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Abstract: The ability for an educational game designer to understand their audience’s play styles and 
resulting experience is an essential tool for improving their game’s design. As a game is subjected to 
large-scale player testing, the designers require inexpensive, automated methods for categorizing 
patterns of player-game interactions. In this paper we present a simple, reusable process using best 
practices for data clustering, feasible for use within a small educational game studio. We utilize the 
method to analyze a real-time strategy game, processing game telemetry data to determine 
categories of players based on their in-game actions, the feedback they received, and their progress 
through the game. An interpretive analysis of these clusters results in actionable insights for the 
game’s designers.   
 
Introduction 
Playtesting is a well-adopted method for iteratively testing and improving educational games. As a 
game moves through development phases, members of the target audience are given versions of 
the game to play, and in exchange generate feedback. This feedback can then be used to validate 
the design decisions made during the game’s development, and to direct the next iterations of work.  
 
Feedback data is commonly captured through qualitative approaches such as direct observation, 
think-alouds and structured interviews. These approaches generate rich, detailed data that can help 
game designers understand how their design decisions play out in practice. Design researchers can 
hear why the player is struggling at a given point, and what approaches they are taking. Further, 
researchers can potentially observe interactions outside the player’s awareness. However, it is 
difficult to scale these approaches as game development progresses and the testing audience grows. 
Game data analytics, on the other hand, excel in determining how players interact with the system 
at scale. Common metrics such as average session duration, number of sessions per user, or max 
“level” achieved are easily derived. After an up-front cost to implement data logging within the 
game, analytic approaches scale well to large numbers of players with little additional expense to 
the design researcher. They are useful for finding technical issues, such as levels in the game that are 
too challenging, and for assessing engagement of players across sessions. However, this approach’s 
scalability typically comes at the price of a much lower fidelity in understanding player experiences, 
compared to the qualitative methods described above. 
 
In the past decade, educational researchers have developed tools to synthesize the advantages of 
qualitative methods with the affordability of quantitative approaches for use with digital learning 
media. For example, Baker et al. (2020) developed a rigorous observation protocol called BROMP 
that allows researchers to code participant affect during an observation session, then synchronize 
observations with log data to train machine learning models for automated detection of these codes 
in future sessions. Similarly, Shaffer et al. (2016) have developed the method of Epistemic Network 
Analysis, which can consume large corpuses of human language gathered from instructional systems 
and use dimensionality reduction and visualization methods to computationally analyze the data. 
Both of these methods require initial human coding of players’ data in order to tell stories about 
how those players interact with the game. We present a method that similarly marries quantitative 



analysis of game data with qualitative insight into game designs, but does not require human 
labeling of raw input data. 
A Method for Clustering Styles of Gameplay 
We will now describe a five-stage method of game data analysis that produces a typology of 
gameplay styles. This method uses existing data mining literature and best practices to enable 
researchers and designers to see the primary ways their players move through and interact with a 
game. The first stages may be considered pre-processing steps, in which we select raw data, 
aggregate the data into well-defined gameplay features, and clean the data to remove invalid or 
uninformative play sessions. We then apply clustering techniques to identify groups of similar 
players across three categories of metrics, and finally generate interpretable visualizations to 
represent the characteristics of each cluster. Our work leverages an existing system for logging, 
storing and processing educational game telemetry data called Open Game Data (OGD; 2022). 
 
Event Selection 
The first step in our method is to identify specific events from the game log data that are most likely 
to illuminate important aspects of the player experience. Our approach to selecting log data events 
is informed by previous data mining efforts in educational games (DiCerbo & Kidwai, 2013; Salen & 
Zimmerman, 2003) and digital assessments (R. S. J. D. Baker & Clarke-Midura, 2013), as well as Owen 
& Baker’s Integrated Design of Event-stream Features for Analysis framework (Owen & Baker, 2020). 
We choose log data events that fall into three categories:  
 
Player actions describe direct player activity in the game space (Salen & Zimmerman, 2003). For 
example, these events include the player using a tool on an object, placing a resource, pressing a 
button, or moving a character.  
System feedback events describe the immediate response by the game system to player actions. 
This may include audio, visual, or haptic elements, such as points being visually awarded on screen 
or a sound signaling the successful capture of a resource. 
Progress events describe the significant movement of the player through the game’s designed 
experience. Examples of progression events include completing a game’s level or unlocking a new 
skill. Different types of progression may take place in parallel; we may refer to each as an axis of 
progression. For any game, real-time length of play can be used as a progression axis. 
 
Collectively, these events serve to show how the player traversed the game space. After segmenting 
game events into their respective categories, we choose a small number of events in each category 
that appear to provide the most fundamental perspectives on the player and game. We base these 
choices on both the game’s design and initial observations of players’ experiences. 
 
Feature Engineering 
The next step is to aggregate the events selected above into simple numeric values that describe 
either a single gameplay session or portion of a single session. For example, player actions taken 
from a level-based puzzle game may lead to features named “pieces moved in level 1”, or “total 
moves in game session”. For a game that does not have explicit segmentation, we may arbitrarily 
divide the session into time-based windows and calculate features such as “moves in 1st 5 
minutes”or “total moves in game session”. Note that there are many ways to aggregate events. For 
example,  “level completed” events could be aggregated as “number of levels completed”, “percent 
of levels completed”, or “ratio of levels completed to levels started”; all are reasonable options. In 
general, we prefer simple counts to complicated composite features for this method of analysis. 
 
Data Preparation and Cleaning 
Before we move to the data analysis steps, we clean the data through normalization and filtering. 
The objective is to understand the types of play that occur regularly within a game, so we attempt to 
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include only sessions that represent typical players. We first remove any sessions that did not last 
long enough to constitute a legitimate play session, as well as excessively long sessions that may 
result from a player not quitting the game when finished. The thresholds for session length must be 
determined through analysis of a game’s design; a puzzle game may be designed for short 5-10 
minute sessions, while designers might intend a story-focused game to be played for 30 minutes at a 
time. We further omit any outlier sessions, which we define as a session where one or more feature 
values are at least 3 standard deviations away from the mean. 
 
As a final step before the clustering analysis, we apply transformations to the feature data, to obtain 
a form that is conducive to clustering. A log transform is applied to any feature that is heavily right 
tailed (that is, any feature with a  few extremely large values). We then center and scale the data. 
Finally, we apply a dimensionality reduction to the data with the Principal Component Analysis (PCA) 
algorithm. To pick an appropriate number of output dimensions from PCA, we create a scree-plot 
(Cattell, 1966) and pick the value at the “knee of the curve.” 
 
Clustering 
Standard methods for data clustering find mathematically significant “groups” within the data. Our 
method uses the k-Means algorithm to cluster the data prepared in the previous step. This algorithm 
labels each game session as a member of one of k clusters, where k is provided as an input setting 
for the algorithm. To determine a useful value for k, we use the average silhouette score 
(Rousseeuw, 1987). All else being equal, a higher average silhouette score indicates more distinct 
clusters. We begin by running the algorithm with k=2, then iterate to test higher values of k. 
Typically, the average silhouette score will increase for a few iterations, then begin to decrease. This 
allows us to quickly find a value of k that maximizes the average score. Once we are satisfied with 
the choice of k, the algorithm generates a dataset where each session has been labeled with a 
cluster number.  
 
Visualization and Evaluation 
To visualize the results, we use radar charts (Chambers, 1983). The axes of a radar chart are 
displayed radially. On each axis, a single point is plotted, and these points are connected to define a 
two-dimensional area. We use the original game data features as axes, rather than the reduced 
dimensions used for clustering, in order to create charts that are easily interpreted in terms of the 
game design. There is a question of what value to plot on the chart axes - a cluster is made up of 
many sessions, so there is no immediately obvious value for each axis. In practice, we found that 
using a cluster’s average value for each feature, represented as a percentage of the overall 
population average, effectively illustrates the relationship between a cluster and its peers.  
 
Once this process is complete, analysts and designers inspect the radar plots within each category 
and attempt to describe and name each of the clusters. Good clusters, when charted this way, reveal 
both categorical differences (seen as different shapes) and differences in magnitude (seen as similar 
shapes, with differences in their overall area). If the radar plots do not create this effect, then the 
process should be repeated with new events, new aggregate features, or different parameters for 
PCA and k-Means. 
 
Case Study: Lakeland 
Shown in Figure 1, Lakeland (Lakeland, 2019) is a systems-based, resource management game that 
allows students to consider the importance of nutrient cycles in running a self-sustaining, lakeside 
town. The game was designed for use in secondary science classrooms to address NGSS (CITE) 
standards related to human impact on the environment, nutrient cycling, and evaluation of complex 
relationships within ecosystems. From a player perspective, the goal of the game is to “build your 
city without destroying [your citizens’] lakes”. As students engage with the game, they must make 



decisions that will best assist in expanding their town and building a stable economy, without ruining 
the environment.  
 
The player generates income for their town by selling produce: corn from crop farms, milk and 
manure from dairy farms. The money can be used to build more crop and dairy farms, furthering 
production; to expand population through the addition of homes; or to mitigate algae blooms 
through the implementation of lake skimming. Players must do this all while balancing the nutrient 
cycle. In doing so, they learn that manure is a key resource that increases soil fertility to improve 
crop production, but can also cause algae blooms when it leaches into lakes. Thus, a player’s actions 
and achievements can indicate how well they understand the intricacies of the system (Scianna et 
al., 2021). There are several avenues to failure in the game: farmers will die if some food is not 
reserved (or purchased separately) for them to eat, or if they spend too much time in polluted 
water. Crop farms will fail if the soil nutrition is not supplemented with fertilizer, as each cycle of 
crop production absorbs nutrients. 
 
 
Figure 1 
Screenshot from Lakeland showing an early game state 

 
 
In-game tutorials explicitly scaffold the designed pathway for players in Lakeland, nudging players 
towards self-sustaining strategies. However, the game grants achievements to players in four 
categories, which may engage different types of players. For example, some players may focus on 
gaining achievements for a large population, many farms, or money earned. On the other hand, 
some players may follow a path of destruction, progressing primarily along the algae bloom track. 
This tension between the designed (and instructed) pathway and the varied achievements leads to 
opportunities for divergent play. In this case study, the objective is to use our method to evaluate 
the game’s existing design, by examining the players’ decisions and progress, and how they interact 
with game feedback.  
 
Results 
The data set for this study contained 32,227 anonymous sessions from December 2019 and January 
2020. Because Lakeland does not have a concept of levels, we divided each gameplay session into 
five-minute windows, with 30 seconds of overlap between windows. Features using the windowed 
data were only calculated for the first two windows of each session, in order to standardize the 
amount of per-player gameplay analyzed. 
 



In the event selection and feature engineering phases, we created five features for each category: 
For player actions, we count the number of homes, crop farms, and dairy farms purchased, and total 
purchases overall (which includes buying manure and food directly). The fifth feature counts the 
number of tiles on which the player “hovered” before placing crop farms - a “hover” shows the 
player the tile’s initial soil nutrition. Our feedback features include the numbers of deaths, crop 
failures, food (crops) produced, milk produced, and algae blooms. For progression, we have the 
number of player achievements in the following areas: population size, total money saved, farms 
built, and bloom count. Finally, we use total real-world play time as a progression feature. We 
should note also that our progression features used players’ full session data, rather than windowed 
data. 
 
In the data cleaning step, we applied our standard set of filtering and transform rules. We chose 5-
45 minutes as our range of “valid” session durations, and additionally filtered out any sessions with 
fewer than 10 player action events. Outlier removal was performed separately on the actions and 
feedback event categories, and not at all for the progression category (all progression features had 
small maximum values, negating the effect of outliers). After filtering, we had 5486, 6448 and 10164 
sessions for the actions, feedback and progression categories, respectively. We used PCA to reduce 
data to 2 dimensions for all categories, with the number of dimensions in each case determined by 
reading the corresponding scree plots. In the clustering step of the analysis, silhouette scores led us 
to select 6 k-Means clusters for the actions category and 7 k-Means clusters for feedback and 
progression. Finally, we generated one set of radar charts for each feature category. Our analysis 
and interpretation of the charts’ “stories” are described next. 
 
Figure 2 
Player actions clusters. Group names (L-R): Planners, Livestockers, Balanced, Inactives, Vegans, 
Capitalists 

 
 
Interpretation of Results 
We found 6 player action clusters (see Figure 2) to describe player behavior. Cluster 0 (Planners) and 
cluster 2 (Balanced) are dilations of one another, where players in both clusters regularly use the 
hover tool, but Planners generally make fewer purchases overall. Cluster 1 (Livestockers) focus on 
homes and livestock to create a dairy-driven economy and perform less inspection of land 
conditions before buying. Cluster 3 (Inactives) appear to be the few players (< 2% of sessions) who 
carried out enough actions to pass the data filtering step, but did little else in the first two windows 
of play time. Cluster 4 (Vegans) never establish a livestock farm. Cluster 5 (Capitalists) players make 
the most purchases of any group by far, but are the least common group among “active” players.  
 
  



Figure 3 
Feedback clusters. Group names (L-R): Low Feedback, Good Dairy Poor Lakes, Cemetery Town, No 
Feedback, Prolific Growth, Balanced, Corn-centric

 
 
In the Feedback category (see Figure 3), Clusters 0 (Low Feedback) and 3 (No Feedback) have very 
few feedback events. Together, they represent nearly half of all players. Cluster 1 (Good Dairy Poor 
Lakes) players saw high yields from dairy farms, but experienced many algae blooms. Players in 
cluster 4 (Prolific Growth) faced significant farm and ecological failures, but received over 4 times as 
much food and milk as the average player. In Cluster 2 (Cemetery Town), the players’ towns had the 
greatest number of deaths, and almost no milk production. Cluster 6 (Corn-centric) shows relatively 
functional communities with more food, crop failures and deaths than most groups, again with 
almost no milk production.  
 
Figure 4 
Progression clusters. Group names (L-R): Lackluster, Money-centric, Achieve and Destroy, Food-
centric, Caution ahead, Lost in Town, Happily in Harmony  

 
 
Progression clusters (see Figure 4) vary dramatically across average session time. Cluster 0 
(Lackluster), which was the most common group, contained players with the least time played and 
fewest achievements. In contrast, cluster 1 (Money-centric) played longer than average, and had a 
high ratio of money achievements to farm achievements. Cluster 2 (Achieve and Destroy) members 
played longer than any other group, making significant progress on all fronts, but their greatest leap 
in achievement comes on the bloom axis. Players in clusters 3-5 had average session lengths, with 
varying degrees of achievement. Cluster 6 (Happily in Harmony) players managed to go above the 
average on each axis, but did not move as far along the algae bloom axis as their Achieve and 
Destroy peers.  
 
Discussion 
The player-categorizing clusters help to affirm existing design choices. For example, the analysis of 
player actions reveals the hovering feature is relatively well used by players, with only the 
Livestockers underutilizing the feature. However, Livestockers are also alone in their focus on the 
building of dairy farms, which are not dependent on soil nutrients and proximity to water like crop 
farms. Thus, they have less use for the hover tool’s features, indicating consistency between the tool 
design and its use by players. Another group, Vegans, avoided livestock altogether, but other 
clusters typically had average usage of livestock and corn farms, indicates the cost vs. reward 
structure for the primary game resources is well-balanced. The Good Dairy Poor Lakes feedback 
cluster indicates the game’s ecosystem simulation works as intended, as the players’ high level of 
dairy production generates manure that contributes to algae blooms. Further, we can identify a 
particular group of struggling players in the Cemetery Town cluster, where the average food 



production numbers provide evidence these players experienced growing towns before their farms 
failed and farmers began to die, affirming some players experience the game’s avenues to failure. 
On the other hand, there are some apparent design weaknesses. Nearly half of the players fell into 
groups that received below-average amounts of feedback, indicating the game experience may not 
have been very interactive for these players. The results for the progression category show that only 
players in the Money-centric, Achieve and Destroyers, and Happily in Harmony clusters ever had a 
bloom achievement on average, which is a central component of the game’s stated learning goals. 
Bloom achievements primarily occurred in clusters that had session times above the overall average, 
suggesting the game should speed the algae bloom process so more players reach this point. 
 
Conclusion 
In this paper, we have described a general, scalable method for identifying patterns of gameplay in a 
way that serves game designers’ need for qualitative insights into player behavior.  We applied this 
method to an open-ended, achievement-driven game. The framework for dividing events into three 
categories let us bypass some of the typical guesswork associated with feature engineering. The use 
of radar plots to visualize clusters was conducive to generating qualitative insights from a 
quantitative analysis, and understanding the paths players take in exploring the game space. This 
allowed us to validate some aspects of the game’s design, while identifying weaknesses in others. 
Our method adds a valuable tool to the box of playtesting techniques. 
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