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The majority of people around the world report wanting “the good life.” But how 

do they achieve it? Most research in well-being science operationalizes “the good life” as 

subjective well-being, which is comprised of positive affect, negative affect, and life 

satisfaction. This project uses a nationally representative publicly available dataset from 

the Midlife in the United States (MIDUS) project (N = 4,378) to investigate predictors of 

subjective well-being. Importantly, this dataset contains measures of most of the 

previously identified predictors of subjective well-being. In addition to determining 

which predictors are stronger than others, this project also explores the utility of machine 

learning models and propensity score methods. Machine learning models are used in this 

project to determine the extent to which non-linear and interaction effects predict 



x 

subjective well-being. I also evaluate the value of a propensity score method for 

identifying causal effects on subjective well-being.  

Linear effects accounted for the vast majority of variance in subjective well-

being. Machine learning models that could model non-linear and interaction effects 

predicted subjective well-being approximately as accurately as linear multiple regression 

models that only allowed for linear effects. Furthermore, linear multiple regression 

models appeared well-suited to model non-linear and interaction effects via variable 

transformations. Indeed, these models predicted subjective well-being as accurately or 

more accurately than machine learning models. Unfortunately, a propensity score method 

provided little value in identifying causal effects because it failed to eliminate 

relationships between a predictor of interest and other predictors. The role (or lack 

thereof) that machine learning and propensity score techniques could play in subjective 

well-being research is discussed.  

Replicating previous research, sociability, physical health, disengagement from 

goals, sex life quality, wealth, and religious activity were among the strongest predictors 

of subjective well-being. Consistent with previous research in the U.S., demographic 

factors appeared to be relatively weak predictors of subjective well-being. Finally, 

control over one’s life—and financial and work matters in particular—was a strong 

predictor of subjective well-being, an effect that previous research may have 

downplayed.  
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Exploring Predictors of Subjective Well-Being Using Machine Learning and 

Propensity Score Techniques 

By definition, we should all want “the good life.” Given that the good life is the 

ultimate goal for a rational individual, an important question is “How does one live the 

good life?” To answer this question, however, scholars must decide what constitutes the 

good life. Philosophers have tackled this question for thousands of years (see Aristotle, 

4th century B.C.E./2001) and often equate “the good life” to being high in “well-being,” 

which consists of the things that are ultimately good for every person. Thus, by 

definition, a person with “the good life” is high in well-being. After millennia of serious 

thought, debates continue over the elements of well-being (see Haybron, 2013). 

Psychologists who wished to study well-being in the early-mid twentieth century 

could not wait for philosophers and other scholars to agree on the elements of the good 

life. Psychological research on well-being plunged ahead without worrying about the 

definitions of the good life or well-being (see Beckham, 1929; Watson 1930). However, 

to study well-being empirically, Diener (1984) defined “subjective well-being” as 

comprised of an emotional or affective component (i.e., positive affect and negative 

affect) and a cognitive component (i.e., life satisfaction). Although many philosophers do 

not endorse Diener’s subjective well-being as the correct definition of “well-being,” this 

definition has allowed psychologists to integrate and interpret one another’s research. 

Even if one’s personal definition of well-being differs from Diener’s definition, several 

types of well-being (e.g., desire fulfillment, eudaimonia) are highly correlated with 

subjective well-being (Margolis, Schwitzgebel, Ozer, & Lyubomirsky, 2020a).  
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Drawing Causal Conclusions 

Perhaps the ultimate question motivating research on subjective well-being is 

simply: What causes subjective well-being? According to conventional methodological 

wisdom, randomized controlled trials are necessary to draw causal conclusions (see 

Campbell & Stanley, 1963). In a randomized controlled trial, also known as an 

experiment, participants are randomly assigned to conditions with different 

manipulations. With a large enough sample, random assignment ensures that the 

participants in each condition are quite similar on any (measured or unmeasured) 

construct. Thus, after the manipulations, any observed differences between individuals in 

different conditions can be causally attributed to the difference in the manipulations.     

Randomized controlled trials are considered the gold standard for drawing casual 

conclusions and have been used extensively in research on subjective well-being (see 

Bolier et al., 2013, for a review). However, because randomized controlled trials are 

usually resource-intensive longitudinal studies, researchers cannot test every plausible 

cause of an outcome. Instead, investigators typically rely on the results of observational 

(i.e., correlational) studies to decide which effects to test with randomized controlled 

trials. Over the last few decades, this step-by-step process has unfolded in the subjective 

well-being literature (see Diener, Lucas, & Oishi, 2018). Although correlation does not 

imply causation, causation does imply correlation. Thus, using the logic of modus tollens, 

if correlational evidence points to a near-zero effect, a randomized controlled trial will 

likely find a near-zero causal effect. For this reason, correlational research can be used to 
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eliminate some possible causes of an outcome and prioritize future manipulations by the 

expected size of their impact on the outcome.  

The Strongest Predictors of Well-Being 

For the reasons stated above, subjective well-being research began with 

correlational methods (see Wilson, 1967, for a review). Today, several decades of 

research have identified a long, diverse list of well-being correlates (Diener, Lucas, & 

Oishi, 2018). 

But which correlates of subjective well-being are stronger predictors than others? 

This question is pivotal to determining which randomized controlled trials to conduct. 

However, little empirical or theoretical work has been done to answer it. Indeed, to my 

knowledge, only a couple of reviews have attempted to broadly summarize the relative 

importance of predictors of subjective well-being. Lyubomirsky, Sheldon, and Schkade 

(2005; see also Sheldon & Lyubomirsky, in press) estimated that 50% of the variance in 

happiness can be attributed to genes, 10% can be attributed to life circumstances, and the 

remaining 40% can be attributed to intentional activity (see Brown & Rohrer, 2018, for a 

critique of these estimates). In addition, Lyubomirsky, King, & Diener (2005) meta-

analyzed cross-sectional correlations with well-being and grouped these correlates into 

nine categories. They found that aspects of sociability, likability, prosocial behavior, and 

positive perceptions of oneself and others were most predictive of well-being. However, a 

more nuanced approach is needed to inform future experimental work. For example, is 

prosocial behavior a stronger predictor of subjective well-being than physical health?  
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One approach is simply to turn to meta-analyses to determine which constructs 

are the strongest predictors of subjective well-being. Table 1 presents a list of constructs 

sorted by their meta-analytic correlations with well-being. Notably, subjective traits 

appear to be more predictive of well-being than objective qualities (e.g., household 

income). Unfortunately, the meta-analytic results do not directly indicate which 

predictors of well-being are stronger than others. A few realities render this task difficult. 

First, the predictors of subjective well-being are correlated to a considerable degree with 

one another. For example, Big Five traits are related to a host of outcomes related to 

subjective well-being (Ozer & Benet-Martinez, 2006). Due to the correlations among 

well-being predictors, one cannot simply compare correlations between predictors and 

subjective well-being. Second, the predictors of subjective well-being may interact with 

one another. For example, it is possible that that the effect of sociability on subjective 

well-being depends on levels of agreeableness. With so many correlates of subjective 

well-being, many interaction effects are possible. Obtaining data to test those interactions 

is difficult, because the dataset needs to include many measures and a large sample. 

Third, correlates of subjective well-being may relate to well-being in non-linear ways. 

For example, income’s association with subjective well-being appears to be non-linear 

(Tay, Zyphur, & Batz, 2018). Fourth, estimates of the effects of well-being correlates 

often come from different studies that used different methods or populations. Thus, if a 

set of studies finds a higher correlation between meaning and well-being than another set 

of studies finds between gratitude and well-being, one cannot conclude that meaning 

correlates with well-being to a greater degree than does gratitude, as these correlations 
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are impacted by the methods used in each study. Indeed, the meta-analyses presented in 

Table 1 used a variety of measures of well-being (e.g., life satisfaction vs. happiness) and 

were conducted on various populations (e.g., older adults vs. college students).  

Fortunately, recent methodological advances can remedy these challenges in 

several ways. First, multiple regression can be used to account for correlations among 

predictors of subjective well-being. Second, interaction and non-linear effects can be 

estimated with regression and machine learning techniques. For example, one can 

examine the increase in predictive accuracy of a model that allows for interaction and 

non-linear effects (e.g., machine learning models, regression models with product terms) 

compared to a model that only allows for independent, linear effects (e.g., linear multiple 

regression models). To the extent that the more complex models are more predictive of 

subjective well-being than the simpler regression model, the greater extent to which 

predictors relate to subjective well-being via interaction and non-linear effects. Third, 

datasets containing multiple measures of predictors of subjective well-being administered 

to a single large sample have become available to researchers, allowing researchers to 

compare predictors of well-being in the same population. The availability of these 

methodological resources provides an opportunity to estimate the relative importance of 

predictors of subjective well-being with improved confidence.  

Establishing Causal Effects 

After correlational research has been used to reveal the largest predictors of well-

being, targeted randomized controlled trials can then be conducted to establish causal 

effects. However, randomized controlled trials have significant limitations. Even with 
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insights from correlational research, establishing causal effects with randomized 

controlled trials can be difficult or impossible. Due to their high cost, typically only one 

or a few causes can be tested in a single trial. Thus, many randomized controlled trials 

need to be conducted to study outcomes with many causes. In addition, because such 

trials are costly, non-representative convenience samples are often used, which can 

severely limit the generalizability of any causal conclusions. Furthermore, some 

constructs are difficult or impossible to manipulate. Does income impact well-being? A 

straightforward randomized controlled trial could be conducted, such that people are 

randomly assigned to receive either no money or a large sum of money every month. 

However, the cost of such a study is prohibitive. In addition, it may be unethical to 

manipulate certain correlates of well-being, such as personal beliefs, relationships, or 

health. Lastly, the effect size from a randomized controlled trial depends on which 

manipulation is used (e.g., whether gratitude is induced by prompting participants to 

write a gratitude letter or to count their blessings), the participants’ levels of compliance, 

and the point at which the outcome is measured (e.g., immediately after the intervention 

or months later). Thus, many randomized controlled trials need to be conducted for each 

possible cause. For these reasons, randomized controlled trials only provide limited 

insights into the magnitude of causal effects.   

Despite conventional wisdom, observational data can be well-suited for causal 

inference. Propensity score methods estimate causal effects from observational data by 

using techniques to minimize the relationship between the independent variable and 

possible confounding variables (Rosenbaum & Rubin, 1983). When the independent 
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variable is continuous, this minimization can be done by using inverse probability of 

treatment weighting (IPTW) to create weights for each participant (Rosenbaum, 1987). 

The causal effect can then be estimated by predicting the outcome from the independent 

variable with participants weighted by the IPTW weights. 

Propensity score methods provide accurate estimates of causal effects to the 

extent that 1) all possible confounding variables are unrelated to the independent variable 

when the IPTW weights are used and 2) the reverse causal path is not present (i.e., the 

presumed dependent variable does not cause the presumed independent variable). Thus, 

estimates of causal effects from correlational datasets can be most accurate when many 

measures are included in the dataset (Rubin, 1997). Estimates from a large correlational 

dataset typically have much greater external validity (i.e., generalizability) than 

randomized controlled trials and not depend on the selected manipulation, participant 

compliance, and the time of measurement. Furthermore, many more causal effects can be 

estimated from a large representative dataset than from randomized controlled trials, 

including effects that cannot be tested with randomized controlled trials for practical or 

ethical reasons.   

Current Project 

The current project seeks to take advantage of recent methodological advances in 

machine learning and propensity score methods to 1) establish the relative importance of 

predictors of subjective well-being, 2) evaluate the extent to which predictors relate to 

subjective well-being in non-linear and interactive ways, and 3) evaluate the utility of 

propensity score methods to estimate causal effects on subjective well-being. This study 
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uses the MIDUS datasets to achieve these aims. To my knowledge, no previous study has 

examined a set of predictors of well-being as relevant to subjective-being and as broad as 

those in the MIDUS datasets. In addition, no other study to my knowledge has used 

machine learning and propensity score techniques with such a dataset.   

Method 

Participants 

The first MIDUS data collection project (MIDUS 1) collected data in 1995 and 

1996 using the University of Wisconsin Survey Center. A sample of adults living in the 

United States was recruited using random digit dialing. In 2004 and 2005, this sample 

was re-recruited (response rate of 69.8%) and assessed again on similar measures 

(MIDUS 2). In 2011-2014, a new sample (MIDUS R) was collected, with similar 

measures to MIDUS 2. These United States adults were also sampled through random 

digit dialing. 

Some participants were recruited as siblings or twins of a participant or as part of 

designed oversampling of urban areas. These participants were excluded from my 

analyses to achieve a highly representative sample of United States adults. Initially, this 

resulted in a sample of 2,257 adults from MIDUS 2 and 3,577 adults from MIDUS R. 

However, participants were excluded if they had missing data on over 200 items (of 855 

total items). This resulted in a final sample of 4,378 adults.  

These adults ranged in age from 23 to 84 years old (M = 54.1, SD = 13.8). Of 

these adults, 87% were White, 54% were female, 64% were employed, 66% were 
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married, 76% were Christian, 97% were heterosexual, and 44% had a bachelor’s degree, 

according to self-reports of these demographic characteristics.   

Procedure and Measures 

Participants first responded to questions via a telephone interview and were then 

sent $25. One week later (10 days later for MIDUS R), participants were sent a self-

administered questionnaire, instructions, a tape measure for body measurements, $10, and 

a business reply envelope to send back the complete self-administered questionnaire. 

When the self-administered questionnaires were received, the participant was mailed $25.   

For a list of items used, please see the Supplemental Material and the MIDUS 

documentation available at 

https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/203/studies?archive=ICPSR. 

Statistical Techniques 

Hyperparameter tuning.  

All the machine learning models used in this project (i.e., all models except 

correlations and propensity score models) featured hyperparameters that needed to be 

tuned. Hyperparameters are parameters that determine how the model is fit (i.e., trained 

or learned) from the data. For example, imagine an individual who is performing multiple 

regression with numerous predictors (called “features” in the machine learning literature). 

The data analyst could choose to use only 10 features to predict the outcome (called the 

“target” in the machine learning literature). The number of features to include—10—

would be a hyperparameter.  
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When one trains a machine learning model, one needs to tune the 

hyperparameters to maximize fit (i.e., predictive accuracy). However, because machine 

learning models are often designed with the capacity to model complex effects, it is quite 

easy to train a model that overfits the data. This issue is analogous to the one faced when 

using polynomial regression. If one was fitting a polynomial regression model to 100 

observations of a target (y) from a single feature (x) one could include 99 predictors of 

(x, x2, x3… x99). If one fit this model to the data, the result would be perfect model fit 

(i.e., a multiple R of 1.0 or a correlation of 1.0 between predicted target values and actual 

target values). Despite this perfect fit, the model would be a poor model of the 

relationship between x and y. If new observations of x and y were collected, the model 

would almost surely provide predicted values of y that are quite different from the actual 

values of y. Thus, the coefficients of the polynomial regression model would not 

accurately reflect the larger population, essentially eliminating external validity (i.e., 

generalizability).  

To prevent overfitting data and creating models without external validity, 

hyperparameters of machine learning models are often selected using k-fold cross-

validation. This process of selecting hyperparameters to avoid overfitting is called 

regularization. In k-fold cross-validation, the dataset is randomly split into k samples of 

approximately equal size. Then, k-1 samples are used to train the machine learning 

model. The sample that was omitted from training (i.e., the validation dataset) is used to 

assess the fit of the trained model. Thus, the model is trained on a set of data, and then the 

model’s fit is evaluated on a separate set of data. This process is then repeated so that 
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each of the k samples is used as the validation dataset once. This produces k estimates of 

model fit, and the average of these estimates is often used as fit of the model, given a 

certain set of hyperparameters. In this project, a k of five was used in all k-fold cross-

validation. Thus, models were repeatedly trained on approximately 80% of the data, and 

the models were evaluated on approximately 20% of the data.  

Many sets of hyperparameters need to be tested using k-fold cross-validation to 

select the hyperparameters that produce the best cross-validated model fit. In this project, 

I used the common technique of grid search. In a grid search, a finite set of values are 

tested for each hyperparameter. Each combination of the hyperparameter values is tested. 

For example, if a model needed two hyperparameters, A and B, to be tuned, one could 

test A values of 0.1, 1, and 10 and B values of 1, 2, and 3. All nine possible combinations 

of A and B would be evaluated using k-fold cross validation. One set of values (e.g., 10 

and 2) would be selected as the best values. More specific values can be tested in 

subsequent grid searches (e.g., testing values closer to 10 and 2). In this project, 

hyperparameters were tuned to two significant digits unless 1) the hyperparameter must 

be a whole number and 2) single-digit values produced the best model fit. Thus, if 

hyperparameters of A = 15 and B = 0.024 were found to result in the best model fit, this 

indicates that after repeating many grid searches, a grid search with possible values of A 

being 14, 15, and 16, and possible values of B being 0.023, 0.024, and 0.025 resulted in 

A = 15 and B = 0.024 being the set of hyperparameters that maximized cross-validated 

fit.  
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The final hyperparameters were used to produce an indication of the importance 

of each feature (e.g., a regression coefficient), if the particular machine learning model 

had that capability. However, the fit of this final model was not used as an estimate of the 

fit of that machine learning model to the data. The fit of a model on a dataset that uses 

hyperparameters selected through cross-validation on the same dataset produces biased 

estimates of model fit, and a nested cross-validation procedure is recommended to reduce 

this bias (Varma & Simon, 2006). In nested cross-validation, the data are randomly split 

into k samples, as in k-fold cross validation. Each sample is used as a validation dataset 

once in an “outer loop.” The “outer” training data is split again to produce k subsamples, 

and the optimal hyperparameters for this “inner loop” are selected with grid search and k-

fold cross-validation. In this grid search, I included five values for each hyperparameter, 

which included the optimal hyperparameter from the non-nested cross validation, and 

values two and four units away on the second significant digit. For example, if the 

optimal hyperparameter was .024, the inner loop grid search included .020, .022, .024, 

026, and .028. These values were chosen to allow for different optimal hyperparameters 

across inner loops. The optimal hyperparameters of this inner loop are used to evaluate 

model fit on the outer loop validation sample. This process is then repeated so that each 

of the k outer loop samples is used as the outer loop validation dataset once. A k of five 

was used for both the inner and outer loops. This produced five estimates of model fit 

(R2), and the square root of the average R2 was used as the multiple R for a particular 

model and dataset.  
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Correlation.  

I correlated all features to subjective well-being (i.e., the target). Because 

correlations are equivalent to a regression model with one predictor, the model is quite 

simple, and no regularization was necessary. Thus, the above hyperparameter tuning 

process was not necessary for the correlation analyses.  

Lasso regression.  

A linear multiple regression models a target as a linear combination (i.e., 

weighted sum) of features. Thus, a predicted value is calculated by multiplying a score on 

a feature by a coefficient and then repeating this process for each feature (which have 

unique coefficients) and summing the products. The coefficients are selected such that 

the mean squared error (i.e., the average of squared residuals) is minimized, which 

maximizes the multiple R of the model.  

With many features, a linear multiple regression model will overfit data. One 

method of regularization is to use lasso regression. In lasso regression, rather than 

minimizing only the mean squared error, coefficients are selected to minimize a quantity 

calculated in the following way. First, the absolute values of the coefficients are summed 

and multiplied by a hyperparameter, α. The quantity being minimized is the sum of this 

product and the mean squared error. Thus, coefficients are selected to minimize the mean 

squared error while also minimizing the magnitude of the coefficients to regularize the 

model. The α hyperparameter controls the extent of regularization. A greater α leads to 

more regularization, as the magnitudes of the coefficients have a higher weight in the 
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quantity to be minimized. The greater α is, the more that coefficients are reduced from 

what they would be in a linear multiple regression model without lasso regularization.  

Importantly, lasso regularization tends to set some coefficients to zero. Because a 

coefficient of zero is equivalent to having not included that feature in the model, lasso 

regularization also performs feature selection. As described below, I used lasso 

regression for this purpose.  

Ridge regression.  

Ridge regression is quite similar to lasso regression. However, rather than 

summing the absolute values of the coefficients and multiplying them by the α 

hyperparameter, the coefficients are squared, summed, divided by two, and then 

multiplied by α. It is this product that is added to the mean squared error and that sum is 

minimized. Ridge regression provides regularization by reducing the magnitude of 

regression coefficients, but, unlike lasso regression, it does so without setting coefficients 

to zero (i.e., without performing feature selection).  

Support vector regression.  

Geometrically, the linear multiple regression techniques described above fit a flat 

hyperplane to the data in n-dimensional space where n equals the number of features plus 

one. In a simple case with one feature and one target, a line is fit to data points in a two-

dimensional space. This is often visualized in a scatterplot. With two features, one can 

imagine data points in a three-dimensional space with a flat plane fit to the data. This 

plane is often allowed to be curvy in response surface analysis. Support vector regression, 

the regression analogue to support vector machines, is similar to this response surface 
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analysis. In support vector regression, a curvy hyperplane is fit to data in n-dimensional 

space.  

Unlike linear multiple regression, the goal of a support vector regression model is 

not to describe a hyperplane that minimizes squared residuals. Instead, the goal is to 

describe a hyperplane that has as many datapoints as possible within a certain distance of 

it. This distance, labeled ϵ is a hyperparameter of the model. To allow the hyperplane to 

be curvy, I used a radial basis function kernel. By allowing for a curvy hyperplane, there 

is increased potential for overfitting. Hyperparameters, C and γ, control how curvy the 

hyperplane can be. A lower value of C makes the hyperplane generally less curvy and a 

lower γ value makes the hyperplane less sensitive to individual data points. Thus, lower 

values of C and γ indicate more regularization. Unfortunately, support vector regression 

with a radial basis function kernel does not provide a metric that indicates how important 

each feature is in predicting target scores.  

Random forests and extremely randomized trees.  

Random forests—as well as a highly related machine learning technique, 

extremely randomized trees—are comprised of many decision trees. A decision tree 

begins at a root node. All cases being analyzed for that decision tree are used to train this 

node. At this node, cases are divided into two sets, which will be analyzed at the next 

layer of nodes. The cases are divided by using a single feature and a threshold. The 

feature and threshold are selected to reduce the variance of the target in the two resulting 

datasets. This procedure repeats at the next layer of nodes, and this process repeats until a 

certain condition (controlled by hyperparameters) is reached. The nodes in the last layer 
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are called leaf nodes, and the prediction for cases meeting the conditions of a leaf node is 

the average of training cases in that node.  

Decision trees tend to overfit data. In addition to regularizing the decision trees 

(described below), random forests implement bootstrap aggregating, also called bagging, 

of decision trees to increase predictive accuracy. In a random forest, the training cases are 

randomly sampled with replacement (i.e., bootstrapped), a decision tree is fit to each 

random sample, and then the predictions from each decision tree are averaged (i.e., 

aggregated). The random forests in this project were comprised of 100 decision trees. In a 

random forest, the best feature and threshold combination for splitting a node is 

considered among a random subset of features, which makes the individual trees more 

different from each other than they would be otherwise.  

I used four hyperparameters to regularize the random forest models. First, I 

restricted the maximum depth of the decision trees (i.e., the number of layers of nodes). 

Second, the minimum number of cases at a leaf node was tuned. Third, I constrained the 

number of features that could be considered when looking to split a node. Lastly, I tuned 

the maximum number of leaf nodes that any decision tree could contain.    

Extremely randomized trees are quite similar to random forests but are different in 

two ways. First, each decision tree is trained with the entire training dataset rather than a 

bootstrapped sample. Second, instead of selecting the optimal feature and threshold for 

splitting a node, for each feature, a threshold is randomly selected from (a uniform 

distribution of) the feature’s range. The best combination of feature and threshold is then 
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used to split the node. In this project, results with extremely randomized trees were quite 

similar to those with random forests, so I only report results for random forest models.  

Like multiple regression coefficients, random forest models provide feature 

importance values. Features used earlier in the decision tree (i.e., closer to the root node 

and further from lead nodes) impact the prediction of a larger proportion of the training 

samples. The fraction of the samples that a feature contributes to is used to estimate a 

feature’s importance. In addition, the decrease in variance by splitting a node using a 

certain feature contributes to the feature’s importance rating. In a random forest model, 

all feature importances sum to unity and higher values indicate greater importance.  

Artificial neural networks.  

An artificial neural network operates much like a biological neural network. Each 

feature is represented by an input neuron. A “hidden” layer of neurons calculates a linear 

combination (i.e., a weighted sum) of the input neurons and outputs this sum to an output 

neuron. I used a rectified linear unit function, which outputs the linear combination if it is 

greater than zero, but outputs zero if the linear combination is less than zero. Initial 

testing showed that this approach improved the predictive accuracy of the neural 

networks over other activation functions. The output neuron calculates a prediction for 

the target using a linear combination of the hidden layer neurons.  

Artificial neural networks can have many hidden layers between the input layer 

(i.e., features) and the output layer (i.e., predictions). However, in this project, I only used 

one hidden layer for two reasons. First, a more complex neural network seemed 

inappropriate for the number of cases in this project. Second, a neural network with one 
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hidden layer can model anything a more complex neural network can, albeit with more 

neurons.  

I regularized the artificial neural networks by tuning two hyperparameters. First, 

the number of neurons in the hidden layer was limited. Second, the weights between 

neurons were constrained in the same manner as coefficients in a ridge regression model. 

Thus, the hyperparameter α was tuned.  

Propensity score analyses.  

I conducted models where the target is predicted by a feature in a linear regression 

model where cases are weighted to minimize the relationship between potential 

confounders (i.e., other features) and the feature of interest. This weighting is achieved 

by inverse probability of treatment weighting (IPTW). The IPTW weights for each case 

are a fraction where the numerator is the conditional density of the normal distribution at 

the person’s Z-score on the feature of interest. To calculate the denominators of the 

IPTW weights, the feature of interest is predicted from all other features using a linear 

multiple regression model. Then, for each case, the denominator of the IPTW weight is 

the conditional density of a normal distribution at the person’s observed value on the 

feature of interest, where the normal distribution has a mean of the predicted value on the 

feature of interest and a standard deviation equal to the standard deviation of the residuals 

from this linear regression model. To avoid extreme weights, I set all weights above the 

99th percentile to the 99th percentile of the weights.  

I predicted the target from the feature of interest using a linear regression model 

where the cases are weighted by the IPTW weights. In one model, only the feature of 
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interest was used to predict the target. However, because the IPTW weights did not 

completely eliminate the associations between the feature of interest and the other 

features, I also conducted a linear multiple regression model in which the other features 

were used as covariates and the same IPTW weights were used.  

Data Cleaning 

Creating a target and features.  

Creating a target: subjective well-being. Positive and negative affect were 

measured with 13and 14 items, respectively. Participants were asked how much of the 

time they felt certain emotions during the past 30 days on a 5-point Likert scale. The 

positive emotions included cheerful, in good spirits, happy, calm, satisfied, full of life, 

close to others, belonging, enthusiastic, attentive, proud, active, and confident. Negative 

emotion items included sad, nervous, restless, hopeless, everything being effortful, 

worthless, lonely, afraid, jittery, irritable, ashamed, upset, angry, and frustrated. 

Composites of positive and negative affect were created by averaging each set of items.  

A life satisfaction composite was formed by standardizing (i.e., Z-scoring) then 

averaging one item and two composites. The life satisfaction item asked participants the 

extent to which they were satisfied with life at present on a 4-point Likert scale. A life 

rating composite was formed by averaging three items asking participants to rate their 

present life, life 10 years ago, and life 10 years in the future using an 11-point Likert 

scale. A self-acceptance composite was calculated by averaging seven items from the 

self-acceptance sub-scale of the Psychological Well-Being Scale (Ryff & Keyes, 1995), 

which were answered using a 7-point Likert scale. The life satisfaction item, life rating 
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composite, and self-acceptance composite were standardized and then averaged to form a 

life satisfaction composite. The self-acceptance items were considered measures of life 

satisfaction because disattenuated correlations between self-acceptance and measures of 

life satisfaction have been found to be .95 or greater (Margolis, Schwitzgebel, Ozer, & 

Lyubomirsky, 2019).  

A subjective well-being composite was calculated by standardizing and then 

averaging the positive affect, negative affect (reverse scored), and life satisfaction 

composites. Using the standardized loadings from a one-factor exploratory factor analysis 

of the 38 subjective well-being items, ωt equaled .96. The subjective well-being 

composite described above correlated with a composite where all items were weighted 

equally (i.e., simply averaged) at r = .97. 

Creating trait features. The other items of the MIDUS surveys were scored into 

traits (i.e., trait features) using item averages. Some traits consisted of just one item, but 

most traits consisted of several items (with 748 items forming 189 traits). The items 

comprising each trait are listed in the Supplemental Material.      

Item transformations. All items were transformed before forming trait 

composites. First, categorical items were dichotomized. Fortunately, all categorical 

variables could easily be dichotomized (e.g., combining the few homosexual and bisexual 

participants into one “not heterosexual” group). Some variables featured high positive 

skew because they were count variables. For example, one item asked about the number 

of hours per month one spends volunteering at a hospital. These highly positively skewed 

count variables were log transformed (base 10) after adding 1 to the variable (to prevent 
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values of negative infinity). Next, some items were multiplied by -1 (i.e., reverse coded) 

so that higher scores on the associated trait indicated higher levels of that construct. 

Lastly, all items were standardized to have a mean of 0 and variance of 1.  

Excluded items. Items were not used to form traits if they met any of six 

conditions. First, items were removed if they had a high proportion of missingness, which 

occurred in two situations. If an item was present in one survey but not the other, the item 

would have a high proportion of missingness. For example, many MIDUS R items 

pertained to the 2008 financial crisis, which were not present in the MIDUS 2 survey. In 

addition, some items simply had low response rates, often because they were not 

applicable. For example, most people could not provide the age at which they had a heart 

attack, because most people had not had a heart attack. Items that had more than 500 

missing cases were removed.  

Second, I removed two items that did not have any variance: whether one’s half-

sister had a heart attack and whether one received herbal cancer treatment.  

Third, any variable that was calculated or determined from other variables was 

removed, as this was redundant with averaging items into traits.  

Fourth, items tautologically related to subjective well-being were removed 

(following imputation, described below). These items either concerned mental health, 

were labelled as measures of well-being in the MIDUS documentation or asked 

participants to rate how well the previous day or month went. However, the subscales of 

the Psychological Well-Being Scale (e.g., environmental mastery, purpose in life) were 

included as they are not tautologically related to subjective well-being. Indeed, some 
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argue that eudaimonic constructs, such as those assessed with the Psychological Well-

Being Scale, are best seen as causes, rather than constituents, of well-being (Sheldon, 

2018). 

Fifth, some items simply seemed far more specific than other trait-level variables 

and could not be formed into a composite. For example, an item concerning whether one 

would prefer a coronary bypass or medication to solve a heart issue was removed. In 

addition, several items about a respondent’s values or beliefs were specific and could not 

reasonably be averaged into traits.  

Sixth, some items were redundant with other items. For example, because three 

items concerned blood pressure, the two of the three items with the least specific 

response options were removed.  

Trait labels. Traits were labeled as subjective or objective. All traits were 

assessed via self-report, and thus all were subjectively reported. However, some traits 

regarded subjective ratings (e.g., rating the strength of one’s financial situation using a 

Likert scale), whereas others regarded more objective characteristics (e.g., estimating 

income).  

Creating domain features. Based on the content of the objective traits, 17 

objective domains were formed. These domains were created by averaging traits, but 

some domains consisted of one trait (e.g., female status). The subjective traits were 

entered into an exploratory factor analysis using the minimum residual method and 

oblimin rotation. A scree plot suggested 11 factors (see Figure 1). Furthermore, the 
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loadings of these 11 factors produced interpretable factors. Thus, 11 subjective domain 

factor scores were extracted, resulting in a total of 28 domains.  

Creating weak features. An advanced machine-learning model may not 

outperform a linear regression model if the linear regression model explains most of the 

variance in the target. To evaluate the machine learning models in scenarios where this is 

not the case, I created datasets of weak traits and weak domains. The goal was to select 

the traits (or domains) that were most weakly associated with subjective well-being. I 

selected the weakest features, such that a lasso regression model predicting subjective 

well-being from these features would have a nested cross validation multiple R of 

approximately .50.  

To create a dataset of weak traits, I removed all traits with a correlation above .15 

in magnitude with subjective well-being. When the remaining 80 features were used to 

predict subjective well-being in a lasso regression model, the nested cross-validation 

multiple R was .50.  

  To create a dataset of weak domains, I removed all traits with a correlation 

above .22 in magnitude with subjective well-being. When the remaining 15 features were 

used to predict subjective well-being in a lasso regression model, the nested cross-

validation multiple R was .49.  

Feature selection. The performance of machine learning models is often reduced, 

rather than unchanged, by the inclusion of features that are not predictive of the target 

when the other features are included in the model (see, for example, John, Kohavi, & 



 24  

Pfleger, 1994). Thus, for trait, domain, weak trait, and weak domain datasets, I removed 

features if their regression coefficient in a lasso regression model was zero.  

To examine the ability of linear regression models to incorporate non-linear and 

interaction effects on subjective well-being, I also made datasets with squared and 

product terms. For all four of the above datasets, I created three additional datasets: one 

with untransformed (i.e., linear) and squared features, one with untransformed and 

product features, and one with untransformed, squared, and product features. Thus, I 

created 16 datasets in total. I used lasso regression to perform feature selection on each 

dataset. See Table 2 for results of these lasso regression models and see Table 3 for a list 

of subjective domains with representative items from those domains.  

Based on a lasso regression model, a smorgasbord of features was removed from 

the trait dataset. Previous research does not identify many of these features as important 

predictors of subjective well-being. However, some important exceptions include 

objective chronic pain, objective health limitations, subjective generativity, subjective 

pessimism, and subjective religiosity. Many of these features are likely to be at least 

somewhat predictive of subjective well-being, but they failed to predict subjective well-

being over and above the selected features. The same possibility applies to the features 

removed from the domain dataset: objective employment status, objective giving and 

receiving, and subjective resilience.  

Missingness and imputation. Of all cells in the item-level data, 1.5% were 

missing. Because items with more than 500 missing cases were removed, no item had 
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more than 11.4% of its cells missing. However, most items had some missingness; only 

39 items had no missing cells.  

Before forming trait composites, the cells of the item data were imputed because 

the analyses for this project could not be performed on data that have missing values (i.e., 

listwise deletion would be used, removing most of the sample). The imputation took 

place after items were transformed. In addition, items that had high missingness, had no 

variance, or were determined by other variables were removed before imputation. 

However, some items that would be removed before forming traits were included in the 

imputation process. These items were ones that would later be removed because they 

were tautologically related to subjective well-being, redundant with other items, or more 

specific than traits and could not be used in a composite.  

Cells were imputed using a k-nearest neighbor approach. First, each missing cell 

was imputed using the item medians. The values of these cells were modified further. The 

median imputation was simply necessary to start the k-nearest neighbor imputation. Next, 

the variable with the fewest missing cells (excluding those with no missing cells) was 

imputed. This variable was imputed based on data of the 50 features with the strongest 

correlations to the variable being imputed. Using these data, the five nearest neighbors 

(i.e., cases) of a missing case were identified. The five nearest neighbors were cases with 

the five lowest Euclidean distances from the missing case on the 50 used features. Thus, 

for each possible neighbor (i.e., all cases except the targeted missing case), the 

differences between the possible neighbor and the targeted missing case on each of the 50 

used features was squared, those 50 squares were summed, and then the square root of 
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the sum equaled the distance of that possible neighbor case from the targeted missing 

case. Of the five nearest neighbors, one case was randomly selected, and the targeted 

missing cell was replaced with the score of the randomly selected neighbor on the target 

variable. This was then repeated for each missing case of the target variable. This 

procedure was repeated for each variable with missing data, conducting imputation on 

variables with the least missing cells first. The imputation process was repeated over the 

dataset four more times for a total of five rounds of imputation, which greatly reduced the 

impact of the initial median imputation.  

 I used a k-nearest neighbor imputation for several reasons. First, simulation work 

has found that this method performs well (Batista & Monard, 2002; Chen & Shao, 2000; 

Jonsson, & Wohlin, 2004). Second, missing values are imputed with values that already 

exist for that variable. Thus, unlike with many regression-based imputation methods, the 

imputed values are possible scores on the variable. Third, this method uses what is known 

about a participant to impute values, and this likely does not inflate model error as much 

as a simpler technique like median imputation. Lastly, k nearest neighbors avoids 

overfitting by randomly selecting from the k (in this case, five) most likely cases.   

Results 

Model Fit 

Using a ridge regression model, both the trait and domain features were highly 

predictive of subjective well-being (see Table 4). For both domain and weak domain 

features, the inclusion of square and product terms only slightly improved model fit. For 

each of these feature datasets, models with squared terms featured approximately the 
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same fit as models with product terms. For the traits and weak traits features, the 

inclusion of product terms substantially increased model fit.  

The support vector regression models (see Table 5) fit better than the ridge 

regression models with only untransformed features. For the domains and weak domains 

features, the support vector regression models fit approximately as well as the ridge 

regression models with square and product terms. However, for the traits and weak traits 

features, the support vector regression models could not rival the fit of the ridge 

regression models with transformed (i.e., squared and product) features.  

The random forest models (see Table 6) generally did not fit as well as the ridge 

regression models. For all sets of features except weak domains, the random forest 

models performed worse than the ridge regression models with untransformed features. 

For the weak domains features, the random forest model fit slightly better than the ridge 

regression model with untransformed features. However, the random forest model with 

weak domains features fit slightly worse than ridge regression models with square or 

product terms.  

Like the support vector regression models, the artificial neural network models 

(see Table 7) fit slightly better than the ridge regression models with only untransformed 

features. For the domains and weak domains features, the artificial neural network 

models fit approximately as well as the ridge regression models with square and product 

terms. However, for the traits and weak traits features, the artificial neural network 

models fit worse than the ridge regression models with transformed features.  
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Predictors of Subjective Well-Being 

 See Table 8 for the list of traits and how strongly they predict subjective well-

being. Most traits exhibited an adequate degree of internal consistency (as measured by 

ωt) to interpret correlations, regression coefficients, and importance values from random 

forest models. Generally, these metrics agreed on which trait features were most 

predictive of subjective well-being. However, the ridge regression coefficients and 

random forest importances were more similar to each other than either were to the 

correlations, which likely occurred because the former two metrics statistically control 

for other features whereas correlations do not control for other features. When compared 

with objective traits, subjective traits tended to be more predictive of subjective well-

being. Indeed, of the 30 most predictive traits, only one (aches) was objective.  

Unsurprisingly, the components of psychological well-being (e.g., environmental 

mastery, purpose in life, positive relations with others) were among the traits most 

predictive of subjective well-being. These traits were selected to comprise psychological 

well-being because theories posit them as important to human flourishing (Ryff, 1989). 

Another intuitive result was that rating particular areas of one’s life as going well (e.g., 

physical health, work situation, financial situation) was highly predictive of subjective 

well-being. Perhaps more interestingly, ratings of control in one’s life (e.g., control over 

life, control over work situation, health control, autonomy) were highly associated with 

subjective well-being. In addition, paralleling previous findings, subjective well-being 

was highly related to subjective ratings regarding social interactions (e.g., social 

integration, extraversion, social contribution). Demographic factors (e.g., pregnancy, 
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White status) were among the weakest associations with subjective well-being. Although 

a trait labeled “subjective control” was weakly associated with subjective well-being, this 

trait reflects control in the sense of cautiousness and constraint.  

See Table 9 for the list of domains and how strongly they predict subjective well-

being. Mirroring the results with traits, subjective domains were generally more 

predictive of subjective well-being than objective traits were, with objective physical 

health issues being an exception. In addition, subjective evaluations of control, physical 

health, and sociability were strongly associated with subjective well-being. However, 

domain-level analyses led to some insights that were not clearly visible at the trait level. 

For example, disengagement (e.g., withdrawing from a stressful event), judgments of 

socioeconomic status, and subjective evaluations of one’s sex life were all important 

predictors of subjective well-being. Financial situation, religious activity, and human 

contact (i.e., the frequency and duration of time spent socializing with friends, family, 

etc.) were among the most predictive objective domains. Once again, demographic 

factors (education, physical size, and female status) were among the weakest predictors 

of subjective well-being.  

Propensity Score Analyses 

As described above, I conducted two models with the IPTW weights for each 

feature. One model used only the feature of interest to predict subjective well-being and 

another model used all other features as covariates. If the IPTW weights were successful 

in eliminating associations between the feature of interest and all other features, then 

these models would provide the same result. However, as shown in Tables 7 and 8, this 
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was not the case. The coefficients were substantially smaller in models with covariates, 

indicating that even with IPTW weights, a feature of interest was still related to the other 

features.  

The propensity score analyses generally agreed with the ridge regression and 

random forest analyses on which features are most predictive of subjective well-being. 

The propensity score analyses agreed less with the correlation results, presumably 

because propensity score analyses involve statistical control of other features (like ridge 

regression and random forest models) and correlations do not control for other features. 

Discussion 

The primary goal of this project was to examine the utility of using machine 

learning to model subjective well-being. My results consistently showed that simpler 

models limited to linear effects (e.g., multiple regression) performed approximately as 

well as machine learning models. This finding made it relatively easy to determine which 

predictors of subjective well-being were more than important than others. Elements of 

psychological well-being, control, and subjective physical health were among the 

strongest predictors of well-being. However, causal conclusions could not be made from 

these cross-sectional data, as propensity score methods failed to minimize the 

relationships between potential causes of well-being and confounding variables.    

Non-Linear and Interaction Effects on Subjective Well-Being and Machine 

Learning’s Ability to Detect Them 

Based on the results of the ridge regression models, a small proportion of the 

variance in subjective well-being can be explained by non-linear and interaction effects. 
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At the domain level, it appeared that more complex machine learning models (i.e., 

support vector regressions, random forests, and artificial neural networks) could predict 

subjective well-being approximately as accurately as ridge regression models with 

squared and product terms. However, when using the traits and weak traits features, these 

machine learning models did not fit as well as the simpler ridge regression model with 

squared and product terms. Importantly, the extent of non-linear and interaction effects 

appeared greatest in the trait-level datasets. Thus, when non-linear and interaction effects 

were most present, machine learning models did not fit as well as a model that predicted 

subjective well-being as a linear combination of features, given that those features 

include squared and product terms.  

This finding may be unique to subjective well-being. Perhaps most of the variance 

in subjective well-being can truly be explained by linear effects. However, more broadly, 

machine learning models may not be particularly helpful when the target is continuous 

(or ordinal with enough categories that it is treated as continuous). Some of the more 

famous uses of machine learning models include identifying spam emails (Guzella & 

Caminhas, 2009), predicting purchasing behavior (Zuo, Yada, & Ali, 2016), and optical 

character recognition (Bhatia, 2014). Notably, all of these tasks involve classification 

(i.e., categorical targets), not regression (i.e., continuous targets). Among the machine 

learning models used in this project, the random forest models fit particularly poorly, and 

this may be due to a mismatch between their architecture (dichotomous node splitting in 

decision trees) and a continuous target.   
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Predictors of Subjective Well-Being 

Most results regarding particular predictors of subjective well-being match those 

found in previous research. For example, mirroring the results of this project, previous 

research has found high associations between subjective well-being and components of 

psychological well-being (Disabato, Goodman, Kashdan, Short, & Jarden, 2016), 

satisfaction with particular areas of life (Rojas, 2006), sociability (Cooper, Okamura, & 

Gurka, 1992), physical health (Cross, Hofschneider, Grimm, & Pressman, 2018), 

disengagement (Wrosch, Scheier, Miller, Schulz, & Carver, 2003), sex life (Margolis, 

Schwitzgebel, Ozer, & Lyubomirsky, 2020b), wealth (Ng, 2013), and religious activity 

(Tay, Li, Myers, & Diener, 2014). I also found that most demographic factors were poor 

predictors of subjective well-being, as previous research in the United States has found 

(Andrews & Withey, 1976, Diener, Suh, Lucas, & Smith, 1999). The findings of this 

project do align well with comparisons of meta-analytic effect sizes from previous 

research. Table 1 suggests that meaning, neuroticism, optimism, and extraversion are 

among the strongest predictors of well-being, as was found in this project. However, my 

findings do not perfectly align with prior work. For example, self-esteem and physical 

health were stronger predictors of subjective well-being than was suggested by previous 

meta-analyses. However, some previous research has found self-esteem to be a strong 

predictor of well-being (Lyubomirsky, Tkach, & DiMatteo, 2006).  

Perhaps the most surprising result was the strength of the association between 

control and subjective well-being. Both previous empirical results and theorizing suggest 

that autonomy (which is synonymous with or highly related to a sense of control) is 
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important for subjective well-being (see self-determination theory; Deci & Ryan, 2012). 

Previous research has also revealed that another highly related concept, locus of control 

(i.e., whether events in one’s life are determined by one’s actions or external factors), is 

highly predictive of well-being (Lu, 1997; Lu, Shih, Lin, & Ju, 1999). However, I was 

surprised that a sense of control was the strongest predictor of subjective well-being at 

the domain level. Indeed, most previous research considers other factors as more 

important predictors of well-being. For example, autonomy and control are scantly 

mentioned in the most recent major review of subjective well-being research (Diener, 

Lucas, & Oishi, 2018). 

The traits with the strongest loadings on the subjective control domain include 

items regarding the extent to which individuals feel they have control over their life, 

work, health, and finances. Perhaps these factors are particularly important for subjective 

well-being, and having a sense of control over them is not being measured using common 

measures of autonomy, like the Balanced Measure of Psychological Needs (Sheldon & 

Hilpert, 2012) ,which assess control at a general level (e.g., “My choices expressed my 

‘true self’”). Indeed, items regarding control over health, finances, and work may be 

relatively less appropriate for university students, the population of most psychological 

studies. Many university students have health insurance, are supported financially by 

their parents, and are not employed.  

Propensity Score Analyses and Causal Conclusions 

In evaluating the extent to which particular features predict subjective well-being, 

the results of the propensity score analyses were quite similar to those found with ridge 
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regression and random forest models. The supposed benefit of propensity score analyses 

is that they allow one to draw causal conclusions. However, I do not believe it would be 

appropriate to make causal claims based on the results of propensity score analyses in this 

project. For propensity score methods to provide accurate estimates of causal effects, the 

IPTW weights must eliminate associations between the feature of interest and other 

features. However, such associations remained, as evidenced by the smaller estimates 

when other features were included in the regression model with IPTW weights, compared 

to estimates when only the feature of interest was included in the regression model with 

IPTW weights. In addition, propensity score methods do not indicate the direction of the 

causal effect. In this project, many of the potential causes of subjective well-being could 

be effects, rather than causes, of subjective well-being. Thus, I believe that propensity 

score analyses did not help identify causal effects in this project.  

Limitations and Future Directions 

Although the MIDUS datasets are larger and more representative than most 

datasets used in psychology, they still have limitations. The MIDUS datasets used 

random digit dialing to collect a highly representative sample of United States adults. 

However, the representativeness of the sample likely decreased when participants with 

high rates of missingness were removed. In addition, findings from this project may not 

generalize to other countries. For example, control may be a weaker predictor of well-

being in countries that are more interdependent than the United States.   

The MIDUS datasets are large in that they have both many participants and many 

measured variables. However, a sample size of 4,378 is small for most machine learning 
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tasks. With more cases, complex effects may become more reliable (i.e., persist under 

cross-validation). Thus, the machine learning models I used may provide more accurate 

predictions in datasets much larger than the current dataset. However, one would expect 

that 4,378 cases is enough to detect basic non-linear and interaction effects with machine 

learning models.  

Although the MIDUS datasets contain many variables, certainly some constructs 

important for well-being were not measured (e.g., gratitude, work productivity). A study 

with all constructs relevant to subjective well-being, though quite costly, would likely 

include a longer list of constructs that are important predictors of subjective well-being.  

Unfortunately, all measures involved self-report. I labeled some measures as 

“objective” because they attempted to measure objective quantities (e.g., hours spent 

helping a family member). However, even these measures are likely impacted by self-

report biases (e.g., socially desirable responding, extreme responding, and acquiescence). 

In addition, because all measures were assessed via self-report, the associations between 

features and subjective well-being are likely inflated due to the presence of common 

method variance. Lastly, self-report can be burdensome on participants, especially with 

the length of the questionnaires used in the MIDUS project. Thus, some measures may be 

impacted by fatigue participants felt while completing a long questionnaire.  

Because this project focused on only one target—subjective well-being— its 

conclusions may not extend to other targets. For example, wealth could be predicted by 

many non-linear and interaction effects, and machine learning models could excel in 
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providing accurate predictions of wealth. Similarly, propensity score methods may be of 

more value with different targets.  

Concluding Thoughts 

Machine learning techniques have gained much praise recently for performing 

tasks that were reserved for science fiction decades ago (e.g., optical character 

recognition, spam filtering). Similarly, interest in propensity score methods has risen as 

researchers desire methods that allow them to draw valid causal conclusions from cross-

sectional data. However, these techniques will not add much value in particular 

situations. Specifically, machine learning techniques will not provide much benefit when 

a linear multiple regression model can capture most of the reliable relationships between 

features and a target. And propensity score methods will not be useful when they fail to 

eliminate the relationships between potential confounders and a feature of interest. In this 

project, both of these conditions were present. Thus, machine learning techniques and 

propensity score methods provided little additional insight over linear multiple regression 

models.  

The relative importance of linear effects over non-linear and interaction effects 

allowed for easier interpretation of which features were most predictive of subjective 

well-being. Although all measures were completed via self-report, features consisting of 

subjective evaluations consistently demonstrated stronger associations with subjective 

well-being than did features reflecting relatively more objective characteristics. Notably, 

most of the results were consistent with previous literature on the key predictors of 

subjective well-being (see Diener, et al., 2018 for a review). However, some results 
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highlighted relatively neglected constructs in the subjective well-being literature. 

Specifically, disengaging from goal pursuit when facing adversity and perceiving oneself 

as in control of one’s life—and one’s financial, health and work domains, in particular—

may be more strongly associated with subjective well-being than previously thought.  

The results of this project provide future subjective well-being researchers with an 

ordered list of potential causes of subjective well-being. Because propensity score 

methods did not provide much information on causal effects in this project, future 

researchers may focus their attention on conducting randomized controlled trials to test 

these potential causes of subjective well-being. Of course, much research in this area has 

already been conducted and is ongoing (see Boiler et al., 2013). The relatively little 

knowledge gained from propensity score analyses in this project highlights the value of 

experimental work in subjective well-being research, despite its limitations. Furthermore, 

the experimental approach is likely to benefit from the finding that non-linear and 

interaction effects on subjective well-being appeared to be small in magnitude. 

Propensity score methods and machine learning techniques also provided little additional 

understanding of subjective well-being over what was derived from linear multiple 

regression models. In sum, however, my findings are likely to advance psychological 

scientists’ understanding of subjective well-being and inform the precise ways that future 

research on subjective well-being should proceed.   
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Table 1 
 
Meta-Analytic Correlations with Well-Being 

 
Construct Meta-Analytic 

Correlation 
Citation 

Meaning in Life .47 Pinquart (2002) 

Self-Compassion .47 Zessin, Dickhäuser, & Garbade (2015) 

Neuroticism -.46 Anglim, Horwood, Smillie, Marrero, & Wood (2020) 

Optimism .43 Alarcon, Bowling, & Khazon, 2013 

Extraversion .37 Anglim, Horwood, Smillie, Marrero, & Wood (2020) 

Sociability .37 Lyubomirsky, King, & Diener (2005) 

Conscientiousness .36 Anglim, Horwood, Smillie, Marrero, & Wood (2020) 

Prosocial Behavior .35 Lyubomirsky, King, & Diener (2005) 

Mindfulness .34 Giluk (2009) 

Self-Esteem .31 DeNeve & Cooper (1998) 

Leisure Engagement .26 Kuykendall, Tay, & Ng (2015) 

Agreeableness .25 Anglim, Horwood, Smillie, Marrero, & Wood (2020) 

Competence .21 Pinquart, & Sörensen (2000) 

Openness .19 Anglim, Horwood, Smillie, Marrero, & Wood (2020) 

Household Income .18 Howell & Howell (2018) 

Physical Health .14 Howell, Kern, & Lyubomirsky (2007) 

Religiosity .10 Hackney & Sanders (2003) 
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Table 2 

Lasso Regression Results 

Features Squares Products 
Coefficients 
equal to 0 

Coefficients 
not equal to 0 

α 

Traits No No 82 106 0.0065 

Traits Yes No 219 129 0.0085 

Traits No Yes 17469 297 0.0171 

Traits Yes Yes 17633 293 0.0171 

Domains No No 4 24 0.0034 

Domains Yes No 10 43 0.0034 

Domains No Yes 317 89 0.0119 

Domains Yes Yes 313 118 0.0096 

Weak Traits No No 12 68 0.0060 

Weak Traits Yes No 34 126 0.0058 

Weak Traits No Yes 2998 242 0.0240 

Weak Traits Yes Yes 3057 263 0.0232 

Weak Domains No No 0 15 0.0002 

Weak Domains Yes No 0 28 0.0027 

Weak Domains No Yes 45 75 0.0107 

Weak Domains Yes Yes 55 78 0.0115 

Note. All features datasets included untransformed features. α = α hyperparameter.  
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Table 3 

Example Items of Subjective Domains 
 

Domain Item 

Subjective Control 
How would you rate the amount of control you have over your life 
overall these days? 

Subjective Physical Health 
In general, compared to most men/women your age, would you say 
your health is… 

Subjective Disengagement 
When I experience a stressful event, I give up trying to reach my 
goal. 

Subjective Sociability 
I usually like to spend my leisure time with friends rather than 
alone. 

Subjective Socioeconomic 
Status 

I feel safe being out alone in my neighborhood at night. 

Subjective Sex Life How would you rate the sexual aspect of your life these days? 

Subjective Societal 
Evaluation 

The world is becoming a better place for everyone. 

Subjective Social 
Dominance 

Please indicate how well assertive describes you. 

Subjective Prosociality 
How much thought and effort do you put into your contribution to 
the welfare and well-being of other people these days? 

Subjective Religiosity How religious are you? 
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Table 4 
 
Ridge Regression Results 
 

Features Squares Products R α 

Traits No No .88 370 

Traits Yes No .89 630 

Traits No Yes .92 590 

Traits Yes Yes .92 600 

Domains No No .86 69 

Domains Yes No .87 120 

Domains No Yes .87 230 

Domains Yes Yes .87 240 

Weak Traits No No .50 510 

Weak Traits Yes No .52 600 

Weak Traits No Yes .60 730 

Weak Traits Yes Yes .61 870 

Weak Domains No No .49 51 

Weak Domains Yes No .51 160 

Weak Domains No Yes .51 350 

Weak Domains Yes Yes .52 330 

Note. All features datasets included untransformed features. R = multiple R. α = α hyperparameter.   
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Table 5 

Support Vector Regression Results 

Features R C ϵ  γ  

Traits .89 5.0 0.11 0.00064 

Domains .87 5.2 0.050 0.0024 

Weak Traits .53 6.4 0.51 0.0019 

Weak Domains .52 1.9 0.60 0.0082 

R = multiple R. C = C hyperparameter. ϵ = ϵ hyperparameter.  γ = γ hyperparameter.   
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Table 6 

Random Forest Results 

Features R 
Maximum 

Depth 

Minimum 
Samples 
Per Leaf 

Maximum 
Features 

Maximum 
Leaf Nodes 

Traits .86 21 2 16 870 

Domains .85 18 3 10 620 

Weak Traits .47 20 3 19 430 

Weak Domains .50 23 2 5 230 

R = multiple R. 
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Table 7 

Artificial Neural Network Results 

Features R 
Hidden 

Layer Size 
α  

Traits .89 11 8.0 

Domains .87 10 2.4 

Weak Traits .51 19 7.0 

Weak Domains .52 52 2.7 

R = multiple R. α = α hyperparameter.    
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Table 8 

Trait Results 

Trait ωt r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Subjective Environmental 
Mastery 

.80 .74 .13 .14 .45 .12 

Subjective Self Esteem .81 .71 .15 .13 .32 .14 

Subjective Purpose In Life .79 .63 .06 .08 .20 .05 

Subjective Control Over Life 
Rating 

 .57 .11 .06 .19 .06 

Subjective Positive Relations 
With Others 

.79 .57 .05 .05 .21 .01 

Subjective Stress Reactivity .74 -.56 -.08 .05 -.23 -.07 

Subjective Optimism .70 .54 .04 .03 .09 .03 

Subjective Physical Health .83 .50 .05 .03 .23 .05 

Subjective Work Situation 
Evaluation 

.63 .49 .04 .03 .13 .04 

Subjective Financial Situation 
Evaluation 

.79 .49 .04 .03 .13 .03 

Objective Aches .77 -.47 -.07 .03 -.17 -.07 

Subjective Health Compared to 
Others Same Age 

.73 .46 .03 .02 .16 .06 

Subjective Sleep Issues .82 -.45 -.05 .02 -.12 -.04 

Subjective Standing In 
Community 

 .44 .03 .01 .04 .01 

Subjective Personal Mastery .75 .44 -.00 .01 -.01 .02 

Subjective Control Over Work 
Situation 

 .43 .02 .01 -.01 .02 

Subjective Health Control  .42 .02 .01 .05 .01 

Subjective Home Quality .81 .42 .01 .01 .06 -.02 

Subjective Social Integration .76 .42 .01 .01 .13 .03 

Subjective Extraversion .77 .41 .05 .01 .13 .05 

Subjective Home Work 
Rewarding 

.71 .41 .03 .01 .06 .03 

Subjective Life Control  .41 .04 .01 .04 .02 

Subjective Alienation .62 -.41 .01 .00 .00 .04 

Subjective Disappointed By 
Achievement 

 -.40 -.06 .01 -.06 -.04 

Subjective Self Protection .75 .39 .02 .01 .15 .03 
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Table 8 (continued) 

Trait ωt r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Subjective Coping Positive 
Reinterpretation 

.81 .37 .02 .00 .04 -.02 

Subjective Autonomy .72 .37 -.01 .01 -.03 -.04 

Subjective Social Contribution .71 .36 -.01 .00 .05 .01 

Subjective Coping Venting 
Emotion 

.82 -.35 -.03 .01 -.04 -.02 

Subjective Life Effort Rating  .34 .02 .00 -.13 -.00 

Subjective Intellectual Aging .74 -.34 .01 .00 -.06 .01 

Subjective Conscientiousness .70 .33 -.01 .00 .04 -.01 

Subjective Family Strain .80 -.33 -.02 .01 -.01 -.01 

Objective Short Breath .79 -.33 -.02 .00 -.11 .00 

Objective Daily Spiritual 
Experiences 

.89 .33 .05 .01 .08 .05 

Subjective Coping Active .75 .33 -.01 .00 .03 -.03 

Objective Mental Health 
Professionals 

.55 -.33 -.07 .01 -.12 -.06 

Subjective Coping Behavioral 
Disengagement 

.75 -.33 .01 .00 -.06 .01 

Subjective Daily 
Discrimination 

.92 -.32 -.02 .00 -.01 -.00 

Subjective Family Support .85 .32 .01 .00 .01 .00 

Subjective Coping Planning .84 .31 -.00 .00 .17 .01 

Subjective Social Closeness .70 .31 .02 .00 .04 .02 

Subjective Sex Life Evaluation .79 .31 .04 .01 .09 .06 

Subjective Health Compared 
To Five Years Ago 

.85 .29 .04 .01 .06 .04 

Subjective Control 
Contribution To Others Rating 

 .29 -.01 .00 -.07 -.02 

Subjective Health Locus Of 
Control Self 

.73 .29 -.01 .00 .05 -.01 

Subjective Friend Support .88 .28 .01 .00 .03 .00 

Subjective Contribution To 
Others 

 .28 .02 .00 .03 .02 

Objective Sleep Issues  -.28 -.02 .00 -.03 -.01 

Subjective Social Coherence .50 .27 -.00 .00 .04 .00 
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Table 8 (continued) 

Trait ωt r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Subjective Openness To 
Experience 

.77 .26 -.01 .00 .06 -.03 

Subjective Social Potency .73 .25 -.02 .00 .03 -.01 

Objective Could Not Get 
Healthcare 

 -.24 -.02 .00 -.05 -.00 

Subjective Selective 
Secondary Control 

.63 .24 -.01 .00 .02 .00 

Subjective Foresight  .24 -.01 .00 .04 -.01 

Subjective Somatic 
Amplification 

.55 -.23 -.03 .01 -.04 -.03 

Subjective Compensatory 
Primary Control 

.75 .23 .01 .00 .02 .00 

Objective Digestion Issues .49 -.22 -.01 .00 -.03 .01 

Subjective Agreeableness .80 .22 -.03 .00 .01 -.04 

Subjective Friend Strain .81 -.21 -.01 .00 .02 -.01 

Objective Alcohol Issues .80 -.20 -.02 .00 -.12 -.01 

Subjective Religious Coping .83 .20 .01 .00 .08 .02 

Objective Neighborhood 
Contact 

.73 .20 .01 .00 .01 .00 

Subjective Live For Today .65 -.19 .01 .00 -.02 .01 

Objective Married  .19 .04 .00 .03 .04 

Objective Age  .17 .04 .00 .15 .05 

Objective Health Procedures .69 -.17 -.01 .00 -.05 -.01 

Objective Sleep Time .66 -.17 -.02 .00 .02 -.01 

Objective Drug Use .68 -.16 -.02 .00 -.05 -.01 

Objective Others Alcohol Use .18 -.16 -.01 .00 -.02 -.01 

Objective Brain Issues .47 -.16 .02 .00 -.03 .02 

Objective Receiving Money .39 -.16 -.01 .00 -.04 -.02 

Subjective Health Locus Of 
Control Others 

.11 -.15 .02 .00 .05 .03 

Objective Religious Activity .87 .15 .01 .00 .02 .01 

Objective Drug Problem  -.14 -.02 .00 -.06 -.00 
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Table 8 (continued) 

Trait ωt r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Objective Heart Issues .74 -.14 .01 .00 -.02 .00 

Subjective Mental Stimulation .51 .14 -.02 .00 -.00 -.02 

Subjective Weight Perception  -.13 .01 .00 .01 .02 

Objective Time Volunteering .40 .13 -.01 .00 .04 -.01 

Objective Highest Education 
Completed 

 .13 -.01 .00 .00 -.01 

Objective Tobacco Use .58 -.13 -.02 .00 -.02 -.02 

Subjective Financial Situation 
Effort 

 .13 -.02 .00 -.04 -.01 

Objective Healthcare Place 
Doctors Office 

 .13 .01 .00 -.01 .01 

Objective Others Tobacco Use .31 -.12 -.01 .00 -.01 -.00 

Subjective Important To Help 
People 

 .12 -.01 .00 -.02 -.01 

Subjective Control .66 .12 -.01 .00 .00 -.01 

Subjective Religious 
Mindfulness 

.95 .12 -.01 .00 .04 -.01 

Objective Grandparent  .11 .01 .00 .04 .01 

Objective Mental Health 
Groups 

.81 -.10 .01 .00 -.03 .01 

Objective Heterosexual  .10 .01 .00 .05 .01 

Objective Years In State  .09 .02 .00 .01 .02 

Subjective Spirituality .92 .09 -.02 .00 -.03 -.03 

Subjective Insight Into Past .39 .09 -.02 .00 -.06 -.02 

Objective Number Children  .09 .00 .00 .01 -.01 

Objective Hips Size  -.08 .01 .00 .06 .02 

Objective Medical Exams .43 .08 .01 .00 .02 -.00 

Subjective Explore Different 
Religions 

 -.07 -.01 .00 -.01 -.01 

Objective Caregiving  -.07 -.02 .00 .00 -.02 

Objective Receiving Physical 
Assistance 

.56 -.07 .01 .00 .00 .01 

Objective Lived In Institution  -.06 .01 .00 .00 .01 
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Table 8 (continued) 

Trait ωt r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Objective Diabetes  -.05 .02 .00 .03 .02 

Objective Healthcare 
Professional Generalist 

 .05 .01 .00 .00 .01 

Subjective Traditionalism .60 .04 .01 .00 .01 .00 

Subjective Sympathy .53 .04 -.01 .00 -.02 -.01 

Objective White  .03 .01 .00 .00 .01 

Objective Currently Pregnant  .03 .02 .00 .04 -.00 

Note. ωt  =  omega total. r = correlation. ωt values are not displayed for traits that consisted of one feature, as 

ωt cannot be calculated in that case. Propensity Simple Coefficient = regression coefficient in a model 

where only the feature is predicting subjective well-being using inverse probability of treatment weighting. 

Propensity Multiple Coefficient = regression coefficient in a model where all trait features predict 

subjective well-being using inverse probability of treatment weighting. 
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Table 9 

Domain Results 

Domain r 

Ridge 
Regression 
Coefficient 

Random 
Forest 

Importance 

Propensity 
Simple 

Coefficient 

Propensity 
Multiple 

Coefficient 

Subjective Control .68 .36 .33 .43 .35 

Subjective Physical Health .64 .21 .20 .44 .23 

Subjective Disengagement -.55 -.22 .14 -.23 -.19 

Subjective Sociability .47 .19 .09 .26 .19 

Objective Physical Health Issues -.40 -.07 .03 -.18 -.05 

Subjective Socioeconomic Status .32 .03 .02 .12 .02 

Subjective Sex Life .31 .09 .02 .14 .11 

Subjective Societal Evaluation .28 .05 .02 .10 .05 

Objective Financial Situation .26 .01 .01 .07 .01 

Objective Religious Activity .25 .05 .02 .08 .06 

Objective Human Contact .24 .01 .01 .04 .02 

Subjective Social Dominance .22 .07 .01 .10 .07 

Objective Drug Use -.22 -.07 .01 -.09 -.05 

Subjective Prosociality .21 -.08 .01 -.02 -.07 

Objective Marital Status .19 .06 .00 .04 .06 

Subjective Religiosity .18 .04 .01 .03 .02 

Objective Age .17 .08 .01 .14 .08 

Objective Others Drug Use -.17 -.02 .01 -.00 -.01 

Objective Sleep -.17 -.04 .01 -.01 -.03 

Objective Health Treatment -.16 -.05 .01 -.06 -.03 

Objective Education .13 -.01 .00 .01 -.01 

Objective Physical Size -.12 .02 .01 .03 .03 

Objective Physical Activity .10 .01 .01 -.00 .01 

Objective Female Status .05 .00 .00 -.02 -.01 

Note. r = Pearson’s correlation. Propensity Simple Coefficient = regression coefficient in a model where 

only the feature is predicting subjective well-being using inverse probability of treatment weighting. 

Propensity Multiple Coefficient = regression coefficient in a model where all domain features predict 

subjective well-being using inverse probability of treatment weighting. 
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Figure 1. Scree plot of subjective traits. Eigenvalues of components 1 and 2 are greater 
than 5.0.  




