UC San Diego

Technical Reports

Title
Three Brown Mice: See How They Run

Permalink
https://escholarship.org/uc/item/3cqg2532H

Authors

Branson, Kristin
Rabaud, Vincent
Belongie, Serge

Publication Date
2003-08-19

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3cq2532h
https://escholarship.org
http://www.cdlib.org/

Three Brown Mice: See How They Run

Kristin Branson, Vincent Rabaud, and Serge Belongie
Department of Computer Science and Engineering
U.C. San Diego
La Jolla, CA 92093
http://vision.ucsd.edu

Abstract

We address the problem of tracking multiple, identical,
nonrigid moving targets through occlusion for purposes
of rodent surveillance from a side view. Automated be-
havior analysis of individual mice promises to improve
animal care and data collection in medical research. In
our experiments, we consider the case of three brown
mice that repeatedly occlude one another and have no
stable trackable features. Our proposed algorithm com-
putes and incorporates a hint of the future location of
the target into layer-based affine optical flow estima-
tion. The hint is based on the estimated correspon-
dences between mice in different frames derived from
a depth ordering heuristic. Our approach is simple,
efficient, and does not require a manually constructed
mouse template. We demonstrate encouraging results
on a challenging test sequence containing multiple in-
stances of severe occlusion.

1. Introduction

In this paper we consider the problem of multiple ob-
ject tracking in the case where the objects are in-
distinguishable and prone to occluding one another.
Recently a number of works have appeared that ad-
dress the problem of multiple object (or blob) tracking
[5, 1, 10]. Many of these approaches leverage object-
specific appearance models such as color histograms [1].
Most closely related to our problem setting is that for
which the BraMBLe algorithm was designed [5]; this
reference also provides a thorough review of relevant
visual tracking methods. In this work, the authors use
a particle filter to track multiple blobs (viz. people)
from a ceiling-mounted hallway camera. The principal
failure mode of their system is that of blob labels (i.e.
identities) getting switched when one object passes in
front of another. The authors suggest that the use of
individual foreground models for each object could be
used to solve this problem. In our setting, however, the
objects we wish to track are mice, and they all have the

Figure 1: Still frame captured from video sequence of
three mice (240 x 360 pixels). The metal container
at the top of the cage holds food pellets and a water
bottle. It also prevents the use of an overhead mounted
camera. The bedding on the floor of the cage is the only
dynamic part of the background, other than reflections.

same appearance; see Figure 1.

Aside from the challenge of tracking identical targets
through occlusion, our problem setting presents a num-
ber of other difficulties. The objects we wish to track
have few if any trackable features (in the sense of [9])
that last for more than a few frames. Additionally, the
motion of the objects is relatively erratic compared to
a car driving past an occluding signpost, for example.
On the other hand, we benefit from a number of sim-
plifying assumptions, e.g. that the number of objects
does not change, the illumination is relatively constant,
and the camera is stationary.

Because of these simplifying assumptions, the sub-
problems of foreground/background classification and
tracking for separated mice (mice that are neither oc-
cluded or occluding) are adequately addressed by many
existing algorithms. The subproblem remaining is to
track the mouse identities while they are occluding one

Figure 2: Example frame in which distinguishing the
boundaries of both the back mice as well as the front
mouse is difficult.

another. Given the foreground/background labeling,
this subproblem reduces to assigning membership of
each foreground pixel to the mouse identities. The dif-
ficulty of this subproblem is illustrated in Figure 2. In
this example, the back mice are almost completely oc-
cluded and it is difficult to determine the boundary of
the front mouse.

As segmenting the individual mice is more difficult
when a frame is viewed out of context of its neighboring
frames, we incorporate a cue from the surrounding se-
quence of frames. Using a depth ordering heuristic, we
associate the front mouse at the start of an occlusion
event with the front mouse at the end of an occlusion
event. This correspondence is valid because objects
cannot pass through each other; thus while one mouse
occludes another, their depth ordering cannot change,
as observed in [6]. We predict mouse identity labels
for each frame sequentially. However, when labeling
a frame during an occlusion event, we incorporate the
hint of the future location of the mice in addition to
the predicted labels of the previous frames.

Because this correspondence guess is necessary in
our occlusion reasoning, images can be processed at
frame-rate, but tracking results for occluded or occlud-
ing mice are delayed until the end of the occlusion
event.

Besides being a uniquely challenging testbed
for tracking algorithms, mouse tracking technology
promises to be a valuable tool for medical research.
A single vivarium can contain thousands of cages of
mice, making close monitoring of individual mice im-
possible. Automated behavior analysis of individual
mice would allow for improved animal care and more
detailed and exact data collection. Improved animal

care results from early detection of abnormal behavior.
Exact and detailed behavior analysis will improve the
efficiency of medical experiments. An algorithm that
tracks individual mice is a necessity for automated be-
havior analysis.

Video surveillance of mice has the important char-
acteristic of being nonintrusive; no modification to the
environment is necessary. It is now feasible because of
the recent availability of low-cost video cameras. Be-
cause of the huge number of medical experiments con-
ducted on caged mice, this feasibility has led to a sur-
prising amount of research on this seemingly obscure
problem [7]. To our knowledge, all current approaches
(for example, [11]) require overhead mounted cameras.
This simplifies the problem because the amount of oc-
clusion is reduced. However, this kind of surveillance
requires a specially designed cage, since in a standard
mouse cage the overhead view is obstructed by the
feeder and cage top (see Figure 1). In this paper, we
propose a nonintrusive approach that can work with
any reasonable cage design because it uses a side view.

The organization of this paper is as follows. We de-
scribe our proposed approach in Section 2. In Section
3 we provide experimental results on real world footage
of caged mice. We conclude and discuss future direc-
tions in Section 4.

2. Our Approach

Our approach breaks the tracking task into the
subproblems of background/foreground classification,
tracking separated mice and tracking through occlu-
sion. First, the pixels in each frame are classified as ei-
ther foreground or background. Next, the membership
of the foreground pixels in every frame is assigned using
a simple tracking algorithm without occlusion reason-
ing. The mouse models computed in this step are used
to detect the starts and ends of occlusion events. At
the end of an occlusion event, the membership of the
foreground pixels in the frames of the occlusion event
are reassigned using our occlusion reasoning algorithm.
The modules used to solve each of these subproblems
are described below.

2.1 Background/Foreground Labeling

Next, we describe the simple background/foreground
classification we used. This algorithm was sub-optimal,
but did not corrupt our results. We plan on exper-
imenting with more sophisticated algorithms, as de-
scribed in Section 4.

To classify pixels in every frame as background or
foreground, we model the background using a modi-
fied temporal median. The absolute difference of the

current frame and the current background estimate is
thresholded. Background pixels are those below the
threshold and foreground pixels are those above the
threshold.

Standard background estimation using a temporal
median estimates the background intensity of each
pixel as the median of the previous np intensities of
that pixel. This technique fails when more of the pre-
vious n g intensities of a pixel correspond to foreground
than background. As it often occurs that a mouse
(e.g. a sleeping mouse) is still for many frames at a
time, we include an additional component depending
on the color of the pixel. Each pixel is classified as ei-
ther mouse color or not mouse color. The intensity of
each pixel classified as mouse color is only added to the
pixel’s intensity history if that pixel has always been
classified as mouse color.

To classify the pixels in a frame as mouse color or
not, the pixels are segmented into a set number of clus-
ters (we used 3) based on color using k-means. In or-
der to determine which color cluster(s) correspond to
mouse color (we assumed only one cluster was mouse
color), we use the previous background estimate to
classify pixels as background and foreground. The
mouse color cluster(s) are the mode color cluster(s) of
the foreground pixels.

2.2 Separated Target Tracking

In all frames, whether or not there is occlusion, the
distribution of the pixel locations of each of the k£ mice
identities is modeled as a bivariate Gaussian. In a
frame in which the mice are not occluding each other,
the problem of assigning mouse membership to each
of the foreground pixels is that of fitting a mixture of
k Gaussians to the locations of the foreground pixels.
We use the EM algorithm to estimate the mean vectors
and (full) covariance matrices of the Gaussian mixture
model (GMM) [3]. As the inter-frame motion is small,
only a few iterations of EM are necessary when we use
the parameters of the GMM at frame ¢t — 1 to initialize
the EM fit at frame t.

2.3 Detection of Occlusion Events

The goal of this module is to determine the starts and
ends of occlusion events, as well as which mice and
foreground pixels are involved. Occlusion events are
detected using the GMM parameters computed using
EM.

The Fisher distance in the = direction between each
pair of target distributions is thresholded to determine
when one mouse of the pair is occluding the other. We

use only the z distance because all mice are resting on
the floor and the x location estimates of our GMM are
more stable. The Fisher distance in z between a pair
of distributions is defined as

2 2 (a1 — pa2)?
JFHa1, 0515 M2, 5o (02, +02,)/2’

where ;1 and pgo are the x-coordinates of the distri-
butions’ means and 02, and 02, are the variance in z
of the distributions [3]. Because the units of o, and
Lo are the same, the Fisher distance is unitless and a
constant threshold (we chose 8.0) is used.

2.4 Tracking through Occlusion

When an occlusion event is detected, the membership
of each foreground pixel in the occlusion must be as-
signed. Given an estimate of the pixels belonging to
each mouse in frame ¢, we compute the “best” affine
transformation describing the motion of that mouse
from frame ¢ to ¢t + 1. Given these affine motion es-
timates, the pixels belonging to each mouse identity in
frame ¢ 4+ 1 are estimated.

In Section 2.4.1 and 2.4.2, we will describe our cri-
terion for the “best” affine motion and how it is opti-
mized. In Section 2.4.3, we will describe how the pixel
memberships are estimated.

2.4.1 Optical Flow Computation

Our algorithm for tracking through occlusion is based
on optical flow estimation using multiple affine mod-
els. Consider the set of pixels belonging to one mouse
(e.g. in Figure 1). We assume that the Horn-Schunck
brightness constancy condition holds within this set of
pixels, so that

Lu+Tp+T,=0

Here, I(z,y,t) denotes the intensity at location (z,y)"
and time ¢, the subscript denotes partial differentiation
and v and v are the z and y components of the flow at
(z,y). As in [4], we use an affine model for the flow of

the form
U . a1 + a2 + aszy
v as +asr+agy |-
In the least-squares sense, the best a given only the
optical flow cue minimizes

Y wy) (@ at 1)

(z,y)EM

H()[a] =

where M is the set of pixels belonging to the mouse,
the vectors z and a are defined as

z = (Iwa Iz, Ly, Iy, Iy, Iyy)Ta

a = (ala"'aCLG)T

and w(x,y) is a measure of the certainty that pixel
(z,y) at time ¢ is in M.

Because of the high amount of occlusion and the lack
of features on the targets, the optical flow cue alone is
not enough to get an accurate motion estimate. We
thus add a hint of the future mouse locations in the
form of a quadratic regularization term, which nudges
the estimate a toward the prior affine motion estimate
a, to be discussed in Section 2.4.2. We use the term
“prior” because of the close relation of this regulariza-
tion term to an assumed prior distribution on a [3].
The strength of this nudge, for each component of a,
is defined by the 6 x 6 matrix AX;!. The scalar) sets
the weight of the regularization penalty relative to the
optical flow estimate. We use A = 0.0001. The matrix
Yq is a measure of the relative weights of the regular-
ization for each of the individual entries of a. We take
Y. to be diagonal. Each entry corresponds to our guess
of the amount of variance in the corresponding entry
of a. With this regularization term, our new criterion
is
Hia] = Z w(z,y)(z" a+L)*+\(a—a) X (a—a).
(z,y)eM

Taking the partial derivative of H[a] with respect to
a, setting it to zero, and solving for a, we find that

a=(Z'WZ+AX2,) H(-Z"WIL, + 2, 'a),

where Z is the |[M| x 6 matrix with rows z, W is a
|IM| x | M| diagonal matrix of the weights w, and I; is
a length | M| vector of the I;.

Note the following special cases:

a=—(Z'"W2)1ZTWI, as A—0
which optimizes Hy[a], and
a=a as A — oo

in which the a is chosen without regard to the optical
flow computation.

Note that the affine motion is estimated only for pix-
els labeled as unoccluded, while the mean and variance
of the location of the mouse correspond to all pixel lo-
cations, occluded and unoccluded. It is only safe to
assume that the affine transformation for the visible
part of the mouse equals the affine transformation for

the entire mouse if a significant portion of the mouse is
observable. While the weight of the optical flow term
in the form above is proportional to the number of un-
occluded pixels, we found that this weight does not
degrade fast enough. We thus ignore the optical flow
estimate if more than some fraction (we chose 0.7) of
the mouse is occluded, and rely only on the affine mo-
tion prior a.

2.4.2 Prior Estimation

Next, we discuss the choice of ba for each mouse in
each frame of the occlusion. As mentioned before, a
can be interpreted as the mean of the prior distribution
on a. To estimate a, we use only the depth ordering
cue, though other cues could be incorporated. The
depth ordering cue is an estimate of which blob is in
front at the start of the occlusion and which blob is
in front at the end of the occlusion. As these blobs
must correspond to the same mouse, we reason that
during the occlusion event, the succession of frame to
frame motions must transform the initial front mouse
to the final front mouse. We cannot assume that the
back mice do not change depth ordering with respect
to each other during the occlusion. Instead, we assume
that the blob of all the back mice at the start of the
occlusion corresponds to the blob of all the back mice
at the end of the occlusion. We set the prior estimates
for each of the back mice to be all the same.

While many more sophisticated interpolations ex-
ist, we found that linearly interpolating the affine mo-
tion worked well. To describe the interpolation, we will
break the affine motion into two parts,

A_(az a3>’ t:(al,a4)T

as Ag

If the displacement (u,v) is computed in the coordinate
system centered on p and the pixel locations p belong-
ing to a mouse follow the normal distribution A(u, 3),
then the transformed locations p’ = p + (u,v) " follow
the normal distribution A/ (u/,Y’), where

uwo=p+t, Y =ALA'.

We first compute the transformation (Aj.p,,t1.,)
that transforms the mouse in the first frame of the oc-
clusion event, described by p; ~ N(pq,%1), to the
mouse in the last frame of the occlusion event, de-
scribed by p, ~ N(w,,, %), where n is the number
of frames in the occlusion event. Any pair in the fam-
ily

t1:n =M, — K
App = E:L/QOTzfl/z

Figure 3: An example showing how the mean and co-
variance of the mouse on the left is linearly interpo-
lated into the mean and covariance of the mouse on
the right, using our algorithm for linear interpolation.
The leftmost ellipse corresponds to (py,%1) and the
rightmost ellipse corresponds to (u,,,%,). The affine
prior a transforms any of these ellipses to the ellipse
on its right.

where O is an arbitrary orthogonal matrix will perform
the desired transformation [2]. We set the matrix O
equal to the identity because the next step requires
A1.,, to be positive semidefinite. We estimate the prior
transformation relating each pair of adjacent frames by

i L ’ A:Awn_l).
n—1 :

Thus, N(w,,, %) is the result of incrementally apply-
ing the transformation (A, t) to N(p;, 1) n—1 times.
Figure 3 shows an example linear interpolation of the
affine parameters.

There are many other ways to estimate a; this
method was chosen for its simplicity of implementa-
tion. Other linear interpolations exist because there
are other ways of parameterizing the Gaussian distri-
bution. For example, we could instead search for the
transformation a that contains as little scaling as pos-
sible. Instead of fitting a line to the mouse parameters
at the start and end of the occlusion event, we could fit
a spline. This spline would be influenced by heuristics
that estimate the likelihood of each parameterization
at each frame in the occlusion event. We would then
estimate a;;41 as the transformation that takes the
model along the spline at frame ¢t to the model along
the spline at frame ¢ + 1. We plan on exploring alter-
natives to our linear interpolation in future work.

To correspondence between mice at the start and
end of an occlusion event relies on a very simple heuris-
tic to compute the depth ordering. The front mouse is
the mouse that owns the pixel with the lowest (largest)
y-coordinate. This is true in any unoccluded environ-
ment in which the floor is visible and the camera is
above the floor. This depth cue is evident in the exam-
ple in Figure 1. Because this estimate relies heavily on

the noisy foreground classification, we used the lowest
(largest) y-coordinate in the past 5 frames as a depth
estimate.

2.4.3 Pixel Membership Estimation

Given the estimates of the affine motions transforming
the mice at frame ¢ to the mice at frame ¢+ 1, the fore-
ground pixels belonging to each mouse in frame 41 are
estimated. The pixels belonging to one mouse should
be similar in both motion and location, as motivated in
[12]. In order to incorporate both motion and location,
we assign membership based on the weighted sum of
proximity and motion similarity.

We estimate the mean and variance of the location of
a mouse at frame t+ 1 by applying the computed affine
transformation to the estimated mean and variance of
the location of the mouse at frame ¢. The proximity
criterion for a pixel at location p is

Ji [P] = (P - N«t+1)TZt_+11 (p - /J‘t+1)'

We also compute the local optical flow for each fore-
ground pixel. For this, we use Lucas-Kanade with a
Gaussian window with standard deviation 2.0. Note
that this re-uses the spatiotemporal derivatives used
in the affine flow estimation. The optical flow of each
pixel in a mouse should be similar to the regional op-
tical flow of the entire mouse. The motion similarity
term for a pixel p with motion (uiocals Viocar) ' is

Jm [P] =)\local[(ulocal - a1)2 + (Ulocal - a4)2}-

Our total cost function is therefore

J[p] = Ji[p] + Jum[p]-

Each relevant foreground pixel is assigned to the
mouse with the lowest summed location and motion
similarity terms.

2.4.4 Tracking the Back Mice

To track the back mice, we reapply the algorithm to
just the back mice. Because the back mice might be
occluded by the front mouse at the start or end of their
occlusions, the depth ordering heuristic is much less
reliable. We do not use this heuristic if any of the
back mice in the occlusion are significantly occluded
by the front mouse. Instead, we use a = 0, thus the
regularization term shrinks the optical flow estimates.

2.5 Parameter Sensitivity and Compu-
tational Considerations

We have mentioned the parameter settings we used in
our experiments throughout this section. These pa-

rameters weight the different terms in our optimiza-
tion. The parameter \, the weight of the prior term in
the flow estimatio, was set to 10™*. However, the al-
gorithm is not particularly sensitive to this parameter.
Values in the range 107° to 5 x 10~* produced similar
results. This insensitivity and the small size of effective
A settings is due to the ability of the affine flow esti-
mation stage to rely solely on the prior estimate when
too much of the mouse is occluded. In future work, we
will experiment with a dynamically computed A based
on an estimate of the reliability of the optical flow cue.

Parameters A\, and \, are the weight of the motion
criterion in the mask estimation. These were both set
to 1.0, but values between 0.25 and 2 produced similar
results. As A\, and)\, correspond to the inverse of
the variance of Ujpeq; and Vjpeqr, respectively, dynamic
estimation may also work for these parameters.

The matrix 3, was set to diag{1,0.1,0.1,1,0.1,0.1}.
As ¥, corresponds to the relative variance of a, we plan
to fit X, from actual data.

The running time of our occlusion reasoning mod-
ule is linear in the total number of foreground pixels in
the frames of the occlusion event. While our current
implementation is in Matlab™, we believe that a more
efficient implementation of this module will run in real
time. Currently, the occlusion reasoning takes about
0.642 seconds per frame in our experiments with three
mice on a 2.4 MHz Pentium 4. Approximately 0.172
seconds of this time is involved in affine flow estima-
tion, 0.0529 seconds of this time is involved in mask
estimation, and the rest of the time is overhead from
parameter passing in functions.

3. Experiments

We report the initial success of our algorithm in track-
ing three mice in a cage.

3.1 Experimental Setup

We tested our algorithm on a 1000-frame video se-
quence (available at http://vision.ucsd.edu) taken
from the side of a Static Micro-Isolator™cage contain-
ing three adolescent mice. The first 200 frames were
used for background initialization and tracking was
started at frame 225, in which there was no occlusion.
Figure 1 shows an example frame from this sequence.
The cage is made of a translucent plastic and is ap-
proximately the size of a shoe box. At the top of the
cage is a metal container with food pellets in one half
and a water bottle in the other half. The camera was
positioned slightly above the level of the mouse floor.
Because of reflections in the table and the top of the
cage, we cropped each initially 240 x 360 pixel frame at

the top grate (row 60) and the bottom of the cage (row
193), resulting in 134 x 360 pixel frames. The video
was recorded at 30 frames/second and compressed into
Windows Media Video (wmv) format.

3.2 Results

Our results are summarized in Figures 4 and 5. For
purposes of visualization, we show in Figure 4(a) a sin-
gle scanline of the image (row 96 of the cropped im-
age) at every frame of the video sequence. Row 96 was
chosen as it passes through the middle of the mice.
The z-axis of this image is time and the y-axis is ac-
tually the z-axis of an original frame. Each dark path
from left to right in this (¢,2) image is the path a sin-
gle mouse takes through the sequence; notice there are
three paths.

Let us call the mouse that starts at the top of this
(t,2) image mouse 1, the mouse that starts in the mid-
dle mouse 2, and the mouse that starts at the bottom
mouse 3. In this sequence, the mice begin unoccluded,
then in frame 49 they all move together and mouse 3
passes in front of the other two. In frame 240, mouse
1 passes in front of mouse 3. In frame 299, mouse 3
passes behind mouse 2. In frame 516, all the mice again
come together and mouse 3 passes in front, then turns
around and again passes in front of them in frame 581.
Meanwhile, in frame 538 mouse 1 passes in front of
mouse 2. Finally, in frame 675, mouse 1 passes in front
of mouse 2.

In Figure 4(b), we show the labels estimated by our
algorithm in this (¢,z) format. At each frame, each
point along the scanline (row 96) within two standard
deviations of a mouse is plotted with a color corre-
sponding to that mouse’s label. Thus, each path of
one color is the estimated path of a mouse. There are
two breaks in the path of mouse 3; these occur be-
cause two standard deviations of the estimated Gaus-
sian does not intersect the chosen scanline (because of
errors in the foreground classification). We also plot
the z-component of the centers of the estimated Gaus-
sians in white. For points predicted to belong to mul-
tiple mice, we plot the color of the mouse predicted to
be in front.

In this 776 frame sequence, the identities of the mice
are never switched. In fact, the estimated mouse paths
match the actual mouse paths very closely. In Figure
5, we show some example image frames and the mouse
parameters estimated by our algorithm for two occlu-
sion events.

(a) (¢, z) raw image data (360 x 776 pixels): a single scanline of the image at every frame.

280 299 4 516 538 556 581 606622 675 695

(b) (t,z) predicted image (360 x 776 pixels): membership of points in a scanline of the image at every frame.

Figure 4: Tracking results (¢,z) plot of results. The z-axis in these images is time and the y-axis is the x-axis
of the original frame. Each column corresponds to the same scanline of a different frame.

(a) Frames 49, 64, 80, 104

o

i

(b) Frames 516, 525, 539, 556.

Figure 5: Example frames showing the raw image frames from an occlusion event in the top row and the Gaussian
parameters estimated by our algorithm. The ellipses correspond to 2 standard deviations of the Gaussians.

4 Discussion and Conclusion

We have presented a collection of modules that com-
bine many cues to track identical, non-rigid, featureless
objects through severe occlusions. The novel module
is the occlusion tracking module. This module uses a
depth ordering heuristic to match up the front mouse
at the start of an occlusion with the front mouse at the
end of the occlusion. This correspondence is used as
a hint that is combined with the optical flow cue. Be-
cause of the nature of our targets and the high amount
of occlusion, a single frame out of context can have mul-
tiple fits that seem equally good. The “premonition”
of the final location of the mouse gives our algorithm a
way of deciding between these equally good fits. This
module is thus a step in the direction of an algorithm
that reasons both forward and backward in time.

Mouse identity was tracked without error in all 776
frames, despite noise in the foreground classification,
occlusion detection, and depth estimation. We have
thus presented an approach for assigning unique iden-
tity labels to mice through occlusions that can work
with with other suboptimal modules. These imperfec-
tions do not corrupt the occlusion reasoning module
because the true depth ordering of the mice does not
change rapidly and enough of the true foreground pix-
els are classified as foreground to segment the motion.

In addition, as our algorithm combines numerous
cues, one module’s failure does not cause the entire al-
gorithm fail. For example, in one case the foreground
classification was poor (it missed the feet of a mouse),
which led to an incorrect estimate of the depth order-
ing in an occlusion event. As this occlusion was not
complete, there were sufficient intensity cues to over-
come the incorrect depth correspondence. The algo-
rithm succeeded despite the incorrect depth estimate.

Our algorithm did not fail on the sequence we tested
because all the modules never failed simultaneously.
The primary risk of failure arises from errors in the
depth estimation. To prevent this, we are exploring
other algorithms to which we can add our occlusion
reasoning step. We are considering other algorithms
that are more robust than our choice of using indepen-
dent foreground classification and tracking modules.
Specifically, we would like to try adding our occlusion
reasoning module to the BraMBLe tracker. We would
also like to develop a more robust depth estimation
heuristic that does not rely so heavily on foreground
classification. This can include a smoothed estimate
that uses the assumption that depth changes slowly as
well as occlusion junction detection [8] when our depth
ordering heuristic fails (e.g. for back mice).

In conclusion, the major contribution of this work

is a method for tracking indistinguishable, featureless
targets through occlusion events by combining multiple
cues in a noncausal fashion throughout the duration of
each occlusion event.

Acknowledgments

The authors wish to thank Sameer Agarwal, Ben
Ochoa, Eric Wiewiora, and Josh Wills for valuable dis-
cussions. We would also like to thank Keith Jenne, Phil
Richter, Geert Schmid-Schoenbein, and John Wesson
for providing the video data and valuable suggestions.
This work was funded by Cal-(IT)? — the California In-
stitute for Telecommunications and Information Tech-
nology — under the Smart Vivarium project.

References

[1] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-
based object tracking. In Pattern Analysis and
Machine Intelligence, volume 25 (5), 2003.

[2] Jonas Garding. Shape from surface markings. PhD
thesis, Royal Institute of Technology, Stockholm,
1991.

[3] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer Series
in Statistics. Springer Verlag, Basel, 2001.

[4] M. Irani and P. Anandan. All about direct meth-
ods. In Vision Algorithms: Theory and Practice.
Springer-Verlag, 1999.

[5] M. Isard and J. MacCormick. BraMBLe: A
Bayesian multiple-blob tracker. In Internation
Conference on Computer Vision, 2001.

[6] John MacCormick and Andrew Blake. A prob-
abilistic exclusion principle for tracking multiple
objects. International Journal of Computer Vi-
sion, 39(1):57-71, 2000.

[7] Measuring Behavior: International Conference on
Methods and Techniques in Behavioral Research,
1996-2002.

[8] Sourabh A. Niyogi. Detecting kinetic occlusion.
In ICCYV, pages 1044-1049, 1995.

[9] Jianbo Shi and Carlo Tomasi. Good features to
track. In Computer Vision and Pattern Recogni-
tion, Seattle, June 1994.

[10]

[11]

[12]

Hai Tao, Harpreet S. Sawhney, and Rakesh Ku-
mar. A sampling algorithm for tracking multiple
objects. In Workshop on Vision Algorithms, pages
53-68, 1999.

C. J. Twining, C. J. Taylor, and P. Courtney. Ro-
bust tracking and posture description for labora-
tory rodents using active shape models. In Behav-
ior Research Methods, Instruments and Comput-
ers, Measuring Behavior Special Issue, 2001.

Yair Weiss and Edward H. Adelson. A unified
mixture framework for motion segmentation: In-
corporating spatial coherence and estimating the
number of models. In Computer Vision and Pat-
tern Recognition, pages 321-326, 1996.

