ∈ Pn be a composition, and let λ ∈ Λn be a partition whose letters

are sorted in increasing order. For σ ∈ Sn, define invi(σ) = |{j : j > i, σj < σi}|,
i.e. the number of inversions starting at position i. We define the function ∇n :

Sn × Λn → Pn by the following rule: if ∇n(σ, λ) = w, then wi = invi(σ) + λσi .

For example, if σ = 2431 and λ = 1134, then w1 = 1 + 1 = 2, w2 = 2 + 4 = 6,

w3 = 1+3 = 4, and w4 = 0+1 = 1, so w = 2641. In private communication, Foata

showed that∇n is the inverse of Fédou’s [20] insertion-shift bijection. In Subsection

2.3.2, we will prove that ∇n is a bijection and show some of its properties.
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One important property of ∇n is that σi < σi+1 if and only if wi ≤ wi+1.

Therefore, occurrences of consecutive patterns in permutations correspond roughly

to similar subsequences in compositions. For example, if σiσi+1σi+2 is a peak, then

wi ≤ wi+1 and wi+1 > wi+2. We use this viewpoint to define consecutive pat-

terns in compositions. That is, if ∇n(σ, λ) = w, then given τ ∈ Sm, we say

that wiwi+1 · · ·wi+m−1 is a consecutive occurrence of τ in w if σiσi+1 · · ·σi+m−1

is a consecutive occurrence of τ in σ. Equivalently, if wiwi+1 · · ·wi+m−1 is a con-

secutive occurrence of τ in w, then there exists µ ∈ Λm such that ∇m(τ, µ) =

wiwi+1 · · ·wi+m−1. Naturally, we define the statistic τ -mch(w) to be the number

of consecutive occurrences of τ in w. Theorem 2.3, reproduced below in a sim-

pler form, allows us to obtain the so-called q-exponential generating function for

permutations by inversions and other statistics from the corresponding ordinary

generating function for compositions by sum. Indeed, if we use weak compositions

and partitions in Fédou’s bijection, then these generating functions are the same.

Theorem 1.1 (Simplified version of Theorem 2.3). If f, g are functions such that

f(σ) = g(w) whenever ∇n(σ, λ) = w for some n, λ, then∑
n≥0

∑
σ∈Sn

f(σ)
qinv(σ)zn

(q; q)n
=
∑
n≥0

∑
w∈Pn

g(w)qsum(w)(z/q)n.

The definition of consecutive patterns for compositions through ∇n has at

least one shortcoming. For instance, wiwi+1 is a consecutive occurrence of 12 in

w if wi ≤ wi+1. From the perspective of compositions, though, distinguishing

between the case wi < wi+1 and the case wi = wi+1 may well be of interest. So

there are consecutive pattern problems for compositions that have no analog for

permutations. However, every such problem for permutations can be reformulated

in terms of compositions. Therefore, methods for finding generating functions for

compositions may be applied to finding generating functions for permutations.

Next, we construct a bijection between compositions and wall polyominoes,

a subset of CCPs (see Figure 2.3 for a selection of common classes of CCPs). This

bijection gives a correspondence between consecutive patterns on compositions and

consecutive patterns on wall polyominoes. For instance, an upper ascent in a CCP

is a pair of consecutive columns such that the top of the second is higher than
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the top of the first. Through the bijection, ascents in a composition correspond

to upper ascents in a wall polyomino. We can often obtain a generating function

for wall polyominoes based on a similar one for some other subset of CCPs. Then,

we can use our bijection to find a similar result for compositions and thus for

permutations.

Finally, in a similar vein, we give a bijection between CCPs and a certain

set of words. We thus establish a hierarchy of consecutive pattern enumeration

problems, where problems from the lower classes can be reformulated in the higher

classes. The problems may then be solved by applying powerful techniques that

have been developed for the higher classes. The following theorem will help illus-

trate the power of this viewpoint.

For a composition w ∈ Pn, define the variation of w, denoted var(w), by

var(w) =
n∑
k=0

|wk+1 − wk|,

where we treat w0 = wn+1 = 0. Define asc(w), lev(w), and des(w), respectively,

to be the number of positions i ∈ [n − 1] such that wi < wi+1, wi = wi+1, and

wi > wi+1. In Subsection 2.7.1, using Goulden and Jackson’s cluster method from

the study of words, we derive a generating function for directed column-convex

polyominoes, a subset of CCPs that contains the wall polyominoes, by nine simple

statistics. By restricting the generating function to wall polyominoes and then

reformulating in terms of compositions, we obtain the following extension of a

theorem due to Carlitz.

Theorem 1.2 (Restatement of Corollary 2.2). The generating function for com-

positions by ascents, levels, descents, variation, sum, and length,∑
n≥0

∑
w∈Pn

aasc(w)blev(w)ddes(w)cvar(w)qsum(w)zn,

is given by

1 +

c2
∑
n≥0

(qz)n+1

1− c2qn+1

n∏
k=1

(
b+

c2dqk

1− c2qk
− a

1− qk

)

1− a
∑
n≥1

(qz)n

1− qn
n−1∏
k=1

(
b+

c2dqk

1− c2qk
− a

1− qk

) .
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In addition to the cluster method, we also make use of Goulden and Jack-

son’s pattern algebra method, the machinery of finite automata, and Bousquet-

Mélou’s adaptation of Temperley’s method for CCPs. We solve an open problem

posed by Kitaev on permutations and obtain many new results on permutations,

compositions, CCPs, and words.

1.2.2 Chapter 3: Generalizations of the Major Index

Garsia and Gessel [25] derived the following generating function for permu-

tations by descents, major index, and inversions:

∑
n≥0

∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ)zn

(x;u)n+1(q; q)n
=
∑
k≥0

xk eq(zu
k) eq(zu

k−1) · · · eq(z). (1.7)

Several mathematicians have derived alternate versions of this result for other

combinatorial objects. For example, Reiner [54] gave a version of the Garsia-

Gessel formula for Bn, the hyperoctahedral group, and Mendes and Remmel [46]

gave versions of the Garsia-Gessel formula for groups that are the wreath product

of a cyclic group Ck and the symmetric group Sn. Fuller and Remmel [24] obtained

several related results for compositions.

For example, let w ∈ Pn be a composition, and define zw to be the monomial

obtained by replacing the letters in w by wi = zwi . Define maj(w) to be the sum

of the i such that wi > wi+1. Then, Fuller and Remmel proved that

∑
n≥0

∑
w∈Pn

xdes(w)umaj(w)zw

(x;u)n+1

=
∑
k≥0

xk∏
i≥1(zi;u)k+1

. (1.8)

Note that, under Fédou’s insertion-shift bijection, maj(w) = maj(σ), since wi >

wi+1 if and only if σi > σi+1. Therefore, substituting zi = qi(z/q) and applying

Fédou’s bijection, as with Theorem 1.1, shows that, although not obvious, Fuller

and Remmel’s result generalizes Garsia and Gessel’s.

In Chapter 3, following the viewpoint presented in Chapter 2, we use a

new argument to find a version of Garsia and Gessel’s result for words. If s is a

statement, define χ(s) to be 1 if the statement is true and 0 otherwise. Let X be

an alphabet, and let A ⊂ X2. For w ∈ Xn, we can then define the descent number



12

and major index with respect to A:

desA(w) = |{i : wiwi+1 6∈ A}| and

majA(w) =
n−1∑
i=1

i · χ(wiwi+1 6∈ A).

For example, for compositions and the ordinary definitions of des(w) and maj(w),

we would use X = P and A = {w1w2 : w1 ≤ w2}. Let An = {w ∈ Xn :

wiwi+1 ∈ A for all i ∈ [n − 1]} = {w ∈ Xn : desA(w) = 0}, an =
∑

w∈An w, and

A(z) =
∑

i≥0 aiz
i. Then, we obtain the following theorem.

Theorem 1.3 (Restatement of Theorem 3.5).∑
n≥0

∑
w∈Xn

xdesA(w)umajA(w)

(x;u)n+1

w =
∑
k≥0

xkA(uk)A(uk−1) · · ·A(1) (1.9)

In the case of compositions, we see that A(z) =
∑

n≥0

∑
λ∈Λn

znλ, where λ

is sorted in increasing order. Thus, substituting xi = zxi in Equation (1.1), we get

A(z) =
∏

i≥1(1 − zxi)−1. Then, replacing xi = zi and rearranging terms, we see

that Theorem 1.3 generalizes Fuller and Remmel’s result.

We use this theorem to find generating functions for several natural varia-

tions of maj(σ), such as in colored permutations or pairs of permutations. In other

cases, we slightly modify the proof of Theorem 1.3 to obtain desired results. The

following example is illustrative.

For σ ∈ Sn, define an alternating descent to be a descent from an even

position or an ascent from an odd position, and define the alternating major in-

dex to be the sum of the positions of the alternating descents. More precisely,

altdes(σ) =
∑

i 1·χ(σ2i > σ2i+1)+1·χ(σ2i−1 < σ2i) and altmaj(σ) =
∑

i 2i·χ(σ2i >

σ2i+1) + (2i− 1) · χ(σ2i−1 < σ2i). We’d like to find∑
n≥0

∑
σ∈Sn

xaltdes(σ)ualtmaj(σ)qinv(σ)zn

(x;u)n+1(q; q)n
. (1.10)

Define Aq(z) to be the matrix 1
cosq(z)

sinq(z)

cosq(z)

sinq(z)

cosq(z)

(cosq(z))2+(sinq(z))2

cosq(z)

 .
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Then, in Theorem 3.10, we show that (1.10) is given by∑
k≥0

xk[ 1 0 ]Aq(zu
k)Aq(zu

k−1) · · ·Aq(z)

[
1

1

]
.

1.2.3 Chapter 4: Partially Marked Patterns

As discussed previously, the bijection ∇n from Chapter 2 sends maj(σ) and

τ -mch(σ) to maj(w) and τ -mch(w). In Chapter 4, we present a method of finding

bijections between sets of combinatorial objects that send statistics on one set to

statistics on the other. This method was discovered in the process of solving an

open problem by Claesson and Linusson [14]. We then found that the method could

be applied to solve an open problem by Jones [35], which led us to formalize the

method. We present the method in a very general way, so that it can be applied to

a wide variety of combinatorial objects and statistics and preserve many statistics

simultaneously. We state our solutions to these two open problems and present

several other applications of the method. In this subsection, we will outline the

method in the context of Jones’s problem.

Let w = (w1w2 · · ·wk) be a cycle in a permutation σ, i.e. a sequence of

letters such that σ(wi) = wi+1 for i ∈ [k− 1] and σ(wk) = w1. Two such sequences

are considered equivalent if one can be obtained from the other by cyclically shifting

some number of letters from the end to the beginning. Thus, cycles are usually

written canonically with their smallest element first. Every permutation can then

be decomposed into disjoint cycles.

A cycle-match of the pattern π is a subsequence of consecutive elements of

the cycle whose reduction is π, where we allow subsequences that wrap around the

end of the cycle from wk to w1. For example, in the cycle (15374), the subsequence

7415 is a 4213-cycle-match. Let πcyc(σ) be the total number of cycle-matches of π

in the cycles of σ. Then, Jones and Remmel [36] showed a more general version

of the statement that if π begins with 1, then the number of σ ∈ Sn with no

π-cycle-matches is the same as the number with no consecutive π-patterns. Jones

conjectured that this was true for any π that cannot cover a cycle with overlapping

π-cycle-matches. For example, in the cycle (14253), 3142 and 4253 are 3142-cycle-
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matches that cover the cycle, whereas no cycle can be covered by overlapping

2143-cycle-matches.

Jones and Remmel prove their result in the case of π1 = 1 by providing

a bijection from Sn to Sn that translates each π-cycle-match into a consecutive

occurrence of π. Note that this actually implies that πcyc and π-mch have the

same distribution on Sn. Direct arguments to prove Jones’s conjecture in general

remain elusive. Instead, we consider the set of marked permutations where each π-

cycle-match is either “marked” or “not marked”. For example, a permutation with

k π-cycle-matches would appear 2k times in this set with different marked cycle-

matches. We generate a similar set of marked permutations by either marking or

not marking consecutive occurrences of π. We then present a bijection between

these sets that preserves the number of marked patterns, rather than the total

number of patterns. The main result of Chapter 4 and its corollary, reproduced

below, then prove that πcyc and π-mch have the same distribution in Sn. In addi-

tion, our proof allows us to apply a technique called the Garsia-Milne involution

principle to obtain a bijection from Sn to Sn that translates each π-cycle-match

into a consecutive occurrence of π.

Let X be an alphabet, and define a pattern P on X∗ to be a set of pairs of

the form 〈a1a2 · · · ak, b1b2 · · · bk〉, where 1 ≤ a1 < · · · < ak and b1b2 · · · bk ∈ Xk for

some k. Each pair represents a set of indices and one possible sequence of letters

to occupy those indices. We do not require that we use the same k for all pairs in

P . An occurrence of the pattern P in a word w ∈ Xn is a subsequence of indices

a1a2 · · · ak with ak ≤ n such that there exists a pair 〈a1a2 · · · ak, wa1wa2 · · ·wak〉 ∈
P . We let P (w) denote the number of occurrences of the pattern P in the word

w. For example, in compositions, the consecutive pattern 12 can be written as the

pattern {a1a2 ∈ P2 : a2 = a1 + 1} × {b1b2 ∈ P2 : b1 ≤ b2}.
Define a pattern family to be a set of the form F =

⋃
n≥0〈f, g, An,Fn,Pn〉,

where f and g are functions mapping N to N, and for each n ≥ 0,

1. An is a finite alphabet,

2. Fn is a subset of A
f(n)
n , and
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3. Pn is a totally ordered set of patterns P1, P2, . . . , Pg(n).

We shall be interested in the generating function

RF(t, x1, x2, . . .) =
∑
n≥0

tn
∑
w∈Fn

g(n)∏
i=1

x
Pi(w)
i (1.11)

as well as its specialization

RF(t, x) =
∑
n≥0

tn
∑
w∈Fn

x
∑g(n)
i=1 Pi(w). (1.12)

Note that we allow g(n) = 0, in which case we will assume that Pn = ∅ and

interpret
∏g(n)

i=1 x
Pi(w)
i and x

∑g(n)
i=1 Pi(w) to be equal to 1.

Given a pattern family F =
⋃
n≥0〈f, g, An,Fn,Pn〉, we can form the par-

tially marked pattern family PMF =
⋃
n≥0〈f, g, An,PMFn,Pn〉 from F , where

if Pn = {P1, . . . , Pg(n)}, then PMFn is the set of all (g(n) + 1)-tuples of the form

〈w,H1, . . . , Hg(n)〉 such that w ∈ Fn and for i ∈ [g(n)], Hi is any subset of the

occurrences of the pattern Pi in w. Thus we can think of the (g(n) + 1)-tuple

〈w,H1, . . . , Hg(n)〉 as an element w ∈ Fn where some of the occurrences of Pi in w

are “marked” for i ∈ [g(n)]. We define the weight of 〈w,H1, . . . , Hg(n)〉 to be

wPMF(w,H1, . . . , Hg(n)) =

g(n)∏
i=1

y
|Hi|
i , (1.13)

where again we make the convention that if g(n) = 0, then we set wPMF(w) = 1.

Then, we shall consider the generating function

MRF(t, y1, y2, . . .) =
∑
n≥0

tn
∑

(w,H1,...,Hg(n))∈PMFn

wPMF(w,H1, . . . , Hg(n)) (1.14)

as well as its specialization

MRF(t, y) = MRF(t, y, y, . . .). (1.15)

The key result of Chapter 4 is the following theorem.

Theorem 1.4 (Restatement of Theorem 4.1). Suppose that F is a pattern family

and PMF is the partially marked pattern family constructed from F . Then

MRF(t, x1 − 1, x2 − 1, . . .) = RF(t, x1, x2, . . .), (1.16)
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so that

MRF(t, x− 1) = RF(t, x). (1.17)

Theorem 1.4 has the following obvious corollary.

Corollary 1.1 (Restatement of Corollary 4.1). Suppose that

F =
⋃
n≥0

〈f, g, An,Fn,Pn〉

and

G =
⋃
n≥0

〈h, g, Bn,Gn,Qn〉

are pattern families. (Here we are not insisting that f = h, which means that

for any given n, the elements of Fn and Gn can have different lengths, but we are

insisting that the number of patterns in Pn and Qn are the same.) Let PMF
and PMG be the partially marked pattern families constructed from F and G,

respectively. Then

MRF(t, y1, y2, . . .) = MRG(t, y1, y2, . . .) (1.18)

implies

RF(t, x1, x2, . . .) = RG(t, x1, x2, . . .). (1.19)

Consider again the conjecture of Jones and Remmel. In Subsection 4.3.2, we

present a bijection that translates marked π-cycle-matches into marked consecutive

occurrences of π. In the language of pattern families, this bijection shows that

MRF = MRG, where F and G are the pattern families corresponding to π-cycle-

matches and consecutive occurrences of π. Corollary 1.1 then shows that RF = RG,

which are the generating functions we were originally interested in.

In Section 4.2, we give a proof of Corollary 1.1 using the Garsia-Milne

involution principle. In doing so, we obtain a bijective proof of every problem we

can solve using this method.

A portion of Chapter 1 has been published in the Electronic Journal of

Combinatorics. Rawlings, Don; Tiefenbruck, Mark. “Consecutive Patterns: From

Permutations to Polyominoes and Back”, Electronic Journal of Combinatorics,
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Volume 17, 2010. In addition, a portion of Chapter 1 has been submitted for

publication in Pure Mathematics and Applications. Remmel, Jeff; Tiefenbruck,

Mark. A portion of Chapter 1 is also currently being prepared for submission for

publication of the material. Remmel, Jeff; Tiefenbruck, Mark. The dissertation

author is an author for all of these papers.



Chapter 2

Consecutive Patterns

2.1 Introduction

The problems of enumerating permutations, compositions, and words by

patterns formed by consecutive terms (parts or letters) have been widely stud-

ied and, for the most part, their stories are separate and parallel. In contrast,

the problem of enumerating column-convex polyominoes (CCPs) by consecutive

patterns has received only scant and indirect consideration.

Our primary purpose is to show that these problem sets are in fact inti-

mately related. More precisely, if PS, PC, PCCP , and PW respectively denote

the sets of consecutive pattern enumeration problems on permutations, composi-

tions, column-convex polyominoes, and words, then

PS ⊂ PC ⊂ PCCP ⊂ PW. (2.1)

The significance of (2.1) is that it allows powerful methods from the larger

problem sets to be applied to the smaller problem sets. To illustrate, we will

show how various results on words as well as Bousquet-Mélou’s [4] adaptation of

Temperley’s [59] method for enumerating CCPs may be used to count permutations

by consecutive patterns.

In particular, we exploit the perspective of (2.1) to q-count permutations by

(i, d)-peaks, up-down type, uniform m-peak ranges, and (i,m)-maxima. Notably,

a specialization of Corollary 2.4 provides a solution to the (2m + 1)-alternating

18
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pattern problem on permutations posed by Kitaev [40, Problem 1]. We will also

show that the generating function for permutations by a given pattern is deducible

from the generating function for a related pattern permutation set; for instance,

the generating function for permutations by peaks may be obtained from the one

for up-down permutations of odd length.

Our secondary purpose is to initiate the explicit study of CCPs by consecu-

tive (or ridge) patterns. Our introduction of two-column ridge patterns provides a

unifying characterization of the common subclasses of CCPs. In Subsections 2.7.1

and 2.7.2, we use results on words to enumerate directed CCPs by two-column ridge

patterns and by valleys. The Temperley method as modified in [4] is employed in

Subsection 2.9.2 to count CCPs by peaks.

We begin our exposé of (2.1) with a discussion of PS and then work our way

up the sequence of inclusions. As this chapter concentrates solely on consecutive

patterns, if p is a pattern or a set of patterns, then we will generally write p(σ)

instead of p-mch(σ) without concern for ambiguity. Also, we will always write

partitions in increasing order.

2.2 Consecutive patterns in permutations

When a permutation σ = σ1σ2 . . . σn ∈ Sn is sketched in a natural way,

patterns take shape. In the sketch of σ = 256143 ∈ S6 in Figure 2.1, one discerns

ascents, descents, peaks, valleys, and other patterns.

2
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Figure 2.1: Sketch of the permutation σ = 256143
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There are two standard ways of counting the number of times a given set

of patterns P ⊆
⋃
m≥1 Sm occurs consecutively in a permutation σ ∈ Sn:

• P (σ) = the total number of times elements of P occur consecutively in σ,

and

• Pno(σ) = the maximum number of non-overlapping times elements of P occur

consecutively in σ.

We also define pno(σ) to be the maximum number of non-overlapping times that

p occurs in σ. Note that in this case, Pno(σ) is not necessarily the same as∑
p∈P pno(σ), since consecutive occurrences of different patterns in P could overlap.

For example, relative to Figure 2.1, 132(σ) = 132no(σ) = 231(σ) = 231no(σ) = 1.

However, for P = {132, 231}, note that P (σ) = 2, whereas Pno(σ) = 1, since the

peaks σ2σ3σ4 = 561 and σ4σ5σ6 = 143 overlap at σ4 = 1. We will also define

peakno(σ) and valno(σ) accordingly.

For a pattern set P ⊆
⋃
m≥1 Sm, two primary enumeration questions arise:

• Q1: What is the cardinality of PSn = P ∩Sn? Elements of PSn are referred

to as P -pattern permutations of length n.

• Q2: How many permutations in Sn contain k consecutive P -patterns, count-

ing overlaps?

The variation of Q2 involving the maximal number of non-overlapping patterns will

be denoted by Q2no. The problem of counting permutations that contain no P -

patterns is known as the avoidance problem. The pattern avoidance cases (k = 0)

of Q2 and Q2no are identical as {σ ∈ Sn : P (σ) = 0} = {σ ∈ Sn : Pno(σ) = 0}.
As will be seen, there is a hierarchy between some versions of Q1, Q2,

and Q2no; in these cases, solving Q1 solves Q2, which in turn solves Q2no. Our

placement of the problem Q1 of enumerating permutations replete with P -patterns

at the top of the hierarchy complements and sharply contrasts with the central role

played in [38, 47] of the avoidance problem of counting permutations devoid of P

in solving Q2no.
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2.2.1 Selected examples

In 1881, André [1] solved what has become the classic example of Q1. For

UD =
⋃
m≥1{p ∈ Sm : p1 < p2 > p3 < p4 > · · · }, the elements of UDSn are

said to be up-down permutations of length n. André showed that the exponential

generating function for the number of up-down permutations of length n is given

by ∑
n≥0

|UDSn|
zn

n!
= sec(z) + tan(z). (2.2)

As an example of Q2, we present the generating function for permutations

by peaks obtained by Mendes and Remmel [47]:∑
n≥0

∑
σ∈Sn

ypeak(σ)zn

n!
=

√
y − 1√

y − 1− tan(z
√
y − 1)

. (2.3)

Prior to [47], Kitaev [40] obtained a different form for the right side of (2.3).

Incidentally, Entringer [18] enumerated “circular” permutations by peaks.

The appearance of the tangent function in both (2.2) and (2.3) is no coin-

cidence. A general explanation is provided in Section 2.5, thereby showing that

solving Q1 solves Q2.

When we compute the q-exponential generating function for permutations

by inversions, we encounter many natural q-analogs of well-known results. For

instance, Gessel [27] and Mendes and Remmel [47] respectively showed that∑
n≥0

∑
σ∈UDSn

qinv(σ)zn

(q; q)n
= secq(z) + tanq(z) and (2.4)

∑
n≥0

∑
σ∈Sn

ypeak(σ)qinv(σ)zn

(q; q)n
=

√
y − 1√

y − 1− tanq(z
√
y − 1)

, (2.5)

where secq(z) = 1/ cosq(z) and tanq(z) = sinq z/ cosq z. Replacing z by z(1 − q)
and then letting q approach 1 reduces (2.4) to (2.2); hence (2.4) is a q-analog of

(2.2). Likewise, (2.5) is a q-analog of (2.3).

2.2.2 Solving Q2 solves Q2no

In [38], Kitaev made the beautiful observation that Q2no for a single pattern

may be reduced to the avoidance problem. Shortly thereafter, Mendes and Remmel
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[47] extended Kitaev’s result by tracking a set of patterns and adding the inversion

number to the mix.

Theorem 2.1 (Mendes and Remmel 2007). If P ⊆ Sm with m > 1, then

∑
n≥0

∑
σ∈Sn

qinv(σ)yPno(σ)zn

(q; q)n
=

Kq(z)

1− y + y
(
1− z(1− q)−1

)
Kq(z)

,

where Kq(z) =
∑

n≥0

(∑
σ∈Sn q

inv(σ)0P (σ)
)
zn/(q; q)n is the q-exponential generating

function for permutations that consecutively avoid P .

Among many consequences of Theorem 2.1, Mendes and Remmel obtained a solu-

tion to Q2no relative to peaks:

∑
n≥0

∑
σ∈Sn

qinv(σ)ypeakno(σ)zn

(q; q)n
=

(
1− yz

1− q
+
√
−1(1− y) tanq(z

√
−1)

)−1

. (2.6)

Theorem 2.1 provides a bridge from some versions of Q2 to Q2no. For

instance, setting y = 0 in (2.5) gives the q-exponential generating function for

peak-avoiding permutations, which in turn may be plugged into Theorem 2.1 to

get (2.6). For this reason, our primary focus will be on Q2.

2.3 Consecutive patterns in compositions

As with permutations, a sketch of a composition w ∈ Pn reveals patterns.

When w = 377254 ∈ P6 is sketched as in Figure 2.2, one observes ascents, levels,

descents, peaks, valleys, and more.

In particular, we define a peak in a composition w to be a subsequence

wiwi+1wi+2 satisfying wi ≤ wi+1 > wi+2. The number of peaks in w is denoted by

peak(w). In Figure 2.2, subsequence w2w3w4 = 772 is a peak and peak(w) = 2.

2.3.1 Two revealing examples

Naturally, Q1 and Q2 have been considered in the context of compositions.

Paralleling André [1], a composition w for which w1 ≤ w2 > w3 ≤ w4 > · · · is
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Figure 2.2: Sketch of the composition w = 377254

said to be up-down. If UDPn denotes the set of up-down compositions of length

n, then ∑
n≥0

∑
w∈UDPn

qsum(w)(z/q)n = secq(z) + tanq(z). (2.7)

Carlitz [8] obtained a related result; he used w1 ≤ w2 ≥ w3 ≤ w4 ≥ · · · as the

defining property of an up-down composition.

As an example of Q2 for compositions, the generating function for compo-

sitions by peaks (see Section 2.5 for a proof) is∑
n≥0

∑
w∈Pn

ypeak(w)qsum(w)(z/q)n =

√
y − 1√

y − 1− tanq(z
√
y − 1)

. (2.8)

Heubach and Mansour [32] obtained the distributions for compositions with parts

in an arbitrary alphabet by various three-letter patterns; their result for peaks is

more general than (2.8).

Comparison of (2.4) with (2.7) and of (2.5) with (2.8) strongly suggests that

certain problems in PS and PC are one-in-the-same. Fédou’s [20] insertion-shift

bijection provides the connection.

2.3.2 Fédou’s bijection: PS ⊂ PC

For σ ∈ Sn and 1 ≤ i ≤ n, let invi σ = |{k : i < k ≤ n, σi > σk}|, i.e. the

number of inversions starting at σi. Then we define the function∇n : Sn×Λn → Pn

such that if σ ∈ Sn and λ ∈ Λn, with the letters of λ sorted in increasing order,

then ∇n(σ, λ) = w, where

wi = invi(σ) + λσi . (2.9)
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For example,

∇6(256143, 224444) = 377254. (2.10)

As communicated privately by Foata, ∇n is the inverse of Fédou’s insertion-shift

bijection. In Theorem 2.2, we will prove that ∇n is a bijection as well as a few

simple properties.

Theorem 2.2. The function ∇n is a bijection. Moreover, if ∇n(σ, λ) = w, then

inv(σ) + sum(λ) = sum(w) (2.11)

and

σi < σm if and only if wi ≤ wm + |{j : i < j < m, σi > σj}|. (2.12)

Proof. To prove that ∇n is a bijection, it will suffice to show that each w ∈ Pn

comes from a unique pair (σ, λ). We will proceed by induction. In the case where

n = 1, the statement is clearly true. Now, for n > 1, assume that ∇n−1 is a

bijection.

Given σ ∈ Sn such that σi = 1, define σ− ∈ Sn−1 by removing σi from σ and

subtracting 1 from each remaining letter. Given λ ∈ Λn, define λ− = λ2λ3 · · ·λn.

For example, if σ = 256143 and λ = 224444, then σ− = 14532 and λ− = 24444.

Then, ∇n−1(σ−, λ−) = w−, where w−j = wj − 1 if j < i and w−j = wj+1 if j ≥ i.

Also, we see that λ1 = wi and wi ≤ wj for all j, with a strict inequality when

j < i.

Now, given w, we may construct the composition that must be w−. Choose

i such that wi is minimal and wj > wi for all j < i. From the previous paragraph,

we know this is the only possible position for which σi could be 1. Then, w− is

obtained by removing wi and subtracting 1 from each wj with j < i. Since ∇n−1

is a bijection, we may then find unique σ− and λ− corresponding to w−. We know

that σi = 1 and λ1 = wi, so we obtain σ by inserting a 1 in the i-th position of σ−

and adding 1 to every other letter, and λ = wiλ
−. Since each of these steps was

uniquely determined, so are σ and λ. Finally, we must check that λ is a partition.

Since λ− is a partition and wi ∈ P, it suffices to check that wi ≤ λ−1 . However, λ−1

is the minimal element of w−, which by construction is at least wi, so we are done.
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Summing (2.9) over i from 1 to n, (2.11) is obvious. Next, if σi < σm, then

λσi ≤ λσm . Thus, solving (2.9) for λσi , we see that wi− invi(σ) ≤ wm− invm(σ), or

wi ≤ wm + invi(σ)− invm(σ). However, invi(σ)− invm(σ) = |{j : i < j < m, σi >

σj}|. On the other hand, if σi > σm, then by following similar logic, we see that

wi ≥ wm + 1 + |{j : i < j < m, σi > σj}|, and (2.12) follows.

Due to the second property, (2.12), ∇n roughly transfers the overall shape

and patterns of σ to the corresponding w. For example, as can be seen in Figures

2.1 and 2.2, σ = 256143 ∈ S6 and w = 377254 ∈ P6, related by (2.10), are of

similar shape. The peaks 561 and 143 in σ = 256143 coincide with the peaks 772

and 254 in w = 377254. A special case of (2.12) is that σi < σi+1 if and only

if wi ≤ wm. Thus, we see that ∇n preserves peaks. Overall, (2.12) implies that

consecutive patterns will be translated well from permutations to compositions.

Rather than defining consecutive patterns directly on compositions, it is

then convenient to take an indirect path through ∇n. For p ∈ Sm, the sub-

sequence wkwk+1 . . . wk+m−1 is said to be a consecutive p-pattern in w provided

the corresponding subsequence σkσk+1 . . . σk+m−1 is a consecutive p-pattern in the

unique permutation σ satisfying w = ∇n(σ, λ). Furthermore, for P ⊆ ∪m≥1Sm

and w = ∇n(σ, λ), we define P (w) = P (σ) and Pno(w) = Pno(σ).

The definition of patterns for compositions through ∇n has at least one

shortcoming. For instance, wkwk+1 is a consecutive 12-pattern in w if wk ≤ wk+1.

From the perspective of compositions, though, distinguishing between the case

wk < wk+1 and the case wk = wk+1 may well be of interest. So there are problems

in PC that have no analog in PS. However, PS ⊂ PC.

Theorem 2.3. If Bn ⊆ Sn for each n, f, g are functions such that f(σ) = g(w)

whenever σ ∈ Bn and ∇n(σ, λ) = w for some λ, then

∑
n≥0

∑
σ∈Bn

f(σ)
qinv(σ)zn

(q; q)n
=
∑
n≥0

∑
w∈∇n(Bn,Λn)

g(w)qsum(w)(z/q)n.

Proof. First, we claim the well-known fact that (q; q)−1
n =

∑
λ∈Λn

qsum(λ)−n. We

can show this by considering the conjugate of each λ ∈ Λn. The conjugate, λ′, has
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any number of parts less than or equal to n, with at least one part of size n, while

sum(λ′) = sum(λ). The part of size n contributes n to sum(λ′), so sum(λ) − n

gives the sum of the remaining parts. Thus, substituting xi = qi for i ∈ [n] and

xi = 0 for i > n in (1.1), we obtain (1 − q)−1(1 − q2)−1 · · · (1 − qn)−1 = (q; q)−1
n ,

proving the claim.

By the properties of ∇n,∑
n≥0

∑
σ∈Bn

f(σ)
qinv(σ)zn

(q; q)n
=
∑
n≥0

∑
σ∈Bn

∑
λ∈Λn

f(σ)qinv(σ)+sum(λ)−nzn

=
∑
n≥0

∑
w∈∇n(Bn,Λn)

g(w)qsum(w)(z/q)n.

There are three immediate applications of Theorem 2.3. First, Theorem

2.3 may be used to deduce (2.8) from Mendes and Remmel’s (2.5). Likewise, (2.7)

follows from Gessel’s (2.4). Finally, Theorem 2.3 may be used to rewrite Mendes

and Remmel’s Theorem 2.1 in the context of compositions.

Corollary 2.1. If P ⊆ Sm with m > 1, then∑
n≥0

∑
w∈Pn

yPno(w)qsum(w)zn =
Lq(z)

1− y + y
(
1− zq(1− q)−1

)
Lq(z)

,

where Lq(z) =
∑

n≥0

(∑
w∈Pn q

sum(w)0P (w)
)
zn is the generating function for com-

positions that consecutively avoid P.

Corollary 2.1 is both more and less general than Heubach, Kitaev, and

Mansour’s [34] Theorem 4.1; for a pattern set of cardinality 1, their result holds

for an arbitrary alphabet of positive integers. In Section 2.4, we will prove a more

general version of Corollary 2.1 for words.

2.3.3 Compositions by two-term patterns and variation

In a composition w, a subsequence wkwk+1 is said to be an ascent, level,

or descent respectively as wk < wk+1, wk = wk+1, or wk > wk+1. The numbers of

ascents, levels, and descents in w are denoted by asc(w), lev(w), and des(w). When
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sketched as in Figure 2.2, one of the more compelling features of a composition

w ∈ Pn is its vertical variation defined by

var(w) =
n∑
k=0

|wk+1 − wk|,

where, by convention, w0 = wn+1 = 0. As a consequence of the perspective

afforded by (2.1), we obtain the following joint distribution of (asc, lev, des, var)

on compositions from our Corollary 2.7 on directed column-convex polyominoes

recorded in Subsection 2.7.1.

Corollary 2.2. The generating function for compositions by ascents, levels, de-

scents, and variation

K(c, z) =
∑
n≥0

∑
w∈Pn

aasc(w)blev(w)ddes(w)cvar(w)qsum(w)zn

is given by

K(c, z) = 1 +

c2
∑
n≥0

(qz)n+1

1− c2qn+1

n∏
k=1

(
b+

c2dqk

1− c2qk
− a

1− qk

)

1− a
∑
n≥1

(qz)n

1− qn
n−1∏
k=1

(
b+

c2dqk

1− c2qk
− a

1− qk

) .
Setting c = 1 in Corollary 2.2 and making use of Cauchy’s q-binomial

theorem gives Carlitz’s [7] generating function K(1, z) for compositions by ascents,

levels, and descents. Heubach and Mansour [33] recently extended Carlitz’s result

to an arbitrary alphabet of positive integers.

The distributions of var and of closely related statistics over various combi-

natorial sets have been considered in [2, 45, 51, 60]. In [60], Tiefenbruck expressed

the generating function for compositions with bounded parts by variation as a ratio

of coefficients of basic hypergeometric series. Recently, Mansour [45] determined

the generating function for the same version of var on compositions as in [2].

2.4 Factors and consecutive patterns in words

Let X be an alphabet. An element f ∈ X+ is a factor of w ∈ X∗ if

f = wkwk+1 . . . wk+`(f)−1 for some k. The number of times f appears as a factor
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in w is denoted by f(w).

For a non-empty set F ⊆ X+, a factor f of w is a said to be a consecutive

F -pattern in w if f ∈ F . The number of consecutive F -patterns in w is denoted

by F(w); so F(w) =
∑

f∈F f(w). We refer to F as a factor set.

The containment PC ⊂ PW in (2.1) is now evident: a composition w is

just a word with letters selected from the alphabet P = {1, 2, 3, . . . }. Also, each

pattern p of length m defined on compositions may be naturally matched with

the factor set Fp = {f ∈ Pm : p(f) = 1}. For p = 132 defined on compositions

through Fédou’s bijection as in Subsection 2.3.2, F132 = {acb ∈ P3 : a ≤ b < c}.
In general, for a pattern set P on compositions, we define FP = ∪p∈PFp and note

that P (w) = FP (w).

As a result, any method for the set PW may be applied to the set PC
and, via Theorem 2.3, to PS. In this regard, some modifications of Goulden and

Jackson’s [29] result for enumerating words by factors are fundamental.

As in Stanley [58, p. 266-267], we state Goulden and Jackson’s [29] result

in the context of the free monoid. Following Noonan and Zeilberger [49], the

stipulation that no element of the factor set F be a factor of another is dropped.

We further drop the requirement that the alphabet be finite, and we consider

restrictions on the first and last letters.

For a non-empty set F ⊂ X+, an F -cluster is a triple (w, ν, β) in which

w = w1w2 . . . w`(w) ∈ X+,

ν = (f(1), f(2), . . . , f(k)) for some k ≥ 1 with each f(i) ∈ F , and

β = (b1, b2, . . . , bk) with each bi being a positive integer,

where f(i) = wbiwbi+1 · · ·wbi+`(f(i))−1, each wiwi+1 is a factor of some f(j), b1 ≤ b2 ≤
· · · ≤ bk, and if bi = bi+1, then `(f(i)) < `(f(i+1)).

Roughly speaking, the pair (ν, β) is a recipe for covering w with F -factors:

β specifies where the factors in ν are to be “placed so as to cover” w. Accordingly,

w is said to be F -coverable and the pair (ν, β) is said to be a covering of w. We

let CF denote the set of F -clusters.

The cluster generating function over a subset W of X∗ is defined to be the
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formal series

CF(y,W ) =
∑

(w,ν,β)∈CF
w∈W

(∏
f∈F

y
f(ν)
f

)
w

where f(ν) is the number of times f appears as a component in ν. With but

trivial changes, Stanley’s solution to problem 14(a) in [58, p. 266-267] establishes

the following theorem.

Theorem 2.4 (Modifications of Goulden and Jackson’s [29] result). If, for non-

empty L,R ⊆ X and a non-empty F ⊆ X+, we define

L(y) =
∑
l∈L

l + CF(y, LX∗),

R(y) =
∑
r∈R

r + CF(y, X∗R), and

X (y) =
∑
x∈X

x+ CF(y, X∗),

and if the result of replacing each yf in y by yf − 1 is denoted by y − 1, then∑
w∈X∗

(∏
f∈F

y
f(w)
f

)
w = (1−X (y − 1))−1,

∑
w∈LX∗

(∏
f∈F

y
f(w)
f

)
w = L(y − 1)(1−X (y − 1))−1,

∑
w∈X∗R

(∏
f∈F

y
f(w)
f

)
w = (1−X (y − 1))−1R(y − 1), and

∑
w∈LX∗R

(∏
f∈F

y
f(w)
f

)
w = CF(y − 1, LX∗R)

+ L(y − 1)(1−X (y − 1))−1R(y − 1).

Proof. Let Dw be the multi-set of F -factors in w. Then, it is clear that∑
T⊆Dw

∏
f∈T

yf =
∏
f∈Dw

(yf + 1).

Therefore, we may replace yf with yf +1 in the statement of the theorem to obtain

the equivalent statements such as∑
w∈X∗

∑
T⊆Dw

(∏
f∈T

yf

)
w = (1−X (y))−1.
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However, for each T ⊆ Dw, we may decompose w uniquely into single letters and

clusters consisting of all overlapping elements of T . We see that the right-hand

side of each equation gives every possible decomposition of each word exactly once,

so they are indeed the same.

We will also now state a generalization of Theorem 2.1 for words, showing

that Q2 solves Q2no in the case of a single pattern set. We drop the restriction

to a set of patterns of the same length m > 1. When we apply Theorem 2.5 to

compositions and permutations, we see that we may drop the restriction in those

cases as well.

Theorem 2.5. Let X be an alphabet, and let F ⊆ X+. Then,

∑
w∈X∗

yFno(w)w =

(
1− y

(
K
∑
x∈X

x− (K − 1)

))−1

K,

where K =
∑

w∈X∗ 0Fno(w)w is the generating function for words that avoid F .

Proof. Given w ∈ X∗, scanning from left to right, break w into sub-words after each

letter that completes an F -pattern within the current sub-word. Then, Fno(w) is

the number of such breaks. The final sub-word avoids F , while the other sub-words

each contain one non-overlapping F -pattern ending at the last letter. The latter

type of words can be generated by starting with an F -avoiding word v, appending

any letter x, then removing those words that still avoid F . The result follows.

2.5 Application of Theorem 2.4 to PS (and PC)

In light of Subsection 2.2.2 (solving Q2 solves Q2no), we focus on Q2. We

begin with a useful digression into the setting of compositions.

Consider the alphabet P, let P ⊆
⋃
m≥1 Sm, and let

DP (y; z) =
∑

(w,ν,β)∈CFP

(∏
p∈P

yp(ν)
p

)
qsum(w)z`(w),
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where p(ν) =
∑

f∈Fp f(ν). Replacement of each letter i by qiz in the first identity

of Theorem 2.4 yields∑
n≥0

∑
w∈Pn

(∏
p∈P

yp(w)
p

)
qsum(w)zn =

(
1− zq(1− q)−1 −DP (y − 1; z)

)−1
. (2.13)

Besides being a practical tool for enumerating compositions by patterns, (2.13)

also reveals the fact that solving Q1 solves Q2 for compositions. To illustrate

both points, we deduce (2.8) from (2.7) and (2.13). Relative to P = {132, 231},
set y132 = y231 = y. As the P -clusters are in one-to-one correspondence with the

up-down compositions of odd length greater than 1,

z

1− q
+DP (y; z/q) =

1
√
y

∑
n≥0

∑
w∈UDP2n+1

qsum(w)(z
√
y/q)2n+1.

So, (2.13) with z replaced by z/q and the odd part of (2.7) imply (2.8). Thus,

counting up-down compositions solves the problem of counting compositions by

peaks.

Theorem 2.3 allows the considerations of the previous paragraph to be

rephrased in the context of permutations. So, for permutations, solving Q1 solves

Q2. Also, Theorem 2.3 applied to the lefthand side of (2.13) implies Theorem 2.6.

Theorem 2.6. If P ⊆
⋃
m≥1 Sm, then∑

n≥0

∑
σ∈Sn

(∏
p∈P

yp(σ)
p

)
qinv(σ)zn

(q; q)n
=
(
1− z(1− q)−1 −DP (y − 1; z/q)

)−1
.

Theorem 2.6 strengthens the main result in Rawlings [52] by dropping the

restriction that P be permissible (that is, no p ∈ P occurs as a consecutive pattern

in another r ∈ P ). The restricted result in [52] was used to extend some permuta-

tion results of Elizalde and Noy’s [18] as well as to solve a few other problems in

PS. The example of Subsection 2.5.3 involves a non-permissible P .

For P = {p ∈ Sm : p1 ∗1 p2 ∗2 · · · ∗m−1 pm} where ∗1, ∗2, . . . , ∗m−1 ∈ {<,>},
there are two common types of problems in PS to be considered. The first is to

track P as a whole and the second involves tracking the patterns in P individually.

Relative to Q2, these respective problems are to determine∑
σ∈Sn

yP (σ)qinv(σ) and
∑
σ∈Sn

(∏
p∈P

yp(σ)
p

)
qinv(σ).
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To illustrate the use of Theorem 2.6, we will apply it to deduce four new

results. The examples in Subsections 2.5.1 and 2.5.2 track particular pattern sets

as wholes, the example of Subsection 2.5.3 tracks two pattern sets of different

lengths, and the example of Subsection 2.5.4 tracks patterns individually. In doing

these examples, we must enumerate permutations by up-down type.

2.5.1 Permutations by (i,d)-peaks and permutations of up-

down type

For i, d ≥ 2, let Pi,d = {p ∈ Si+d−1 : p1 < p2 < · · · < pi > pi+1 > · · · >
pi+d−1}. A consecutive occurrence of a Pi,d-pattern in a permutation σ is said to

be an (i, d)-peak. In Figure 2.1, σ1σ2σ3σ4 = 2561 is a (3, 2)-peak. Of course, a

(2, 2)-peak is just a peak as defined in Subsection 1.1.2. Theorems 2.4 and 2.6

may be used to obtain the generating function for permutations by (i, d)-peaks as

rational expressions of q-Olivier functions

Φi,k(z) =
∑
n≥0

zin+k

(q; q)in+k

.

To this end, for i1, d1, . . . , im, dm ≥ 2 and k ≥ 1, let UDPi1,d1;··· ;im,dm;k

denote the set of compositions w that begin with a weakly increasing sequence

w1 ≤ w2 ≤ · · · ≤ wi1 of length i1, then continue with a strictly decreasing sequence

wi1 > wi1+1 > · · · > wi1+d1−1 of length d1, followed by a weakly increasing sequence

of length i2, then a strictly decreasing sequence of length d2, and so on until ending

with a weakly increasing sequence of length k.

We let (j, d)m denote the list j, d; j, d; . . . ; j, d in which j, d appears m times.

A composition in UDPi,d;(j,d)m;k, for any m ≥ 0, is said to be of up-down type

(i, j, d; k). Up-down permutations of type (i, j, d; k) are similarly defined.

Corollary 2.3. If, for i, j, d ≥ 2, we set µ = i + d − 2 and ξm = m
√
−1, then the

generating function for permutations by (i, d)-peaks and inversions is

∑
n≥0

∑
σ∈Sn

yPi,d(σ)qinv(σ)zn

(q; q)n
=

(
1− z(1− q)−1 − Ki,i,d;1( µ

√
y − 1z)

µ
√
y − 1

)−1
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where, for k ≥ 1,

Ki,j,d;k(z) =
∑
m≥0

∑
w∈Pi,d;(j,d)m;k

qsum(w)(z/q)`(w).

Moreover, Ki,j,d;k(z) satisfies, for d ≥ 3 and ν = j + d− 2, the recurrence

Ki,j,d;k(z) =
ξ−µν Ki,j+1,d−1;1(ξνz)

(
zk(q; q)−1

k + ξ−kν Kj,j+1,d−1;k+1(ξνz)
)

1 +Kj,j+1,d−1;1(ξνz)

− ξ−µ−kν Ki,j+1,d−1;k+1(ξνz)

with the initial condition

Ki,j,2;k(z) = ξ−i−kj

(
Φj,i(ξjz)Φj,k(ξjz)

Φj,0(ξjz)
− Φj,i+k(ξjz)

)
.

Before providing proof, a few examples are presented. First, the above re-

currence provides a straightforward means of determining Ki,j,d;k(z) as a rational

expression of q-Olivier functions. Therefore, the generating function for permuta-

tions by (i, d)-peaks given by Corollary 2.3 is also a rational expression in q-Olivier

functions. For instance,

∑
n≥0

∑
σ∈Sn

yP3,3(σ)qinv(σ)zn

(q; q)n
=

(
1− z(1− q)−1 − K3,3,3;1( 4

√
y − 1z)

4
√
y − 1

)−1

,

where

K3,3,3;1(z) =
−K3,4,2;1(ξ4z)

(
z(1− q)−1 + ξ−1

4 K3,4,2;2(ξ4z)
)

1 +K3,4,2;1(ξ4z)
+ ξ−1

4 K3,4,2;2(ξ4z),

K3,4,2;1(z) = −Φ4,3(ξ4z)Φ4,1(ξ4z)

Φ4,0(ξ4z)
+ Φ4,4(ξ4z), and

K3,4,2;2(z) = ξ−1
4

(
−Φ4,3(ξ4z)Φ4,2(ξ4z)

Φ4,0(ξ4z)
+ Φ4,5(ξ4z)

)
.

Second, Corollary 2.3 and the comments of Subsection 2.2.2 may be used

to solve the Q2no version of counting permutations by (i, d)-peaks. We illustrate

by obtaining Mendes and Remmel’s [47] result for the case (i, 2). First, note that

the initial condition at the end of Corollary 2.3 implies

Ki,i,2;k(z) =
ξ−ki Φi,k(ξiz)

Φi,0(ξiz)
− zk

(q; q)k
. (2.14)
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Substituting Ki,i,2;1(z) into Corollary 2.3, setting y = 0, and plugging the result

into Theorem 2.1 gives Mendes and Remmel’s result, namely∑
n≥0

∑
σ∈Sn

yPi,2no(σ)qinv(σ)zn

(q; q)n
=

(
1− yz(1− q)−1 − (1− y)Φi,1(z)

Φi,0(z)

)−1

.

Third, by definition, Ki,j,d;k(z) is the generating function for up-down com-

positions of type (i, j, d; k). The classic result z/(1− q) +K2,2,2;1(z) = tanq(z) for

up-down compositions of odd length is evident in (2.14). Similarly, z/(1 − q) +

K3,3,3;1(z) is the generating function for the so-called up-up-down-down composi-

tions. Prodinger and Tshifhumulo [50] gave another recurrence, without obtain-

ing a closed form, for the generating function for up-up-down-down compositions.

With “≥” in place of “>”, Carlitz [8] determined the generating function for up-

down compositions of type (i, i, 2; k).

Finally, we again underscore the value of Theorem 2.3 in transcribing pat-

tern results between the settings of compositions and permutations. For instance,

replacing z in the first part of Corollary 2.3 with qz and invoking Theorem 2.3

gives the generating function for compositions by (i, d)-peaks.

Likewise, Ki,j,d;k(z) transcribes as the generating function for permutations

by up-down type (i, j, d; k) and by inversion number. So, z/(1− q) +K3,3,3;1(z) is

a q-analog of Carlitz and Scoville’s [10] result for up-up-down-down permutations.

Using another method, Mendes, Remmel, and Riehl [48] obtained generating func-

tions for up-down permutations of type (i, j, 2; k) with k ≤ j. For up-down type

(0, j, 2; k), see Carlitz [6].

Proof of Corollary 2.3. The relevant cluster generating function is

DPi,d(y; z/q) =
∑

(w,ν,β)∈CFPi,d

qsum(w)yPi,d(ν)(z/q)`(w).

Clearly, a composition is Pi,d-coverable if and only if it belongs to UDP(i,d)m;1 for

some m ≥ 1. Moreover, each w ∈ UDP(i,d)m;1 has but one Pi,d-covering. It follows

that

DPi,d(y; z/q) =
1
µ
√
y

∑
m≥1

∑
w∈UDP(i,d)m;1

qsum(w)( µ
√
yz/q)`(w) =

Ki,i,d;1( µ
√
yz)

µ
√
y

.
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The above equality and Theorem 2.6 imply the first part of Corollary 2.3.

There are several theoretical frameworks (including the pattern algebra of

Goulden and Jackson [30] described in Section 2.8) for determining Ki,j,d;k(z).

We will use Theorem 2.4; in this approach, up-down compositions having strictly

descending runs of length d are exchanged for “straighter” up-down compositions

having strictly descending runs of length d− 1.

Let Pi,d = {w ∈ Pi+d−1 : w1 ≤ w2 ≤ · · · ≤ wi > wi+1 > · · · > wi+d−1}. For

any word w in P∗ or in P∗i,d, the symbol `(w) is always to be interpreted as the

length of w relative to the alphabet P.

Relative to the alphabet Xd−1 = Pk,1
⋃(⋃

l≥2 Pl,d−1

)
, let Fd−1 denote the

set of words of the form uv where u, v ∈ Xd−1 whose last letter in the factor u is

less than or equal to the first letter in v. For a word w = u(1)u(2) . . . u(n) with each

u(m) ∈ Xd−1, let asc(w) =
∑

f∈Fd−1
f(w).

As UDPi,d;(j,d)m;k = {w ∈ Pi,d−1P∗j,d−1Pk,1 : asc(w) = 0}, Theorem 2.4 leads

to

Ki,j,d;k(z) =
∑
m≥0

∑
w∈Pi,d−1Pmj,d−1Pk,1

0asc(w)qsum(w)(z/q)`(w) = A1,d +
A2,dA3,d

1 + A4,d

,

where

A1,d =
∑
m≥0

(−1)m+1
∑

w∈Pi,d−1Pmj,d−1Pk,1
asc(w)=m+1

qsum(w)(z/q)`(w),

A2,d =
∑
m≥0

(−1)m
∑

w∈Pi,d−1Pmj,d−1

asc(w)=m

qsum(w)(z/q)`(w),

A3,d =
∑
m≥0

(−1)m
∑

w∈Pmj,d−1Pk,1
asc(w)=m

qsum(w)(z/q)`(w), and

A4,d =
∑
m≥1

(−1)m
∑

w∈Pmj,d−1

asc(w)=m−1

qsum(w)(z/q)`(w).

Completion of the proof is now just a matter of determining the sums Al,d. Being

of similar nature, only a few are evaluated here.
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As an example of the case d = 2, note that

1 + A4,2 = 1 +
∑
m≥1

(−1)mzjm
∑

0≤w1≤···≤wjm

qw1+···+wjn =
∑
m≥0

(−1)mzjm

(q; q)jm
= Φj,0(ξjz).

For A1,d with d ≥ 3, note that `(w) = µ+ νm+ k and that {w ∈ Pi,d−1Pmj,d−1Pk,1 :

asc(w) = m+1} = UDPi,d−1;(j+1,d−1)m;k+1. Thus, A1,d = −ξ−µ−kν Ki,j+1,d−1;k+1(ξνz).

2.5.2 Uniform range distributions

For i, d ≥ 2 and m ≥ 1, let P(i,d)m denote the set of patterns p ∈ S(i+d−2)m+1

that begin with an increasing sequence p1 < · · · < pi of length i, continue with a

decreasing sequence pi > pi+1 > · · · > pi+d−1 of length d, followed by an increasing

sequence pi+d−1 < pi+d < · · · < p2i+d−2 of length i, and so on so as to form m con-

secutive (i, d)-peaks. The consecutive occurrence of a p ∈ P(i,d)m in a permutation

σ is said to be a uniform m-peak range of type (i, d). The following result extends

Corollary 2.3 to uniform ranges.

Corollary 2.4. If i, d ≥ 2, m ≥ 1, and ν = i+ d− 2, then the generating function

for permutations by uniform m-peak ranges and inversions is∑
n≥0

∑
σ∈Sn

yP(i,d)m (σ)qinv(σ)zn

(q; q)n
=

(
1− z

1− q
−
∑
n≥m

An,m(y − 1)Bn(q)znν+1

)−1

,

where

An,m(y) =
yzm(1− z)

1− z − yz(1− zm)

∣∣∣∣
zn

and

Bn(q) = Ki,i,d;1(z)|znν+1 ,

with Ki,i,d;1(z) as determined in Corollary 2.3.

The case i = d = 2 with y = 0 of Corollary 2.4 provides a solution to the

problem posed by Kitaev [40, Problem 1] of counting permutations that consecu-

tively avoid (2m + 1)-reverse-alternating patterns (which, as noted in [40], is the

same as the number of permutations that consecutively avoid (2m+1)-alternating

patterns). The case for even-length alternating patterns may be dealt with simi-

larly.
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Proof of Corollary 2.4. First, note that

DP(i,d)m
(y; z/q) =

∑
(w,ν,β)∈CFP(i,d)m

qsum(w)yP(i,d)m (ν)(z/q)`(w).

Next, observe that a composition is P(i,d)m-coverable if and only if it belongs to the

set of up-down compositions
⋃
n≥m UDP(i,d)n;1. Moreover, there may be multiple

P(i,d)m-coverings (ν, β) for such a composition. For instance, w = 231423221 ∈
UDP(2,2)4;1 is P(2,2)2-covered by ((23142, 23221); (1, 5)), but it is also covered by

((23142, 14232, 23221); (1, 3, 5)).

For n ≥ m ≥ 1 and k ≥ 1, let an,m,k denote the number of times that a

given w ∈ UDP(i,d)n;1 appears in a P(i,d)m-cluster (w, ν, β) with P(i,d)m(ν) = k. Of

course, an,m,k is independent of the choice of w ∈ UDP(i,d)n;1.

For n ≥ 1, let

An,m(y) =
∑
k≥1

an,m,ky
k and

Bn(q) =
∑

w∈UDP(i,d)n;1

qsum(w)/qnν+1.

Evidently, Bn(q) = Ki,i,d;1(z)|znν+1 . It follows that

DP(i,d)m
(y; z/q) =

∑
n≥m

An,m(y)Bn(q)znν+1.

In view of Theorem 2.6, we need only establish the formula for An,m(y).

Note that a typical P(i,d)m-cluster that contributes to the count an,m,k is of the

form (w, ν, (b1, b2, . . . , bk)) with b2 equaling r(i + d− 2) + 1 for some r ∈ [m]. So,

for n ≥ m ≥ 1 and k ≥ 2, an,m,k =
∑m

j=1 an−j,m,k−1. Routine computations then

lead to the fact that∑
n≥m

∑
k≥1

an,m,ky
kzn =

yzm(1− z)

1− z − yz(1− zm)
.

Thus, An,m(y) = yzm(1− z) (1− z − yz(1− zm))−1 |zn .

2.5.3 Permutations by peaks and twin peaks

Let tpeak = {p ∈ S5 : p1 < p2 > p3 < p4 > p5}. A consecutive occurrence of

p ∈ tpeak in a permutation is referred to as a twin peak. The set P = peak∪ tpeak



38

is not permissible and therefore not within the scope of the theorem in [52]. How-

ever, Theorem 2.6 makes the joint enumeration of permutations by peaks and twin

peaks straightforward; we just need to determine

DP (x, y; z/q) =
∑

(w,ν,β)∈CFP

xpeak(ν)ytpeak(ν)qsum(w)(z/q)`(w). (2.15)

To this end, first note that the set of P -coverable compositions corresponds to the

set of up-down compositions
⋃
n≥1 UDP2n+1.

For w ∈ UDP2n+1, let an,l,k denote the number of P -coverings (ν, β) of w

by l peaks and k twin peaks. Set An(x, y) =
∑

l,k≥0 an,l,kx
lyk. From the easily

deduced recurrence relationship

an,l,k = an−1,l−1,k + an−1,l−1,k−1 + an−2,l−1,k−1 + an−1,l,k−1 + an−2,l,k−1,

we find that An(x, y) = (xz + yz2 + xyz2)(1− xz − xyz − xyz2 − yz − yz2)−1|zn .

Let Bn(q) =
∑

w∈UDP2n+1 qsum(w)/q2n+1 = tanq(z)|z2n+1 . In view of (2.15),

we have

DP (x, y; z/q) =
∑
n≥1

An(x, y)Bn(q)z2n+1.

Finally, the last equality and Theorem 2.6 imply that the generating function for

permutations by peaks and twin peaks,∑
n≥0

∑
σ∈Sn

qinv(σ)xpeak(σ)ytpeak(σ)zn

(q; q)n
,

is given by (
1− z

1− q
−
∑
n≥1

An(x− 1, y − 1)Bn(q)z2n+1

)−1

.

Another solution to the joint peak and twin peak problem is given in Subsection

2.8.5.

2.5.4 Permutations and up-down permutations by (i,m)-

maxima

For i ≥ 2 and 1 ≤ m ≤ i, let p(m) denote the unique permutation in

Si+1 with p(m)1 < p(m)2 < · · · < p(m)i and p(m)i+1 = i + 1 − m. Also, let Pi =
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{p(1), p(2), . . . , p(i)}. A consecutive occurrence of p(m) ∈ Pi in a permutation σ is

said to be an (i,m)-maximum. Carlitz and Scoville [9] refer to (2, 1)-maxima and

(2, 2)-maxima respectively as rising and falling maxima; they expressed the joint

distribution of {12, 132, 231, 21} over 0Sn0 = {0σ0 : σ ∈ Sn} in terms of a second

order differential equation.

The statement of our next result requires the q-binomial coefficient, which

for integers n and k is defined as[
n

k

]
=

{
(qn−k+1; q)k/(q; q)k if n ≥ k ≥ 0

0 otherwise .

Corollary 2.5. If i ≥ 2 and 1 ≤ m ≤ i, then the generating function for permu-

tations by (i,m)-maxima and inversions is∑
n≥0

∑
σ∈Sn

(
i∏

m=1

y
p(m)(σ)
m

)
qinv(σ)zn

(q; q)n
=

(
1− Φi,1(y − 1; ξiz)

ξiΦi,0(y − 1; ξiz)

)−1

,

where ξi = i
√
−1 and

Φi,k(y1, . . . , yi; z) =
∑
n≥0

zin+k

(q; q)in+k

n−1∏
j=0

(
yi +

i−1∑
m=1

(yi − ym)qm

[
ij + k +m− 1

m

])
.

For i = 2, y1 = y, and y2 = 1, Corollary 2.5 gives the q-analog obtained in

[47, 52] of Elizalde and Noy’s [18] result for permutations by p = 132:∑
n≥0

∑
σ∈Sn

y132(σ)qinv(σ)zn

(q; q)n
=

(
1−

∑
n≥0

(y − 1)nqnz2n+1

(q2; q2)n(1− q2n+1)(1− q)n

)−1

.

Proof of Corollary 2.5. By Theorem 2.6, we need to compute

DPi(y; z/q) =
∑

(w,ν,β)∈CF

(
i∏

m=1

y
p(m)(ν)
m

)
qsum(w)(z/q)`(w),

where F =
⋃
p∈Pi Fp.

Define Li to be the set of compositions w of length in+1 for any n ≥ 0 such

that wj > wj+1 if and only if j is a positive multiple of i. Note that a composition

w is Pi-coverable if and only if w ∈ Li and `(w) > 1. Moreover, such a composition

has but one Pi-covering. Thus,

z

1− q
+DPi(y; z/q) =

∑
w∈Li

(∏
p∈Pi

yp(w)
p

)
qsum(w)(z/q)`(w).
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Let Li(y1, y2, . . . , yi; z) denote the right side of the above equality. For w ∈ Li of

length in+ 1, observe that p(1)(w) + p(2)(w) + · · ·+ p(i)(w) = n. So

Li(y1, . . . , yi; z) = y
(−1/i)
i Li(y1/yi, . . . , yi−1/yi, 1; z i

√
yi).

We therefore only need to determine Li(y1, . . . , yi−1, 1; z).

To determine Li(y1, . . . , yi−1, 1; z), we appeal to Theorem 2.4. We work

with the factor set G = {uv : u ∈ Λi, v ∈ P}. For each uv ∈ G, define

yuv =


t if ui ≤ v,

ym if ui+1−m > v ≥ ui−m for 1 ≤ m ≤ i− 1, and

1 if u1 > v.

For w = u(1)u(2) . . . u(n) with u(1), . . . , u(n−1) ∈ Λi and u(n) ∈ P, let asc(w)

be the number of indices j such that the last letter of u(j) is less than or equal to

the first letter of u(j+1). Note that
∏

g∈G y
g(w)
g = tasc(w)

∏i−1
m=1 y

p(m)(w)
m .

Since

Li(y1, . . . , yi−1, 1; z) =
∑
w∈Λ∗i P

0asc(w)qsum(w)(z/q)`(w)

i−1∏
m=1

y
p(m)(w)
m ,

Theorem 2.4 implies that Li(y1, . . . , yi−1, 1; z) is given by∑
n≥0

(−1)nzin+1
∑

0≤sum(α)≤n

i−1∏
m=1

(1− ym)αm
∑

w∈Ci,1,n;α

qsum(w)−in−1

1 +
∑
n≥0

(−1)nzin+i
∑

0≤sum(α)≤n

i−1∏
m=1

(1− ym)αm
∑

w∈Ci,i,n;α

qsum(w)−in−i

, (2.16)

where the sums on the right are over α ∈ Ni−1 and w in Ci,k,n;α = {w ∈ Λn
i Λk :

p(i)(w) = 0 and p(m)(w) = αm for 1 ≤ m ≤ i− 1}.
The proof is completed by showing that the numerator and denominator in

(2.16) are respectively Φi,1(y1, . . . , yi−1, 1; ξiz)/ξi and Φi,0(y1, . . . , yi−1, 1; ξiz).

Another generating function for permutations by (i,m)-maxima is derived

in Subsection 2.9.4. Notably, Theorem 2.3 applied to the lefthand side of (2.16)

yields the generating function for the set UDSi,i,2;1 of up-down permutations of

type (i, i, 2; 1) by (i,m)-maxima. Setting y1 = y2 = ... = yi = 1, replacing z by

(1− q)z, and letting q → 1 in Corollary 2.6 gives a result due to Carlitz [6].
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Corollary 2.6. For i ≥ 2, the generating function for permutations of up-down

type (i, i, 2; 1) by (i,m)-maxima is given by

z

1− q
+

∑
σ∈UDSi,i,2;1

(
i∏

m=1

y
p(m)
m

)
qinv(σ)z`σ

(q; q)`σ
=

Φi,1(y1, . . . , yi−1, 1; ξiz)

ξiΦi,0(y1, . . . , yi−1, 1; ξiz)
.

2.6 Ridge patterns in CCPs

The enumeration of CCPs and of subclasses of CCPs by various statis-

tics has been widely studied. Polyomino enumeration is surveyed in Delest [15],

Guttmann [31], Rensburg [56], and Viennot [61]. Our purpose here is to essentially

initiate the study of CCPs by consecutive (or ridge) patterns.

The simplest ridge patterns are formed between two adjacent columns. For

a column-convex polyomino Q, we say that an upper ascent (respectively upper

level, upper descent) occurs at index k if the top cell in Qk is lower than (respec-

tively level with, higher than) the top cell in Qk+1. Lower ascents, lower levels,

and lower descents are similarly defined along the lower ridge. In Figure 1.2, Q has

lower descents at indices 1,2,5, and 7. The numbers of upper ascents, upper levels,

upper descents, lower ascents, lower levels, and lower descents in Q are respectively

denoted by uasc(Q), ulev(Q), udes(Q), lasc(Q), llev(Q), and ldes(Q). In Figure

1.2, uasc(Q) = 2 and llev(Q) = 1.

As displayed in Figure 2.3, the two-column ridge patterns may be used to

characterize many of the common subclasses of CCPs. More complex consecutive

patterns along either the lower or upper ridges are formed by subsequences of 3 or

more columns.

The relative height of a CCP Q, denoted by relh(Q), is defined to be the y-

ordinate of the top edge in the rightmost column of Q. In Figure 1.2, relh(Q) = −1.

The relative height of a parallelogram polyomino is known as its row number.
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Directed Column-Convex Polyomino Parallelogram Polyomino

No lower descents No lower or upper descents

Stack Polyomino Wall Polyomino

No upper ascents or lower descents No lower ascents or descents

Figure 2.3: Common classes of CCPs

2.6.1 Verification that PC ⊂ PCCP ⊂ PW

Let WPn be the set of wall polyominoes with n columns. The map γn :

Pn →WPn defined by γn(w) = Q where Qk has wk cells is a bijection such that

area(Q) = sum(w) and per(Q)− 2`(Q) = var(w). (2.17)

For example, γ7 maps the composition w = 5413423 ∈ P7 to the wall polyomino

displayed in Figure 2.3. Interestingly, the second part of (2.17) relates the variation

of a composition to the perimeter of a wall polyomino, and (2.11) together with

the first part of (2.17) provides a connection between the inversion number of a

permutation and the area of a wall polyomino.

Through γn, a consecutive p-pattern in a composition w induces an upper

ridge p-pattern in the associated wall polyomino Q. For instance, QkQk+1Qk+2 is

deemed a 132-pattern in Q if wkwk+1wk+2 is a 132-pattern in the associated w;

that is, QkQk+1Qk+2 is a 132-pattern if Qk+1Qk+2 is an upper descent and if the

top cell in Qk+2 is level with or above the top cell in Qk. The number of times an

upper ridge pattern p occurs in Q is denoted by p(Q).

The bijection γn immediately implies PC ⊂ PCCP : If P ⊆ ∪m≥1Sm and
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if Bn ⊆ Pn, then

∑
n≥0

∑
w∈Bn

cvar(w)qsum(w)

(∏
p∈P

yp(w)
p

)
zn =

∑
n≥0

∑
Q∈γn(Bn)

cper(Q)qarea(Q)

(∏
p∈P

yp(Q)
p

)
zn

c2n
.

(2.18)

Of course, as with Theorem 2.3, (2.18) also holds for any functions that are pre-

served by γn.

To see the inclusion PCCP ⊂ PW , consider the alphabet of biletters X ={(
j
m

)
: j,m ∈ P

}
and let

Y =
⋃
n≥0

{(
j1j2 . . . jn

m1m2 . . .mn

)
∈ Xn : mn = 1 and jk + jk+1 > mk for 1 ≤ k < n

}
.

For a column-convex polyomino Q with n columns, define

δ(Q) =

(
j1j2 . . . jn

m1m2 . . .mn

)
(2.19)

where jk is the number of cells in Qk, mn = 1, and, for 1 ≤ k < n, mk is the

change in the y-ordinate from the bottom edge of Qk+1 to the top edge of Qk. For

Q in Figure 1.2, δ(Q) =
(

23644532
35526541

)
.

The map δ is a bijection from CCP to Y . As such, δ allows CCPs to

be viewed as words. Such a viewpoint is implicit in Temperley [59] and explicit

in Bousquet-Mélou and Viennot [3]. Thus, a problem in PCCP may readily be

converted into a problem in PW ; so PCCP ⊂ PW .

2.7 Application of Theorem 2.4 to the set PCCP

The inclusion PCCP ⊂ PW means that Theorem 2.4 may be applied to

solving problems in PCCP . We present two examples on directed column-convex

polyominoes.

2.7.1 DCCPs by two-column ridge patterns

Our first example enumerates DCCPs by the five two-column ridge patterns,

perimeter, relative height, area, and length.
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Corollary 2.7. The generating function

G =
∑

Q∈DCCP

auasc(Q)
u a

lasc(Q)
l bulev(Q)

u b
llev(Q)
l cper(Q)dudes(Q)hrelhQqarea(Q)z`(Q)

is given by

G =

c2h
∑
n≥0

(c2qz)n+1

1− c2hqn+1

n∏
k=1

(
bl +

alc
2hqk

1− c2hqk

)(
bu +

c2dqk

1− c2qk
− au

1− qk

)

1− au
∑
n≥1

(c2qz)n

1− qn
n∏
k=1

(
bl +

alc
2hqk

1− c2hqk

) n−1∏
k=1

(
bu +

c2dqk

1− c2qk
− au

1− qk

) .

Proof. Define

H(bu, bl, d, z) =
∑

Q∈DCCP

bulev(Q)
u b

llev(Q)
l cper(Q)dudes(Q)hrelh(Q)qarea(Q)z`(Q). (2.20)

As uasc(Q) = `(Q)− ulev(Q)− udes(Q)− 1 and lasc(Q) = `(Q)− llev(Q)− 1, it

follows that

G =
1

aual
H(bu/au, bl/al, d/au, aualz). (2.21)

It then suffices to determine H.

Consider the alphabet X =
{(

j
m

)
: j,m ∈ P, j ≥ m ≥ 1

}
. Then, let R ={(

j
m

)
∈ X : m = 1

}
and, for a statement S, let χ(S) be 1 if S is true and 0 other-

wise. An element
(

j1j2...jn
m1m2...mn

)
∈ Xn will be abbreviated by

(
j
m

)
; so the kth letter in(

j
m

)
is
(
j
m

)
k

=
(
jk
mk

)
.

Let F =
{(

j
m

)
∈ X2 : m1 ≥ j2

}
. For f =

(
j
m

)
∈ F , we will substitute

yf = c2(m1−j2)d(bud
−1)χ(m1=j2). When restricted to DCCP, the map δ in (2.19) is

a bijection onto X∗R. Moreover, if Q = Q1Q2 . . . Qn ∈ DCCP and δ(Q) =
(
j
m

)
∈

Xn−1R, then

area(Q) = sum(j), per(Q) = 2 (n+ relh(Q) + S) ,

relh(Q) = sum(j)− sum(m) + 1, and b
ulev(Q)
u dudes(Q)c2S =

∏
f∈F

y
f( jm)
f

(2.22)

where S =
∑n

k=1(mk − jk+1)χ(mk > jk+1). The facts in (2.22) regarding area and

relative height were observed by Bousquet-Mélou and Viennot [3].
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It follows from (2.20) and (2.22) that

H = c2h
∑

( jm)∈X∗R

qsum(j)(c2h)sum(j)−sum(m)(c2z)`(
j
m)

(∏
f∈F

y
f( jm)
f

) `( jm)−1∏
k=1

b
χ(jk=mk)
l .

(2.23)

An F -cluster
((

j
m

)
, ν, β

)
has

(
j
m

)
∈ Xn, ν =

((
j1j2
m1m2

)
,
(
j2j3
m2m3

)
, . . . ,

(
jn−1jn
mn−1mn

))
, and

β = (1, 2, . . . , n − 1) for some n ≥ 2, so an application of Theorem 2.4 to (2.23)

yields

H =
c2h
∑

n≥0(c2z)n+1
∑

T (n)

1−
∑

n≥1(c2z)n
∑

B(n)
(2.24)

where if ∏
(n) =

n∏
k=1

b
χ(jk=mk)
l

(
c2(mk−jk+1)d(bud

−1)χ(mk=jk+1) − 1
)
,

then ∑
T

(n) =
∑
( jm)

(c2h)sum(j)−sum(m)qsum(j)
∏

(n)

summed over
(
j
m

)
satisfying j1 ≥ m1 ≥ j2 ≥ · · · ≥ jn+1 ≥ mn+1 = 1, and∑

B

(n) =
∑
( jm)

(c2h)sum(j)−sum(m)qsum(j)b
χ(jn=mn)
l

∏
(n− 1)

summed over
(
j
m

)
satisfying j1 ≥ m1 ≥ j2 ≥ · · · ≥ jn ≥ mn ≥ 1. Both

∑
T (n)

and
∑

B(n) are nested geometric sums. As such, they are easily determined. For

instance,∑
T

(1) = q2
∑
j2≥1

(c2hq2)j2−1
∑
m1≥j2

qm1−j2
(
c2(m1−j2)d(bud

−1)χ(m1=j2) − 1
)

·
∑
j1≥m1

b
χ(j1=m1)
l (c2hq)j1−m1

=
q2

1− c2hq2

(
bu +

c2dq

1− c2q
− 1

1− q

)(
bl +

c2hq

1− c2hq

)
.

In general,∑
T

(n) =
qn+1

1− c2hqn+1

n∏
k=1

(
bl +

c2hqk

1− c2hqk

)(
bu +

c2dqk

1− c2qk
− 1

1− qk

)
and

∑
B

(n) =
qn

1− qn
n∏
k=1

(
bl +

c2hqk

1− c2hqk

) n−1∏
k=1

(
bu +

c2dqk

1− c2qk
− 1

1− qk

)
.
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The last two equalities for
∑

T (n) and
∑

B(n) together with (2.24) and

(2.21) complete the proof.

Corollary 2.7 (with au = a, bu = b, al = 0, bl = h = 1, and z replaced

by z/c2) with (2.18) implies Corollary 2.2 of Subsection 2.3.3. Corollary 2.7 also

implies many known results, a few of which are displayed in Table 2.1. The noted

Table 2.1: Results implied by Corollary 2.7

Polyominoes Distribution Reference

DCCP
(area, per, relh, udes, col)

au, al, bu, bl = 1
Rawlings [51]

DCCP
(area, per, relh, col)

au, al, bu, bl, d = 1
Bousquet-Melou [4]

PP
(area, uasc, lasc, col)

au, al, c, h = 1; d = 0

Delest, Dubernard,

and Dutour[17]

PP
(area, col)

au, al, bu, bl, c, h = 1; d = 0
Delest and Fédou[16]

distribution of Delest, Dubernard, and Dutour [17] also tracked the height of the

leftmost column; their notion of corners coincides exactly with upper and lower

ascents. Bousquet-Mélou’s entry included both the left and right column heights.

2.7.2 DCCPs by valleys along the upper ridge

A column-subsequence QkQk+1Qk+2 in a column-convex polyomino Q is

said to be a valley provided that QkQk+1 is an upper descent and Qk+1Qk+2 is an

upper ascent or an upper level. The number of valleys in Q is denoted by val(Q).

Furthermore, Q is said to be down-up provided that QkQk+1 is an upper descent

when k is odd and is an upper ascent or an upper level when k is even. Let DUn

denote the set of down-up directed column-convex polyominoes of length n.

Corollary 2.8. The generating function for DCCPs by valleys, area, and length,∑
Q∈DCCP

yval(Q)qarea(Q)z`(Q),
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is given by ∑
n≥0

(1− y)nq(n+1)(2n+1)z2n+1

(q; q)2n+1(q; q)2n∑
n≥0

(1− y)nqn(2n+1)z2n

(q; q)2
2n

−
∑
n≥0

(1− y)nq(n+1)(2n+1)z2n+1

(q; q)2
2n+1

.

The proof of Corollary 2.8 consists of first using Theorem 2.4 to express

the generating function for DCCPs by valleys in terms of down-up DCCPs of odd

lengths. Theorem 2.4 is then applied again in a manner analogous to the second

half of the proof of Corollary 2.3 to show that

∑
n≥0

∑
Q∈ DU2n+1

qarea(Q)z2n+1 =

∑
n≥0

(−1)nq(n+1)(2n+1)z2n+1

(q; q)2n+1(q; q)2n∑
n≥0

(−1)nqn(2n+1)z2n

(q; q)2
2n

.

2.8 The pattern algebra method

Goulden and Jackson’s pattern algebra method [30, section 4.3] is a powerful

method for solving Q1 and Q2 on words for pattern sets with a particular structure.

That is, if X is an alphabet and π1 ⊂ X2, then we will consider unions of factor

sets F = {w ∈ Xm} with any number of restrictions of the form wiwi+1 ∈ π1 or

wiwi+1 6∈ π1. For example, let X = P and π1 = {w1w2 ∈ P2 : w1 ≤ w2}. Then, the

factor set for peaks is {w ∈ P3 : w1w2 ∈ π1, w2w3 6∈ π1}, and the factor set for up-

down compositions is
⋃
m≥1{w ∈ Pm : w2i−1w2i ∈ π1 and w2iw2i+1 6∈ π1 for all i}.

The pattern algebra method is capable of tracking many of these pattern

sets individually, with any number being tracked by non-overlapping occurrences.

In this section, we use the pattern algebra method to obtain a q-analog of Kitaev’s

[40] Theorem 30 and to deduce a better generating function for permutations by

peaks and twin peaks, among other results.

The essentials of the pattern algebra method follow. Let X be an alphabet,

π1 ⊂ X2, and π2 = X2 \ π1. Suppose α =
∑

w∈X∗ cww is a formal series, and for

given x, y ∈ X, let Xx,y = {w ∈ X+ : w1 = x,w`(w) = y}. Then, the incidence

matrix I(α) is a matrix with rows and columns indexed by X such that I(α)x,y =
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∑
w∈Xx,y cw(w/y), i.e. the restriction of α to words in Xx,y, except the final y has

been removed from each word. For U ⊆ X∗, we also define I(U) = I(
∑

w∈U w)

and note that I(X) = I, the identity matrix.

For the remainder of this section, we let A = I(π1), B = I(π2), and W =

I(X2). In particular, W = A + B. It is crucial to note that, for formal series α

and β, I(α)I(β) = I(γ), where γ is formed by concatenating words u and v from α

and β, respectively, where the last letter of u is the first letter of v, and removing

one copy of the repeated letter.

Finally, we define the operator Ψ, which converts an incidence matrix back

to a formal series, by Ψ(I(
∑

w∈X∗ cww)) =
∑

w∈X+ cww. The empty word has been

removed in the process, as it is not accounted for in the incidence matrix. Note

that Ψ is linear and, for incidence matrices F and G, Ψ(FWG) = Ψ(F )Ψ(G).

2.8.1 A general strategy

We will consider the problem of enumerating words by factor sets whose

incidence matrices can be written as a rational function of A, W , and B. Such

a problem can be solved by the following process, which is different, yet equal in

scope, to that given by Goulden and Jackson.

1. Define a variable to be the incidence matrix for the desired formal series, and

then devise a system of linear equations to describe it. The design of this

system should mimic that of a regular grammar in that each variable will be

multiplied by at most one of A, W , and B and always on the same side. We

will name our variables Fi and use right multiplication in this section.

2. Substitute either A = W −B or B = W −A and solve the system, treating

FiW terms as constants. Using B = W −A, we obtain a system of the form

Fi = fi(A) +
∑

j FjWfij(A), where the fs are rational functions.

3. Finally, apply Ψ to the entire system, noting that Ψ(FWG) = Ψ(F )Ψ(G),

and solve for Ψ(Fi).
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We will typically compute Ψ(f(A)) by expanding f(A) as a power series in

A and using the linearity of Ψ to obtain a sum of the Ψ(An). We then may substi-

tute various quantities for the letters in X to obtain various generating functions.

We compute the image of Ψ(An) under some common substitutions in the next

subsection.

For DCCPs, we must also compute Ψ(FiZ), where Z is an incidence matrix

that restricts the last letter of each word. To do so, we add an extra step to the

end of the previous strategy. In this step, we take the result of step 2, multiply

on the right by Z, and apply Ψ to both sides. This gives us Ψ(FiZ) in terms of

Ψ(Fi), which we computed in step 3. We will then also need to compute the image

of Ψ(AnZ) under the common substitutions for DCCPs.

2.8.2 Key formulas

As Ψ(An) and Ψ(Bn) show up frequently, it is prudent to give their values

under a few common homomorphisms.

For compositions, we will usually want to consider π1 = {w1w2 ∈ P2 : w1 ≤
w2}. Then, Ψ(An−1) =

∑
λ∈Λn

λ, where λ is written in increasing order. As shown

in the proof of Theorem 2.3, if we substitute qi(z/q) for i, then we get

Ψ(An−1) = zn/(q; q)n. (2.25)

Similarly, Ψ(Bn−1) is the generating function for the set of w ∈ Pn that strictly

decrease between letters. Therefore, if we subtract n − i from wi, then we get

the set of words that weakly decrease, i.e. Λn, and we have subtracted
(
n
2

)
from

sum(w). Therefore, if we substitute qi(z/q) for i, then we get

Ψ(Bn−1) = znq(
n
2)/(q; q)n. (2.26)

Of course, using Theorem 2.3, we may use (2.25) and (2.26) to apply our results

to permutations.

For DCCPs, we consider the alphabets X =
{(

j
m

)
: j,m ∈ P, j ≥ m ≥ 1

}
and R = {

(
j
m

)
∈ X : m = 1}. Then, through the bijection δ from (2.19), π1 =

{
(
j1j2
m1m2

)
: j2 ≥ m1} corresponds to upper ascents or levels. From the discussion at

the end of Subsection 2.8.1, we will use Z = I(R).
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With this setup, Ψ(Bn−1) is the generating function for the set of
(
j
m

)
∈ Xn

such that 0 < mn ≤ jn < mn−1 ≤ jn−1 < · · · < m1 ≤ j1. Thus, we can consider the

word j1m1j2m2 · · · jnmn as a partition. Taking the conjugate, we have a partition

with parts of size at most 2n with at least one part of size 2i for all i ∈ [n]. Also,

we know that sum(j) corresponds to the area of the DCCP, sum(j) − sum(m)

contributes to the relative height, and each letter where ji > mi corresponds to

a lower ascent. As before, let q track the area, h track the relative height, and

al track lower ascents. Then, in the conjugate, we want to replace each part of

size 2i − 1 with qih and each part of size 2i with qi. We also need to modify

Equation (1.1) to account for the required even parts and to include a factor of

al whenever there is at least one part of an odd size. That is, for even i ∈ [2n],

we need xi + xixi + xixixi + · · · = xi(1 − xi)
−1, and for odd i ∈ [2n], we need

1 + al(xi + xixi + · · · ) = 1 + alxi(1− xi)−1 = (1− (1− al)xi)(1− xi)−1. Therefore,

with our substitutions, we get

Ψ(Bn−1) =
((1− al)hq; q)nq(

n+1
2 )zn

(hq; q)n(q; q)n
. (2.27)

Now, Ψ(Bn−1Z) is the generating function for the set of
(
j
m

)
∈ Xn such

that 1 = mn ≤ jm < · · · < m1 ≤ j1. We now employ a similar argument, except

there must be exactly one part of size 2n, we do not count a lower ascent if jn > 1,

and we add one to the relative height. Therefore, with our substitutions, we get

Ψ(Bn−1Z) =
((1− al)hq; q)n−1hq

(n+1
2 )zn

(hq; q)n(q; q)n−1

. (2.28)

The formal series Ψ(An−1) and Ψ(An−1Z) are somewhat more difficult to

compute. Theorem 2.7 addresses this issue.

Theorem 2.7. Given A(x) = 1 + Ψ(A0)x+ Ψ(A1)x2 + · · · , B(x) = 1 + Ψ(B0)x+

Ψ(B1)x2 + · · · , AZ(x) = Ψ(Z)+Ψ(AZ)x+Ψ(A2Z)x2 + · · · , and BZ(x) = Ψ(Z)+

Ψ(BZ)x+ Ψ(B2Z)x2 + · · · , then

A(x) = (B(−x))−1 (2.29)

and

AZ(x) = A(x)BZ(−x). (2.30)
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Proof. Let F = x(I − xA)−1, so that A(x) = 1 + Ψ(F ). Multiplying on the right

by (I − xA), we get F − xFA = xI. Set A = W − B and solve for F , treating

FW as a constant. It follows that

F = x(I + xB)−1 + xFW (I + xB)−1.

Applying Ψ and using the fact that Ψ(FWG) = Ψ(F )Ψ(G) yields

Ψ(F ) = xΨ((I + xB)−1) + xΨ(F )Ψ((I + xB)−1)

= (1 + Ψ(F ))xΨ((I + xB)−1).

Add 1 to both sides, and then solve for 1 + Ψ(F ) to obtain

1 + Ψ(F ) = (1− xΨ((I + xB)−1))−1

= (B(−x))−1.

Now, let G = (I − xA)−1Z, so that AZ(x) = Ψ(G). Following the same

strategy, we get G− xAG = Z. Set A = W −B and solve for G, treating WG as

a constant. It follows that

G = (I + xB)−1Z + x(I + xB)−1WG.

Applying Ψ and using the fact that Ψ(FWG) = Ψ(F )Ψ(G) yields

Ψ(G) = Ψ((I + xB)−1Z) + xΨ((I + xB)−1)Ψ(G).

Finally, solve for Ψ(G) to get

Ψ(G) = (1− xΨ((I + xB)−1))−1Ψ((I + xB)−1Z)

= (B(−x))−1BZ(−x)

= A(x)BZ(−x).

Applying Theorem 2.7 to (2.27) and (2.28), we find that

Ψ(An−1) =

(∑
k≥0

((1− al)hq; q)kq(
k+1
2 )(−x)k

(hq; q)k(q; q)k

)−1
∣∣∣∣∣∣
xn
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and that

Ψ(An−1Z) =

∑
k≥0

((1− al)hq; q)khq(
k+2
2 )(−x)k

(hq; q)k+1(q; q)k∑
k≥0

((1− al)hq; q)kq(
k+1
2 )(−x)k

(hq; q)k(q; q)k

∣∣∣∣∣∣∣∣∣∣∣
xn−1

. (2.31)

Note that (2.31) counts the number of parallelogram polyominoes with n columns

by area, relative height, and lower ascents. If we set h = al = 1, we obtain the

result of Delest and Fédou [16].

2.8.3 Up-down and down-up words

Our first example will be to find a version of (2.4) for words. For given

X and π1 ⊂ X2, we will define an up-down word to be a word w such that

w2i−1w2i ∈ π1 and w2iw2i+1 6∈ π1 for all i. Likewise, we define a down-up word to

be a word w where w2i−1w2i 6∈ π1 and w2iw2i+1 ∈ π1 for all i. Let UDX∗ be the

set of up-down words, and let DUX∗ be the set of down-up words. Then, we have

the following theorem.

Theorem 2.8. Given an alphabet X and π ⊂ X2, then∑
w∈UDX∗

w = (1−Ψ((I + A2)−1A))−1(1 + Ψ((I + A2)−1)), (2.32)

and ∑
w∈DUX∗

w = 1−Ψ((I + A2)−1A) (2.33)

+ Ψ((I + A2)−1)(1−Ψ((I + A2)−1A))−1(1 + Ψ((I + A2)−1)).

Proof. Let F0 be the incidence matrix for the set of up-down words of odd length,

and let F1 be the incidence matrix for the set of up-down words of even length

(not including ε). Then, F0 and F1 satisfy the following system of equations:

F0 = I + F1B,

F1 = F0A.
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Replace B = W−A, and solve the system of equations, treating F1W as a constant,

to obtain

F0 = (I + A2)−1 + F1W (I + A2)−1,

F1 = (I + A2)−1A+ F1W (I + A2)−1A.

Apply Ψ to both sides of the equation, recalling that Ψ(FWG) = Ψ(F )Ψ(G), then

solve for Ψ(F0) and Ψ(F1) to obtain

Ψ(F0) = Ψ((I + A2)−1) + Ψ((I + A2)−1A)(1−Ψ((I + A2)−1A))−1Ψ((I + A2)−1),

Ψ(F1) = Ψ((I + A2)−1A)(1−Ψ((I + A2)−1A))−1.

Equation (2.32) is then given by 1 + Ψ(F0) + Ψ(F1).

Next, let G0 be the incidence matrix for the set of down-up words of odd

length, and let G1 be the incidence matrix for the set of down-up words of even

length (not including ε). Then, G0 and G1 satisfy the following equations:

G0 = I +G1A,

G1 = G0B.

Following the same steps, solve for Ψ(G0) and Ψ(G1), then note that Equation

(2.33) is given by 1 + Ψ(G0) + Ψ(G1).

As a consequence of Theorem 2.8, we now obtain the generating function

for down-up permutations, DUSn, defined in the obvious way.

Corollary 2.9. The generating function for down-up permutations by inversions

is given by ∑
σ∈DUSn

qinv(σ)zn

(q; q)n
=

sin2
q(z) + cos2

q(z)

cosq(z)
+

sinq(z)

cosq(z)
. (2.34)

Proof. Apply Equation (2.33) to compositions using X = P and π1 = {w1w2 ∈ P2 :

w1 ≤ w2}. Expand the right-hand side of the equation as a series in A, then for

each letter i ∈ P, substitute qi(z/q) as in Subsection 2.8.2. Finally, apply Theorem

2.3 to obtain the result.
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It is interesting to note that when we substitute z(1 − q) for z and let q

approach 1, we obtain sec(z) + tan(z), the same as André’s original result. This

is because subtracting each letter from n + 1 exchanges down-up and up-down

permutations. However, this operation changes the number of inversions, which is

why we get a result that is partially different from (2.4).

2.8.4 A q-analog of a distribution due to Kitaev

In this subsection, we use the pattern algebra method to obtain a q-analog

of Kitaev’s Theorem 30 in [40] that enumerates permutations that avoid consecu-

tive P = {4312, 4213, 4123, 3214, 3124, 2134}-patterns. We begin by deducing the

relevant generating function on words.

Theorem 2.9. If F ⊂ X4 such that I(F) = AWB, then∑
w∈X∗

yF(w)w = (1− αβ−1)−1,

where

α = Ψ(U)−Ψ(BU)γ,

β = 1 + (y − 1)2Ψ(B3U)−Ψ(U)γ,

γ = (y − 1)(1 + (y − 1)Ψ(B2U + (y − 1)B3U))−1Ψ(BU + (y − 1)B2U), and

U = (I − (y − 1)2B4)−1.

Proof. For all f ∈ F , let yf = y, and let F0 = I(X) + I(CF(y − 1, X∗)), where CF

is the cluster generating function as defined in Section 2.4. By Theorem 2.4, we

then seek to compute (1−Ψ(F0))−1. Following our general strategy in Subsection

2.8.1, we construct a system of equations.

F0 is the incidence matrix for the set of one-letter words and F -clusters.

These words are generated by arbitrary products of the incidence matrices AAB,

ABB, and AABB. Thus, noting that each F -factor needs to be counted by y− 1,

we could say that F0 = I + F0((y − 1)AAB + (y − 1)ABB + (y − 1)2AABB).

However, in order to use our general strategy, we must write a system of equations

where each unknown incidence matrix appears with only one A, B, or W to its
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right. Thus, we introduce a few extra unknown incidence matrices to obtain the

system

F0 = I + (y − 1)F2B + (y − 1)F3B,

F1 = F0A,

F2 = F1A,

F3 = F1B + (y − 1)F2B.

Next, we substitute A = W −B and, since there were no F2A or F3A terms

in the system, immediately eliminate F2 and F3, giving

F0 = I + (y − 1)F1W (B + (y − 1)B2)− (y − 1)2F1B
3,

F1 = F0W − F0B.

Treating F0W and F1W as constants, solve for F0 and F1 to get

F0 = (I + (y − 1)F1W (B + (y − 1)B2)− (y − 1)2F0WB3)U,

F1 = (F0W −B − (y − 1)F1W (B2 + (y − 1)B3))U.

Using the property Ψ(FWG) = Ψ(F )Ψ(G), take Ψ of both sides to obtain

Ψ(F0) = Ψ(U) + (y − 1)Ψ(F1)Ψ(BU + (y − 1)B2U)− (y − 1)2Ψ(F0)Ψ(B3U),

Ψ(F1) = Ψ(F0)Ψ(U)−Ψ(BU)− (y − 1)Ψ(F1)Ψ(B2U + (y − 1)B3U).

Finally, solve the system for Ψ(F0) and compute (1−Ψ(F0))−1.

The generating function K in the following result gives a q-analog of The-

orem 30 in [40].

Corollary 2.10. If P = {1243, 1342, 1432, 2341, 2431, 3421}, then∑
n≥0

∑
σ∈Sn

yPno(σ)qinv(σ)zn

(q; q)n
=

K
1− y + y(1− z

1−q )K
,

where

K =
eq(z)eq(−z) + cos2

q(z) + sin2
q(z) + 2eq(−z) cosq(z) + (eq(z) + eq(−z)) sinq(z)

4eq(−z) cosq(z)
.
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Proof. Let T = {4312, 4213, 4123, 3214, 3124, 2134}. Then, the “complement-

reversal” bijection cn : Sn → Sn given by cn(σ1σ2 · · ·σn) = (n + 1 − σn)(n +

1 − σn−1) . . . (n + 1 − σ1) shows that
∑

σ∈Sn y
P (σ)qinv(σ) =

∑
σ∈Sn y

T (σ)qinv(σ). By

Theorem 2.3,

∑
n≥0

∑
σ∈Sn

yT (σ)qinv(σ)zn

(q; q)n
=
∑
n≥0

∑
w∈Pn

yT (w)qsum(w)(z/q)n. (2.35)

Using π1 = {w1w2 ∈ P2 : w1 > w2}, note that Bn is equivalent to what An

is when π1 = {w1w2 ∈ P2 : w1 ≤ w2}. The right-hand side of (2.35) may then be

evaluated by applying (2.25) to the result in Theorem 2.9. Finally, set y = 0 and

apply Corollary 2.1.

Note that we could have just used (2.26) with Theorem 2.9 to obtain the

result in Corollary 2.10. However, the resulting generating function would be much

more difficult to manipulate. Alternatively, we could have substituted B = W −A
in proving Theorem 2.9 to obtain an equivalent result. However, the resulting

system of equations would have required more work to solve. The complement-

reversal bijection will frequently save us effort in this manner. This bijection also

gives an explanation for why sinq(z)

cosq(z)
appears in both (2.4) and (2.34).

2.8.5 The twin peak problem revisited

Define a peak to be a single word from Ψ(AB) and a twin peak to be

one from Ψ(ABAB). For w ∈ X∗, let peak(w) be the number of peaks in w and

tpeak(w) be the number of twin peaks. Theorem 2.10 solves Q2 on words for peaks

and twin peaks; as corollaries, we obtain corresponding results on permutations

and DCCPs.

Theorem 2.10. For any non-empty alphabet X,∑
w∈X∗

xpeak(w)ytpeak(w)w = (1− αβ−1)−1,
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where

α = Ψ(U) + xΨ(B2U)(y − 1− γ),

β = 1 + x(y − 1)Ψ(B3U)−Ψ(BU)(x− 1 + xγ),

γ = x(y − 1)(1− x(y − 1)Ψ(BU −B3U))−1Ψ(BU), and

U = (I + (xy − 1)B2 − x(y − 1)B4)−1.

Proof. Let F be the set of peaks and twin peaks, yf = x if f ∈ F is a peak and

yf = y if f is a twin peak. Then, let F0 = I(X) + I(CF(y − 1, X∗)), where CF

is the cluster generating function of Section 2.4. By Theorem 2.4, we then seek

to compute (1−Ψ(F0))−1. Following our general strategy in Subsection 2.8.1, we

deduce a system of equations.

As in Theorem 2.9, F0 is the incidence matrix for the set of one-letter words

and F -clusters. In this case, those words are generated by arbitrary products of the

incidence matrix AB, which are up-down words of odd length. As in Subsection

2.5.3, however, we must be careful to distinguish all of the possible ways to cover

each word with peaks and twin peaks.

We will consider all possible ways to form prefixes of valid clusters, counting

peaks or twin peaks when they are completed. Starting from F0, we may only

multiply by A, so let F1 = F0A. Starting from F1, we may only multiply by B,

but there are three ways we could count this transition: as part of a peak but not

a twin peak, as part of a peak and a twin peak, or only as part of a twin peak. In

the first case, we have completed an F -cluster, so this contributes (x − 1)F1B to

F0. Let F2 be the incidence matrix for cluster prefixes that are half-way through a

twin peak. Then, the second and third cases contribute (x−1)F1B+F1B = xF1B

to F2. Starting from F2, we may only multiply by A, so let F3 = F2A. Starting

from F3, we may only multiply by B, but there are four ways we could count this

transition: any combination of being part or not being part of a peak, as well as

being in the middle of a new twin peak or not. Combining these appropriately, we
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contribute x(y − 1)F3B to F0 and F2, obtaining the following system:

F0 = I + (x− 1)F1B + x(y − 1)F3B,

F1 = F0A,

F2 = xF1B + x(y − 1)F3B,

F3 = F2A.

Substitute A = W −B and eliminate F1 and F3 to obtain

F0 = I + (x− 1)F0WB − (x− 1)F0B
2 + x(y − 1)F2WB − x(y − 1)F2B

2,

F2 = xF0WB − xF0B
2 + x(y − 1)F2WB − x(y − 1)F2B

2.

Treating F0W and F2W as constants, solve for F0 and F2:

F0 = (I + x(y − 1)B2 + F0W ((x− 1)B − x(y − 1)B3) + x(y − 1)F2WB)U,

F2 = x(−B2 + F0WB + (y − 1)F2W (B −B3))U. (2.36)

Apply Ψ, recall that Ψ(FWG) = Ψ(F )Ψ(G), and solve for Ψ(F0).

The method of deriving the system of equations in Theorem 2.10 is quite

general. It is equivalent to the process of constructing a non-deterministic finite

automaton to read clusters and output x−1 when it matches a peak and y−1 when

it matches a twin peak (technically, this is a non-deterministic Mealy machine).

From this perspective, it is clear that our use of the cluster generating function

is unnecessary. That is, we could just as well have designed a machine to read

arbitrary sequences of As and Bs and output x or y when it reads a peak or twin

peak. However, using the cluster generating function, when possible, will generally

save quite a few terms in the resulting system of equations.

When deriving a result for permutations, we generally prefer to set B =

W−A instead of A = W−B, since Ψ(An) has a nicer formula than Ψ(Bn) with our

usual substitutions. However, as the following paragraph shows, when we make a

substitution that does not depend on the order of the letters, A and B may be

switched in Theorem 2.10 without affecting the result.

Let F ′ be the set of words from Ψ(BA+BABA), yf = x if f is from Ψ(BA)

and yf = y if f is from Ψ(BABA). Let (w, ν, β) be an F -cluster with w ∈ Xn.
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Then, if wnw1 ∈ π1, let w′ = w2w3 . . . wnw1; otherwise, let w′ = wnw1w2 . . . wn−1.

Then, (w′, ν ′, β) is an F ′-cluster, where ν ′ contains factors of w′ with lengths

and positions matching those in ν. Moreover, since no other word of the form

wi . . . wnw1 . . . wi−1 is F ′-coverable, this is a bijection. Then, after substituting the

letters in X, we find that CF(y,X∗) = CF ′(y,X
∗), since w′ is a rearrangement

of the letters of w. This fact gives another explanation for why sinq(z)

cosq(z)
appears in

both (2.4) and (2.34).

Using the above fact, we obtain the following alternative solution to the

problem considered in Subsection 2.5.3.

Corollary 2.11. The generating function for permutations by peaks, twin peaks,

and inversions is∑
n≥0

∑
σ∈Sn

qinv(σ)xpeak(σ)ytpeak(σ)zn

(q; q)n
=

1

1−
s+ sinq(z

√
r+)

2
√
r+ cosq(z

√
r+)
−

s− sinq(z
√
r−)

2
√
r− cosq(z

√
r−)

,

where r± = (xy−1±
√
D)/2, s± = 1± (2x−xy−1)/

√
D, and D = (xy+1)2−4x.

Proof. Let X = P and π1 = {w1w2 ∈ P2 : w1 ≤ w2}. In Theorem 2.10, replace

each B with an A, expand U as a series in A, substitute qi(z/q) for each letter

i ∈ P, then apply (2.25) and simplify.

A peak in a CCP Q is a sequence of columns QiQi+1Qi+2 such that QiQi+1

is an upper ascent or level and Qi+1Qi+2 is an upper descent. A twin peak is a

sequence QiQi+1Qi+2Qi+3Qi+4 such that QiQi+1Qi+2 and Qi+2Qi+3Qi+4 are peaks.

Let peak(Q) and tpeak(Q) respectively denote the number of peaks and twin peaks

in Q. Corollary 2.12 applies Theorem 2.10 to DCCPs.

Corollary 2.12. The generating function for DCCPs by peaks, twin peaks, area,

and length is ∑
Q∈DCCP

xpeak(Q)ytpeak(Q)qarea(Q)z`(Q) =
Ψ(F0Z)

1−Ψ(F0)
,

where X, Ψ(Bn), and Ψ(BnZ) are given for DCCPs in Subsection 2.8.2, Ψ(F0)
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and U are as in Theorem 2.10, and

Ψ(F0Z) = Ψ(UZ + x(y − 1)B2UZ) + Ψ(F0)Ψ((x− 1)BUZ − x(y − 1)B3UZ)

+ x(y − 1)Ψ(F2)Ψ(BUZ),

Ψ(F2) = x(−Ψ(B2U) + Ψ(F0)Ψ(BU))(1− x(y − 1)Ψ(BU −B3U))−1.

Proof. The version of Theorem 2.4 for words ending with a particular letter implies

that we seek (1 − Ψ(F0))−1Ψ(F0Z) in Theorem 2.10. To evaluate Ψ(F0Z), right-

multiply both sides of the first equality in (2.36) by Z, apply Ψ, and solve.

2.9 The Temperley method

In short, the Temperley [59] method involves introducing a variable to track

the size of the last letter in a word, deriving a recurrence for the generating function

using that variable, and then solving the recurrence. By streamlining Temperley’s

method, Bousquet-Mélou [4] developed a powerful tool for enumerating CCPs by

practically any desired set of statistics. The Temperley method does not work at

the word level, so it cannot derive results as general as the pattern algebra method.

However, when restricted to CCPs, the Temperley method can be used to solve all

of the same problems and more. In this final section, we illustrate the use of the

Temperley method as modified in [4] in solving a few select consecutive pattern

problems on CCPs, compositions, and permutations.

2.9.1 Two-column ridge patterns in CCPs

We begin our exposition of the Temperley method by stating a trivial mod-

ification of a result by Bousquet-Mélou [4].

Lemma 2.1. If

F (b) = zr(b) + zs(b)F (1) + zt(b)F (1/h) + zy(b)F (qb), (2.37)

then F (b) is given by

R(b) +
S(b)[R(1) + T (1)R( 1

h
)−R(1)T ( 1

h
)] + T (b)[R( 1

h
) +R(1)S( 1

h
)− S(1)R( 1

h
)]

1− S(1)− T ( 1
h
)− T (1)S( 1

h
) + S(1)T ( 1

h
)

,
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where

R(b) =
∑
n≥0

zn+1y(b)y(qb) · · · y(qn−1b)r(qnb),

S(b) =
∑
n≥0

zn+1y(b)y(qb) · · · y(qn−1b)s(qnb), and

T (b) =
∑
n≥0

zn+1y(b)y(qb) · · · y(qn−1b)t(qnb).

Proof. The proof is essentially identical to Bousquet-Mélou’s [4]. First, obtain an

equation for F (qb) by substituting qb for b in Equation (2.37), then substitute this

expression for the F (qb) in equation (2.37). Repeat this process for the F (q2b)

that was introduced in this manner, then F (q3b), and so on, to obtain

F (b) = R(b) + S(b)F (1) + T (b)F (1/h). (2.38)

Next, substitute b = 1 and b = 1
h

in Equation (2.38) to obtain two more equations

relating F (b), F (1), and F ( 1
h
). Solve the system of equations for F (b).

The following theorem gives a recurrence for the generating function for

CCPs by all six two-column patterns, perimeter, relative height, area, length, and

height of the last column. It should be clear that the solution to this recurrence is

given by Lemma 2.1.

Theorem 2.11. If we define F (b) by∑
Q∈CCP

auasc(Q)
u bulev(Q)

u dudes(Q)
u a

lasc(Q)
l b

llev(Q)
l d

ldes(Q)
l cper(Q)qarea(Q)hrelh(Q)b|Q`(Q)|z`(Q),
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then,

F (b) =
zqc4b

1− qc2bh
+ zc2

(
q2b2c2aualh

(1− qb)(1− qbc2h)
+
qbalbu
1− qb

− qbdual
(1− h)(1− qb)

)
F (1)

+ zc2

(
qbh

1− qbh
dubl +

q2b2c2h

(1− qbh)(1− qbc2)
dudl +

qbh2

(1− h)(1− qbh)
dual

)
F (

1

h
)

+ zc2

(
qbc2h

1− qbc2h
aubl +

q2b2c4h

(1− qbc2)(1− qbc2h)
audl −

qbc2h

(1− qb)(1− qbc2h)
aual

+ bubl +
qbc2

1− qbc2
budl −

1

1− qb
bual −

1

1− qb
dubl −

qbc2

(1− qbh)(1− qbc2)
dudl

+
1

(1− qb)(1− qbh)
dual

)
F (qb).

Proof. Note that b keeps track of the height of the last column in P .

There are ten cases to consider. The first case is when P consists of one

column. The other nine cases are those where the last pair of columns form each

combination of upper descent, upper ascent, upper level, lower descent, lower as-

cent, and lower level.

1. single column: In this case, the top and bottom of the column contribute 2

to the perimeter. Then, each cell in the column contributes 2 more to the

perimeter, 1 to the area, 1 to the relative height, and 1 to the height of the

last column. There is at least one cell in the column, so these CCPs are

counted by
zqc4b

1− qc2bh
. (2.39)

2. upper level, lower level: In this case, we start with any CCP Q, then add

a new column with the same number of cells as the last column of Q. For

each duplicated cell, we must add 1 to the area. Also, we must add 1 to

the number of columns, 1 to the number of lower levels, 1 to the number of

upper levels, and 2 to the perimeter. Therefore, these CCPs are counted by

zbublc
2F (qb). (2.40)

3. upper ascent, lower level: In this case, we start with any CCP Q, then add

a new column with the same number of cells as the last column of Q, then
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add any positive number of cells above it. For each of the duplicated cells,

we must add 1 to the area. Also, we must add 1 to the number of columns,

1 to the number of lower levels, 1 to the number of upper ascents, and 2 to

the perimeter. For each additional cell, we must add 1 to the area, 1 to the

relative height, 1 to the height of the last column, and 2 to the perimeter.

Therefore, the CCPs in this case are counted by

zaublc
2 qbc2h

1− qbc2h
F (qb). (2.41)

4. upper level, lower descent: This case is very similar to the previous case. We

get

zbudlc
2 qbc2

1− qbc2
F (qb). (2.42)

5. upper level, lower ascent: For this case, we start with any CCP Q and add

a new column of any positive height, aligned to form an upper level. Then,

we subtract the ones that are at least the same height as the last column of

Q. Each cell in the new column adds 1 to the area and contributes 1 to the

height of the last column. Also, we must add 1 to the number of columns,

1 to the number of upper levels, 1 to the number of lower ascents, and 2 to

the perimeter. Combining the two cases, we get

zbualc
2

(
qb

1− qb
F (1)− 1

1− qb
F (qb)

)
. (2.43)

6. upper descent, lower level: This case is very similar to the previous case.

However, instead of setting b = 1 to ignore the height of the last column of

Q, we set b = 1/h to subtract it from the relative height, then add 1 back

for each cell in the new last column. We get

zdublc
2 qbhF ( 1

h
)− F (qb)

1− qbh
. (2.44)

7. upper ascent, lower descent: This case is straightforward. Given Q ∈ CCP,

we copy the last column, then add at least one cell below it and at least one

cell above it. We get

zaudlc
2 q2b2c4h

(1− qbc2)(1− qbc2h)
F (qb). (2.45)
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8. upper ascent, lower ascent: For this case, we repeat the argument for upper

level, lower ascent, then add any positive number of cells to the top of the

last column to form an upper ascent. We get

zaualc
2

(
q2b2c2h

(1− qb)(1− qbc2h)
F (1)− qbc2h

(1− qb)(1− qbc2h)
F (qb)

)
. (2.46)

9. upper descent, lower descent: This case is very similar to the previous case.

We get

zdudlc
2

(
q2b2c2h

(1− qbh)(1− qbc2)
F (1/h)− qbc2

(1− qbh)(1− qbc2)
F (qb)

)
. (2.47)

10. upper descent, lower ascent: For this case, we start with any CCP Q, add a

column of any positive height, aligning it to form an upper descent. Then,

we subtract the ones that form a lower level or descent. The first part is

tricky, so we’ll pause to address it. We start by choosing a cell to be the

top of the new column. This gives us the following possible values for the

change in relative height: −1,−2,−3, . . . ,−n + 1, where n is the height of

the last column of Q. We can accomplish this by removing n by setting

b = 1/h, adding any positive number, then substracting the cases where the

new relative height is at least as high as relh(Q). Therefore, this piece of our

result is given by
qb(hF ( 1

h
)− F (1))

1− h
.

Next, we append any number of cells below this one cell, giving

qb(hF ( 1
h
)− F (1))

(1− h)(1− qb)
.

Now, we are ready to subtract the results with a lower level or descent. We

have derived these results already, so we repeat that analysis and obtain

zdualc
2

(
qb(hF ( 1

h
)− F (1))

(1− h)(1− qb)
−
qbhF ( 1

h
)− F (qb)

(1− qbh)(1− qb)

)
. (2.48)

Adding Equations (2.39) through (2.48) gives the result.
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2.9.2 CCPs by peaks

The generating functions for column-convex polyominoes by various up-

per ridge patterns, area, width, and relative height are always rational functions.

Theorem 2.12 provides an example. Let peak(Q) be as in Corollary 2.12.

Theorem 2.12. The generating function for CCPs by peaks, area, and length is

∑
Q∈CCP

ypeak(Q)qarea(Q)z`(Q) =
( zq

1−q + 2z2q3

(1−q)3 )(1 + 2zq
(1−q)2 )

(1− zq2

(1−q)2 )(1 + zq
(1−q)2 )− 2yz2q3

(1−q)4
.

Proof. Define F (b) =
∑

Q∈CCP y
peak(Q)qarea(Q)z`(Q)hrelh(Q)b|Q`(Q)|. Let F0(b) be the

restriction of F (b) to Q such that `(Q) ≥ 2 and the last pair of columns form an

upper level or ascent, and let F1(b) be the restriction to the rest. Then, we seek

F (1) = F0(1) + F1(1), with h = 1. As with the pattern algebra method, we derive

a system of equations that F0 and F1 must satisfy. However, in this case, we will

not be able to use the cluster generating function effectively, since CCP cannot

essentially be written as X∗ for some alphabet X.

The analysis in Theorem 2.11 makes most of the work straightforward. The

CCPs contributing to F0 are obtained by adding a column with an upper ascent

or level to any CCP. The CCPs contributing to F1 fall into three cases: they have

one column, they end with a peak, or they end with two upper descents. The

CCPs ending in a peak come from CCPs contributing to F0 followed by an upper

descent. The CCPs ending in two upper descents come from CCPs contributing

to F1 followed by an upper descent. Thus, we obtain the following system of

equations:

F0(b) =
zqb

(1− qb)(1− qbh)
(F0(1) + F1(1)),

F1(b) =
zqbh

1− qbh
+

zqb

(1− qb)(1− h)
(yhF0(1/h)− yF0(1) + hF1(1/h)− F1(1)).

Substituting b = 1 and b = 1/h into the above system gives four linear

equations in the four unknown functions F0(1), F1(1), F0(1/h), and F1(1/h). Solve

this system, compute F0(1) + F1(1), and set h = 1.



66

2.9.3 Compositions by mesas

A mesa in a composition w is a subsequence wiwi+1wi+2wi+3 satisfying

wi < wi+1 = wi+2 > wi+3. Let mesa(w) be the number of mesas in w.

Corollary 2.13. The generating function for compositions by mesas is

∑
n≥0

∑
w∈Pn

ymesa(w)qsum(w)(z/q)n =

1−

∑
n≥0

(−1)n(y − 1)nz3n+1q3n(n+1)/2

(q; q3)n+1(q3; q3)n∑
n≥0

(−1)n(y − 1)nz3nqn(3n+1)/2

(q2; q3)n(q3; q3)n


−1

.

Proof. Again, we deduce a system of equations. We will define F0(b) to be a gener-

ating function for length-one words and words that can be covered by overlapping

mesas. If w ∈ Pn is such a word, then w will contribute a factor of (y− 1) for each

mesa as well as qsum(w)(z/q)nbwn−1 to F0(b). Note that b essentially tracks the last

letter of w, the hallmark of the Temperley method. Then, by Theorem 2.4, we

seek (1− F0(1))−1.

For our convenience, we will say that w ∈ F0(b) if w contributes a non-zero

term to F0(b). We will consider all ways to form prefixes of the words w ∈ F0(b).

The only way to extend such a w by one letter is to add an ascent. Thus, we let

F1(b) be the generating function for w ∈ F0(b) with an ascent added. Similarly,

the only way to extend a w ∈ F1(b) is by appending a level. Thus, we let F2(b) be

the generating function for w ∈ F1(b) with a level added. Finally, the only way to

extend a w ∈ F2(b) is by appending a descent, completing a new mesa. We may

then deduce relationships between F0(b), F1(b), and F2(b) as we did with CCPs to

obtain the system

F0(b) =
z

1− qb
+

(y − 1)z

1− qb
(F2(1)− F2(qb)),

F1(b) =
zqb

1− qb
F0(qb),

F2(b) = zF1(qb).

Elimination of F1(b) and F2(b) gives

F0(b) =
z

1− qb
+

(y − 1)z3q2

(1− q2)(1− qb)
F0(q2)− (y − 1)z3q3b

(1− qb)(1− q3b)
F0(q3b).
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At this point, we could use Lemma 2.1 to write a formula for F0(b). However,

it is easy enough to solve this equation directly. Eliminating F0(q3b) by repeated

substitution, we obtain

F0(b) =

(
z +

(y − 1)z3q2

1− q2
F0(q2)

)∑
n≥0

(−1)n(y − 1)nz3nq3n(n+1)/2bn

(qb; q3)n+1(q3b; q3)n
. (2.49)

Substituting b = q2 and some algebra yields

z +
(y − 1)z3q2

1− q2
F0(q2) =

z∑
n≥0

(−1)n(y − 1)nz3nqn(3n+1)/2

(q2; q3)n(q3; q3)n

.

Substituting the above into (2.49) and setting b = 1 completes the proof.

2.9.4 Permutations by (i,m)-maxima revisited

The modified Temperley method in [4] may be applied to obtain an alter-

native version of the generating function in Corollary 2.5. In fact, for fixed i, d, we

may apply the Temperley method to track all of the different (i, d)-peaks individ-

ually. However, in the following corollary, we will only address the (i,m)-maxima,

namely the (i, 2)-peaks. This will be sufficient to demonstrate the method.

Theorem 2.13. If i ≥ 2 and 1 ≤ m ≤ i, then the generating function for permu-

tations by (i,m)-maxima and inversions,

∑
n≥0

∑
σ∈Sn

(
i∏

m=1

y
p(m)(σ)
m

)
qinv(σ)zn

(q; q)n
,

is given by 1−

∑
n≥0

zin+1

1− qin+1

n−1∏
k=0

T (qik)

1− yi − 1

(q; q)i−1

∑
n≥1

zin

1− qin
n−1∏
k=1

T (qik−1)


−1

,

where

T (b) =
i−1∑
m=1

(ym − 1)qm

(q; q)m(qm+1b; q)i−m
− yi − 1

(q; q)i−1(1− qb)
.
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Proof. Let F = ∪p∈PiFp. As in Theorem 2.13, we define F (b) to be the generating

function for F -clusters and length-one words. If w ∈ Pn is such a word, then it

contributes qsum(w)(z/q)nbwn−1 times a factor of ym−1 for each (i,m)-maxima in w

to F (b). By Theorem 2.6, we seek (1−F (1))−1. As usual, we derive a recurrence for

F (b). Note that (i,m)-maxima can never overlap except at the first or last letter,

so the only way to extend an F -cluster is to append an (i,m)-maximum. For

1 ≤ m < i, the generating function for words from F (b) with an (i,m)-maximum

appended is
(ym − 1)qmzi

(q; q)m(qm+1b; q)i−m
F (qib). (2.50)

The generating function for words from F (b) with an extra (i, i)-maximum ap-

pended is
(yi − 1)zi

(q; q)i−1(1− qb)
(F (qi−1)− F (qib)). (2.51)

Summing (2.50) over m and adding in (2.51) and the one letter words, we obtain

a recurrence for F (b):

F (b) =
z

1− qb
+

(yi − 1)zi

(q; q)i−1(1− qb)
F (qi−1) + ziT (b)F (qib).

We solve this equation in the usual way. Elimination of F (qib) leads to

F (b) =

(
z +

(yi − 1)zi

(q; q)i−1

F (qi−1)

)∑
n≥0

zni

1− q1+nib

n−1∏
k=0

T (qkib). (2.52)

Substituting b = qi−1 and some algebra gives

z +
(yi − 1)zi

(q; q)i−1

F (qi−1) = z

(
1− yi − 1

(q; q)i−1

∑
n≥1

zni

1− qni
n−1∏
k=1

T (qki−1)

)−1

.

Substitute into (2.52) and set b = 1 to obtain the final result.

2.9.5 Permutations by left-to-right minima and patterns

beginning with 1

Given a permutation σ ∈ Sn, we say that σi is a left-to-right minimum if

σj > σi for all j < i. Let ltrmin(σ) denote the number of left-to-right minima
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in σ. If we define left-to-right minima in compositions through Fédou’s bijection,

it turns out that wi is a left-to-right minimum in w if wj > wi for all j < i.

We’ll define ltrmin(w) accordingly. Theorem 2.14 gives a method of computing

generating functions by ltrmin and consecutive patterns that start with 1.

Theorem 2.14. Let P ⊂
⋃
m≥1 Sm such that p1 = 1 for each p ∈ P . Define f(z)

to be the generating function for compositions starting with 1 by the consecutive

patterns in P , sum, and length, i.e.

f(z) =
∑
n≥1

∑
w∈{1}Pn−1

(∏
p∈P

yp(w)
p

)
qsum(w)zn. (2.53)

Then, ∑
n≥0

∑
w∈Pn

(∏
p∈P

yp(w)
p

)
xltrmin(w)qsum(w)zn =

∏
i≥0

(1 + xf(qiz)). (2.54)

Proof. Given a composition w, break w into sub-words before each left-to-right

minimum. Then, each sub-word begins with its smallest letter, and the first letters

strictly decrease between sub-words. Therefore, for each k ∈ P, w has either 1 or

0 sub-words beginning with k, and any set of such sub-words may be uniquely

combined to give a corresponding w. A sub-word beginning with the letter k ∈ P
may be obtained from one beginning with 1 by adding k−1 to each letter, and this

leaves the relative order of the letters unchanged, thus preserving the occurrences

of each p ∈ P . Therefore, the generating function for sub-words beginning with k

is f(qk−1z). Finally, since each p ∈ P begins with 1 and the first letter of each sub-

word is smaller than all letters before it, no consecutive occurrence of p can involve

letters of w in more than one sub-word. Thus, p(w) is the sum of the number of

consecutive occurrences of p over the sub-words of w. The result follows.

Theorem 2.15 gives an example of the use of Theorem 2.14.

Theorem 2.15. Let f(z) be given by

f(z) =
z
∑

n≥0
qnzn

(1−q)n(q;q2)n

1− z
∑

n≥0
qnzn

(1−q)n(q;q2)n+1

. (2.55)

Then, ∑
n≥0

∑
σ∈Sn

xltrmin(σ)y132(σ) q
inv(σ)zn

(q; q)n
=
∏
i≥0

(1 + xf(qiz)).
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Proof. Clearly, in order to obtain this result, we must show that f(z) is the gener-

ating function for compositions beginning with 1 by consecutive 132-patterns. To

that end, define F (b) to be the generating function for compositions w beginning

with 1 by qsum(w)(z/q)`(w)bw`(w)−1, and we will derive an equation similar to those

earlier in this section.

Given a word w, we may extend it in one of two ways: by adding a single

letter, or by adding two letters to construct a consecutive 132-pattern at the end of

the word. However, this process will create some words in more than one way. For

example, the word 132 may be created starting with 1 by adding a 3, then adding

a 2, or it may be created by adding 32 at once. Thus, when we add two letters at

once, we will count those 132-patterns with y − 1, so the combined contribution

from the two methods gives a factor of y. The only word not obtained in one of

these two ways is 1. Thus, we obtain the equation

F (b) = z +
z

1− qb
F (1) +

qz

(1− q)(1− qb)
F (q2b). (2.56)

We solve Equation (2.56) in the usual way. Eliminating F (q2b), we obtain

F (b) = z
∑
n≥0

qnzn

(1− q)n(qb; q2)n
+ zF (1)

∑
n≥0

qnzn

(1− q)n(qb; q2)n+1

.

Substituting b = 1 and solving for f(1), we obtain the result in Equation (2.55).

The method of deriving Equation (2.56) used in Theorem 2.15 is equivalent

in spirit to using the cluster generating function. In fact, we could have used

this method in all of the examples of Sections 2.8 and 2.9, including Theorem 2.12,

where we could not use the cluster generating function. This method is particularly

valuable for CCPs and other words that are not essentially X∗ for some alphabet

X.

Jones and Remmel [36] showed that if f(z) is the exponential generat-

ing function for permutations by patterns beginning with 1, then the exponential

generating function for the same patterns and left-to-right minima is given by

(f(z))x = ex log(f(z)). Our final theorem of this chapter generalizes this result to
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include inversions by showing that we can obtain the generating function for com-

positions starting with 1 from the generating function for all compositions when

we’re tracking patterns that begin with 1.

Theorem 2.16. For P ⊂
⋃
m≥1 Sm such that each p ∈ P begins with 1, define

f(z) by

f(z) =
∑
n≥0

∑
w∈Pn

(∏
p∈P

yp(w)
p

)
qsum(w)(z/q)n.

Then, ∑
n≥1

∑
w∈{1}Pn−1

(∏
p∈P

yp(w)
p

)
qsum(w)(z/q)n =

f(z)

f(qz)
− 1.

Proof. By the argument in Section 2.5, if F (z) = z
1−q + DP (y − 1, z/q), then

f(z) = (1 − F (z))−1. Therefore, we can solve for F (z) in terms of f(z), namely

F (z) = 1 − (f(z))−1. Now, we wish to apply Theorem 2.4 again to obtain the

generating function for words beginning with a restricted subset, i.e. {1}. In

order to apply the theorem, we need the generating function for clusters and one-

letter words beginning with 1. To get this, we start with F (z) and subtract the

words that begin with a letter greater than 1. Thus, the clusters and one-letter

words beginning with 1 are counted by F (z)−F (qz). Finally, by Theorem 2.4, we

seek (F (z)− F (qz))f(z). The result follows.

Chapter 2, in part, has been published in the Electronic Journal of Com-

binatorics. Rawlings, Don; Tiefenbruck, Mark. “Consecutive Patterns: From

Permutations to Polyominoes and Back”, Electronic Journal of Combinatorics,

Volume 17, 2010. The dissertation author was an author of this paper.



Chapter 3

Generalizations of the Major

Index

3.1 Introduction

Gessel gave a generating function for descents, major index, and inversions

both in his thesis [27] and in a paper coauthored with Garsia [25]. Their result is

stated below.

Theorem 3.1 (Garsia and Gessel).

∑
n≥0

∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ)zn

(x;u)n+1(q; q)n
=
∑
k≥0

xk eq(zu
k) eq(zu

k−1) · · · eq(z). (3.1)

Let (a, b; p, q)n = (a − b)(ap − bq) · · · (apn−1 − bqn−1) be the p, q-shifted

factorial of n. Then it is easy to see that

pn+coinv(σ)qinv(σ)

(p, q; p, q)n
=

(q/p)inv(σ)

(q/p; q/p)n

for all σ ∈ Sn. Therefore, substituting q/p for q and z/p for z in (3.1) (or the

results in Chapter 2) gives the p, q-exponential generating function that includes

co-inversions. We can make similar substitutions to include the co-major index

and ascent number. For clarity and brevity, we thus omit these statistics from the

results in this chapter while noting that it is straightforward to include them.

72
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As in Chapter 2, in order to use words to study questions about permuta-

tions, we will use Fédou’s insertion-shift bijection. As a consequence of Equation

(2.12), we see that ∇n preserves descents. That is, wi > wi+1 if and only if

σi > σi+1. Therefore, ∇n also preserves the major index. Thus, we may apply

Theorem 2.3 to enumeration problems involving the major index.

Several authors have extended the Garsia-Gessel formula (3.1) to other

groups. For example, Reiner [54] gave a Bn version of the Garsia-Gessel formula

where Bn is the hyperoctahedral group, and Mendes and Remmel [46] gave versions

of the Garsia-Gessel formula for groups that are the wreath product of a cyclic

group Ck and the symmetric group.

Fuller and Remmel [24] studied analogues of Theorem 3.1 in compositions.

Given a composition w ∈ Pn, let zw be the monomial zw1 · · · zwn . Since compo-

sitions can have repeated entries, it is natural to have analogues of des and maj

where we replace > by ≥ or = in the definition of des and maj. That is, we let

Des(w) = {i : wi > wi+1}, WDes(w) = {i : wi ≥ wi+1}, and Lev(w) = {i : wi =

wi+1}. Then we define

des(w) = |Des(w)| and maj(w) =
∑

i∈Des(w)

i,

wdes(w) = |WDes(w)| and wmaj(w) =
∑

i∈WDes(w)

i, and

lev(w) = |Lev(w)| and levmaj(w) =
∑

i∈Lev(w)

i.

Fuller and Remmel [24] proved the following results.

Theorem 3.2 (Fuller and Remmel).

∑
n≥0

∑
w∈Nn

xdes(w)umaj(w)zw

(x;u)n+1

=
∑
k≥0

xk∏
i≥1(zi;u)k+1

.

Theorem 3.3 (Fuller and Remmel).

∑
n≥0

∑
w∈Nn

xwdes(w)uwmaj(w)zw

(x;u)n+1

=
∑
k≥0

xk
∏
i≥1

(−zi;u)k+1.
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Theorem 3.4 (Fuller and Remmel).∑
n≥0

∑
w∈Nn

xlev(w)ulevmaj(w)zw

(x;u)n+1

=
∑
k≥0

xk∏k
j=0(

∑
n≥0(−uj)npn)

,

where pn = pn(z1, z2, . . .) =
∑

i≥1 z
n
i is the power symmetric function.

The goal of this chapter is to prove a common generalization of the results

of Fuller and Remmel [21], and then we will show how we can use this result to

not only recover the results of Garsia and Gessel [25], Reiner [54], Mendes and

Remmel [46], and others but also to prove several new analogues of (3.1).

The outline of the chapter is as follows. In Section 3.2, we shall state and

prove our main theorem that generalizes (3.1) as well as Fuller and Remmel’s

results. In Section 3.3, we will present many extensions of this theorem and apply

it to a variety of combinatorial objects and variations on the major index statistic.

3.2 The main theorem

In this section, we will derive a general version of Garsia and Gessel’s result.

As with the Pattern Algebra in Section 2.8, we let X be an alphabet, with A ⊂ X2.

We will typically think of the case X = P and A = {w1w2 : w1 ≤ w2}, but our

results will hold in general. For w ∈ Xn, we can then define the descent number

and major index with respect to A:

desA(w) = |{i : wiwi+1 6∈ A}| and

majA(w) =
n−1∑
i=1

i · χ(wiwi+1 6∈ A)

When the meaning is clear, we will drop the subscript A. Further, let An = {w ∈
Xn : wiwi+1 ∈ A for all i ∈ [n − 1]} = {w ∈ Xn : desA(w) = 0}, an =

∑
w∈An w,

and A(z) = a0 + a1z + a2z
2 + · · · . We will let B = X2 \A and define Bn, bn, and

B(z) accordingly. We can now state a general result.

Theorem 3.5.∑
n≥0

∑
w∈Xn

xdesA(w)umajA(w)

(x;u)n+1

w =
∑
k≥0

xkA(uk)A(uk−1) · · ·A(1). (3.2)
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Proof. Fix w ∈ Xn, and define the partition µ(w) such that if wiwi+1 ∈ B, then

µ(w) has a part of size i. Clearly sum(µ(w)) = maj(w) and `(µ(w)) = des(w).

Define Λ̄≤n to be the set of weak partitions with parts less than or equal to n. By

the same method as for (1.1), we find that∑
λ∈Λ̄≤n

x`(λ)usum(λ) = (1− x)−1(1− xu)−1 · · · (1− xun)−1 =
1

(x;u)n+1

.

Then, for λ ∈ Λ̄≤n, form the weak partition λ+µ(w) by merging λ and µ(w); that

is, for all i, λ + µ(w) will have one part of size i for each such part in either λ or

µ(w). It is then clear that the left side of (3.2) is∑
n≥0

∑
w∈Xn

∑
λ∈Λ̄≤n

x`(λ+µ(w))usum(λ+µ(w))w. (3.3)

Now, fix ν = λ+µ(w) for some λ ∈ Λ̄≤n and sort the letters of ν in increasing

order. We can use ν to factor w into sub-words as w = w(0)w(1) · · ·w(k), where

w(i) starts at position νi + 1, using ν0 = 0, and extends as far as possible without

overlapping. For example, Figure 3.2 displays ν and the corresponding sub-words

of w = 021044203 when λ is the empty partition. Note that the descents of w

0 2
1
0 4 4

2
0 3

Figure 3.1: ν and w(i) for w = 021044203 and λ = ε

have been broken into distinct sub-words, so that each sub-word has no descents.

Figure 3.2 shows the sub-words when λ = 001169. Clearly des(w(j)) = 0 for each

j, regardless of λ, since µ(w) (and thus ν) contains a part i if wiwi+1 ∈ B.

Now, fix k and choose w(i) such that des(w(i)) = 0 for 0 ≤ i ≤ k. Then, one

can compute the corresponding ν by letting νi = `(w(0) · · ·w(i−1)) for 1 ≤ i ≤ k.

Thus, the set of ν with k parts is in bijection with the set of k-tuples of words with

no descents. Further, we see that each letter of w(i) has k− i squares beneath it in

the corresponding diagram, so sum(ν) =
∑k

i=0(k − i)`(w(i)). It is thus clear that

(3.3) is also equal to the right side of (3.2).
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0

2
1
0 4 4

2
0 3

Figure 3.2: ν and w(i) for w = 021024203 and λ = 001169

In the case of X = P and A = {w1w2 : w1 ≤ w2}, we see that An is the

set of partitions of length n, sorted in increasing order. Thus, if we substitute qi

for the letter i ∈ P, then A(z) becomes eq(z), so that Theorems 3.5 and 2.3 imply

(3.1). If we vary the choice of A and substitute ziq
i for the letter i, Theorem 3.5

also implies the results of Fuller and Remmel.

3.3 Examples and extensions

In this section, we will provide many examples utilizing Theorem 3.5. Some

of our results will translate the notion of major index to other common combinato-

rial objects such as colored permutations or directed column-convex polyominoes.

Other results will modify the notion of major index to sum the positions of fea-

tures such as alternating descents or descents that occur at specified positions in

the permutation.

3.3.1 Colored permutations

A natural extension of the major index is to the set of colored permuta-

tions. If you have c colors, a colored permutation is a permutation such that each

letter has been assigned a color, indexed by the set [c] = {1, 2, . . . , c}. Colored

permutations of length n can be thought of as elements of the set [c]n×Sn. When

c = 2, the colored permutations are closely related to the signed permutations Bn,
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for which (3.1) has been treated separately (and distinctly) by Reiner [54] and by

Mendes and Remmel [46]. We will give yet another interpretation.

Let π = (v, σ) ∈ [c]n× Sn. We will be interested in the generating function∑
n≥0

∑
π∈[c]n×Sn

xdes(π)umaj(π)qinv(π)zv

(x;u)n+1(q; q)n
. (3.4)

However, we need to define the various colored permutation statistics.

We could define des(π), maj(π), and inv(π) to be des(σ), maj(σ), and

inv(σ), respectively. However, in that case, (3.4) can be obtained from (3.1) merely

by replacing z with z1 + z2 + · · · + zc, since the colors do not affect any of the

statistics. Instead, we will use a lexicographic order on the letters of π, so that(
vi
σi

)
>
(
vj
σj

)
if vi > vj or if vi = vj and σi > σj.

Now, if we define des(π), maj(π), and inv(π) analogously to permutations,

then (3.4) is still obtained from (3.1) by substituting z1 + · · · + zc for z. This is

because we can replace the underlying permutation σ with τ ∈ Sn such that τi > τj

if and only if πi > πj. This replacement does not affect the number of times each

σ ∈ Sn appears with a particular value of zv or the relative order of the letters in

π. However, now des(π) = des(τ), maj(π) = maj(τ), and inv(π) = inv(τ), as in

the previous paragraph.

We will instead seek the generating function∑
n≥0

∑
π∈[c]n×Sn

xdes(π)umaj(π)qinv(σ)zv

(x;u)n+1(q; q)n
, (3.5)

where we track the inversions of the underlying permutation σ. First, we will prove

a necessary extension to Theorem 3.5.

Theorem 3.6. Let X be an alphabet with A ⊂ X2. Let Y = [c] × X and define

C = {
(
v1v2
w1w2

)
∈ Y 2 : v1 < v2 or v1 = v2 and w1w2 ∈ A}. If C(i) = {

(
i i
w1w2

)
: w1w2 ∈

A}, then

C(z) = C(1)(z)C(2)(z) · · ·C(c)(z),

and thus ∑
n≥0

∑
w∈Y n

xdesC(w)umajC(w)

(x;u)n+1

w =
∑
k≥0

xkC(uk)C(uk−1) · · ·C(1).
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Proof. By definition, any word
(
v
w

)
with no C-descents must have the letters of

v weakly increasing. Further, for letters with the same element of [c], the cor-

responding sub-word of w must have no A-descents. Thus, the first part of the

theorem is clear. The second is a direct application of Theorem 3.5.

Corollary 3.1.

∑
n≥0

∑
π=(v,σ)∈[c]n×Sn

xdes(π)umaj(π)qinv(σ)zv

(x;u)n+1(q; q)n
=
∑
k≥0

xk
c∏
i=1

eq(ziu
k) eq(ziu

k−1) · · · eq(zi).

Proof. In order to use Theorem 3.6 to find (3.5), we must modify Fédou’s bijection

to accommodate colored permutations. We do it in the obvious way, assigning the

color of σi to wi. That is, for
(
v
σ

)
∈ [c]n × Sn and λ ∈ Λn, we will associate

the colored composition
(

v
∇n(σ,λ)

)
∈ ([c] × P)n. Then, it is clear how Theorem

2.3 extends to the colored setting. Finally, substituting qazb for the letter
(
b
a

)
∈

[c]× P, C(z) becomes
∏c

i=1 eq(ziz). Applying Theorem 3.6 then gives the desired

result.

3.3.2 Pairs of permutations by common descents

Another natural extension of the major index is to common descents. That

is, for σ, τ ∈ Sn, let comdes(σ, τ) be the number of positions i such that σi > σi+1

and τi > τi+1, and let commaj(σ, τ) be the sum of those i. This type of statistic

has been studied by Carlitz and Scoville [9], together and along with Vaughan [11],

in the 1970s and revisited by Fédou and Rawlings [21, 22] in the 1990s. Mendes

and Remmel [46] derived the generating function analogous to (3.1), which we will

re-derive here.

Theorem 3.7. Let X be an alphabet with corresponding A,B as defined in Section

3.2, and let Y be another alphabet with corresponding pair C,D. Let Z = X × Y ,

F = {
(
x1x2
y1y2

)
: x1x2 ∈ B and y1y2 ∈ D}, and E = Z2 \ F . Then

∑
n≥0

∑
w∈Zn

xdesE(w)umajE(w)

(x;u)n+1

w =
∑
k≥0

xkE(uk)E(uk−1) · · ·E(1),

where E(z) = (F (−z))−1 and Fn = Bn ×Dn.
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Proof. In Theorem 2.7, we proved the relationship A(z) = (B(−z))−1 for all pairs

A,B, so E(z), F (z) satisfy the same relationship. It should also be noted that the

same result implies B(z) = (A(−z))−1 and D(z) = (C(−z))−1, from which Bn and

Dn can be obtained. The claim Fn = Bn ×Dn is obvious. Apply Theorem 3.5 to

complete the proof.

It should be noted that, if X and Y are partially ordered sets (posets) such

that B = {w1w2 ∈ X : w1 ≤ w2} and D = {w1w2 ∈ Y : w1 ≤ w2}, then F is the

product order on X×Y . Since Theorem 3.5 may be applied equally well to posets,

Theorem 3.7 thus gives us an easy way to compute results for product posets.

Corollary 3.2.

∑
n≥0

∑
σ,τ∈Sn

xcomdes(σ,τ)ucommaj(σ,τ)q
inv(σ)
1 q

inv(τ)
2 zn

(x;u)n+1(q1; q1)n(q2; q2)n
=
∑
k≥0

xkE(zuk)E(zuk−1) · · ·E(z),

where

E(z) =

∑
n≥0

q
(n2)
1 q

(n2)
2 (−z)n

(q1; q1)n(q2; q2)n

−1

.

Proof. To apply Theorem 3.7, we must compute Bn in the standard case X = P,

A = {w1w2 : w1 ≤ w2}. Substituting qi(z/q) for each i ∈ P, we computed in (2.26)

that Bn (and thus Dn) is given by q(
n
2)/(q; q)n. Applying Theorem 2.3 to both σ

and τ completes the proof.

It is straightforward to see how Theorem 3.7 and Corollary 3.2 extend to

more than two sets of words. We also see that Theorem 3.7 can be applied to the

colored permutations and words in the previous subsection to obtain a different

result.

3.3.3 Descents at positions congruent to i mod j

Another interesting extension of the major index is to count only those

descents that occur at specific positions. In this subsection, we will consider the

particular case where we count descents that occur at positions congruent to i mod

j. That is, for 1 ≤ i ≤ j, let desi�j(σ) be the number of k such that σi+jk > σi+jk+1,
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and let maji�j(σ) be the sum of those i + jk. Then, we will be interested in

computing ∑
n≥0

∑
σ∈Sn

xdesi�j(σ)umaji�j(σ)qinv(σ)zn

(x;u)n+1(q; q)n
. (3.6)

However, as we will see, it will be easier to compute a slightly different variant of

the generating function.

Theorem 3.8. Let X be an alphabet with corresponding A,B as defined in Section

3.2. Then,∑
n≥0

∑
w∈Xn

xdesi�j(w)umaji�j(w)

(xui;uj)bn−i
j
c+1

w = A(0) +
∑
k≥1

xkA1(uk)Aj(u
k−1) · · ·Aj(u)A(k), (3.7)

where

A(0) = (1− ai+1
1 )(1− a1)−1 + ai−1

1 a2(1− aj−2
1 a2)−1(1− aj1)(1− a1)−1,

A1(z) = ai1z
i + ai−1

1 a2z
i+1(1− aj−2

1 a2z
j)−1aj−1

1 zj−1,

Aj(z) = 1 + aj1z
j + aj−1

1 a2z
j+1(1− aj−2

1 a2z
j)−1aj−1

1 zj−1, and

A(k) = 1 + a1(1− aj−2
1 a2)−1(1− aj1)(1− a1)−1.

Proof. Consider the proof of Theorem 3.5. For the statistic desi�j(w), µ(w) can

only have parts congruent to i mod j. Therefore, instead of merging µ(w) with all

λ ∈ Λ̄≤n, it is sufficient to merge only with those λ with parts congruent to i mod j.

Following the usual argument, these are counted by (xui;uj)−1

bn−i
j
c+1

. Following the

proof of Theorem 3.5, we will come to the conclusions in the following paragraph.

For k = 0, we see that w is a word with no descents at positions congruent

to i mod j, which are counted by A1n(z). If k > 0, then:

• w(0) has length congruent to i mod j and no descents at positions congruent

to i mod j,

• for 1 ≤ i < k, w(i) has length congruent to 0 mod j and no descents at

positions congruent to 0 mod j, and

• w(k) has arbitrary length and no descents at positions congruent to 0 mod j.

These three cases are counted respectively by A1(z), Aj(z), and An(z).
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It is clear how to apply Theorem 3.8 to permutations. Apply Theorem 3.8

to compositions, letting the letter i ∈ P be replaced by qi(z/q), so that a1 = z
1−q

and a2 = z2

(q;q)2
. Fédou’s bijection completes the result.

Now, let Si�jn be the set of permutations whose only descents occur at posi-

tions congruent to i mod j. Mendes, Remmel, and Riehl [48] derived the generating

function for permutations in Si�jn by descents and inversions. In these permuta-

tions, desi�j(σ) = des(σ) and maji�j(σ) = maj(σ), so restricting (3.7) to Si�jn , we

obtain the natural extension of their result to include the major index.

Theorem 3.9. Let X be an alphabet with corresponding A,B as defined in Section

3.2, and let Xn
i�j = {w ∈ Xn : wkwk+1 ∈ B implies k = i mod j}. Then,∑

n≥0

∑
w∈Xn

i�j

xdesi�j(w)umaji�j(w)

(xui;uj)bn−i
j
c+1

w = A(1) +
∑
k≥1

xkA1(uk)Aj(u
k−1) · · ·Aj(u)A(1),

where

A1(z) = aiz
i + ai+jz

i+j + ai+2jz
i+2j + · · · and

Aj(z) = 1 + ajz
j + a2jz

2j + · · · .

Proof. The proof is identical to that of Theorem 3.8, except that now the sub-

words w(i) may not have any descents. It is clear then that A(0)(z) and A(k)(z)

reduce to A(1) and that A1(z) and Aj(z) are as given.

It is again clear how to apply Theorem 3.9 to permutations. We see that

an becomes zn

(q;q)n
, so that A1(z) and Aj(z) can actually be written as linear com-

binations of complex q-exponential functions.

It should be noted that both Theorem 3.8 and Theorem 3.9 can be thought

of as special cases of a more general result. That is, in the context of compositions,

we can rewrite w in the proofs as a word w′ on the alphabets Pj or Λj, respectively,

except with modifications to the first and last letters of w′.

3.3.4 Permutations by alternating descents

Chebikin [12] defined the alternating descent set of a permutation σ by

AltDes(σ) = {2i − 1 : σ2i−1 < σ2i} ∪ {2i : σ2i > σ2i+1}. In words, it is the set of
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odd positions that are ascents and the even positions that are descents. One could

also think of the set of common ascents and descents with an up-down permutation.

We then define altdes(σ) = |AltDes(σ)| and altmaj(σ) =
∑

i∈AltDes(σ) i. We wish

to compute ∑
n≥0

∑
σ∈Sn

xaltdes(σ)ualtmaj(σ)qinv(σ)zn

(x;u)n+1(q; q)n
. (3.8)

Remmel [55] computed the version of (3.8) with inversions omitted.

Theorem 3.10. Let X be an alphabet with corresponding A, as defined in Section

3.2. Define

Acos(z) =
∑
n≥0

(−1)na2nz
2n and

Asin(z) =
∑
n≥0

(−1)na2n+1z
2n+1,

and let AM(z) be the matrix

AM(z) =

[
(Acos(z))−1 (Acos(z))−1Asin(z)

Asin(z)(Acos(z))−1 Acos(z) + Asin(z)(Acos(z))−1Asin(z)

]
.

Then,∑
n≥0

∑
w∈Xn

xaltdes(w)ualtmaj(w)

(x;u)n+1

w =
∑
k≥0

xk[ 1 0 ]AM(uk)AM(uk−1) · · ·AM(1)

[
1

1

]
. (3.9)

Proof. Consider the proof of Theorem 3.5. In this case, the set of words that

may be used for w(i) depends on whether w(i) starts at an even or odd position

in w. Therefore, we need to compute the generating functions for words with no

alternating descents for each combination of even and odd length and starting at

an even or odd position. We have already obtained these generating functions in

Theorem 2.8. The set of words starting at odd positions corresponds to the set

of up-down words, whose generating function is given by (2.32). The set of words

starting at even positions is the set of down-up words, whose generating function

is given by (2.33).

We have separated the even and odd terms and placed them in the matrix

AM(z). The entries in the first row contain the sub-words starting at odd positions,
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while the second row contains sub-words starting at even positions. The first

column contains the sub-words ending at even positions, and the second column

contains the sub-words ending at odd positions. This placement ensures that the

matrix multiplication in (3.9) results in sub-words being lined up properly. The

leading [ 1 0 ] restricts the sum to words that start at an odd position, i.e. 1,

whereas the trailing vector combines words of all lengths. The remainder of the

proof remains unchanged.

Corollary 3.3. With sinq(z) and cosq(z) defined as before,

∑
n≥0

∑
σ∈Sn

xaltdes(σ)ualtmaj(σ)qinv(σ)zn

(x;u)n+1(q; q)n
=
∑
k≥0

xk[ 1 0 ]AM(zuk)AM(zuk−1) · · ·AM(z)

[
1

1

]
,

where

AM(z) =

 1
cosq(z)

sinq(z)

cosq(z)

sinq(z)

cosq(z)

(cosq(z))2+(sinq(z))2

cosq(z)

 .
Proof. Apply Theorem 3.10 to the case X = P, A = {w1w2 : w1 ≤ w2}, then use

Theorem 2.3.

We note that a similar method could have been used to compute (3.6).

3.3.5 Compositions with number of even-to-odd and odd-

to-even transitions

Theorem 3.5 has enough generality to keep track of extra statistics that sum

over sub-words, such as the number of occurrences of a particular letter. However,

we may use the approach of the previous subsection to track some more interesting

statistics, such as the number of transitions between subsets of the alphabet X.

While we could state a very general result, we will content ourselves with a simple

example.

Theorem 3.11. For w ∈ Pn, let eo(w) be the number of i such that wi is odd and

wi+1 is even, and let oe(w) be the number of i such that wi is even and wi+1 is
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odd. Also, recall the q-binomial coefficient
[
n
k

]
q

= (q;q)n
(q;q)n−k(q;q)k

, and define

Aoo(z) =
∑
i≥0

risi
∑
n≥1

q(
2i+1
2 )[n−1

2i

]
q
zn

(q2; q2)n
,

Aoe(z) =
∑
i≥0

ri+1si
∑
n≥1

q(
2i+2
2 )[n−1

2i+1

]
q
zn

(q2; q2)n
,

Aeo(z) =
s

r
Aoe(zq), and

Aee(z) = Aoo(zq),

and define the matrices

AM(z) =

[
1 + Aee(z) + sAoe(z) Aeo(z) + sAoo(z)

rAee(z) + Aoe(z) 1 + rAeo(z) + Aoo(z)

]
and

AM1 (z) =

[
Aee(z) Aeo(z)

Aoe(z) Aoo(z)

]
.

For w ∈ Pn, define the weight of w, wt(w), to be roe(w)seo(w)qsum(w)(z/q)n. Then,∑
w∈N∗

xdes(w)umaj(w) wt(w) = 1 +
∑
k≥0

xk

1− x
[ 1 1 ]AM1 (zuk)AM(zuk−1) · · ·AM(z)

[
1

1

]
.

Proof. Similar to the proof of Theorem 3.10, we will need generating functions

for the sub-words that begin or end with all combinations of even or odd num-

bers. Moreover, these generating functions will need to track eo(w(i)) and oe(w(i))

themselves.

Consider µ ∈ Λn that starts with at least one 1, followed by at least one

2, etc., up to at least one i. Let λ be a weak partition of length n with all even

parts. By varying µ and λ and letting νj = µj + λj, we can form every partition

ν ∈ Λn starting with an odd part and switching between odd and even i− 1 times.

Removing one 1, one 2, etc. from µ, we obtain an arbitrary partition with n − i
parts of size up to i. It is well-known that these are counted by zn−i

[
n−1
i−1

]
q
, and

the parts we removed are counted by ziq(
i
2). To count sub-words starting with an

even number, add 1 to each letter. The generating function for weak partitions

with n even parts by sum is (q2; q2)−1
n . Putting this analysis together, we therefore

obtain the functions Aee(z), Aeo(z), Aoe(z), Aoo(z) given above.
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Finally, the matrix AM1 (z) ensures that the sub-word w(0) is non-empty, so

that we can count transitions properly. We adjust for this by adding the factor

of 1
1−x . The matrix AM(z) merely ensures that the sub-words are joined in a way

that we can track the transitions. In the top row, we assume the previous letter

was even, and in the left column, the new last letter will be even.

3.3.6 Directed column-convex polyominoes

Directed column-convex polyominoes (DCCPs) were introduced in Section

2.6. Namely, they are the subset of CCPs with no lower descents. As such, the set

of DCCPs corresponds, under the bijection δ from Subsection 2.6.1, to words on

the alphabet Y =
{(

j
m

)
: j,m ∈ P, j ≥ m

}
whose last letters have m = 1. Using δ,

we can derive a version of (3.1) for DCCPs.

Theorem 3.12. For Q ∈ DCCP , let udes(Q) be the number of upper descents in

Q and umaj(Q) be the sum of their positions. Then the generating function for

DCCPs by upper descents, upper major index, area, and length,∑
Q∈DCCP

xudes(Q)uumaj(Q)qarea(Q)z`(Q),

is given by

1 +
∑
k≥0

k∑
j=0

xkA(zuk)A(zuk−1) · · ·A(zuj+1)An(zuj),

where

A(z) =

(∑
k≥0

(−z)kq(
k+1
2 )

(q; q)2
k

)−1

and

An(z) = z

(∑
k≥0

(−z)kq(
k+2
2 )

(q; q)k+1(q; q)k

)(∑
k≥0

(−z)kq(
k+1
2 )

(q; q)2
k

)−1

.

Proof. Following the proof of Theorem 3.5, we need generating functions for words

on Y with no upper descents by area and length, with and without the restriction

that mn = 1. We computed them in Subsection 2.8.2, obtaining A(z) and An(z)
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above. The inclusion of the sum over j handles the condition that the final non-

empty sub-word must have mn = 1.

We will note two other methods by which we could have dealt with the

restriction on the final letter. First, we could have written the expression using a

product of matrices. Second, we could have modified the proof of Theorem 3.5 as

we did in Theorem 3.8. That is, when µ(w) is used to factor w into sub-words,

wn always appears in the final sub-word. Therefore, we could have restricted λ to

Λ̄≤n−1. In that case, w(k) would always be non-empty, allowing us to modify only

the final term in the product.

Chapter 3, in full, has been submitted for publication in Pure Mathematics

and Applications. Remmel, Jeff; Tiefenbruck, Mark. The dissertation author is an

author of this paper.



Chapter 4

Partially Marked Patterns

4.1 Introduction

In this chapter, we shall show how one can use the involution principle

of Garsia and Milne [26] to modify a class of bijections that preserve marked

occurrences of patterns in certain sequences to obtain bijections that preserve the

number of occurrences of patterns in such sequences.

To serve as an example of what we have in mind, let σ ∈ Sn be a permuta-

tion. Then we say that σi is a consecutive ascent top in σ if σi = σi−1 + 1. Here

we use σ0 = 0 so that 1 is a consecutive ascent top if and only if σ1 = 1. We

let CAT(σ) denote the set of σi such that σi is a consecutive ascent top in σ and

cat(σ) = |CAT(σ)|. Recall that σj is a left-to-right minimum if σi > σj for all

i < j. We say that σi is part of an ascent if either σi−1 < σi or σi < σi+1, where

defined. We let NALRmin(σ) denote the set of σi such that σi is a left-to-right

minimum in σ that is not part of an ascent and nalrmin(σ) = |NALRmin(σ)|. For

example, Table 4.1 gives the values of the statistics cat(σ) and nalrmin(σ) for each

σ ∈ S3.

We claim that for all n ≥ 1,∑
σ∈Sn

xcat(σ) =
∑
σ∈Sn

xnalrmin(σ). (4.1)

Thus for each n ≥ 1, there must be a bijection θn : Sn → Sn such that for all σ ∈ Sn,

cat(σ) = nalrmin(θn(σ)). We have not been able to find a simple description of

87
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Table 4.1: Table of values of cat(σ) and nalrmin(σ) for S3

σ cat(σ) nalrmin(σ)
123 3 0
132 1 0
213 0 1
231 1 1
312 1 1
321 0 3

such a bijection θn. However, it is far easier to construct a bijection between

marked consecutive ascent tops and marked left-to-right minima that are not part

of ascents. That is, let MCATn denote the set of all σ ∈ Sn where certain elements

of CAT(σ) are marked. For example, if σ = 13245867, then CAT(σ) = {1, 5, 7}.
Thus if we mark the 5 and 7 in CAT(σ), then we shall indicate this by underlining

them, which would produce the marked permutation σ = 13245867. Similarly, let

MNALRminn denote the set of σ ∈ Sn where certain elements of NALRmin(σ) are

marked. For example, if τ = 54762138, then NALRmin(τ) = {2, 5}. If we mark

the 5 ∈ NALRmin(τ), then we would indicate this by over-lining it, which would

produce the marked permutation τ = 54762138. Thus for example,

MCAT1 = {1, 1},

MNALRmin1 = {1, 1},

MCAT2 = {12, 12, 12, 12, 21}, and

MNALRmin2 = {12, 21, 21, 21, 21}.

Given an element σ ∈ MCATn, let mcat(σ) denote the number of i ∈ CAT(σ)

that are marked. Similarly, given an element σ ∈ MNALRminn, let mnalrmin(σ)

denote the number of i ∈ NALRmin(σ) that are marked. We claim that it is easy

to recursively construct a bijection Γn : MCATn → MNALRminn such that for all

σ ∈ MCATn, mcat(σ) = mnalrmin(Γn(σ)).

Clearly, we want Γ1(1) = 1 and Γ1(1) = 1. Next suppose that we have

defined Γn−1. For any τ = τ1 · · · τn−1 ∈ Sn−1, there are n positions where we

can insert n to create a permutation in Sn, namely, either directly in front τi for

i = 1, . . . , n−1 or at the end. We let τ (i) be the permutation that arises from τ by
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inserting n such that n occupies the i-th position. For example, if τ = 2341, then

τ (3) = 23541 and τ (5) = 23415. Now suppose we are given α ∈ MCATn−1 such that

mcat(α) = k. We can create n − k new elements γ ∈ MCATn with mcat(γ) = k

from α by inserting n in front of any element of α that is not marked or by adding

n at the end. Let En(α) be the set of elements that are created from α in this way.

We can also create one τ ∈ MCATn from α with mcat(τ) = k + 1 by inserting n

immediately after n − 1. We let An(α) denote {τ} in this case. For example, if

α = 134526 ∈ MCAT6, then E7(α) would consist of the following 5 elements of

MCAT7 with 2 marked consecutive ascent tops:

γ(2) = 1734526,

γ(3) = 1374526,

γ(5) = 1345726,

γ(6) = 1345276, and

γ(7) = 1345267.

A7(α) consists of the permutation obtained by inserting 7 immediately after 6,

namely 1345267.

Next suppose we are given β ∈ MNALRminn−1 such that mnalrmin(σ) = k.

We can create n − k new elements δ ∈ MNALRminn with mnalrmin(δ) = k from

β by inserting n immediately after any βi that is not marked or at the start of the

permutation. Let Fn(β) be the set of elements that are created from β in this way.

We can also create one σ ∈ MNALRminn from β with mnalrmin(σ) = k + 1 by

inserting n at the start. We then let Bn(β) = {σ}. For example, if β = 526431 ∈
MNALRmin6, then F7(β) consists of the following 5 elements of MNALRmin7 with

2 marked left-to-right minima that are not part of ascents:

δ(1) = 7526431,

δ(3) = 5276431,

δ(4) = 5267431,

δ(5) = 5264731, and

δ(6) = 5264371.
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Similarly, Bn(β) consists of the permutation obtained by inserting 7 at the start

of β, namely σ = 7526431.

Note that the elements of En(α) are naturally ordered by saying that γ

comes before γ′ in En(α) if and only if the position of n in γ precedes the position

of n in γ′. Similarly, the elements of Fn(β) are naturally ordered by saying that δ

comes before δ′ in Fn(β) if and only if the position of n in δ precedes the position

of n in δ′. Then, Γn is defined from Γn−1 as follows. Suppose that we are given

an α ∈ MCATn−1 with mcat(α) = k so that mnalrmin(Γn−1(α)) = k. Thus

|En(α)| = |Fn(Γn−1(α))| = n−k, so we define Γn to map the i-th element of En(α)

to the i-th element of Fn(Γn−1(α)) for i = 1, . . . , n − k. We also ensure that Γn

maps the element in An(α) to the element in Bn(Γn−1(α)).

In fact, one can easily use this recursive definition to construct the image

of any α ∈ MCATn under Γn by recursively removing n, n− 1, . . . , 2 and recording

which choice one made at each step. For example, if α = 1345267 and we record

the position of the marked permutation in En or An we used at each stage, we

would end up with following:

1345267→ E7 : 5,

134526→ E6 : 4,

13452→ A5,

1342→ E4 : 2,

132→ E3 : 1,

12→ E2 : 1, and

1→ A1.

Thus to define Γ7(α), we use a similar procedure to build up a permutation by

choosing the corresponding elements of Fn and Bn. That is, since for α, 2 was

inserted to obtain the first element of E2(1), we choose the first element of F2(1),

namely 21. Since for α, 3 was inserted to obtain the first element of E3(12), we

choose the first element of F3(21), namely 321. Continuing on in this way, we



91

would construct the following sequence:

1← B1,

21← F2 : 1,

321← F3 : 1,

3421← F4 : 2,

53421← B5,

534261← F6 : 4, and

5342671← F7 : 5.

Thus Γ7(1345267) = 5342671.

The main purpose of this chapter is to show that there is a general mech-

anism to construct our desired bijections θn from the bijections Γn. We consider

the following setup. Let X be an alphabet, and define a pattern P on X to

be a set of pairs of the form 〈a1a2 · · · ak, b1b2 · · · bk〉, where 1 ≤ a1 < · · · < ak

and b1b2 · · · bk ∈ Xk. Each pair represents a set of indices and one possible

sequence of letters to occupy those indices. Here we do not require that the

set of indices a1a2 · · · ak that appear as the first elements of pairs in P are all

of the same length. An occurrence of the pattern P in a word w ∈ Xn is

a subsequence of indices a1a2 · · · ak with ak ≤ n such that there exists a pair

〈a1a2 · · · ak, wa1wa2 · · ·wak〉 ∈ P . We let P (w) denote the number of occurrences of

the pattern P in the word w. For example, in compositions, the consecutive pattern

12 can be written as the pattern {a1a2 ∈ P2 : a2 = a1 + 1} × {b1b2 ∈ P2 : b1 ≤ b2}.
Define a pattern family to be a set of the form F =

⋃
n≥0〈f, g, An,Fn,Pn〉,

where f and g are functions mapping N to N, and for each n ≥ 0,

1. An is a finite alphabet,

2. Fn is a subset of A
f(n)
n , and

3. Pn is a totally ordered set of patterns P1, P2, . . . , Pg(n).

Let wFn be a function on the words in Fn. We shall be interested in the generating
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function

RF(t, x1, x2, . . .) =
∑
n≥0

tn
∑
w∈Fn

wFn(w)

g(n)∏
i=1

x
Pi(w)
i (4.2)

as well as its specialization

RF(t, x) =
∑
n≥0

tn
∑
w∈Fn

wFn(w)x
∑g(n)
i=1 Pi(w). (4.3)

We will typically take wFn(w) = 1 for all w to obtain the ordinary generating

function or wFn(w) = 1
n!

to obtain the exponential generating function. However,

wFn could track other statistics on w as well. Note that we allow g(n) = 0, in

which case we will assume that Pn = ∅ and interpret
∏g(n)

i=1 x
Pi(w)
i and x

∑g(n)
i=1 Pi(w)

to be equal to 1.

For example, suppose that we wanted to formulate the problem of finding

the distribution of consecutive ascent tops as a pattern family. Then we would

consider the pattern family F =
⋃
n≥0〈f, g, An,Fn,Pn〉 where f(n) = n for all

n ≥ 0, g(0) = 0, g(n) = 1 for all n ≥ 1, and

1. A0 = {0},

2. An = {1, . . . , n} for all n ≥ 1,

3. F0 = {ε},

4. Fn = Sn for all n ≥ 1, and

5. Pn = {P} where P is the pattern consisting of the pair 〈1, {1}〉 plus the pairs

〈i(i+ 1), j(j + 1)〉 for 1 ≤ i, j ≤ n− 1.

Similarly, if we wanted to formulate the problem of finding the distribution

of left-to-right minima that are not part of ascents as a pattern family, we would

consider the pattern family G =
⋃
n≥0〈f, g, An,Fn,Qn〉 where f, g, An,Fn are as

before, and Qn = {Q} where Q is the pattern consisting of pairs 〈12 · · · i(i +

1), σ1 · · ·σi+1〉 where σi > σi+1 and σj > σi for all j < i as well as the pairs

〈12 · · ·n, σ1 · · · σn〉 where σn = 1.

Given a pattern family F =
⋃
n≥0〈f, g, An,Fn,Pn〉, we can form the par-

tially marked pattern family PMF =
⋃
n≥0〈f, g, An,PMFn,Pn〉 from F , where
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if Pn = {P1, . . . , Pg(n)}, then PMFn is the set of all (g(n) + 1)-tuples of the form

〈w,H1, . . . , Hg(n)〉 such that w ∈ Fn and for i ∈ [g(n)], Hi is a possibly empty set

of occurrences of the pattern Pi in w. Thus we can think of the (g(n) + 1)-tuple

〈w,H1, . . . , Hg(n)〉 as an element w ∈ Fn where some of the occurrences of Pi in w

are “marked” for i ∈ [g(n)]. We define the weight of 〈w,H1, . . . , Hg(n)〉 to be

wPMF(w,H1, . . . , Hg(n)) =

g(n)∏
i=1

y
|Hi|
i , (4.4)

where again we make the convention that if g(n) = 0, then we set wPMF(w) = 1.

Then, we shall consider the generating function

MRF(t, y1, y2, . . .) =
∑
n≥0

tn
∑

(w,H1,...,Hg(n))∈PMFn

wFn(w)wPMF(w,H1, . . . , Hg(n))

(4.5)

as well as its specialization

MRF(t, y) = MRF(t, y, y, . . .). (4.6)

The key result of this chapter is the following theorem.

Theorem 4.1. Suppose that F =
⋃
n≥0〈f, g, An,Fn,Pn〉 is a pattern family and

PMF =
⋃
n≥0〈f, g, An,PMFn,Pn〉 is the partially marked pattern family con-

structed from F . Then

MRF(t, x1 − 1, x2 − 1, . . .) = RF(t, x1, x2, . . .), (4.7)

so that

MRF(t, x− 1) = RF(t, x). (4.8)

We prove Theorem 4.1 via a simple involution. Now Theorem 4.1 has the

following obvious corollary.

Corollary 4.1. Suppose that

F =
⋃
n≥0

〈f, g, An,Fn,Pn〉
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and

G =
⋃
n≥0

〈h, g, Bn,Gn,Qn〉

are pattern families. (Here we are not insisting that f = h, which means that

for any given n, the elements of Fn and Gn can have different lengths, but we are

insisting that the number of patterns in Pn and Qn are the same.) Let PMF
and PMG be the partially marked pattern families constructed from F and G,

respectively. Then

MRF(t, y1, y2, . . .) = MRG(t, y1, y2, . . .) (4.9)

implies

RF(t, x1, x2, . . .) = RG(t, x1, x2, . . .). (4.10)

We can give a completely bijective proof of Corollary 4.1 by combining our

proof of Theorem 4.1 with the involution principle of Garsia and Milne [26]. That

is, for all n ≥ 0, if there is a bijection Γn : PMFn → PMGn such that for all

(s,H1, . . . , Hg(n)) ∈ PMFn,

wPMF(s,H1, . . . , Hg(n)) = wPMG(Γn((s,H1, . . . , Hg(n))),

then we can construct a bijection θn : Fn → Gn from Γn such that for all s ∈ Fn,

g(n)∏
i=1

x
Pi(s)
i =

g(n)∏
i=1

x
Qi(θn(s))
i ,

where Pn = {P1, . . . , Pg(n)} and Qn = {Q1, . . . , Qg(n)}.
The outline of this chapter is as follows. In Section 4.2, we shall give our

proofs of Theorem 4.1 and Corollary 4.1. Then in Section 4.3, we shall give sev-

eral examples where we can construct bijections between partially marked pattern

families that preserve the number of marked patterns, which can be automati-

cally exploited to give bijections between their corresponding pattern families that

preserve the number of occurrences of each pattern.
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4.2 Main results

In this section, we shall give a proof of Theorem 4.1 and a bijective proof

of Corollary 4.1.

Proof of Theorem 4.1. Clearly to prove Theorem 4.1, we need only show that, for

fixed s ∈ Fn, ∑
〈s,H1,...,Hg(n)〉∈PMFn

g(n)∏
i=1

(xi − 1)|Hi| =
n∏
i=1

x
Pi(s)
i , (4.11)

where Pn = {P1, . . . , Pg(n)}. Let Ci(s) be the set of all Pi-patterns that occur in s,

such that Hi ⊆ Ci(s). We then consider the space UFn containing all (2g(n) + 1)-

tuples 〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉 such that 〈s,H1, . . . , Hg(n)〉 ∈ PMFn and

Xi ⊆ Hi for i = 1, . . . , n. For u = 〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉, we then define

the weight of u, WUF(u), to be

WUF(u) =

g(n)∏
i=1

x
|Xi|
i (4.12)

and the sign of u, sgn(u), to be

sgn(s,H1, . . . , Hg(n), X1, . . . , Xg(n)) =

g(n)∏
i=1

(−1)|Hi|−|Xi|. (4.13)

For fixed s, it is then easy to see that

∑
u=〈s,H1,...,Hg(n),X1,...,Xg(n)〉∈UFn

sgn(u)WUF(u) =
∑

〈s,H1,...,Hg(n)〉∈PMFn

g(n)∏
i=1

(xi − 1)|Hi|.

(4.14)

Next we define an involution I on UFn as follows. Given u ∈ UFn, let

e be the least d such that Cd(s) \ Xd is not empty. Then look for the least pair

δ = 〈a1 . . . , ak, b1, . . . , bk〉 in Ce(s) \ Xe, where we order the pairs in Pe using a

graded lexicographic order on the first element, followed by a lexicographic order

on the second element when the first elements are equal. Then (i) if δ ∈ He, we let

I(u) = 〈s,H1, . . . , He−1, He − {δ}, He+1, . . . Hg(n), X1, . . . , Xg(n)〉
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and (ii) if δ 6∈ He, we let

I(u) = 〈s,H1, . . . , He−1, He ∪ {δ}, He+1, . . . Hg(n), X1, . . . , Xg(n)〉.

If there is no such e, then it must be the case that Ci(s) = Hi = Xi for all i, in

which case we define I(u) = u. It is easy to see that I is an involution and that if

I(u) 6= u, then sgn(u)WUF(u) = −sgn(I(u))WUF(I(u)). Hence I shows that∑
u∈UFn

sgn(u)WUF(u) =
∑

u∈UFn
I(u)=u

sgn(u)WUF(u).

Thus we must examine the fixed points of I. Note that if I(u) = u where u =

〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉, then we must have Ci(s) = Hi = Xi for all i and

hence sgn(u) = 1 and

WUF(u) =

g(n)∏
i=1

x
|Xi|
i =

g(n)∏
i=1

x
|Ci(s)|
i =

g(n)∏
i=1

x
Pi(s)
i .

Thus it follows that ∑
u∈UFn
I(u)=u

sgn(u)WUF(u) =
∏
s∈Fn

x
Pi(s)
i , (4.15)

which is what we wanted to prove.

Garsia and Milne [26] proved the following theorem.

Theorem 4.2 (Involution Principle). Suppose S (resp. S ′) is a finite set of signed

objects, and I (resp. I ′) is a sign-reversing involution on S (resp. S ′) such that the

set T (resp. T ′) of fixed points of I (resp. I ′) consists of positive objects. Suppose

also that f : S → S ′ is a sign-preserving bijection. Then there is a bijection

g : T → T ′ constructed canonically from I, I ′, and f . To compute g(x) for x ∈ T ,

we repeatedly apply f , then I ′, then f−1, then I, until an application of f yields

an element of T ′. See Figure 4.1.

Next we present our bijective proof of Corollary 4.1.
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f−1

x

g(x)

Figure 4.1: Schematic setup for the involution principle

Proof of Corollary 4.1. Suppose that we are given pattern families F and G such

that

MRF(t, y1, y2, . . .) = MRG(t, y1, y2, . . .). (4.16)

Then there exists a bijection Γn : PMFn → PMGn such that for each (g(n) + 1)-

tuple 〈s,H1, . . . , Hg(n)〉 ∈ PMFn,

wPMF(s,H1, . . . , Hg(n)) = wPMG(Γn(s,H1, . . . , Hg(n))).

Let UFn be the set of all (2g(n)+1)-tuples 〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉
such that 〈s,H1, . . . , Hg(n)〉 ∈ PMFn and Xi ⊆ Hi for i = 1, . . . , n. Similarly, let

UGn be the set of all (2g(n) + 1)-tuples 〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉 such that

〈s,H1, . . . , Hg(n)〉 ∈ PMGn and Xi ⊆ Hi for i = 1, . . . , n.

We can use Γn to obtain a bijection fn : UFn → UGn as follows. First

suppose that Γn(s,H1, . . . , Hn) = (t,K1, . . . , Kn). Since we are assuming that

wPMF(s,H1, . . . , Hg(n)) = wPMG(t,K1, . . . , Kg(n)), we know that |Hi| = |Ki| for

i = 1, . . . , g(n). In the proof of Theorem 4.1, we defined a total order on the pairs

〈a1 . . . ak, b1 . . . bk〉 in Pi for all i, where Pn = {P1, . . . , Pg(n)}. We can define a

similar total order on the pairs in Qi for all i, where Qn = {Q1, . . . , Qg(n)}. We

use these total orders to give a total order to the pairs in Hi and to the pairs in
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Ki. This given, we define

fn(〈s,H1, . . . , Hg(n), X1, . . . , Xg(n)〉) = 〈t,K1, . . . , Kg(n), Y1, . . . , Yg(n)〉,

where Yi is the set of pairs in Ki with the same positions in Ki’s total order as

the pairs in Xi have in Hi’s. It is then easy to see that fn is a sign- and weight-

preserving bijection. That is, for all such tuples related by fn,

g(n)∏
i=1

x
|Xi|
i =

g(n)∏
i=1

x
|Yi|
i and

g(n)∏
i=1

(−1)|Hi|−|Xi| =

g(n)∏
i=1

(−1)|Ki|−|Yi|.

Let I be the sign-reversing, weight-preserving involution on UFn, as defined

in the proof of Theorem 4.1, whose fixed points are the set of all (2g(n)+1)-tuples

〈s,H1, . . . , Hn, X1, . . . , Xn〉 such that Ci(s) = Hi = Xi for all i. Note the sign of

such fixed points is 1. We can similarly define a sign-reversing, weight-preserving

involution J on UGn whose fixed points are the set 〈t,K1, . . . , Kn, Y1, . . . , Yn〉 such

that Di(t) = Ki = Yi for all i, where Di(t) is the set of all pairs 〈a1 . . . ak, b1 . . . bk〉
that occur in t. This gives all the ingredients to invoke the involution principle of

Garsia and Milne.

Thus from fn, I, and J , we construct a bijection gn that maps the fixed

points of I onto the fixed points of J , such that if gn(〈s,H1, . . . , Hn, X1, . . . , Xn〉) =

〈t,K1, . . . , Kn, Y1, . . . , Yn〉, then |Ci(s)| = |Hi| = |Ki| = |Di(t)| for all i. We then

define a map θn : Fn → Gn by θn(s) = t if and only if gn maps the unique fixed

point of I starting with s to the unique fixed point of J starting with t. Clearly θn

is a bijection with our desired weight-preserving property, namely, for all s ∈ Fn,

if θn(s) = t, then
g(n)∏
i=1

x
Pi(s)
i =

g(n)∏
i=1

x
Qi(t)
i .



99

1 2 3 4 5 6 7 8

Figure 4.2: The matching M = {(1, 3), (2, 7), (4, 6), (5, 8)}

4.3 Examples

4.3.1 A conjecture due to Claesson and Linusson

Following Claesson and Linusson [14], we make the following definitions.

A matching on [2n] is a partition of that set into blocks of size 2. An example

of a matching is M = {(1, 3), (2, 7), (4, 6), (5, 8)}. Figure 4.2 shows a graphical

representation of M with an arc connecting i with j precisely when (i, j) ∈M . A

nesting of M is a pair of arcs (a1, a2) and (b1, b2) with a1 < b1 < b2 < a2. We call

such a nesting a left-nesting if b1 = a1 + 1. Similarly, we call it a right-nesting if

a2 = b2 +1. A given nesting may be a left-nesting, a right-nesting, both, or neither.

M has one nesting, formed by the arcs (2, 7) and (4, 6). It is a right-nesting.

In a permutation π = π1 · · · πn, an occurrence of the pattern is a sub-

sequence πiπi+1πj such that πj + 1 = πi < πi+1. As an example, the permutation

π = 351426 contains one such occurrence, 352. It can be seen graphically in Figure

4.3.

Figure 4.3: Occurrence of the pattern in π = 351426

Bousquet-Mélou et al. [5] gave bijections between matchings on [2n] with

no left- or right-nestings and three other classes of combinatorial objects, thus

proving that they are equinumerous. The other classes were unlabeled (2 + 2)-free

posets (or interval orders) on n nodes; permutations in Sn avoiding the pattern

; and ascent sequences of length n. Claesson and Linusson conjectured that
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the distribution of right-nestings in matchings on [2n] with no left-nestings is equal

to the distribution of occurrences of in Sn.

In order to use Corollary 4.1, we first must express our sets as pattern

families. While this is straightforward for occurrences of in Sn, matchings on

[2n] do not easily fit into this framework. We will first need to define an encoding of

matchings with no left-nestings as words, then define a pattern that corresponds to

right-nestings. There are a few obvious encodings, but Claesson and Linusson [14]

give a bijection between these matchings and inversion tables that will better suit

our needs.

Let NLNn be the set of matchings on [2n] with no left-nestings, and let

M ∈ NLNn. If i < j and α = (i, j) is an arc in M , then we call i the opener of α

and j the closer of α. Order the arcs of M by closer, so for example, the arc with

closer 2n is the n-th arc. An inversion table is a weak composition where the i-th

letter must be strictly less than i. Let In be the set of inversion tables of length n.

Then the function f : NLNn → In, given by f(M) = w, where wi is the number

of closers less than the opener of the i-th arc of M , is a bijection.

Now we must determine what pattern on inversion tables corresponds to

a right-nesting in the associated matching. Suppose that a1 < b1 < b2 < a2 and

that (a1, a2) and (b1, b2) are arcs in M that form a right-nesting. By definition,

a2 = b2 +1, so these arcs are consecutive when ordered by closer, with (b1, b2) first.

Moreover, since M has no left-nestings, there must be a closer between a1 and b1,

so there is at least one more closer to the left of b1 than a1. Thus, if (b1, b2) is the

i-th arc, then wi > wi+1. Further, there must be no openers between b2 and a2,

so if j > i + 1, then wj 6= i. It is also clear that whenever two arcs satisfy these

properties, they form a right-nesting. We will call the position i a proscriptive

descent. We see that proscriptive descents in In correspond to right-nestings in

NLNn.

We will now use this setup to construct the bijection Γn. Our construction

will be recursive, so define Γ0 to map the empty inversion table to the empty

permutation, and suppose that Γn−1 has already been defined. Let w ∈ In−1, and

let H be a set of marked proscriptive descents in w. Let (σ,K) = Γn−1(I,H) be
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the corresponding permutation in Sn−1 and set of marked occurrences of .

We consider the ways that w can be extended to an element of In with the

same set H: wn may be chosen with 0 ≤ wn ≤ n − 1, as long as wn 6∈ H for a

total of n−|H| ways. Also, σ can be extended to an element of Sn with essentially

the same set K by inserting a new smallest element, as in the proof of Theorem

2.2. We say “essentially” because every element of σ is increased by 1 and some

move to the right. For example, inserting into the second position of 24315 yields

351426. However, if 241 was a marked occurrence of , then 352 is the new

marked occurrence. If j > i + 1 and σj + 1 = σi < σi+1 is an occurrence of in

K, then we may not insert a new smallest element at position i + 1. Thus, there

are n − |K| places we may insert a new smallest element. For both w and σ, we

can order the choices we have to extend each word. For w, we will sort them by

wn. For σ, we will sort them by the distance from the end of σ that 1 is inserted.

Then, Γn will associate the corresponding items in each sorted list.

It is also possible to extend w while adding a marked proscriptive descent

to H: wn may be chosen with 0 ≤ wn < wn−1, as long as wn 6∈ H. Thus, if wn−1

was chosen as the k-th valid choice, then there will be k − 1 valid choices for wn.

We can also extend σ while adding a marked occurrence of . We must insert the

new smallest element more than one position to the right of the previous smallest

element, and we still must not place it between the elements forming an ascent in

a marked occurrence of . Thus, if the 1 in σ had been placed k-th valid position

from the right, then there will be k−1 valid positions for the new smallest element.

We will sort the possibilities as in the previous case. Then, Γn will associate the

corresponding items in each sorted list.

This completes the description of the bijection Γn. We may now apply

Corollary 4.1 to obtain a bijection θn that proves Claesson and Linusson’s conjec-

ture.

4.3.2 A conjecture due to Jones

Let w = (w1w2 . . . wn) be an n-cycle in a permutation, and let π ∈ Sm,

where m ≤ n. A cycle-match of the pattern π in w is a sequence of consecutive
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elements of w, where w1 follows wn, that reduce to π. For example, in the cycle

(34769), 693 is a 231-cycle-match. We will let πcyc(σ) denote the total number of

π-cycle-matches in the cycles of σ. That is, if Cyc(σ) denotes the set of cycles

in σ and πcyc(w) denotes the number of π-cycle-matches in the cycle w, then

πcyc(σ) =
∑

w∈Cyc(σ) πcyc(w). If P is a set of permutations, we will define Pcyc(σ)

and Pcyc(w) accordingly. Also, we will say that two consecutive letters of a cycle

form a cycle-descent if the first is greater than the second, and we say that cycles

with one element have one cycle-descent. Thus, we define descyc(σ) to be the

number of cycle-descents in the cycles of σ and note that descyc(σ) =
∑

w∈Cyc(σ)(1+

des(w1 · · ·w`(w))). Finally, we will let cyc(σ) denote the number of cycles in σ.

Let NMn(π) be the set of σ ∈ Sn such that π-mch(σ) = 0, and let NCMn(π)

be the set of σ ∈ Sn such that πcyc(σ) = 0. Then, Jones and Remmel [36] showed

that if π1 = 1, then∑
n≥0

∑
σ∈NMn(π)

xltrmin(σ)ydes(σ)+1 t
n

n!
=
∑
n≥0

∑
σ∈NCMn(π)

xcyc(σ)ydescyc(σ) t
n

n!
. (4.17)

Further, if Cn is the set of σ ∈ Sn such that cyc(σ) = 1, then they showed that∑
n≥0

∑
σ∈NCMn(π)

xcyc(σ)ydescyc(σ) t
n

n!
= ex

∑
σ∈Cn∩NCMn(π) y

descyc(σ) t
n

n! .

However, their proofs were actually sufficient to conclude that∑
n≥0

∑
σ∈Sn

pπ-mch(σ)xltrmin(σ)ydes(σ)+1 t
n

n!
=
∑
n≥0

∑
σ∈Sn

pπcyc(σ)xcyc(σ)ydescyc(σ) t
n

n!
(4.18)

and ∑
n≥0

∑
σ∈Sn

pπcyc(σ)xcyc(σ)ydescyc(σ) t
n

n!
= ex

∑
σ∈Cn p

πcyc(σ)ydescyc(σ) t
n

n! .

In fact, π can be replaced by a pattern set P where each p ∈ P begins with 1, and

we can track each pattern in P individually.

We will say that a cycle w = (w1w2 · · ·wn) is covered by a set of P -cycle-

matches if each pair wiwi+1 and wnw1 belongs to some P -cycle-match from the

set. For example, the cycle (14253) is covered by the 3142-cycle-matches 3142 and

4253. Jones [35] conjectured that (4.17) is true with x = y = 1 for any π such that

no cycle can be covered by π-cycle-matches. We see that all π such that π1 = 1
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satisfy this criterion, since wnw1 can never occur in the middle of a π-cycle-match

if w1 is the smallest element of the cycle. Jones also conjectured that (4.17) is true

with x = 1 for certain π. We will show that (4.18) is true with x = y = 1 for any

set P that cannot cover any cycle with P -cycle-matches. Further, (4.18) will be

true whenever P ∪ {12} has that property.

Fix P so that no cycle can be covered by P -cycle-matches. It is clear

that consecutive P -patterns and P -cycle-matches in permutations in Sn can be

converted to the framework of pattern families. For σ ∈ Sn and H a set of marked

P -cycle-matches in σ, we need to define Γn(σ,H) = (τ,K) such that K is a set of

marked consecutive P -patterns in τ .

First, order the cycles of σ in decreasing order by smallest element, and

write each cycle so that its smallest element is written first. When P = {π}
with π1 = 1, Jones and Remmel showed that concatenating the cycles in this

order and removing the parentheses gives a bijection that sends π-cycle-matches

to consecutive occurrences of π, thus proving (4.17). In order to reverse the process,

we split the permutation before each left-to-right minimum and declare each sub-

word to be a cycle of a new permutation. This bijection is known as Foata’s

First Fundamental Transformation [23]. However, when π1 > 1, this method

no longer works. For example, the cycle (1432) has one 2143-cycle-match, but

its image 1432 has no consecutive occurrences of 2143. Likewise, 2143 has one

consecutive occurrence, but its preimage (2)(143) has none. We will thus continue

our description of Γn.

If any P -cycle-match in H wraps around the end of its cycle, then rewrite

the cycle so that it begins with that P -cycle-match. Repeat until no element of H

wraps around the end of its cycle. This is always possible because of the condition

on P . Now remove the parentheses from the cycles of σ to obtain τ and set J = H.

For example, if P = {2143}, σ = (1542)(36), and H = {2154}, then we first write

σ = (36)(1542), then σ = (36)(2154), then τ = 362154. On the other hand, if we

had not marked the 2143-cycle-match, i.e. if H = ∅, then τ = 361542 as in Foata’s

transformation.

In order to reverse Γn, start with τ and K, and break τ before its left-to-
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right minima. However, if we have broken τ in the middle of one of its marked

P -patterns, then we move that break to the left until it is no longer contained in

a marked P -pattern. We note that this could move multiple break points to the

same position, so that the bijection no longer identifies left-to-right minima of τ

with cycles of σ. Finally, take the sub-words delimited by the breaks in τ , and

declare them to be cycles of σ, setting H = K.

In this case, our bijection tells us even more: since Γn sets J = H, θn(σ)

has the exact same P -patterns as σ’s P -cycle-matches, rather than just the same

number. Also, note that every element of σ either begins a cycle-descent or a

12-cycle-match, so that descyc(σ) = `(σ) − 12cyc(σ). Also, since des(σ) = `(σ) −
1− 12-mch(σ), we see that des(θn(σ)) + 1 = descyc(σ) whenever 12-mch(θn(σ)) =

12cyc(σ). Therefore, if P ∪ {12} cannot cover any cycle with cycle-matches, then

(4.18) will be true with x = 1. We conclude with two interesting classes of sets P

that cannot cover a cycle.

If σ ∈ Sn, define σ.∗ = {τ : τ ∈
⋃
m≥n Sm, τi = σi for 1 ≤ i ≤ n} and

σ.+ = {τ : τ ∈
⋃
m>n Sm, τi = σi for 1 ≤ i ≤ n}. Then, for any k,

Pk =
⋃
σ∈Sk

σ.+ and (4.19)

Qk = k(k − 1) · · · 1.+
⋃

12.∗
⋃

213.∗
⋃
· · ·
⋃

(k − 1)(k − 2) · · · 1k.∗ (4.20)

cannot cover a cycle. We shall now prove these assertions.

Let τ be a permutation that is covered by n overlapping Pk-patterns. We

will prove by induction that any k consecutive letters of τ after the first must

contain at least one letter greater than the first k letters of τ , and the last letter

of τ must be one of these. Then, it is impossible to add a pattern to complete a

cycle. Our claim is clearly true for n = 1. Now, suppose it is true for all τ covered

by n − 1 overlapping patterns. Sort the patterns covering τ by starting position,

then length. If the n-th pattern begins at position 1, then the claim is trivially

true. Otherwise, by the inductive hypothesis, one of the first k letters of the n-th

pattern must be greater than the first k letters of τ . However, the k+1-th through

the last letter of the n-th pattern must be greater than that. Therefore, the last

letter of τ is greater than the first k letters of τ , and every k consecutive letters
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after the first still contain one greater than the first k letters of τ .

For the second assertion, let τ be a permutation that is covered by n over-

lapping Qk-patterns. If the first j letters of τ are part of descents, then we will

prove by induction that the letter after the 1 in any of these patterns must be

greater than or equal to τj+1. Then, it is impossible to complete a cycle from

τ . Our claim is clearly true for n = 1. Now, suppose it is true for all τ covered

by n − 1 overlapping patterns. Sort the patterns covering τ by starting position,

then length. If the n-th pattern begins in the initial string of descents of another

pattern, then they may only overlap with their 1s coinciding, in which case the

inductive hypothesis applies. Otherwise, the first letter of the n-th pattern must

be greater than or equal to τj+1, since it belongs to some pattern after that pat-

tern’s 1. The letter after the 1 of the n-th pattern must be greater than that, so

our claim is true.

4.3.3 Permutation patterns

If w is a composition, then define .∗w to be the set of compositions that end

with w. For s, t ∈ [m], let P st
m = .∗st∩Sm. We’ll say a position i in a permutation σ

is an Sstm-pattern if σi plays the role of s in at least one P st
m -pattern; more precisely,

if we have i1 < · · · < im such that red(σi1 · · ·σim) ∈ P st
m , then position im−1 is an

Sstm-pattern. We let Sstm(σ) denote the number of such positions in σ.

Theorem 4.3. If t ∈ {1, s−2, s−1, s+1, s+2,m}, then the distribution of Sstm(σ)

in Sn is independent of s, t.

Proof. Rather than considering permutations where some subset of the Sstm occur-

rences have been marked, we’re going to mark a subset of the positions that do

not match the pattern. We’ll recursively construct these permutations, showing

that the number of choices we have at each step is independent of the particular

choices of s and t, provided they satisfy the given constraints. This construction

will clearly give rise to a bijection.

We’ll build permutations from left to right. When a permutation has n− 1

letters, we may choose to add a new last letter, taking a value σn from 1 to n. All
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of the previous letters greater than or equal to σn are then increased by one. For

example, adding 3 to 2413 results in 25143. When we add a new letter, we may

also choose to mark that letter, meaning that it will never play the role of s in a

P st
m -pattern. Thus, marking a letter may restrict the options available for letters

added later.

Given a marked permutation σ ∈ Sn−1, suppose there are k options available

for σn. Consider the consequences of a particular choice of σn. We will show that

the following claims are true:

• If n < m− 1 or we do not mark the letter, then there will be k + 1 options

available for σn+1.

• Otherwise, the choices of σn can be ordered such that the first results in

m− 1 options for σn+1, and each successive choice adds one more option, up

to a maximum of k + 1, which is then repeated.

For the first claim, if n < m− 1, then σ does not have enough letters for σn

to play the role of s. Therefore, marking it cannot create any restrictions, so the

number of options will increase by one as normal. For the rest of the claim, if we

do not mark σn, then we certainly do not create any new restrictions. However,

from the perspective of the marked letters in σ, adding σn splits its position into

two: σn and σn + 1. Either of these choices for σn+1 would play the same role in

any permutation pattern not using σn. All other options remain unchanged from

the perspective of the marked letters. Therefore, the number of options for σn+1

is k + 1.

Now we’ll consider the second claim. Without loss of generality, assume

t > s. The other cases can be treated by taking the complement. Regardless of

s, t, the lowest t− 1 positions and highest m− t positions will always be available,

as these cannot play the role of t in any P st
m -pattern. Choosing σn = s will make all

other positions unavailable for σn+1. This gives our lower bound of m− 1 options.

For the rest of the claim, we will deal with each valid choice of t separately.

Suppose t = m. In this case, for a σn to be unavailable means that it would

be the largest of a particular choice of letters in σ. Thus, any larger value would
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also be unavailable, so the k choices for σn must be 1, 2, . . . , k. Starting from

σn = s, incrementing σn allows σn+1 to be placed one higher, so the number of

options ascends to k. At that point, all remaining choices for σn cannot play the

role of s in any P st
m -pattern, so they result in k + 1 options, as in the case where

σn is unmarked.

Suppose t = s + 1. In this case and the next, the options for σn are not

necessarily consecutive. Choosing σn results in all higher numbers, apart from

the top m − t, becoming unavailable for σn+1. Therefore, starting with σn = s,

incrementally choosing the next available option greater than σn results in one

more option for σn+1, up to k. All remaining choices of σn cannot play the role of

s in a P st
m -pattern, so they result in k + 1 options.

Suppose t = s+ 2. Choosing σn results in all numbers higher than σn + 1,

apart from the top m − t, becoming unavailable for σn+1. However, after adding

σn, the positions corresponding to all the higher options are incremented by one,

so these are all now greater than σn + 1 and thus become unavailable. Therefore,

incrementally choosing the next available option greater than σn results in one

more option for σn+1, up to k. All remaining choices of σn cannot play the role of

s in a P st
m -pattern, so they result in k + 1 options.

Theorem 4.3 may be extended somewhat. Fix k, m, and s, and let T be a

subset of k consecutive numbers from [m]\{s} such that T contains at least one of

{1, s− 2, s− 1, s+ 1, s+ 2,m}. Then let P sT
m =

⋃
t∈T P

st
m . We say a position i in a

permutation σ is a SsTm -pattern if σi plays the role of s in at least one P st
m -pattern,

and we let SsTm (σ) denote the number of such positions in σ. Then, for fixed k,

the distribution of SsTm in Sn is independent of s and T . The proof is essentially

the same as the proof of Theorem 4.3. The main difference is that as soon as one

position becomes unavailable, k positions simultaneously become unavailable.

This extension has an application to so-called quadrant marked mesh pat-

terns [42]. Given σ ∈ Sn, we graph σ by placing a point at (i, σi) for each i ∈ [n].

Then, we say that a position i is an occurrence of the quadrant marked mesh

pattern Q(a,b,c,d) in σ if, when we draw coordinate axes through the point (i, σi),

there are at least a, b, c, and d points in the graph of σ in the first, second,
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Figure 4.4: The Ferrers board F(0,1,1,2,3,3)

third, and fourth quadrants, respectively. Then, we see that an S
s[s−1]
m -pattern

is equivalent to a Q(0,m−s,s−2,1)-pattern. Based on the study of quadrant marked

mesh patterns, Kitaev and Remmel [42] conjectured that the number of permuta-

tions in Sn avoiding {4132, 4123, 3124, 3142} is the same as the number avoiding

{4231, 4213, 3241, 3214}. After reversing each permutation, we see this is the same

as avoiding P
1{3,4}
4 or P

2{3,4}
4 , respectively, which is equivalent to avoiding S

1{3,4}
4

or S
2{3,4}
4 . The extension of Theorem 4.3 proves that these have the same distribu-

tion; as a special case, then, there are the same number of permutations avoiding

each pattern, proving the conjecture.

4.3.4 Rook placements

The theory of rook polynomials was introduced by Kaplansky and Riordan

[37] and developed further by Riordan [57]. We refer the reader to Stanley [58,

Chap. 2] for a nice exposition of some of the basics of rook polynomials and

permutations with forbidden positions.

We shall consider rectangular boards Bn,m = [n] × [m] consisting of n

columns of height m. We label the rows of Bn,m from bottom to top with 1, . . . ,m

and the columns from left to right with 1, 2, 3, . . . , n and let (i, j) denote the square

in the i-th column and j-th row. Given b1, . . . , bn ≤ k, we let F (b1, . . . , bn) denote

the board consisting of all the cells {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ bi}. If a board B is

of the form B = F (b1, . . . , bn), where b1 ≤ b2 ≤ · · · ≤ bn, then we say that B is a

Ferrers board. For example, Figure 4.4 pictures the Ferrers board F (0, 1, 1, 2, 3, 3).

Given a board B ⊆ Bn,m, we let Nk(B) denote the set of all placements

of k rooks in B such that no two rooks lie in the same row or column. We let

rk(B) = |Nk(B)|. Let Fn,m denote the set of all one-to-one functions f : [n] →
[m]. We identify each f with the rook placement {(i, f(i)) : i = 1, . . . , n} on
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Bn,m. Figure 4.5 gives an example rook placement corresponding to the function

f = {(1, 1), (2, 6), (3, 5), (4, 2), (5, 4)} ∈ F5,6. We let

h
(n,m)
k (B) = |{f ∈ Fn,m : |f ∩B| = k}|.

We shall shall refer to h
(n,m)
k (B) as the k-th generalized hit number for B with

respect to Bn,m. In the special case where n = m, then Fn,m can be thought of as

the set of permutations in Sn, and then the h
(n,m)
k (B) are called hit numbers.

1

2

3

4

5

6

1 2 3 4 5

X

X

X

X

X

Figure 4.5: The rook placement associated with a function f ∈ F5,6

Following Kaplansky and Riordan [37], we have the following fundamental

relationship between the rook numbers and generalized hit numbers for a board

B ⊆ Bn,m. Let (n) ↓0= 1 and (n) ↓k= n(n− 1) · · · (n− k + 1) for k ≥ 1.

Theorem 4.4. For any board B ⊆ Bn,m,

n∑
k=0

h
(n,m)
k (B)xk =

n∑
k=0

rk(B)(m− k) ↓n−k (x− 1)k. (4.21)

Proof. Replacing x by x+ 1 in equation (4.21), we see that it is enough to prove

n∑
k=0

h
(n,m)
k (B)(x+ 1)k =

n∑
k=0

rk(B)(m− k) ↓n−k xk. (4.22)

To interpret the left-hand side of (4.22), consider the set of objects O obtained by

first picking a rook placement on Bn,m associated with some function f ∈ Fn,m,

and then for each rook r in f ∩ B, we either circle the rook or not. For each

such object O, we define the weight of O as xcirc(O) where circ(O) is the number of
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circled rooks in O. If OB is the set of objects constructed in this way, it is easy to

see that ∑
O∈OB

xcirc(O) =
n∑
k=0

h
(n,m)
k (B)(x+ 1)k. (4.23)

However, we can also obtain the left-hand side of (4.23) by first picking the number

k of circled rooks, then picking the k circled rooks as a placement P of k non-

attacking rooks on B, which can be done in rk(B) ways, and finally extending P

to a placement corresponding to a function f ∈ Fn,m by adding n− k non-circled

rooks, which can done in (m− k) ↓n−k ways. Thus

∑
O∈OB

xcirc(O) =
n∑
k=0

rk(B)(m− k) ↓n−k xk, (4.24)

which proves (4.22).

Theorem 4.4 tells us that if B(1) and B(2) are boards contained in Bn,m and

rk(B
(1)) = rk(B

(2)) for k = 0, . . . , n, then it must be the case that h
(n,m)
k (B(1)) =

h
(n,m)
k (B(2)) for k = 0, . . . , n. In the special case where n = m, Loehr and Rem-

mel [43] used the involution principle to give a bijective proof of this fact. That

is, if we are given bijections fk : Nk(B(1)) → Nk(B(2)) for k = 0, . . . , n, then

Loehr and Remmel showed how one can use these bijections to construct bijec-

tions Θk : {σ ∈ Sn : |σ ∩ B(1)| = k} → {σ ∈ Sn : |σ ∩ B(2)| = k} for k = 0, . . . , n.

Thus if one has bijections showing that rk(B
(1)) = rk(B

(2)) for all k, then one can

use these bijections to construct bijections showing that the hit number h
(n,n)
k (B(1))

equals the hit number h
(n,n)
k (B(2)) for all k.

There are many examples of different rook boards that have the same rook

numbers. A large number of such examples for Ferrers boards can be obtained

from the following theorem of Goldman, Joichi, and White [28].

Theorem 4.5. (Goldman, Joichi, and White [28])

Let B = F (b1, . . . , bn) be a Ferrers board. Then

n∏
i=1

(x+ bi − (i− 1)) =
n∑
k=0

rn−k(B)(x) ↓k . (4.25)
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Thus if B(1) = F (b1, . . . , bn) and B(2) = F (c1, . . . , cn) are such that the mul-

tisets {bi−i+1 : i = 1, . . . , n} and {ci−i+1 : i = 1, . . . , n} are equal, then Theorem

4.5 tells us rk(B
(1)) = rk(B

(2)) for all k. For example, B(1) = F (0, 0, 0, 3, 3, 3) and

B(2) = F (0, 1, 1, 2, 2, 3) both give rise to the multiset {0, 0,−1,−1,−2,−2}, so

rk(B
(1)) = rk(B

(2)) for all k. In fact, Loehr and Remmel gave a bijective proof of

Theorem 4.5 using the involution principle, so there are many examples of pairs of

boards B(1) and B(2) where we can construct bijections fk : Nk(B(1))→ Nk(B(2))

for k = 0, . . . , n. Here we will present a general bijection fk for Ferrers boards that

does not require the involution principle.

Let B(1) and B(2) be Ferrers boards satisfying the property that the multi-

sets defined above are equal. Then we will define the bijection fk recursively on the

number of cells in the boards B(1) and B(2) (summing over the multiset, it is clear

that both boards have the same size). If both boards are empty, the bijection is

clear. Thus, suppose that both boards are non-empty and consider a placement of

k rooks on B(1). Let i1 be a column of B(1) with positive height such that bi1−i1+1

is maximal, and define i2 likewise for B(2). For consistency, we choose i1 and i2 to

be minimal, but the choice is arbitrary. By hypothesis, bi1 − i1 + 1 = ci2 − i2 + 1.

If the top cell in column i1 does not contain a rook, then remove the cell

from B(1) to obtain the board B′(1) and also remove the top cell from column i2 to

obtain B′(2). Since bi1− i1 +1 is maximal, the column to the left of i1 must contain

fewer cells, so the result is still a Ferrers board. We have then subtracted one from

two equal entries in the multisets, so the resulting multisets are still equal, and we

can apply fk to the placement on B′(1) to obtain a placement on B′(2). Adding the

top cell of column i2 back, we obtain a placement of k rooks on B(2).

If the top cell in column i1 does contain a rook, then remove the cell and

every other cell in its row and column. Move each column to the right of i1 left by

one, and move each row above the one removed down by one. Call the resulting

board B′′(1). Each column to the right has had its column number and height

reduced by one, so that bi − i + 1 remains the same. Repeat this operation on

board B(2) with the top cell in column i2 to obtain the board B′′(2). As we have

removed two equal entries in the multisets, the resulting multisets are still equal,
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and we can apply fk−1 to the placement on B′′(1) to obtain a placement on B′′(2).

Insert the appropriate column and row and place a rook in the top cell of column

i2 to obtain a placement of k rooks on B(2).

The previous paragraphs give bijections fk between Ferrers boards that

preserve the rook numbers rk. We claim that Corollary 4.1 gives us a very simple

way to prove the analogous result for generalized hit numbers. That is, suppose

that B(1), B(2) ⊆ Bn,m and we are given bijections fk : Nk(B(1)) → Nk(B(2)) for

k = 0, . . . , n. To form a pattern family for B(1), we let An = [m] and Fn be the

set of all (f(1), . . . , f(n)) such that f ∈ Fn,m. If k 6= n, we let Ak = Fk = ∅. The

pattern family Pn is just the set of all Pi,j such that (i, j) is in B(1), where Pi,j

occurs in (f(1), . . . , f(n)) if and only if f(i) = j, so Pi,j = {〈i, j〉}. For the ordering

of the patterns, we just use the lexicographic order on the cells (i, j) ∈ B(1). Thus

a partially marked pattern 〈f,H1, . . . , H|B(1)|〉 can be viewed as the rook placement

corresponding to f ∈ Fn,m where some of the cells in f ∩B(1) are marked.

For B(2), we let Bn = [m] and Gn denote the set of all (g(1), . . . , g(n)) such

that g ∈ Fn,m. If k 6= n, we let Bk = Gk = ∅. The pattern family Qn is just

the set of all Pi,j such that (i, j) ∈ B(2). For the ordering of the patterns, we

just use the lexicographic order on the cells (i, j) ∈ B(2). Thus a partially marked

pattern 〈g,K1, . . . , K|B(2)|〉 can be viewed as the rook placement corresponding to

g ∈ Fn,m where some of the cells in g ∩ B(2) are marked. Note the fact that there

is a bijection f1 : N1(B(1))→ N1(B(2)) implies that |B(1)| = |B(2)|, so Pn and Qn
have the same cardinality.

We claim that the bijections fk : Nk(B(1)) → Nk(B(2)) for k = 0, . . . , n

allow us to bijectively prove that MRF(t, y) = MRG(t, y). Let b = |B(1)| =

|B(2)| and consider the coefficient MRF(t, y)|ys . This coefficient is the number of

partial marked sequences 〈f,H1, . . . , Hb〉 such that f ∈ Fn,m and exactly s cells

are marked. Note that no two of these cells lie in the same row or column. Thus

the s cells correspond to a rook placement P of size s in B(1). We code the marked

rook placement 〈f,H1, . . . , Hb〉 as a pair (P,U) as follows.

1. P is the rook placement corresponding to the s marked cells in H1, . . . , Hn

and
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2. U is a sequence (u1, . . . , un−s) that codes the remaining values of f as follows.

Let 1 ≤ p1 < · · · < pn−s ≤ n be the columns in Bn,m that do not contain

rooks in P . Suppose that f(pi) = ti for i = 1, . . . , n− s. If row t1 is the k-th

row reading from bottom to top that does not contain a rook in P , then we

let u1 = k. Having defined u1, . . . , um where 1 ≤ m < n − s, then we let

um+1 = k if tm+1 is in the k-th row reading from bottom to top that does

not contain a rook in P ∪ {(pi, ti) : i = 1, . . . ,m}.

For example, in Figure 4.6, we show the rook board B = F (2, 2, 2, 2, 4, 5, 5)

in shaded cells and a rook placement f ∈ F7,10 where the cells corresponding

to the marked patterns are indicated by circling the rooks in those cells. Thus

f = (7, 2, 9, 1, 6, 5, 3) and the circled cells (2, 2) and (6, 5) correspond to the pattern

sets H4 and H17 since (2, 2) is the 4th cell of B in lexicographic order and (6, 5)

is the 17th cell of B in lexicographic order. Thus H4 = P2,2, H17 = P6,5, and

Hi = ∅ otherwise. Thus code(f,H1, . . . , H22) = (P,U), where P = {(2, 2), (6, 5)}
and U = (u1, . . . , u5) = (5, 6, 1, 3, 1). Here u1 is equal to 5, since the rook in

column 1, (1, 7), is in the 5th available row, reading from bottom to top, that does

not contain a rook in P . Similarly u2 = 6, since the rook in column 3, (3, 9), is in

the 6th available row, reading from bottom to top, that does not contain a rook

in P ∪ {(1, 7)}, and so on.

Similarly, the coefficient of MRG(t, y)|ys is the number of partial marked

sequences 〈g,K1, . . . , Kb〉 such that exactly s cells are marked. Again no two of

these cells lie in the same row or column. Thus the s cells correspond to a rook

placement Q of size s in B(2).

Given a (b + 1)-tuple W = 〈f,H1, . . . , Hb〉 with s marked cells, we map

W to a (b + 1)-tuple θs(W ) = 〈g,K1, . . . , Kb〉 with s marked cells if and only if

code(f,H1, . . . , Hb) = (P,U) and code(g,K1, . . . , Kb) = (fs(P ), U). We can think

of this map as follows. First, θs(W ) takes the rook placement P of the s marked

patterns in W and uses fs to map it to the placement Q of s non-attacking rooks in

B(2). Then it uses U to extend Q to a rook placement corresponding to a function

in Fn,m.
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Figure 4.6: The code of a marked rook placement in F7,10

In this situation, we have shown that

MRF(t, y)|ys = rs(B
(1))(m− s) ↓n−s and

MRG(t, y)|ys = rs(B
(2))(m− s) ↓n−s,

and the map θs shows that rs(B
(1))(m − s) ↓n−s= rs(B

(2))(m − s) ↓n−s. Thus

θ =
⋃n
s=0 θs shows thatMRF(t, y) =MRG(t, y). It then follows that our bijective

proof of Corollary 4.1 allows us to construct bijections showing that h
(n,m)
k (B(1)) =

h
(n,m)
k (B(2)) for k = 0, . . . , n.

We note that we could further generalize the notion of hit numbers to count

the number of placements of j rooks in Bn,m with k rooks inside the board B. We

must merely extend our code to allow for empty columns, which is straightforward.

We can also extend our results to cycle-counting rook and hit numbers. For the

purposes of exposition, we will restrict ourselves to n× n boards Bn,n, but this is

not necessary.

With each rook placement P ∈ Nk(Bn,n), we can associate a directed graph

GP , whose vertices are labeled by [n] and whose edges are the set of (i, j) such

that P has a rook in cell (i, j). Figure 4.7 shows the graph associated with a rook

placement in the 6×6 board. For any rook placement P , we let cyc(P ) denote the

number of cycles in the graph of P . We note that if the placement P corresponds
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to a permutation σ, then the cycles of P are equivalent to the cycles of σ.

1 2 3 4 5 6
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2 3
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1

Figure 4.7: Directed graph associated with a rook placement

For any board B ⊆ Bn,n, we let

rk(B, y) =
∑

P∈Nk(B)

ycyc(P ) and

h
(n,n)
k (B, y) =

∑
σ∈Sn
|σ∩B|=k

ycyc(P ).

We let (y) ↑0= 1 and, for k ≥ 1, we let (y) ↑k= y(y + 1) · · · (y + k− 1). We

then have the following analog of Theorem 4.4.

Theorem 4.6. For any board B ⊆ Bn,n,

n∑
k=0

h
(n,n)
k (B, y)xk =

n∑
k=0

rk(B, y)(y) ↑n−k (x− 1)k. (4.26)

Proof. Replace x by x+ 1 in Equation (4.26). Thus we must prove

n∑
k=0

h
(n,n)
k (B, y)(x+ 1)k =

n∑
k=0

rk(B, y)(y) ↑n−k xk. (4.27)

For (4.27), we consider configurations C that consist of a rook placement

corresponding to a permutation σ ∈ Sn, and we circle some of the rooks that fall

in B ∩ σ. We then let cyc(C) denote the number of cycles in the graph of the

underlying rook placement of C and circ(C) denote the number of circled rooks

in C. It is then easy to see that the left-hand side of (4.27) can be interpreted as

summing ycyc(C)xcirc(C) over all such configurations.
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The right-hand side of (4.27) can be interpreted as follows. First pick the

k circled rooks, which correspond to a placement Q ∈ Nk(B). Then we need to

compute

A(Q, y) =
∑
C

ycyc(C), (4.28)

where the sum runs over all configurations whose set of circled rooks equals Q.

But this sum is easy to compute. Let i be the first column that does not contain a

rook in Q. Then there are n− k rows in which to place a rook in column i that do

not contain rooks in Q. We claim that there is exactly one row r where placing a

rook in cell (i, r) completes a cycle in the graph of Q. That is, if there is no rook

in Q in row i, then i is an isolated vertex in the graph of Q, so adding a rook in

cell (i, i) will give a loop on vertex i and hence increase the number of cycles by 1.

Clearly in such a situation, placing a rook in cell (i, j) for j 6= i cannot complete a

cycle. If there is a rook in Q in row i, then there must be a maximal length path

p in the graph of Q that ends in vertex i, since there are no edges out of i in the

graph of Q. If this path starts in vertex j, then there is no rook in row j in Q.

Hence if we add a rook to cell (i, j), then we will complete a cycle. Clearly, adding

a rook to any other row in column i will not complete a cycle in this case. Thus

the placement of a rook in column i will contribute a factor of (y + n − k − 1)

to A(Q, y). But then we can repeat the argument for every placement Q′ that

arises from Q by adding a rook in the next empty column, say column j. That

is, for each such Q′, the addition of a rook in column j will contribute a factor of

(y + n− k − 2) to A(Q, y). Continuing on in this way, we see that

A(Q, y) = ycyc(Q)(y + n− k − 1)(y + n− k − 2) · · · (y) = ycyc(Q)(y) ↑n−k .

Thus another way to sum ycyc(C)xcirc(C) over all configurations is

n∑
k=0

xk
∑

Q∈Nk(B)

A(Q, y) =
n∑
k=0

xk
∑

Q∈Nk(B)

ycyc(Q)(y) ↑n−k

=
n∑
k=0

xk(y) ↑n−k
∑

Q∈Nk(B)

ycyc(Q)

=
n∑
k=0

rk(B, y)(y) ↑n−k xk.
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Chung and Graham [13] proved that for Ferrers boards F (b1, . . . , bn) ⊆ Bn,n,

we have the following factorization theorem.

Theorem 4.7. Let B = F (b1, . . . , bn) ⊆ Bn,n be a Ferrers board. Then

∏
i:bi<i

(x+ bi − i+ 1)
∏
i:bi≥i

(x+ bi − i+ y) =
n∑
k=0

rn−k(B, y)(x) ↓k . (4.29)

As a consequence of Theorem 4.7, we see that two Ferrers boards B(1) and

B(2) will have the same rk(B, y) if and only if they give rise to the same multiset

{bi − i + 1 : i ∈ [n]}. Thus, there exist bijections fk : Nk(B(1)) → Nk(B(2)) that

preserve the number of cycles. Given these bijections, we can modify the bijection

θs to preserve the number of cycles by simply changing the sequence U in the code

of a placement.

Let P be the placement corresponding to the s marked cells of the marked

placement 〈f,H1, . . . , H|B(1)|〉. U encodes the remaining rooks as follows. Let

1 ≤ p1 < · · · < pn−s ≤ n be the columns in Bn,n that do not contain rooks in

P . Suppose that f(pi) = ti for each i ∈ [n − s]. By the argument in the proof of

Theorem 4.6, considering only the rooks in P , column p1 has exactly one cell that

would complete a cycle. Label that cell with a y, then label the remaining cells

where a rook could be placed from bottom to top with 1 to n − s − 1. Let u1 be

the label on cell (p1, t1). In general, column pm has exactly one cell that would

complete a cycle among P and the cells (pi, ti) for 1 ≤ i < m. Label that cell with

a y, then label the remaining cells where a rook could be placed in that column

from bottom to top with 1 to n− s−m, and let um be the label on cell (pm, tm).

For example, in Figure 4.6, cell (1, 1) would complete a cycle in column 1,

so (1, 7) is the 4th remaining cell. Thus, we would set u1 = 4. Similarly, (3, 3)

and (4, 4) would complete cycles, so u2 = 5 and u3 = 1. In column 5, however,

cell (5, 6) completes a cycle with the cell (6, 5) ∈ P , so u4 = y. In column 7, cell

(7, 4) would complete a cycle with (4, 1) and (1, 7), so u5 = 1. Thus, the code of

the marked rook placement in Figure 4.6 is (P,U), where P = {(2, 2), (6, 5)} and

U = (4, 5, 1, y, 1).
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To describe the bijection θs(W ), we take the rook placement P of the s

marked patterns in W and use fs to map it to a placement Q on B(2) with the

same number of cycles. Then, we use U to extend the placement Q to one on Bn,n
with the same number of cycles.

Chapter 4, in full, is currently being prepared for submission for publication

of the material. Remmel, Jeff; Tiefenbruck, Mark. The dissertation author is an

author of this material.
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[1] D. André, Mémoire sur les permutations alternées, J. Math. 7 (1881), 167–184.

[2] R. Angeles, D. P. Rawlings, L. Sze, and M. Tiefenbruck, The expected vari-
ation of random bounded integer sequences of finite length, Inter. J. Math.
and Math. Sciences 14 (2005), 2277–2285.

[3] M. Bousquet-Mélou and X. G. Viennot, Empilements de segments et q-
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