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ABSTRACT OF THE DISSERTATION

Parameterization and Concise Representation in Graph Algorithms: Leaf powers, Subgraphs
with Hereditary Properties, and Activity-on-edge Minimization

By

Elham Havvaei

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor David Eppstein, Chair

Parameterized complexity provides an important framework to deal with hard problems by

restricting some problem parameter to be a fixed constants. Problems which are categorized

as fixed-parameter tractable with respect to some parameters are problems that can be solved

in polynomial time, if such parameters are bounded by a fixed value.

In this dissertation, in Chapter 2, we first study the problem of recognizing k-leaf powers and

representing k-leaf roots. A graph G is a k-leaf power of a tree if its vertices correspond to

leaves of the tree and a pair of leaves have distance at most k if and only if the corresponding

vertices in G are adjacent. Then, the tree is a k-leaf root of G. A graph is a k-leaf power if

it has at least one k-leaf root. We show recognizing k-leaf powers parameterized by k and

the degeneracy of the input graph is fixed parameter tractable. This is the first result in the

literature studying this problem in the paradigm of parameterized complexity and providing

a polynomial-time algorithm working on multiple values of k.

Following this line of work, in Chapter 3, we study the parameterized complexity of the

problem of finding induced subgraphs with hereditary properties under the condition that

the input graph belongs to a hereditary graph class, as well. In this work, we provide a

framework that settles the parameterized complexity of various graph classes.

x



To show the importance of graph representation, we emphasize that our proposed technique

for recognition of k-leaf powers for graphs of bounded degeneracy heavily relies on our

representation of k-leaf roots as a subgraph of the graph product of the input graph and

a cycle graph of size k. Additionally, in Chapter 4, we study the problem of simplifying

activity-on-edge graphs, which provides an insight on how graph representation can further

help data analysis such as enabling a better understanding of the flow of project schedules.

In an activity-on-edge graph, vertices represent project milestones and edges represent the

tasks/activities of the project. We simplify such representations of project schedules to

enhance visualization of an abstract timeline of the potential critical paths of the project

by optimally minimizing the number of vertices while maintaining the reachability relations

among tasks.
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Chapter 1

Introduction

Graphs and graph-theoretical techniques have been widely used in various fields, such as

biology [96, 86], social sciences [17, 74] and road networks [54, 55, 58]. Additionally, the

literature is rich with problems that have been proved to be NP-hard, which and are therefore

presumed to be unsolvable in polynomial time. Given the complexity of these problems,

researchers often take measures such as designing approximations, heuristics, or parameterized

algorithms to deal with these problems. In Chapter 2 and 3, we study the important problems

of recognizing k-leaf powers and finding subgraphs with hereditary properties, from the point

of view of parameterized complexity.

1.1 Parameterized Complexity

The use of parameterized complexity theory, developed by Downey and Fellows [47], has

grown considerably as a refined way of dealing with hard problems. Problems in which some

parameters are fixed or bounded are called parameterized problems. Measuring the complexity

of a problem as a function of the parameters provides a finer classification of inherently hard

1



problems than the classic NP-hard categorization. A problem is fixed-parameter tractable

(FPT) with respect to a parameter x of the input if the problem can be decided in time

f(x)nO(1) where f is a computable function depending only on parameter x, n is the size

of the input, and the exponent of n is a constant, independent of x. Downey and Fellows

have further introduced the complexity classes of parameterized problems known as the W

hierarchy. It is presumed that problems complete for W[t] for t ≥ 1 are fixed-parameter

intractable. For more information on parameterized complexity, we refer the reader to [42, 49].

A natural parameter for the study of the parameterized complexity of a problem is the size

of the solution. Problems such as k-vertex cover [25, 33, 32] and k-feedback vertex set [34]

have been parameterized by the size of the desired output set, k. In Chapter 3, we use the

size of the solution to parameterize the underlying problem.

Another useful parameter which targets sparse graphs is degeneracy [92] as it implies that

every graph of size n and degeneracy d has at most (n− 1)d edges. A graph is k-degenerate if

every induced subgraph has a vertex of degree at most k. Degeneracy of a graph is defined as

the smallest value of k for which the graph is k-degenerate. Equivalently, degeneracy may be

defined as the smallest d for which an ordering of vertices of the graph exists in which each

vertex has d earlier neighbors according to that ordering. Various problems in the literature

are parameterized by the degeneracy of the input graph [60, 6, 28].

Treewidth is another graph sparsity parameter which was initially introduced by Bertelé,

Brioschi [13] and Halin [72] under the name S-function and later rediscovered by Robertson

and Seymour [103]. A tree decomposition of graph G(V,E) consists of a tree T such that:

• Each vertex Xi ∈ T (called a bag) is a subset of vertices of G

• For each edge e(u, v) ∈ E, there exists a bag Xi in T where both u, v ∈ Xi; and

• For each vertex v ∈ V , the bags containing v induce a nonempty subtree of T .
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The width of a tree decomposition is the size of its largest bag, minus one. The treewidth of

a graph is the minimum width over all tree decompositions of the graph. Many well-known

graph classes such as series-parallel graphs and outerplanar graphs have bounded treewidth.

Additionally, there exist many NP-complete problems that have linear-time algorithms on

graphs of bounded treewidth using dynamic programming techniques [15, 14].

Another graph parameter is the clique-width, introduced by Courcelle, Engelfriet and

Rozenberg [40]. The clique-width of a graph G is the minimum number of labels needed

to construct G using the following four graph operations: creation of a new vertex with a

label, vertex disjoint union, connecting vertices with specified labels and relabeling vertices.

Graphs of bounded clique-width form a more general graph class than the class of graphs

with bounded treewidth.

1.2 Recognizing Sparse kkk-leaf Powers

Graph representation has been widely used in biology to model and further solve important

problems. Relevantly to our work, graph representation plays an important role in similarity

and evolutionary analysis of species. Given the similarity data among species, one can

represent the data as a graph in which the vertices are the species and a pair of vertices is

adjacent if and only if they are similar enough. Analyzing these graphs has an important

application in phylogeny for the problem of building a phylogenetic tree out of a similarity

graph. Such analysis provides a rich understanding of how biological entities evolve and

act over time. A phylogenetic tree represents the evolutionary interrelationships among

species and has a fundamental role in illustration of the origin and the evolution of species or

entities [105, 100]. The leaves of the phylogenetic tree represent species under study, and

for a pair of leaves, their parent represent their most recent common ancestor. The internal

vertices of the tree can be seen as the species that are long-extinct.
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Motivated by the search for the phylogenetic trees, Nishimura, Ragde and Thilikos introduced

the concept of leaf power graphs [99]. Formally speaking, a k-leaf power of a tree T is a

graph G whose vertices are the leaves of T , where a pair of vertices in G is adjacent if and

only if the corresponding leaves in T are within distance k of each other. Then, G is a k-leaf

power and T is a k-leaf root of G. A k-leaf power graph and its k-leaf root can represent

the similarity graph among species and its phylogenetic tree, respectively, with similarity

threshold k.

In Chapter 2, we investigate the problem of recognizing sparse k-leaf powers from the lens

of parameterized complexity theory. Our contribution to this problem is to provide two

different algorithms to recognize k-leaf powers in linear time, parameterized by k and the

degeneracy of the input graph. For our first algorithm, we express the property of being a

k-leaf power in monadic second-order logic and, using Courcelle’s theorem [40], we prove

that recognizing k-leaf powers is fixed-parameter tractable when parameterized by k and

the degeneracy of the input graph. Our second algorithm takes a dynamic programming

approach to provide a better dependence on the parameters. The complexity of the dynamic

programming algorithm is O
(
n(wk)O(w)

)
where w is the treewidth of the input graph. For

k ≥ 7, recognition of k-leaf powers for general graphs is still an open problem. However, our

decision to explore this problem from the point of view of parameterized complexity delivers

substantial progress in recognition of sparse k-leaf powers.

1.3 Finding Subgraphs with Hereditary Properties

Following the work on graph parameterization, in Chapter 3, we investigate parameterized

complexity of another inherently hard problem, which is to determine, in an input graph

G belonging to a hereditary graph class, whether there exist k vertices of G that induce a

subgraph satisfying a particular hereditary property. This problem for general input graphs,
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not necessarily belonging to a hereditary property class, has been already proved to be

NP-complete [91].

Our contribution to this problem is to extend the parameterized complexity results proved

by Khot and Raman [84]. They found that if the underlying property includes all trivial

graphs but not all complete graphs, or vice versa, then the problem is W[1]-complete and

it is fixed-parameter tractable, otherwise. Our contribution aims to extend parameterized

complexity of the problem in cases for which the problem is W[1]-complete for general input

graphs, by integrating the constraint that the input graph also belongs to a hereditary graph

class. Our motivation to extend these results is based on our observation that there exist

problems that are NP-complete or intractable on general graphs or some graph classes but

become tractable when the input graph is restricted to some graph classes. For instance,

k-clique is W[1]-complete for general graphs [48], and NP-complete for multiple-interval

graphs, [26], but it is fixed-parameter tractable for multiple-interval graphs [63].

To deal with this problem, we partition hereditary properties into four classes named AA,

AS, SA, SS. As the first letter, “A” (respectively, “S”) indicates that the property includes

(excludes) all (some) complete graphs. As the second letter, “A” (respectively, “S”) indicates

that the property includes (excludes) all (some) independent sets. The focus of our work

is to solve the problem for the cases that the hereditary property belongs to either AS or

SA. The other cases are already known to be fixed-parameter tractable [84], regardless of the

properties of the input graph.

This categorization enables us to use Ramsey’s theorem to prove our tractablity results.

Informally speaking, Ramsey’s theorem indicates that if a graph is large enough, it has either

a large clique or a large independent set. Additionally, for our hardness results we design

polynomial-time parameterized reductions to the k-independent set problem, which is known

to be NP-complete or W[1]-complete for various graph classes. Our technique settles the

parameterized complexity of the problem for numerous important graph classes and removes

5



the need for long and tedious hardness proofs. For an input graph G and hereditary properties

ΠG and Π, let G ∈ ΠG and our desired subgraph belong to Π. Our results show, when both

Π and ΠG are the properties of being planar, bipartite, triangle-free, or co-bipartite, then

we settle the parameterized complexity of the problem as FPT. Additionally, if ΠG is the

property of being a unit-disk graph, C4-free, or K1,4-free, and Π is the property of being

either planar or bipartite, then we show the problem is W[1]-complete.

1.4 Simplifying Activity-on-Edge Graphs

The well-structured and concise representation of graphs or a subgraphs give insight into the

structure and recognition of important graph classes and further help toward the betterment

of graph visualization. In Chapter 2, we deeply studied the structure and characteristics of the

k-leaf root as an embedded subgraph of the graph product of the input graph and a k-vertex

cycle. Discovering and understanding this representation of the k-leaf root as a subgraph

of such a graph product was the key insight that paved our way toward the recognition of

k-leaf powers and reconstruction of k-leaf roots in both our proposed algorithms. Similarly,

in Chapter 4, we follow this line of work and use concise graph representation to improve

visualization of project schedules by simplifying activity-on-edge graphs. An activity-on-edge

graph (AOE) has vertices that represent project milestones and edges that represent activities.

AOEs are very similar to Activity-on-Node graphs (AONs). In an AON graph, project

schedule information is presented differently, with vertices specifying activities and edges

representing the logical progression of the dependencies among activities. AONs have several

applications such as modeling minimal and maximal time lags among activities [98].

Although AON networks seem to be more natural to represent project schedules, they are

unsuitable for visually representing timelines of potential critical paths where the time length

of tasks/activities is yet unknown. Therefore, to resolve this issue, we choose to employ AOEs

6



in order to represent the project schedules and the possible critical paths. Given an activity-

on-edge graph, our focus is on finding an AOE with the minimum possible number of vertices

that has the same critical paths as the input graph. We provide a polynomial-time algorithm

to transform the input AOE into an optimal one and prove correctness and optimality.
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Chapter 2

Parameterized Leaf Power

Recognition via Embedding into

Graph Products 1

2.1 Introduction

As stated in Chapter 1, leaf powers are a class of graphs that were introduced in 2002 by

Nishimura, Ragde and Thilikos [99], extending the notion of graph powers. For a graph G,

the kth power graph Gk has the same set of vertices as G but a different notion of adjacency:

two vertices are adjacent in Gk if there is a path of at most k edges between them in G.

Determining whether a graph is a kth power of another graph is known to be NP-complete,

for k ≥ 2 [89]. However deciding whether a graph G is the second power of a graph H is

decidable in polynomial time when H belongs to various graph classes such as bipartite

graphs [88], block graphs [90], cactus graphs [68] and cactus block graphs [51]. Besides, it is

1The material in this chapter is included with permission from Springer [57].
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possible to decide in linear time if a graph is the power of a tree [30]. The leaf powers are

defined in the same way from trees, but only including the leaves of the trees as vertices. The

kth leaf power of a tree T has the leaves of T as its vertices, with two vertices adjacent in

the leaf power if there is a path of at most k edges between them in T . A given graph G is

a k-leaf-power graph when there exists a tree T for which G is the kth leaf power. In this

case, T is a k-leaf root of G. In general, the k-leaf root may have vertices and edges that are

not part of the input graph. For example, Figure 2.1 shows a 3-leaf power alongside one of

its 3-leaf roots. Nishimura, Ragde and Thilikos, further, derived the first polynomial-time

algorithms to recognize k-leaf powers for k = 3 and k = 4 [99].

One application of recognizing leaf powers arises as a formalization of a problem in com-

putational biology, the reconstruction of evolutionary history and evolutionary trees from

information about the similarity between species [35, 64, 2]. In this problem, the common

ancestry of different species can be represented by an evolutionary or phylogenetic tree, in

which each vertex represents a species and each edge represents a direct ancestry relation

between two species. We only have full access to living species, the species at the leaves of

the tree; the other species in the tree are typically long-extinct, and may be represented

physically only through fossils or not at all. If we suppose that we can infer, from observations

of living species, which ones are close together (within some number k of steps in this tree)

and which others are not, then we could use an algorithm for leaf power recognition to infer

a phylogenetic tree consistent with this data.

2.1.1 New Results

In this chapter, presenting two different algorithms, we prove that the k-leaf powers of

degeneracy d can be recognized in time that is fixed-parameter tractable when parameterized

by k and d. Here, the degeneracy of a graph is the maximum, over its subgraphs, of the

9



Figure 2.1: A 3-leaf power graph G and one of its 3-leaf roots T.

minimum degree of any subgraph.

Our first algorithm makes ample use of Courcelle’s theorem [40] while the second employs a

dynamic programming method to provide a time complexity with a better dependence on

the parameters. Although the second algorithm is more efficient, we retain the description of

the first algorithm as it was the source of our inspiration to devise a more practical method

to prove the fixed-parameter tractability of k-leaf powers, and as we feel that our technique

of using graph products (which we use in both algorithms) can have broader applications.

Both algorithms have running time polynomial (in fact linear) in the size of the input graph,

multiplied by a factor that depends non-polynomially on k and d. We also apply the same

methods to a more general problem in which each edge of the input graph is labeled by a

range of distances, constraining the corresponding pair of leaves in the leaf root to have a

distance in that range.

Relevantly for our work, Golumbic and Rotics showed that unit interval graphs are of

unbounded clique-width [69]. A graph is an interval graph if and only if all its vertices can

be mapped into intervals on a straight line such that two vertices are adjacent when the

corresponding intervals intersect each other. In the unit interval graphs, each interval has a

unit length. As shown by Brandstädt and Hundt, unit interval graphs belong to the class

of leaf powers, which implies that leaf powers also have unbounded clique-width [19, 20].
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However, it is known that the k-leaf powers have bounded clique-width when k is bounded [71].

A wide class of graph problems (those expressible in a version of monadic second order logic

quantifying over only vertex sets, MSO1) can be solved in fixed-parameter time for graphs of

bounded clique-width, via Courcelle’s theorem. However we have been unable to express the

recognition of leaf powers in MSO1. Instead, our algorithm uses a more powerful version of

monadic second order logic allowing quantification over edge sets, MSO2. As we prove later

in Section 2.5, leaf powers with bounded degeneracy have bounded treewidth, allowing us to

apply a form of Courcelle’s theorem for MSO2 for graphs of bounded treewidth.

However, there is an additional complication that makes it tricky to apply these methods to

leaf power recognition. As stated in Section 2.1, the tree that we wish to find, for which our

given input graph is a leaf power, will in general include vertices and edges that are not part

of the input, but MSO2 can only quantify over subsets of the existing vertices and edges of a

graph, not over sets of vertices and edges that are not subsets of the input. To work around

this problem, we apply Courcelle’s theorem not to the given graph G itself, but to a graph

product G� Ck where Ck is a k-vertex cycle graph. In Section 2.3, we prove that a leaf root

(the tree for which G is a leaf power, if there is one) can be embedded as a subgraph of this

product, that it can be recognized by an MSO2 formula applied to this product, and that

this product has bounded treewidth whenever G is a k-leaf power of bounded degeneracy. In

this way we can recognize G as a leaf power, not by applying Courcelle’s theorem to G, but

by applying it to the graph product.

Thus, our algorithm combines the following ingredients:

• Our embedding of the k-leaf root as a subgraph of the graph product G� Ck.

• Our logical representation of k-leaf roots as subgraphs of graph products.

• Courcelle’s theorem, which provides general-purpose algorithms for testing MSO2

formulas on graphs of bounded treewidth.
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Figure 2.2: A graph is a 4-leaf power if and only if it is chordal and does not contain any of
the graphs above as a subgraph.

• The fact that leaf powers of bounded degeneracy also have bounded treewidth.

• The fact that, by taking a product with a graph of bounded size, we preserve the

bounded treewidth of the product.

Our algorithm runs in fixed-parameter tractable time when parameterized by k and the

degeneracy d of the given input graph. In particular, it runs in linear time when k and d are

both constant.

Our results provide the first known efficient algorithms for recognizing k-leaf powers for k ≥ 7,

for graphs of bounded degeneracy. Our method of embedding the k-leaf roots into graph

products considerably simplifies our task of designing a logical formula for recognizing k-leaf

powers.More generally, such embedding appears likely to apply to other graph problems

involving network design (the addition of edges to an existing graph, rather than the

identification of a special subgraph of the input). Later in Section 2.7, we also profit from

the same embedding into a product as a key step in our dynamic programming algorithm to

decide whether a graph is a k-leaf power.
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2.1.2 Related Work

Polynomial-time algorithms are known for recognizing k-leaf powers for k ≤ 6.

• A graph is a 2-leaf power if it is a disjoint union of cliques, so this class of graphs is

trivial to recognize.

• There exist various ways to characterize 3-leaf powers [99, 21, 45, 102], some of which

lead to efficient algorithms. For instance, one way to determine if a graph is a 3-leaf

power is to check whether it is bull-, dart- and gem-free and chordal [45]. The chordal

graphs have a known recognition algorithm, and testing for the existence of any of the

other forbidden induced subgraphs is polynomial, because they all have bounded size.

• Similarly, there are various known ways to characterize 4-leaf powers [99, 102, 46, 23].

One is that a graph is a 4-leaf power if and only if it is chordal and does not contain

any of the graphs depicted in Figure 2.2 as induced subgraphs [102]. Again, this leads

to a polynomial-time recognition algorithm, because all of these graphs have bounded

size.

• k-leaf powers can be recognized in polynomial time if the (k−2)- Steiner root problem can

be solved in polynomial time. Chang and Ko, in 2007, provided a linear-time recognition

algorithm for 3-Steiner root problem [29]. This implies that 5-leaf powers can be

recognized in linear time. Besides, Brandstädt, Le and Rautenbach provided a forbidden

induced subgraph characterization for the distance-hereditary 5-leaf powers [22].

• Ducoffe has recently extended result of Chang and Ko [29] and provided a polynomial-

time recognition algorithm of 4-Steiner powers [50] which as stated, it leads to a

polynomial-time recognition of 6-leaf powers.

Polynomial-time structural characterization of k-leaf powers for k ≥ 7 is still an open problem.
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Throughout the literature, there exist many structural characterizations of leaf powers which

provide potentially useful insight into this class of graphs. It is known, for instance, that all

leaf powers are strongly chordal, but the converse is not always true. Further, Kennedy, Lin

and Yan showed that strictly chordal graphs are always k-leaf powers for k ≥ 4; these are the

chordal graphs that are also, dart- and gem-free. They provided a linear-time algorithm to

construct k-leaf roots of strictly chordal graphs [83].

For all k ≥ 2, every k-leaf power is also a (k + 2)-leaf power. A (k + 2)-leaf root of any

k-leaf-power can be obtained from its k-leaf root, by subdividing all edges incident to leaves.

However, the problems of recognizing k-leaf powers for different values of k do not collapse:

for all k ≥ 4, there exists a k-leaf power which is not a (k + 1)-leaf power [24].

2.1.3 Organization

This chapter is organized as follows. We begin in Section 2.2 with some preliminary definitions

and a survey of the relevant background material for our results. In Section 2.3 we describe

how to embed leaf roots into graph products , a construction used in both of our algorithms.

We provide a logical formulation of the leaf power recognition problem in Section 2.4, and in

Section 2.5 we use this formulation for our first algorithm for the problem. We generalize the

problem to leaf powers with restricted distance ranges on each input graph edge in Section 2.6.

Our dynamic programming algorithm for leaf powers is presented in Section 2.7. We conclude

with some general observations in Section 2.8.
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Figure 2.3: The graph on the right is the strong product of a four-vertex path graph (top
left) and a four-vertex cycle graph (bottom left). The colors indicate the partition of the
edges into vertical, horizontal, and diagonal subsets.

2.2 Preliminaries

2.2.1 Definitions

Throughout this chapter, we let G(V,E) denote a simple undirected graph (typically, the

input to the leaf power recognition problem). If u and v are two vertices in V that are

adjacent in G, we let e(u, v) denote the edge connecting them.

The strong product of graphs G1 and G2, denoted as G1 �G2, is a graph whose vertices are

ordered pairs of a vertex from G1 and a vertex from G2. In it, two distinct vertices (u1, u2)

and (v1, v2) are adjacent if and only if for all i ∈ {1, 2}, ui = vi or ui and vi are adjacent

in Gi. Figure 2.3 shows an example, the strong product of a four-vertex path graph with a

four-vertex cycle graph. When we construct a strong product, we will classify the edges of

the product into three subsets:

• We call an edge from (u1, u2) to (v1, v2) a vertical edge if u2 = v2. The edges of this

type form |V (G2)| disjoint copies of G1 as subgraphs of the product.
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• We call an edge from (u1, u2) to (v1, v2) a horizontal edge if u1 = v1. The edges of this

type form |V (G1)| disjoint copies of G2 as subgraphs of the product.

• We call the remaining edges, for which u1 6= v1 and u2 6= v2, diagonal edges. The

subgraph composed of the diagonal edges forms a different kind of graph product, the

tensor product G1 ×G2.

We may think of these three edge sets as forming an (improper) edge coloring of the graph

product. In Figure 2.3 these edge sets are colored blue, red and green, respectively.

2.2.2 Courcelle’s Theorem

By considering graphs as logical structures, their properties can be expressed in first-order

and second-order logic. In first-order logic, graph properties are expressed as logical formulas

wherein the variables range over vertices and the predicates include equality and adjacency

relations. Second-order logic is an extension of first-order logic with the power to quantify

over relations. Particularly, many natural graph properties can be described in monadic

second-order logic, which is a restriction of second-order logic in which only unary relations

(sets of vertices or edges) are allowed [39].

There exist two variations of monadic second-order logic: MSO1 and MSO2. In MSO1,

quantification is allowed only over sets of vertices, while MSO2 allows quantification over

both sets of vertices and sets of edges. MSO2 is strictly more expressive; there are some

properties, such as Hamiltonicity [38], which are expressible in MSO2 but not in MSO1. A

graph property is MSO2-expressible if there exists an MSO2 formula to express it, in which

case the corresponding class of graphs becomes MSO2-definable.

The algorithmic connection between treewidth and monadic second-order logic is given by

Courcelle’s theorem, according to which every property definable in monadic second-order
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logic can be tested in linear time on graphs of bounded treewidth [37]. Later, Courcelle,

Makowsky and Rotics extended this theorem to the class of graphs with bounded clique-width

when the underlying property is MSO1-definable [41]. In our application of Courcelle’s

theorem, we will use an MSO2 formula with a free variable horizontal, an edge set, which

we will use to pass to the formula certain information about the structural decomposition of

the graph it is operating on. This extension of Courcelle’s theorem to formulas with a constant

number of additional free variables, whose values are assigned through some extra-logical

process prior to applying the theorem, is non-problematic and standard. Courcelle’s theorem

is the foundation of many fixed-parameter tractable algorithms [10, 70, 59, 79], as it proves

that properties expressible in MSO1 or MSO2 are fixed-parameter tractable with respect to

the clique-width or treewidth (respectively) of the input graph.

However, even in MSO2, it is only possible to quantify over subsets of vertices and edges

that belong to the graph to which the logical formula is applied. Much of the difficulty of

the leaf power problem rests in this restriction. If we could quantify over edges and vertices

that were not already present, we could construct a formula that asserts the existence of

sets of vertices and edges forming a leaf root of a given graph, and then add clauses to the

formula that ensure that the quantified sets describe a valid leaf root. However, we are not

allowed such quantification, because in general the leaf root has vertices and edges that do not

belong to our input graph. To apply Courcelle’s theorem to leaf power recognition, we must

instead find a way to express the property of being a leaf power using only quantification over

subsets of vertices and edges of the graph to which we apply the theorem. For this reason,

the problem of leaf power recognition forms an important test case for the ability to express

graph problems in MSO logic.
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Figure 2.4: A 4-leaf power graph G (left), and one of its leaf roots T (right). Each leaf of T
is labeled by the vertex of G that it represents, and each internal node of T is labeled by
its closest leaf node. When there are ties at a node (as for instance at the root of T ) the
choice of label is made arbitrarily among the closest leaf nodes whose labels appear among
the children of the node.

2.3 Embedding Leaf Roots into Graph Products

In this section, we show that every k-leaf power has a k-leaf root that can be embedded in

the graph product G� Ck. Let G be a k-leaf power graph, and T be a k-leaf root of G. If G

is not connected, we can handle each of its connected components independently; in this way,

we can assume from now on, without loss of generality that G is a connected graph with at

least three vertices, and that T is a leaf root chosen arbitrarily among the possible k-leaf

roots of T . It follows from these assumptions that T is a tree, because every edge in G must

be represented by a path in T . Because T has at least three leaves, it has at least one interior

node; we choose one of these nodes arbitrarily to be the root of T . Additionally, every vertex

or edge of T participates in a path of length at most k between two leaves, representing

an edge of G. For, if some vertices and edge do not participate in these paths, removing

all non-participating vertices and edges from T would produce a smaller leaf root, without

creating any new leaves. But this removal would disconnect pairs of leaves on the opposite

sides of any removed edge, contradicting the assumption that G is connected.

As the first step of the embedding, we provide a subroutine that takes as input, a graph and

a k-leaf root of the form, mentioned above and embeds it in G � Ck as a subgraph. Our

leaf-power recognition algorithm does not employ this subroutine, as it does not have access
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Figure 2.5: The graph on the bottom left is a 4-leaf root T of graph G (top left). T can be
embedded in the strong product G� C4 (right), by mapping each vertex u of T to the pair
(v, i) where v is the label of u and i is the depth of u (modulo k).

to the k-leaf root. This subroutine solely fulfills the purpose of proving that the k-leaf root

of this form can be embedded in the graph product. For that, we label the vertices of T with

the names of vertices in G. Each vertex of T will get a label in this way; some labels will be

used more than once. In particular, we label each leaf of T by the vertex of G represented by

that leaf. Then, as shown in Figure 2.4, we give each non-leaf node of T the same label as

its closest leaf. If there are two or more closest leaves, we choose one arbitrarily among the

labels already applied to the children of the given interior node. In this way, when the same

label appears more than once, the tree nodes having that label form a connected path in T .

As we now show, these labels, together with the depths of the nodes modulo k, can be used

to embed the k-leaf root T into the strong product G � Ck, where Ck denotes a k-vertex

cycle graph.

Lemma 2.1. If G is a connected k-leaf power graph on three or more vertices, and T is

any k-leaf root of G, then T can be embedded as a subtree of the strong product G � Ck.

Additionally, the embedding can be chosen in such a way that each horizontal cycle in the

strong product (the product of a vertex v of G with Ck) contains exactly one leaf of the

embedded copy of T , the leaf representing v.
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Proof. We map a vertex u of T to the pair (v, i) where v is the label assigned to u (the name

of a vertex in G) and i is the depth of u (its distance from the root of T ), taken modulo k.

This pair is one of the vertices of the strong product, so we have mapped vertices of T into

vertices of the strong product. An example of such embedding can be seen in Figure 2.5.

Because G is assumed to be connected, each node of T participates in at least one path of

length at most k between two leaves of T , representing an adjacency of G; it follows that the

label for each node of T is at most k − 1 steps away from the node, and that each path of

same-labeled nodes in T has length at most k − 1. As a consequence, when we take depths

modulo k, none of these paths can wrap around the cycle and cover the same vertex of

the graph product more than once. That is, our mapping from T to G� Ck is one-to-one.

Because each leaf of T is labeled with the vertex of G that it represents, this mapping has the

property described in the lemma, that each horizontal cycle in the strong product contains

exactly one leaf of the embedded copy of T , the leaf representing the vertex whose product

with Ck forms that particular horizontal cycle.

We must also show that this mapping from T to G� Ck maps each pair of vertices that are

adjacent in T into a pair of vertices that are adjacent in G� Ck. Recall that adjacency in

G� Ck is the conjunction of two conditions: two vertices in the product are adjacent if their

first coordinates are equal or adjacent in G and their second coordinates are equal or adjacent

in Ck. Because every two adjacent vertices in T have depths that differ by one, the second

coordinates of their images in the product will always be adjacent in Ck. It remains to show

that, when two vertices are adjacent in T , their images in the product have first coordinates

that are equal or adjacent in G. That is, the labels of the two adjacent vertices in T should

be equal or adjacent.

Rephrasing what we still need to show, it is the following: whenever two adjacent vertices in

T have different labels, those labels represent adjacent vertices in G.

To see that this is true, consider two adjacent vertices u1 and its parent u2 in T , labeled by
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two different vertices v1 and v2 in G. As we already stated at the start of this section, the

assumption of the lemma that G is connected implies that edge u1u2 in T participates in at

least one path P of length at most k between two leaves, corresponding to an adjacency in G.

But because v1 and v2 are represented by the closest leaves to u1 and u2 (respectively) the

length of the path in T between the leaves representing v1 and v2 must be at most equal to

the length of P . Therefore, there is a path of length at most k between the leaves representing

v1 and v2, so v1 and v2 are adjacent in the k-leaf power G, as required.

Based on this embedding, we can prove the following characterization of leaf powers, which

we will use in our application of Courcelle’s theorem to the problem. It is important, for this

characterization, that we express everything intrinsically in terms of the properties of the

graph product G� Ck, its edge coloring, and its subgraphs, without reference to the given

graph G.

Lemma 2.2. A given connected graph G on three or more vertices is a k-leaf power if and

only if the product G� Ck has a subgraph T with the following properties:

1. T is 1-degenerate (i.e., a forest).

2. Every vertex of G� Ck is connected by horizontal edges of the product to exactly one

leaf of T .

3. Two vertices of G�Ck are the endpoints of a non-horizontal edge of the product if and

only if the corresponding leaves of T (given according to Property 2) are the distinct

endpoints of a path of length at most k in T .

Proof. A subgraph obeying these properties is a forest (Property 1), whose leaves can be

placed into one-to-one correspondence with the vertices of G (Property 2, using the fact that

the horizontal cycles of the product correspond one-to-one with vertices of G). It has a path
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of length at most k between two leaves if and only if the corresponding vertices of G are

adjacent (Property 3). So if it exists, it is a k-leaf root of G and G is a k-leaf power.

In the other direction, if G is a connected k-leaf power, let T be a k-leaf root of G. Then,

according to Lemma 2.1, T can be embedded as a subtree of G�Ck (Property 1), with exactly

one leaf for each horizontal cycle (Property 2), that forms a k-leaf root of G (Property 3). So

when G is a k-leaf power, a subgraph T obeying the properties of the lemma exists.

2.4 Logical Expression

In this section, we describe how to express the components of Lemma 2.2, our characterization

of the products G� Ck that contain a k-leaf root of G, in monadic second-order logic. Our

logical formula will involve a free variable horizontal, the subset of edges of the given graph

(assumed to be of the form G� Ck) that are horizontal in the product (that is, edges that

connect two copies of the same vertex in G). We will also assume that V and E refer to the

vertices and edges of the graph G � Ck. In our logical formulas, we will express the type

of each quantified variable (whether it is a vertex, edge, set of vertices, or set of edges) by

annotating its quantifier with a membership or subset relation. For instance, “∀x ∈ V : . . . ”

quantifies x as a vertex variable. We will express the incidence predicate between an edge

e and a vertex v (true if v is an endpoint of e, false otherwise) by e ( v. Because our

formulas will also use equality as a predicate, we will express the equality between names of

formulas and their explicit logical formulation using a different symbol, ≡. In our formulas,

predicates (equality, incidence, and adjacence) will be considered to bind more tightly than

logical connectives, allowing us to omit parentheses in many cases.

A subgraph of the given graph may be represented by its set S of edges. In this representation,
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adjacency between two vertices a and b may be expressed by the formula

adjacent(a, b, S) ≡ ∃e ∈ S : (e( a ∧ e( b).

The following formula expresses the property that the neighbors of vertex ` in subgraph S

include at most one vertex from a set X:

leaf(`,X, S) ≡ ∀c, d ∈ X :
((

adjacent(`, c, S) ∧ adjacent(`, d, S)
)
→ c = d

)
.

This allows us to express the acyclicity of a subgraph S in terms of 1-degeneracy: every

nonempty subset X of vertices contains a leaf.

acyclic(S) ≡ ∀X ⊂ V : (∃x ∈ X)→ ∃` ∈ X : leaf(`,X, S).

This already allows us to express the first condition of Lemma 2.2. We will also use a predicate

for whether two vertices p and q are connected by horizontal edges. This is true if for every

subset C of vertices containing p and excluding q, there exists a horizontal edge, connecting

a vertex of C to a vertex not in C.

aligned(p, q) ≡ ∀C ⊂ V :
(
p ∈ C ∧ ¬(q ∈ C)

)
→

∃h ∈ horizontal : ∃y, z ∈ V :
(
y ∈ C ∧ ¬(z ∈ C) ∧ h( y ∧ h( z

)
.

This allows us to express a predicate for the property that vertex ` is a leaf of subgraph S on

the same horizontal level as another vertex v (that is, ` is the representative leaf for v’s level):

representative(v, `, S) ≡ leaf(`, V, S) ∧ aligned(v, `).
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The second part of Lemma 2.2 is that every level has exactly one representative leaf:

represented(S) ≡
(
∀v ∈ V : ∃` ∈ V : representative(v, `, S)

)
∧(

∀v, `1, `2 ∈ V :
(
representative(v, `1, S) ∧ representative(v, `2, S)

)
→ `1 = `2

)
.

Unlike for the previous formulas, there is no way of expressing the existence of a path of

length k from u to v in subgraph S, for a non-fixed k, in MSO2. We need a different formula

pathk for each k. We do not require these paths to be simple, as this would only complicate

the formula without simplifying our use of it. However it is essential for our application to

the third condition of Lemma 2.2 that we require our paths to have distinct endpoints.

pathk(u, v, S) ≡ ∃w1, w2, . . . wk−1 ∈ V : ∃e1, e2, . . . ek ∈ S :

¬(u = v) ∧ e1 ( u ∧ e1 ( w1 ∧ e2 ( w1 ∧ · · · ∧ ek ( wk−1 ∧ ek ( v.

Other than the inequality of the two endpoints, this formula allows repetitions of vertices

and edges within each path. In particular, it allows wi and wi+1 to be equal to each other,

repeating one endpoint of an edge twice and omitting the other endpoint. Because we allow

repetitions in this way, this formulation of the path predicate has the following convenient

property:

Lemma 2.3. For all k ≥ 1 and all u, v, and S, we have that

pathk(u, v, S)→ pathk+1(u, v, S).

Proof. Let w1, . . . wk−1 and e1, . . . ek be the vertices and edges witnessing the truth of

pathk(u, v, S), let wk = v, and let ek+1 = ek. Then w1, . . . , wk and e1, . . . , ek+1 witness

the truth of pathk+1(u, v, S).
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Corollary 2.1. Two vertices u and v of a subgraph S of a given graph obey the predicate

pathk(u, v, S) if and only if they are distinct and their distance in S is at most k.

This allows us to express the final part of Lemma 2.2, the requirement that each two vertices

are connected by a non-horizontal edge if and only if their representatives are connected by a

short path:

rootk(S) ≡ ∀u, v ∈ V :
((
∃u′, v′ ∈ V ∃e ∈ E : aligned(u, u′)∧

aligned(v, v′) ∧ e( u′ ∧ e( v′ ∧ ¬(e ∈ horizontal)
)
←→

∃x, y ∈ V :
(
representative(u, x, S) ∧ representative(v, y, S)∧

pathk(x, y, S)
))
.

Lemma 2.4. There exists an MSO2 formula that is modeled by a graph G� Ck and its set

horizontal of horizontal edges exactly when G� Ck meets the conditions of Lemma 2.2.

Proof. The formula is

∃S :
(
acyclic(S) ∧ represented(S) ∧ rootk(S)

)
.

A subgraph defined by a set S of its edges meets the first condition of the lemma if acyclic(S)

is true, it meets the second condition of the lemma if represented(S) is true, and it meets

the third condition of the lemma if rootk(S) is true.

Corollary 2.2. The property of a graph G being k-leaf power can be expressed as an MSO2

formula of G� Ck and of the set horizontal of horizontal edges of this graph product.
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2.5 Fixed-Parameter Tractability of Leaf Powers

In this section, by using Courcelle’s theorem, we provide our main result that recognizing

k-leaf powers is fixed-parameter tractable when parameterized by k and the degeneracy of

the input graph.

In order to apply Courcelle’s theorem to the graph product G � Ck we need to bound its

treewidth.

Lemma 2.5. If G has treewidth t and H has a bounded number of vertices s then G �H

has treewidth at most s(t+ 1)− 1.

Proof. Given any tree-decomposition of G with width t, we can form a decomposition of

G�H by using the same tree, and placing each vertex (v, w) of G�H (where v and w are

vertices of G and H respectively) into the same bag as vertex v of G. The size of the largest

bag of the tree-decomposition of G is t + 1, so the size of the largest bag of the resulting

tree-decomposition of the graph product is s(t+ 1). The treewidth is one less than the size

of the largest bag.

Corollary 2.3. If G has a bounded treewidth and k is bounded, then G�Ck also has bounded

treewidth.

This gives us our main theorem:

Theorem 2.1. For fixed constants k and d, it is possible to recognize in linear time (with

fixed-parameter tractable dependence on k and d) whether a graph of degeneracy at most d is

a k-leaf power.

Proof. As stated in subsection 2.1.2, all leaf powers are chordal graphs and it is known for a

chordal graph, treewidth is equal to maximum clique number minus one [103]. This implies
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that treewidth of leaf powers is equal to their degeneracy. Further, from Corollary 2.3, G�Ck

also has bounded treewidth. Therefore, by applying Courcelle’s theorem to the MSO2 formula

of Corollary 2.2 we obtain the result.

2.6 Edges Labeled by Distance Ranges

It is perhaps of interest to generalize k-leaf powers to a more general version in which each

edge of the input graph G has a weight range [k1, k2] where 2 ≤ k1 ≤ k2 and K is the upper

bound on k2 over all the edges. We say that G is a labeled K-leaf power if G has a K-leaf

root T in which, for each edge uv of G, the corresponding leaves of T are at a distance that

is within the range used to label edge uv. As with the unlabeled version of the problem, for

non-adjacent pairs of vertices of G, the corresponding leaves should be at distance more than

K. The original k-leaf power is a restricted variant of this general version in which all edges

have a fixed weight range [1, k] and K = k.

One motivation for this comes from the phylogenetic tree applications of k-leaf powers. If

we know some information about the evolutionary distance between species, and wish to

reconstruct the evolutionary tree, the information we know may be more fine-grained than

merely that the distance is big or small. The ranges on each edge allow us to model this

fine-grained information and by doing so restrict the trees that can be generated to more

accurately reflect the data. As we show in this section, our parameterized algorithms can be

extended to the more general problem of recognizing labeled K-leaf powers.

Recall that we are already modeling some labeling information on the graph product G1�G2,

in the logic of graphs, as the free set variable horizontal. We will similarly need to model

the edge weight range labels logically. To do so, we extend the weights on the edges of

G to the weights on the edges of a graph product using the following definition. Suppose
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that we are considering the graph product G1 � G2 where G1 and G2 are weighted and

unweighted, respectively. Recall that, in this product, two distinct vertices (u1, u2) and

(v1, v2) are adjacent if and only if for all i ∈ {1, 2}, ui = vi or ui and vi are adjacent in Gi. A

vertical or diagonal edge is an edge with endpoints (u1, u2) and (v1, v2), for which u1 6= v1.

In this case, we assign the vertical or diagonal edge weight ω if the edge connecting u1 and v1

has weight ω, in G1.

We have the following analogue of Lemma 2.1 for the weighted case:

Lemma 2.6. If G is a weighted connected K-leaf power graph on three or more vertices,

and T is any K-leaf root of G, then T can be embedded as a subtree of the strong product

G� CK . Additionally, the embedding can be chosen in such a way that each horizontal cycle

in the strong product (the product of a vertex v of G with CK) contains exactly one leaf of

the embedded copy of T , the leaf representing v.

Proof. The weighted graph product has the same underlying graph as the unweighted product,

and the weighted K-leaf root is a special case of the unweighted K-leaf root, so this follows

immediately from Lemma 2.1, which provides an embedding into the graph power of every

K-leaf root.

We can now provide the following characterization of K-leaf powers.

Lemma 2.7. A given connected weighted graph G on three or more vertices is a K-leaf power

if and only if the product G� CK has a subgraph T with the following properties:

1. T is 1-degenerate (i.e., a forest).

2. Every vertex of G� CK is connected by horizontal edges of the product to exactly one

leaf of T .
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3. If two vertices of G�CK are the endpoints of a non-horizontal edge of the product with

weight [k1, k2] then the corresponding leaves of T (given according to Property 2) are

the distinct endpoints of a path of length at least k1 and at most k2 in T .

4. If two distinct leaves of T are at distance at most K then there exists a non-horizontal

edge of the product with two endpoints vertices, aligned to each leaf.

Proof. The proof follows the same lines as the proof of Lemma 2.2, modified only to take

into account the edge weights.

In order to express the components of Lemma 2.7 in monadic second-order logic, we reuse

formulas acyclic and represented from Lemma 2.2 for the first and second parts of

Lemma 2.7, respectively.

To express the third part, we introduce K2 edges sets Ik1,k2 where 2 ≤ k1 ≤ k2 ≤ K. An

edge e of the product, with two endpoints (u1, u2) and (v1, v2) belongs to Ik1,k2 if and only

if u1 6= u2, v1 6= v2 and it has weight [k1, k2]. This allows us the express the requirement

that if two vertices are connected by a non-horizontal edge with weight [k1, k2] then their

representatives are connected by a path with a length in the range [k1, k2]:

edgek1,k2(S) ≡ ∀u, v ∈ V :
((
∃e ∈ E : e( u ∧ e( v ∧ (e ∈ Ik1,k2)

)
−→ ∃x, y ∈ V :

(
representative(u, x, S) ∧ representative(v, y, S)∧

pathk2(x, y, S) ∧ ¬pathk1−1(x, y, S)
))
.

The last part of Lemma 2.7 can be expressed as follows:
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nonedgeK(S) ≡ ∀u, v ∈ V :
((
∃x, y ∈ V : representative(u, x, S)∧

representative(y, v, S) ∧ pathK(x, y, S)
)
−→

(
∃u′, v′ ∈ V ∃e ∈ E : e( u′

∧ e( v′ ∧ aligned(u, u′) ∧ aligned(v, v′) ∧ ¬(e ∈ horizontal)
))

Lemma 2.8. There exists an MSO2 formula that is modeled by a graph G � CK and its

set horizontal of horizontal edges and K2 edge sets Ik1,k2 exactly when G� CK meets the

conditions of Lemma 2.7.

Proof. The formula is

∃S :
(
acyclic(S) ∧ represented(S) ∧ edge2,2(S) ∧ edge2,3(S) ∧ · · · ∧

edgeK,K(S) ∧ nonedgeK(S)
)
.

A subgraph defined by a set S of its edges meets the first condition of the Lemma 2.7 if

acyclic(S) is true, it meets the second condition of the lemma if represented(S) is true,

it meets the third condition of the lemma if edgek1,k2(S) is true for all 2 ≤ k1 ≤ k2 ≤ K,

and it meets the forth condition of the lemma if nonedge(S) is true.

Corollary 2.4. The property of a weighted graph G being K-leaf power can be expressed as

an MSO2 formula of G�CK , of the set horizontal of horizontal edges and of the K2 edge

sets Ik1,k2 of this graph product.

As proved in Lemma 2.5, if G has a bounded treewidth and K is fixed, then G�CK also has

a bounded treewidth. This fact enables us to provide the following theorem for the general

leaf power problem.

Theorem 2.2. For fixed constants K and d, it is possible to recognize in linear time (with
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fixed-parameter tractable dependence on K and d) whether a graph of degeneracy at most d

is a K-leaf power.

Proof. The proof follows the same outline as the proof of Theorem 2.1, modified only to use

the weighted versions of the lemmas above in place of their unweighted versions.

2.7 Dynamic Programming Algorithm

Many graph problems, including a vast number of NP-hard problems, have been shown to be

solvable in polynomial time when given a tree decomposition of constant width [8, 14, 15].

Dynamic programming on tree decomposition of graphs is an underlying technique to devise

such algorithms, restricted to graphs of bounded treewidth [14]. Indeed, our application

of Courcelle’s theorem relies on such an algorithm to evaluate whether a logical formula

is modeled by the given graph. In this section, we present a direct dynamic programming

algorithm to decide whether the input graph is a k-leaf power.

Dynamic programming algorithms often use a variant of tree decomposition, called nice tree

decomposition. A nice tree decomposition of graph G is a rooted tree decomposition T of G

in which each bag Xi is one of the following:

• a leaf bag in which |Xi| = 1,

• a forget bag with one child Xj, where Xi ⊂ Xj and |Xj| − |Xi| = 1,

• an introduce bag with one child Xj, where Xj ⊂ Xi and |Xi| − |Xj| = 1, or

• a join bag with two children Xj and Xj′ , where Xi = Xj = Xj′ ,

For a forget bag we callXj\Xi the forgotten vertex. Given a graphG and its tree decomposition

of width w, one can construct a nice tree decomposition of equal width in linear time [85].
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Our algorithm uses these restrictions on tree decompositions, but we need others as well.

Therefore, we will define an extra nice tree decomposition. In comparison with nice tree

decomposition, an extra nice tree decomposition has one more type of bag, an edge-associated

bag. An edge-associated bag Xi has a child Xj where Xi = Xj and exactly one edge e(u, v),

u, v ∈ Xi, is associated with Xi. Using a nice tree decomposition of G, we can simply

construct such tree decomposition in the following way: for each pair of adjacent pairs u and

v in bag Xi, if e(u, v) is not yet associated to a bag, create a new bag Xi′ as a new parent of

Xi where Xi′ = Xi and associate edge e(u, v) to Xi′ . The old parent of Xi, if it exists, is now

the parent of Xi′ .

Our algorithm is run over a mixed decomposition of graphs G and graph product H. Given

an extra nice decomposition of G of width w, for each vertex v in bag Xi, add all vertices

(v, r) ∈ H for 0 ≤ r < k. Hence, the size of each bag of the mixed decomposition is at most

wk. Our second algorithm can therefore be viewed as using the same graph product technique

that our first algorithm used, applied directly in a dynamic programming algorithm rather

than indirectly via Courcelle’s theorem.

2.7.1 Local Picture of a k-leaf root

Intuitively, for each bag of mixed decomposition M , we describe a local picture which describes

a subtree of a k-leaf root T upon existence. This description allows us to check whether the

big picture, T , is a k-leaf root of G. For a bag Xi let Gi and Hi be a set of vertices of Xi

that belongs to G and H, respectively.

A local picture of T at bag Xi consists of the following ingredients:

• A partition of Hi into connected components (with one more partition set for vertices

of Hi, not participating in T ).
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• A distance matrix between each pair of vertices in the same component. Each coefficient

of the matrix will store either a number between 1 and k (the distance between two

vertices), or a special flag ∞ to represent a finite distance greater than k.

• A designated root vertex for each component, the vertex that will become the closest

to the root of T .

• For each vertex v of Gi in Xi, a corresponding vertex (v, i) chosen as the leaf represen-

tative of v in Hi.

To reduce the number of local pictures that we need to consider, consistently with the

embedding of Section 2.3, we will restrict our attention to local pictures in which the vertices

(v, i) of Hi associated with a single vertex v of Hi are either part of a single component or not

in any component, and have distances within that component consistent with their distances

along the cycle Ck. We will associate with each remaining local picture a Boolean variable.

We will set this variable to True if there is a subtree of H within the bags descending from

Xi that is consistent with the local picture and with the requirement that it be part of a leaf

root of G. Otherwise, we set this variable to False. In order to enforce the requirement that

the local picture be consistent with being part of a leaf root, we only consider local pictures

such that, for the distances in each component, the pairs of representative vertices at distance

at most k are adjacent in G and pairs with distance ∞ are non-adjacent. Adjacent vertices

in Gi whose representatives belong to different components are allowed, however, as their

distance will be checked at a higher level of the tree decomposition where their components

merge. If these conditions are not met, we set the associated Boolean variable of the local

picture to False.

We process M in post-order from leaves to the root of M computing for each bag and each

local picture the Boolean variable for that local picture. This bottom-up ordering ensures

that the variables for local pictures of the child or children of a bag are known before we try
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to compute the variables at the bag itself. After computing these values, G will be a k-leaf

power if and only if there exists a local picture at the root bag whose associated Boolean

variable is true. If G is a k-leaf power, one can form a k-leaf root by creating a vertex as

the root of the k-leaf root and connect it to the root of each component of the True local

picture, with an appropriate number of edges (at most k edges for each connection). Further,

such ordering allows us to remember the distance to the nearest forgotten leaf as µv for each

non-leaf vertex v of each local picture for distance-checking purposing. In another word, µv

stores the distance from v to the nearest forgotten leaf that is no more present in the current

local picture. When the bottom-up traversal of M reaches a bag Xi, one of the following

cases occurs:

• Xi may be a leaf of M . In this case, it contains a vertex v ∈ G alongside all vertices

(v, r), 0 ≤ r < k. A local picture is set to True if and only if it has one component, a

single chain of vertices with the appropriate distances, ending at the vertex designated

as the representative of v.

• Xi may be a forget bag. In this case, it has one child Xj where Xi ⊂ Xj and

Hj ∧ (Xj\Xi) = {(v, r)}, 0 ≤ r < k. A local picture ` at Xi is set to True if and only

if it is formed by removing vertices (v, r) (a chain of vertices representing v ∈ Gj)

from a True local picture `′ of Xj.The removal of such chain of vertices may result in

more number of components in the corresponding True local picture `. If a removed

vertex has a child other than the one in the chain, that child becomes the root of a new

component in `. Further, as the designated leaf of such chain is forgotten, there might

be a need to update µu for a vertex u in ` within the vicinity (< k) of the forgotten

leaf.

• Xi may be an introduce bag. In this case, it has one child Xj where Xj ⊂ Xi and

Gi ∧ (Xi\Xj) = {v}. A local picture at Xi is set to True if and only if it can be formed

from one of the True local pictures of Xj by adding one more component which is a
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path (v, r), . . . , (v, r′), 0 ≤ r, r′ < k. Because the subtree descending from Xi does not

contain any edge-associated bags for edges incident with v, this component cannot be

connected to any of the existing components in the local picture in Xj.

• Xi may be an edge-associated bag. In this case, it has one child Xj where Xi = Xj

and there exists an edge e(u, v) associated to bag Xi. A local picture L at Xi is set

True if and only if either there exists an exact True copy of the local picture at Xj, or

using the edge e(u, v), L can be formed from a True local picture at Xj by connecting

a root x of one component to a vertex w of another component. Such connection can

be made if the resulting local picture obeys the distance matrix and also the distance

from each forgotten leaf of one component to a (forgotten or existing) leaf of another

component is greater than k as their corresponding vertices in G cannot be adjacent

given the definition of extra nice decomposition (when a vertex is forgotten, it cannot be

reintroduced as the bags containing that vertex form a nonempty connected subtree).

• Xi may be a join bag. In this case, it has two children Xj and Xj′ where Xi = Xj = Xj′ .

A local picture L1 at Xi has its value set to True if and only if there exist True local

pictures L2 and L′2 at Xj and Xj′ , respectively, that when combined together, they

form L1. To find such a combination, we consider all pairs of local pictures for L2 and

L′2 at Xj and Xj′ and construct a bipartite graph F . One side of bipartition includes

vertices of Hi ∈ Xi, each with two neighbors, representing the two subtrees, the vertex

belongs to in the local pictures L2 and L′2. L1 can be formed if and only if F is a forest,

its subtrees are subtrees of F and the combined local picture obeys the distance matrix

at L1 and no forgotten or existing leaf of L2 get a distance at most k to a forgotten

leaf of L′2 or vice versa.
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2.7.2 Analysis

To analyze our dynamic programming algorithm, we need to understand the number of local

pictures that are possible in each bag of the tree decomposition. We can perform this analysis

by combining the following factors, each of which depends only on the width w and leaf

power parameter k of the given input.

• For each vertex v of Gi, there are O(k2) choices for the representative vertex and the

length of the path using vertices (v, i) in the component of this representative vertex.

The total number of such choices for all vertices of Gi is kO(w).

• Given these choices of paths, there are wO(w) ways of connecting the paths into compo-

nents and selecting the vertex closest to the root within each component.

• Within a component that connects c paths, there are (ck)O(w) choices of distance matrix

for the whole component consistent with the distances within each path and with the

assumption that the distances come from a tree.

Therefore, there are (wk)O(w) local pictures considered by our algorithm for each bag. The

time for the algorithm is dominated by the join bags; there are n− 1 of these bags, and in

each such bag we consider a number of pairs of local pictures bounded by the square of the

number of local pictures per bag. Each pair of local pictures in the two child bags takes time

polynomial in w and k to check for whether it is consistent and to find the corresponding

local picture in the join bag. So the total time for our dynamic programming algorithm is

O
(
n(wk)O(w)

)
.
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2.8 Conclusion

We have provided two fixed-parameter algorithms to recognize k-leaf powers (and generalized

K-leaf powers) for graphs of bounded degeneracy. In both methods we use embeding of a

k-leaf root of a k-leaf power graph in the graph product of the input graph and a k-vertex cycle

Ck. Our first algorithm finds a logical characterization of the leaf roots that are embedded in

this way, and applies Courcelle’s theorem to determine the existence of a subgraph of the

graph product that meets our characterization.

Our methods of using low-treewidth supergraphs to represent vertices and edges that are not

part of the input graph, and of using graph products to find these supergraphs helped us to

solve the problem directly using dynamic programming rather than by applying Courcelle’s

theorem. Additionally, these methods may be useful in other graph problems. For instance,

the same graph product technique would have greatly simplified the application of Courcelle’s

theorem in our recent work on planar split thickness [59]: a graph G has planar split thickness

k if and only if G � Kk has a planar subgraph S such that, for each non-horizontal edge

of the product, the endpoints of the edge are aligned with the endpoints of an edge in S.

In reducing the logical complexity of problems such as these, our first method also makes

it more likely that faster model checkers for restricted fragments of MSO logic [9] can be

applied to our problem.

Our dynamic programming algorithm has significantly better dependence on its parameters

than our first, logic-based algorithm. However, its dependence is still not singly exponential.

We leave whether this is possible as open for future research.
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Chapter 3

Parameterized Complexity of Finding

Subgraphs with Hereditary Properties

on Hereditary Graph Classes 1

3.1 Introduction

In this chapter, we study the parameterized complexity of finding k-vertex induced subgraphs

in a given hereditary class of graphs, within larger graphs belonging to a different hereditary

class of graphs. A prototypical instance of the induced subgraph problem is the k-clique

problem, which asks whether a given graph G has a clique of size k. Although k-clique

is W[1]-complete for general graphs [48], and NP-complete even when the input graph is

constrained to be a multiple-interval graph, [26], it is fixed-parameter tractable in this special

case [63]. This example, of a W[1]-complete problem for general graphs which becomes FPT

on constrained inputs, motivates us to seek additional examples of this phenomenon, and

1The material in this chapter is from unpublished work with Eppstein and Gupta [56].
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more broadly to attempt a classification of induced subgraph problems which can determine

in many cases whether a constrained induced subgraph problem is tractable or remains hard.

We formalize a graph property as a set Π of the graphs that have the property. A property is

nontrivial if it is neither empty nor contains all the graphs, and more strongly it is interesting

if infinitely many graphs have the property and infinitely many graphs do not have the

property. A nontrivial graph property Π is hereditary if it is closed under taking induced

subgraphs. That is, if Π is hereditary and a graph G belongs to Π, then every induced

subgraph of G also belongs to Π. Given a hereditary property Π, let Π be the complementary

property, the set of graphs which do not belong to Π. The forbidden set FΠ of Π is the set of

graphs that are minimal for Π: they belong to Π, but all of their proper induced subgraphs

belong to Π. For a hereditary property Π, a graph G belongs to Π if and if G has no induced

subgraph in FΠ. Khot and Raman [84] studied the parameterized complexity of the following

unified formulation of the induced-subgraph problem, without constraints on the input graph:

Given a graph G, an interesting hereditary property Π and a positive integer k, the problem

P (G,Π, k) asks whether there exists an induced subgraph of G of size k that belongs to Π.

They proved a dichotomy theorem for this problem: If Π includes all trivial graphs (graphs

with no edges) but not all complete graphs, or vice-versa, then the problem is W[1]-complete.

However, in all remaining cases, the problem is FPT.

Our work studies the parameterized complexity of the problem P (G,Π, k), in cases for which

it is W[1]-complete for general graphs, under the constraint that the input graph G belongs to

a hereditary graph class ΠG. (Note that ΠG should be a different class than Π, for otherwise

the problem is trivial: just return any k-vertex induced subgraph of the input.) Given a graph

G, the interesting hereditary properties ΠG and Π, and an integer k, we denote our problem by

P (G,ΠG,Π, k). The main tool that we use for finding efficient algorithms for P (G,ΠG,Π, k)

is Ramsey’s theorem, which allows us to prove the existence of either large cliques or large

independent sets in arbitrary graphs, allowing some combinations of input graph size and
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parameter to be answered immediately without performing a search. For the cases where we

find hardness results, we do so by reductions from P (G,ΠG, IS, k) to P (G,ΠG,Π, k), where

IS is the property of being an independent set. We believe our framework has interest in its

own right, as a way to settle a wide class of induced-subgraph properties while avoiding the

need to develop many tedious hardness proofs for individual problems.

3.1.1 Our Contributions

We partition interesting hereditary properties into four classes named AA, AS, SA, and SS as

follows. A hereditary property Π belongs to:

• AA, if it includes all complete graphs and all independent sets.

• AS, if it includes all complete graphs but excludes some independent sets.

• SA, if it excludes some complete graphs but includes all independent sets.

• SS, if it excludes some complete graphs as well as some independent sets.

By Ramsey’s theorem, an interesting hereditary property cannot belong to SS. The interesting

cases for the problem P (G,ΠG,Π, k) with respect to Π are either Π ∈ SA or Π ∈ AS. In

the other two cases, when Π ∈ AA or Π ∈ SS the problem P (G,ΠG,Π, k) is known to be

fixed-parameter tractable regardless of ΠG [84] . We prove the following results related to

the problem P (G,ΠG, Π, k), for these interesting cases:

• If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem P (G,ΠG,Π, k) is solvable in

polynomial time (Theorem 3.1). Although the exponent of the polynomial depends in

general on Π, some classes ΠG for which subgraph isomorphism is in FPT also have

polynomial-time algorithms for P (G,ΠG,Π, k) whose exponent is fixed independently
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of Π (Theorem 3.2). The key insight for these problems is that these assumptions cause

ΠG ∩Π to be a finite set, limiting the value of k and making it possible to perform a

brute-force search for an induced subgraph while remaining within polynomial time.

A class of problems of this form that has been extensively studied involves finding cliques

in sparse graphs or sparse classes such as planar graphs; beyond being polynomial for

any fixed hereditary sparse AS or class of graphs, it is FPT for general graphs when

parameterized by degeneracy, a parameter describing the sparsity of the given graph [62].

Another example problem of this type that is covered by this result is finding planar

induced subgraphs of co-bipartite graphs; here, Π is the property of being planar, in SA,

and ΠG is the property of being co-bipartite, in AS. Similarly, this result covers finding

a k-vertex bipartite or triangle-free induced subgraph of a co-bipartite graph, or finding

a k-vertex co-bipartite induced subgraph of a planar, bipartite, or triangle-free graph.

• If both ΠG and Π belong either to AS or both belong to SA, then the problem P (G,ΠG,

Π, k) is in FPT (Theorem 3.3). The insight that leads to this result is that large-enough

graphs in ΠG necessarily contain k-vertex cliques (for properties in AS) or independent

sets (for properties in SA), which also belong to Π. Therefore, the only instances for

which a more complicated search is needed are those for which k is large enough relative

to G that the existence of a k-vertex clique or independent set cannot be guaranteed.

For that range of the parameter k, the search complexity is in FPT.

Problems of this type that have been studied previously include finding independent

sets in sparse graph families, as well as finding planar induced subgraphs of sparse

classes of graphs [18]. Finding a k-vertex graph that belongs to one of the four classes of

forests, planar graphs, bipartite graphs, or triangle-free graphs, as an induced subgraph

of a graph G that belongs to another of these three classes, belongs to the problems of

this type.

• If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in polynomial time (Theo-
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rem 3.4). This case is trivial: there can be only finitely many graphs in ΠG and we can

precompute the answers to each one.

• In the remaining cases, ΠG ∈ AA, while Π belongs to AS or to SA. These cases include

both problems known to be polynomial, such as finding independent sets in various

classes of perfect graphs, problems known to be FPT, including several other cases of

independent sets [43], and problems known to be hard for parameterized computation,

such as finding independent sets in unit disk graphs [94]. Therefore, we cannot expect

definitive results that apply to all cases of this form, as we obtained in the previous

cases. Instead, we provide partial results suggesting that in many natural cases the

complexity of P (G,ΠG,Π, k) is controlled by the complexity of the simpler problem of

finding independent sets:

– If ΠG is closed under duplication of vertices (strong products with complete

graphs), and Π contains the graphs n ·Kχ(Π) (disjoint unions of complete graphs

with the maximum chromatic number for Π), then P (G,ΠG,Π, k) is as hard as

P (G,ΠG, IS, k) (Theorem 3.5).

Families ΠG that meet these conditions, for which finding independent sets is

W[1]-complete, include the property of being a unit disk graph, the property of

being C4-free, and the property of being K1,4-free. Families Π that meet these

conditions include the property of being either planar or bipartite. Therefore,

P (G,ΠG,Π, k) is also W[1]-complete in these families.

– If ΠG ∈ AA and is closed under joins with disjoint unions of cliques, and if Π

contains all joins of an independent set with a disjoint union of cliques that

have chromatic number at most χ(Π) − 1, then P (G,ΠG,Π, k) is as hard as

P (G,ΠG, IS, k) (Theorem 3.6).

42



3.1.2 Other Related Work

Before the investigation of the parameterized complexity of P (G,Π, k), Lewis and Yannakakis

had studied the dual of this problem, the Node Deletion problem, for interesting hereditary

properties, which is defined as follows: Given a graph G and an interesting hereditary property

Π, find the minimum number of nodes to delete from G such that the resulting graph belongs

to Π. They proved that the Node Deletion problem is NP-complete [91]. Cai [27]

studied the parameterized version of Node Deletion and proved that the problem is FPT,

parameterized by the number of deleted vertices, for an interesting hereditary property with

a finite forbidden set.

Related to our line of work on the parameterized complexity of hereditary properties, finding

an independent set with the maximum cardinality (MIS) on a general graph, has been proved

to be NP-hard even for planar graphs of degree at most three [65], unit disk graphs [36],

and C4-free graphs [4]. Fellows, Hermelin, Rosamond and Vialette proved that finding

a k-Independent Set is W[1]-hard for 2-interval graphs while its complementary problem,

k-clique, as mentioned before is FPT for multiple-interval graphs [63].

3.2 Preliminaries

Throughout the chapter, we consider finite undirected graphs. Given a graph G, we denote its

vertex set and edge set by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote

the set of all adjacent vertices of v in G by NG(v), i.e. NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}.

The degree of a vertex v ∈ V (G) in G is denoted by degG(v). Given a vertex set S ⊆ V (G),

G[S] represents the subgraph of G induced by S. The maximum clique size of G is denoted

by ω(G). The maximum clique size of a graph property Π, denoted by ω(Π), is the maximum

clique size of any graph G ∈ Π. The chromatic number, χ(G), of G is the minimum number
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of colors needed to color the vertices such that no two adjacent vertices get the same color.

The chromatic number, χ(Π), of a graph property Π is the maximum chromatic number of

any graph G ∈ Π.

Let Π be a hereditary graph property. If Π ∈ AS or Π ∈ SS, then we denote the size of the

smallest independent set that does not belong to Π by iΠ. Similarly, if Π ∈ SA or Π ∈ SS,

then we denote the number of vertices in the smallest clique that does not belong to Π by

cΠ. Observe that, cΠ = ω(Π) + 1. We denote the property of being an independent set (the

family of all all independent sets) as IS.

3.3 Tractability Results

In this section, we identify pairs of hereditary properties ΠG and Π for which the problem

P (G,ΠG,Π, k) is either in P or FPT. Our proofs use Ramsey numbers which we begin

by defining. For any positive integers r and s, there exists a minimum positive integer

R(r, s) such that any graph on at least R(r, s) vertices contains either a clique of size r or

an independent set of size s. It is well-known that R(r, s) ≤
(
r+s−2
r−1

)
[73]. It will also be

convenient in our analysis to have a notation for the time to test whether a given k-vertex

graph (typically, a subgraph of our given graph G) has property Π; we let tΠ(k) denote this

time complexity.

Theorem 3.1. If ΠG ∈ AS and Π ∈ SA or vice versa, then the problem P (G,ΠG, Π, k) is

solvable in polynomial time.

Proof. We give a proof for the case when ΠG ∈ AS and Π ∈ SA. The proof for the other case

is symmetric under reversal of the roles of cliques and independent sets. Recall that every

graph on R(cΠ, iΠG
) vertices contains either a clique of size cΠ, too large to have property Π,

or it contains an independent set of size iΠG
, too large to have property ΠG. Therefore, If
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k ≥ R(cΠ, iΠG
), it is impossible for a k-vertex induced subgraph of a graph G in ΠG to also

have property Π, because such a subgraph would either have a large clique (contradicting the

membership of the subgraph in Π) or a large independent set (contradicting the membership

of G in ΠG). Therefore, for such large values of k, an algorithm for P (G,ΠG, Π, k) can simply

answer No without doing any searching.

If k < R(cΠ, iΠG
), then we can use a brute force search to test whether there exists a k-vertex

induced subgraph having property Π. Specifically, we enumerate all k-vertex subsets of the

vertices of G, construct the induced subgraph for each subset, and test whether any of these

induced subgraphs belongs to Π. Given a representation of G for which we can test adjacency

in constant time, the time to construct each subgraph is O(k2), so the total time taken by

this search is

(
n

k

)(
O(k2) + tΠ(k)

)
≤ nr

(
O(r2) + tΠ(r)

)
,

where r = R(cΠ, iΠG
) − 1. As the right hand side of this time bound is a polynomial of

n without any dependence on k, this is a polynomial time algorithm. Thus, the problem

P (G,ΠG,Π, k) is solvable in polynomial time.

Although polynomial, the time bound of Theorem 3.1 has an exponent r that depends on

Π and ΠG, and may be large. An alternative approach, which we outline next, may lead to

better algorithms for properties ΠG for which the induced subgraph isomorphism problem

is in FPT, as it is for instance for planar graphs [52] or more generally for nowhere-dense

families of graphs [97].

Theorem 3.2. If ΠG ∈ AS and Π ∈ SA or vice versa, and induced subgraph isomorphism is

in FPT in ΠG with time tsgi(n, k) to find k-vertex induced subgraphs of n-vertex graphs, then

the problem P (G,ΠG, Π, k) is solvable in polynomial time O(tsgi(n, r)), for the same constant

r (depending on Π and ΠG but not on k or G) as in Theorem 3.1.
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Proof. If k > r, we answer No immediately as in Theorem 3.1. Otherwise, we generate all

k-vertex graphs, test each of them for having property Π, and if so apply the subgraph

isomorphism algorithm for graphs with property ΠG to G and the generated graph. There are

2O(r2) graphs to generate, testing for property Π takes time tΠ(r) for each one, and testing for

being an induced subgraph of G takes time tsgi(n, r) for each one, so the time is as stated.

In particular, these problems can be solved in linear time for planar graphs.

Theorem 3.3. If both ΠG and Π belong to AS, or if both belong to SA, then the problem

P (G,ΠG, Π, k) is in FPT.

Proof. We give a proof for the case when both ΠG and Π belong to AS. The proof for the

other case is again symmetric under reversal of the roles of cliques and independent sets. For

a graph G ∈ ΠG that is large enough that |V (G)| ≥ R(k, iΠG
), it must be the case that G

contains a clique C of size k, for it cannot contain an independent set of size iΠG
without

violating the assumption that it belongs to ΠG. Because Π is assumed to be in AS, it contains

all cliques, so this k-vertex clique belongs to Π. Therefore, for graphs with this many vertices,

it is safe to answer Yes. There is a small subtlety here, in that we do not know an efficient

method to calculate R(k, iΠG
), and an inefficient method would unnecessarily increase the

dependence of our time bounds on the parameter k. However, we can use the inequality

R(k, iΠG
) ≤

(
k + iΠG

− 2

k − 1

)

to get a bound on this number that is easier to calculate. Our algorithm can simply test

whether |V | ≥
(k+iΠG

−2

k−1

)
, and if so we return Yes without doing any searching.

If |V (G)| <
(k+iΠG

−2

k−1

)
, then constructing and checking all induced subgraphs of G of size k
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to detect whether there exists such a subgraph belonging to Π takes time

(
k + iΠG

− 2

k − 1

)k (
O(k2) + tΠ(k)

)
,

a time complexity that is bounded by a function of k but independent of n. As the times for

both cases are of the appropriate form, the problem P (G,ΠG,Π, k) is in FPT.

The following corollaries can be directly obtained from Theorem 3.1 and Theorem 3.3.

Corollary 3.1. If ΠG is the property of being co-bipartite and Π is the property of being a

forest, planar, bipartite or triangle-free (or vice versa), then the problem P (G,ΠG,Π, k) is

solvable in polynomial time.

Corollary 3.2. If ΠG and Π are the properties of being planar, bipartite or triangle-free,

then the problem P (G,ΠG,Π, k) is FPT.

For completeness, we state the following (trivial) theorem:

Theorem 3.4. If ΠG ∈ SS, then the problem P (G,ΠG,Π, k) is solvable in polynomial time.

Proof. We have |V (G)| < R(cΠG
, iΠG

), because otherwise G has either a clique of size cΠG
or

a trivial graph of size iΠG
, a contradiction. Because V (G) is bounded, there are only finitely

many valid inputs to the problem P (G,ΠG,Π, k) and we can precompute the solutions to

each one.

Table 3.1 briefly summarizes the results of Theorems 3.1, 3.3 and 3.4.
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Π ∈ SA Π ∈ AS

ΠG ∈ AS

If k < R(cΠ, iΠG
)

check all induced subgraphs
of size k, otherwise return No

If |V (G)| <
(k+iΠG

−2

k−1

)
check all induced subgraphs

of size k, otherwise return Yes

ΠG ∈ SA

If |V (G)| <
(k+cΠG

−2

k−1

)
check all induced subgraphs

of size k, otherwise return Yes

If k < R(cΠG
, iΠ)

check all induced subgraphs
of size k, otherwise return No

ΠG ∈ SS |V (G)| < R(cΠG
, iΠG

), precompute all possible inputs

Table 3.1: Summary of Theorems 3.1, 3.3 and 3.4.

3.4 Hardness from strong products

In this section, we prove some hardness results for the problem P (G,ΠG,Π, k), when ΠG ∈ AA

and Π ∈ SA.

3.4.1 Hardness from strong products with cliques

To formulate the first of these results in full generality, we need some definitions. The strong

product G�H is defined as a graph whose vertex set V (G)× V (H) consists of the ordered

pairs of a vertex in G and a vertex in H, with two of these ordered pairs (u, v) and (u′, v′)

adjacent if u and u′ are adjacent or equal, and v and v′ are adjacent or equal. In particular,

the strong product with a complete graph, G�Ki, can be thought of as making i copies of

each vertex in G, with two copies of the same vertex always adjacent, and with adjacency

between copies of different vertices remaining the same as in G. We use the notation n ·Ki to

denote the disjoint union of n copies of an i-vertex complete graph; this is the strong product

of an n-vertex independent set with an i-vertex clique.

Observation 3.1. Given a graph G on n vertices, there exists an independent set of G of

size at least n/χ(G).
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Namely, the large independent set of the observation can be chosen as the largest color class

of any optimal coloring of G.

Theorem 3.5. Let ΠG ∈ AA be a hereditary property which is closed under strong products

with complete graphs, and let Π ∈ SA be a hereditary property such that, for all n, the graph

n ·Kχ(Π) belongs to Π. Then, the problem P (G,ΠG,Π, k) is as hard as P (G,ΠG, IS, k).

Proof. We describe a polynomial-time parameterized reduction from instances of P (G,ΠG, IS, k)

to equivalent instance of P (G,ΠG,Π, k
′), where k′ depends only on k (and not on G). The

reduction transforms the graph G of the instance into a new graph G′ = G �Kχ(Π), and

transforms the parameter k into a new parameter value k′ = k · χ(Π).

As we have assumed that ΠG is closed under strong products with complete graphs, it follows

that G′ ∈ ΠG, so the reduction produces a valid instance of P (G,ΠG,Π, k
′). To show that

this instance is equivalent to the starting instance, we show that G has an independent set of

size k if and only if G′ has an induced subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k, and let X = I �Kχ(Π) be the subgraph of

G′ induced by the set of all copies of vertices in I. Then |V (X)| = k′ and, as a graph

of the form k ·Kχ(Π), X belongs to Π by assumption.

(⇐) Let H ∈ Π be an induced subgraph of G′ of size k′. By Observation 3.1, it has an

independent set I ′ of size k′/χ(Π) ≥ k. This independent set can include at most one

copy of each vertex in G, so the set I of vertices in G whose copies are used in I ′ must

also have size ≥ k. Further, I is independent, for any edge between its vertices would

be copied as an edge in G′, contradicting the assumption that we have an independent

set in G′. Therefore, I is an independent set of size ≥ k in G, as desired.
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The families of unit-disk graphs, C4-free graphs, and K1,4-free graphs all belong to AA, and are

closed under strong products with complete graphs. Finding independent sets is also known

to be complete for unit-disk graphs [94, 95], C4-free graphs [16], and K1,4-free graphs [78].

Moreover, the families of planar graphs and of bipartite graphs both have the property that

n ·Kχ(Π) ∈ Π. For instance, in planar graphs, the graph n ·Kχ(Π) consists of n disjoint copies

of K4, a planar graph, and forming disjoint unions preserves planarity. Therefore, we have

the following corollary:

Corollary 3.3. If ΠG is the property of being (a) unit-disk, (b) C4-free, or (c) K1,4-free ,

and Π is the property of being either planar or bipartite, then the problem P (G,ΠG,Π, k) is

W[1]-complete.

3.4.2 Hardness from joins with cliques

The join of two graphs G + H is a graph formed from the disjoint union of G and H by

adding edges from each vertex of G to each vertex of H. The reduction that we consider in

this section involves the join with a disjoint union of cliques, G+ t ·Kc. That is, starting from

G we add t cliques of size c, with each vertex in G connected to all vertices in these cliques.

Observation 3.2. Given a graph G and two positive integers t and c, the maximum clique

size of G+ t ·Kc is ω(G) + c.

Theorem 3.6. Let ΠG ∈ AA be a hereditary property which is closed under joins with

disjoint unions of cliques, and Π ∈ SA be a hereditary property which includes all subgraphs

I+n·Kω(Π)−1 for an independent set I and positive integer n. Then the problem P (G,ΠG,Π, k)

is as hard as P (G,ΠG, IS, k).

Proof. We first construct a new graph G′ = G + r · Kc, where r = R(ω(Π) + 1, k) and

c = ω(Π)− 1, and a new parameter value k′ = k + rc. By the assumption that ΠG is closed
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under joins with disjoint unions of cliques, G′ ∈ ΠG. Now, we show that G has an independent

set of size k if and only if G′ has an induced subgraph of size k′ belonging to Π.

(⇒) Let I be an independent set of G of size k. Consider the induced subgraph I + r ·Kc

of G′, formed by including all vertices that were added to G. This subgraph has size

k′ = k + rc, and by assumption it belongs to Π.

(⇐) Let H ∈ Π be an induced subgraph of G′ of size k′. The vertices of H can be partitioned

into two sets S1 ⊂ V (G) and S2 ⊂ r ·Kc. The following two cases can occur:

• If S1 is not an independent set, let uv be an edge in S1. Then S2 must have at

most c− 1 vertices in each clique of r ·Kc, for if it contained all c vertices of one

of these cliques, then these c vertices together with u and v would form a clique of

size ω(Π) + 1, which is disallowed in Π. Therefore, S2 has at most r(c− 1) vertices,

and to obtain total size k′, S1 must have at least k + r vertices. By the definition

of r and by Ramsey’s theorem, S1 has either a clique of size ω(Π) + 1 (again, an

impossibility) or an independent set of size k, as desired.

• If S1 is an independent set, we observe that, even if S2 includes all of the vertices

added to G to form G′, it has only rc vertices. Therefore, to obtain total size k′,

S1 must have at least k vertices, and contains an independent set of size k, as

desired.

There are many families ΠG that meet the requirements on ΠG in this theorem, but do not

meet the requirements of Theorem 3.5: this will be true, for instance, when the forbidden

subgraphs of ΠG do not include disjoint unions of cliques, and are co-connected (so they

cannot be formed by joins, which produce co-disconnected graphs) but at least one of these
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graphs contains two adjacent twin vertices (with the same neighbors other than each other).

The requirement on Π in this theorem is met, for instance, by the family Π of bipartite

graphs. In this case, ω(Π) = 2, so the graphs I + n · Kω(Π)−1 are just complete bipartite

graphs, which are of course bipartite.

As an example, finding k-independent sets in K1,3-free graphs (the complements of claw-

free graphs) is known to be NP-complete, from the completeness of the same problem in

triangle-free graphs [101]. Theorem 3.6 then shows that finding k-vertex bipartite induced

subgraphs of K1,3-free graphs is also NP-complete. However, we cannot use this method to

prove parameterized hardness for this example, because the k-independent set problem in

K1,3-free graphs can be solved in FPT by applying an FPT algorithm for (k− 1)-independent

sets in triangle-free graphs [43] to the sets of non-neighbors of all vertices.

3.5 Conclusion

We have further narrowed down the parameterized complexity of the problem P (G,Π, k) for

the case when it is W[1]-complete. In particular, restricting the input graph G to belong

to a hereditary graph class ΠG helps us to settle parameterized complexity of numerous

graph classes circumventing long and tedious reduction proofs. It remains an open problem

to determine the parameterized complexity of the problem P (G,ΠG,Π, k) when ΠG ∈ AA

without any restrictions. It would be also interesting to investigate this problem under other

graph parameters beyond the size of the solution.
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Chapter 4

Simplifying Activity-on-Edge Graphs1

4.1 Introduction

The critical path method is used in project modeling to describe the tasks of a project, along

with the dependencies among the tasks; it was originally developed as PERT by the United

States Navy in the 1950s [93]. A dependency graph is used to identify bottlenecks, and in

particular to find the longest path among a sequence of tasks, where each task has a required

length of time to complete (this is known as the critical path).

In this chapter we consider a phase in planning a given project in which we do not yet know

the time lengths of each task. We are interested in the problem of visualizing an abstract

timeline of the potential critical paths (i.e., paths that could be critical depending on the

lengths of the tasks) of the project, represented abstractly as a partially ordered set of tasks.

The most common method of visualizing partially ordered sets, as an activity-on-node graph

(a transitively reduced directed acyclic graph with a vertex for each task) is unsuitable for

this aim, because it represents each task as a point instead of an object that can extend over

1The material in this chapter is from a published work with Eppstein and Frishberg [53].
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Figure 4.1: An activity-on-node graph, above, and its naively expanded activity-on-edge
graph, below, with solid arrows as task edges and empty arrows as unlabeled edges.

a span of time in a timeline. To resolve this issue, we choose to represent each task as an

edge in a directed acyclic graph. In this framework, the endpoints of the task edges have a

natural interpretation, as the milestones of the project to be scheduled. Additional unlabeled

edges do not represent tasks to be performed within the project, but constrain certain pairs

of milestones to occur in a certain chronological order. The resulting activity-on-edge graph

can then be drawn in standard upward graph drawing style [44, 12, 67, 66, 1]. Alternatively,

once the lengths of the tasks are known and the project has been scheduled, this graph can

be drawn in leveled style [82, 76], where the level of each milestone vertex represents the time

at which it is scheduled.

It is straightforward to expand an activity-on-node graph into an activity-on-edge graph by

expanding each task vertex of the activity-on-node graph into a pair of milestone vertices

connected by a task edge, with the starting milestone of each task retaining all of the incoming

unlabeled edges of the activity-on-node graph and the ending milestone retaining all of the

outgoing edges. It is convenient to add two more milestones at the start and end of the project,

connected respectively to all milestones with no incoming edges and from all milestones with

no outgoing edges. The size of the resulting activity-on-edge graph is linear in the size of the

activity-on-node graph. An example of such a transformation is depicted in Figure 4.1.

However, the graphs that result from this naive expansion are not minimal. Often, one can
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Figure 4.2: A simplification of the graph from Figure 4.1.

merge some pairs of milestones (for instance the ending milestone of one task and the starting

milestone of another task) to produce a simpler activity-on-edge graph (such as the one for

the same schedule in Figure 4.2). Despite having fewer milestones, this simpler graph can be

equivalent to the original, in the sense that its potential critical paths (maximal sequences of

tasks that belong to a single path in the graph) are the same. By being simpler, this merged

graph should aid in the visualization of project schedules. In this chapter we formulate and

provide an O(mn2)-time algorithm (where n is the number of milestones and m is the number

of unlabeled edges) for the problem of optimal simplification of activity-on-edge graphs.

4.1.1 New Results

We describe a polynomial-time algorithm that, given an activity-on-edge graph (i.e., a directed

acyclic graph with a subset of its edges labeled as tasks), produces a directed acyclic graph

that preserves the potential critical paths of the graph and has the minimum possible number

of vertices among all critical-path-preserving graphs for the given input. Our algorithm is

agnostic about the weights of the tasks. In more general terms, the resulting graph has the

following properties:

• The task edges in the given graph correspond one-to-one with the task edges in the

new graph.
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• The new graph has the same dependency (reachability) relation among task edges as

the original graph.

• The new graph has the same potential critical paths as the original graph.

• The number of vertices of the graph is minimized among all graphs with the first three

properties.

Our algorithm repeatedly applies a set of local reduction rules, each of which either merges a

pair of adjacent vertices or removes an unlabeled edge, in arbitrary order. When no rule can

be applied, the algorithm outputs the resulting graph.

We devote the rest of this section to related work and then describe the preliminaries in

Section 4.2. We then present the algorithm in Section 4.3 and show in Section 4.4 that its

output preserves the potential critical paths of the input, and in Section 4.5 that it has the

minimum possible number of vertices. We also show that the output is independent of the

order in which the rules are applied. We discuss the running time in Section 4.6 and conclude

with Section 4.7.

4.1.2 Related work

Constructing clear and aesthetically pleasing drawings of directed acyclic graphs is an old and

well-established task in graph drawing, with many publications [104, 12, 11, 77]. The work

in this line that is most closely relevant for our work involves upward drawings of unweighted

directed acyclic graphs [44, 67, 66, 1] or leveled drawings of directed acyclic graphs that have

been given a level assignment [82, 76] (an assignment of a y-coordinate to each vertex, for

instance representing its height on a timeline).

Although multiple prior publications use activity-on-edge graphs [87, 31, 5, 81] and even

consider graph drawing methods specialized for these graphs [106], we have been unable to
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locate prior work on their simplification. This problem is related to a standard computational

problem, the construction of the transitive reduction of a directed acyclic graph or equivalently

the covering graph of a partially ordered set [3]. We note in addition our prior work on

augmenting partially ordered sets with additional elements (preserving the partial order on

the given elements) in order to draw the augmented partial order as an upward planar graph

with a minimum number of added vertices [61].

The PERT method may additionally involve the notion of “float”, in which a given task may

be delayed some amount of time (depending on the task) without any effect on the overall

time of the project [7, 80]. We do not consider constraints of this form in the present work,

although the unlabeled edges of our output can in some sense be seen as serving a similar

purpose.

4.2 Preliminaries

We first define an activity-on-edge graph. The graph can be a multigraph to allow tasks that

can be completed in parallel to share both a start and end milestone when possible.

Definition 4.1. An activity-on-edge graph (AOE) is a directed acyclic multigraph G = (V,E),

where a subset of the edges of E, denoted T , are labeled as task edges. The labels, denoting

tasks, are distinct, and we identify each edge in T with its label.

Definition 4.2. Given an AOE G with tasks T , for all T ∈ T , let StG(T ) be the start vertex

of T , and let EndG(T ) be the end vertex of T .

When the considered graph is clear from context, we omit the subscript G and write St(T )

and End(T ). It may be that St(T ) = St(T ′), or End(T ) = End(T ′), or End(T ) = St(T ′) with

T 6= T ′.
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To define potential critical paths formally, we introduce the following notation.

Definition 4.3. Given an AOE G with tasks T , for all T, T ′ ∈ T with T 6= T ′, say that T

has a path to T ′ in G if there exists a path from End(T ) to St(T ′), or if End(T ) = St(T ′),

and write T  G T
′.

Definition 4.4. Given an AOE G with tasks T , a potential critical path is a sequence of

tasks P = (T1, . . . , Tk), where for all i = 1, . . . , k − 1, Ti  G Ti+1, and where P is not a

subsequence of any other sequence with this property.

Our algorithm will apply a set of transformation rules to an input AOE of a canonical form.

Definition 4.5. A canonical AOE is an AOE which is naively expanded from an activity-on-

node graph.

Every AOE G can be transformed into a canonical AOE with the same reachability relation

on its tasks. First, we start by computing the reachability relation of the tasks. The transitive

closure of the resulting reachability matrix gives an activity-on-node graph (which is quadratic,

in the worst case, in the size of the original AOE). Then, this activity-on-node graph can be

converted to a canonical AOE as described in Section 4.1.

Definition 4.6. Two AOE graphs G and H are equivalent, i.e. G ≡ H, if G and H have

the same set of tasks—i.e., there is a label-preserving bijection between the task edges of G

and those of H—and, with respect to this bijection, G and H have the same set of potential

critical paths.

Definition 4.7. An AOE G is optimal if G minimizes the number of vertices for its

equivalence class: i.e., if for every AOE H ≡ G, |V (H)| ≥ |V (G)|.

We now formally define our problem.

Problem 1. Given a canonical AOE G, find some optimal AOE H with H ≡ G.
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Figure 4.3: On the left, an AOE in which each of rules 1-3 can be applied, and on the right,
the corresponding graph output by the algorithm.

4.3 Simplification Rules

Our algorithm takes a canonical AOE and greedily applies a set of rules until no more rules

can be applied. Given an AOE G = (V,E) and given two distinct vertices u, v ∈ V , the

simplification rules used by our algorithm are:

1. if u and v have no outgoing task edges and have precisely the same outgoing neighbors,

merge u and v. Symmetrically, if u and v have no incoming task edges and have

precisely the same incoming neighbors, merge u and v.

2. If u has an unlabeled edge to v, and u has another path to v, remove the edge (u, v).

3. If u has an unlabeled edge to v and the following conditions are satisfied, merge u and

v:

• rule 2 is not applicable to the edge (u, v).

• if u has an outgoing task, then v has no incoming edge other than (u, v).

• if v has an incoming task, then u has no outgoing edge other than (u, v).

• every incoming neighbor of v has a path to every outgoing neighbor of u.

Figure 4.3 depicts an AOE graph and the graph output by the algorithm after applying all

possible rules. Vertices u and v can be merged by rule 3, since there is no other path from

u to v to apply rule 2 (satisfying the first condition in the application of rule 3), u and v
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have no outgoing and no incoming task, respectively, and v has no incoming neighbor other

than u. Therefore, the conditions of rule 3 are true (the second and third hold vacuously).

Further, vertices u′ and v′ can be merged since the first three conditions for applying rule 3

are satisfied and there exists a path from w′ to y′, satisfying the last condition.

It will be convenient for the proofs in Section 4.5 to give a name to the output of the

algorithm:

Definition 4.8. An output AOE, denoted A, is any AOE obtained from a canonical AOE

G by a sequence of applications of rules 1, 2, and 3, to which none of these rules can still be

applied.

We will show (Theorem 4.2) that A does not depend on the order in which the rules are

applied.

4.4 Correctness

In this section we prove the correctness of our algorithm (its output graph is equivalent to its

input graph).

We begin with preserving potential critical paths. We show that the rules never change

the existence or nonexistence of a path from one task to another, and that this implies

preservation of potential critical paths.

Lemma 4.1. Given two AOEs G and H with the same set of tasks T , G and H have the

same reachability relation  on the tasks if and only if G ≡ H.

Proof. Trivially, we have T  G T
′ (or T  H T ′) if and only if T is earlier than T ′ in some

potential critical path of G (or H). Therefore, preservation of potential critical paths is

equivalent to preservation of the reachability relation.
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Lemma 4.2. The output of the algorithm is equivalent to its input.

Proof. We show the invariant that given tasks T and T ′, T  T ′ at a given iteration of the

algorithm if and only if T  T ′ at the next iteration. From this, and from the fact that the

rules never change the set of tasks, it follows that the output of the algorithm has the same

reachability relation on its tasks as the input, and then the lemma follows from Lemma 4.1.

The invariant is true because merging a pair of vertices (rules 1 and 3) never disconnects

a path, and no edge is ever removed (by rule 2) between two vertices unless another path

exists between the two vertices. In particular, the end vertex of T still has a path to the start

vertex of T ′ after the application of any of the rules.

For the other direction, removing an edge never introduces a new path. Furthermore, if

vertices u and v are merged by applying rule 1, and if some vertex w has a path to some

vertex z through the newly merged uv, then the condition of rule 1 ensures that w has a path,

through u or v, to z before the merge. Similarly, suppose u and v are merged by applying

rule 3. Then if w has a path to z through uv, then (abusing notation) either w  u and

v  z before the merge, so w  z (via the edge (u, v)), or for some incoming neighbor x of

v and outgoing neighbor y of u, w  x and y  z. In this case, by the conditions of the

rule, w  z before the merge.

Lemma 4.3. Any intermediate graph that results from applying rules of the algorithm to an

input canonical AOE graph, is acyclic.

Proof. Given Definition 4.1 and Definition 4.5, the canonical AOE input G is acyclic. Now

we show none of the rules can create a cycle after being applied to an intermediate acyclic

graph G′. This is obvious for rule 2 as it removes edges. Suppose for a contradiction that

merging vertices u and v creates a cycle. The cycle must involve the new vertex resulting

from the merge. For rule 1, this implies the existence of a cycle in G′ either from u or v to
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itself which is a contradiction. For rule 3, it implies the existence of a cycle in G′ including

the unlabeled edge (u, v) or a cycle including an incoming neighbor of v and an outgoing

neighbor of u, which is a contradiction.

Corollary 4.1. Any graph A output by the algorithm is acyclic.

4.5 Optimality

In this section we prove the optimality of our algorithm: it uses as few vertices as possible.

Let A be any output AOE. Let Opt be any optimal AOE such that A ≡ Opt. Our proof

relies on an injective mapping from the vertices of A to the vertices of Opt . The existence

of this mapping shows that A has at most as many vertices as Opt , and therefore has the

optimal number of vertices. Once we have identified the vertices of A with the vertices of Opt

in this way, we show that, for a given input, any two graphs output by the algorithm (but not

necessarily Opt) must have the same unlabeled edges. Since the task edges are determined,

and since the injective mapping to Opt determines the vertices, determining the unlabeled

edges implies the order-independence of our algorithm’s choice of simplification rules.

Before defining the mapping between A and Opt , we establish some facts about the structure

of A.

Lemma 4.4. For every unlabeled edge (u, v) in any output AOE A, there exist tasks T and

T ′ such that u = End(T ) and v = St(T ′).

Proof. By Definition 4.8, A is produced by the algorithm from some canonical AOE G. This

property holds for G by Definition 4.5. As every rule of the algorithm either removes an

unlabeled edge or merges two vertices, and never creates a new edge or vertex, the proof is

complete.

62



Corollary 4.2. Every vertex in an output AOE A has an incident task edge.

We can now define a mapping from the vertices of A to those of Opt :

Definition 4.9. Given an output AOE A with task set T , and given an optimal AOE Opt

with A ≡ Opt, let M : V (A)→ V (Opt) be the following mapping: for every v ∈ V (A):

• Let M(v) = StOpt(T ), for some T ∈ T for which v = StA(T ), if such a task exists.

• Let M(v) = EndOpt(T ), where v = EndA(T ), otherwise.

As shown in Corollary 4.2, every vertex in A has an incident task edge, and by Definition 4.6,

A and Opt have the same set of tasks. Therefore, this mapping is well-defined (up to its

arbitrary choices of which task to use for each v). To prove that M is injective, we will use

the fact that since A ≡ Opt, A and Opt have the same reachability relation (by Lemma 4.1

and Lemma 4.2).

The heart of the proof that M is injective lies in showing that if two tasks do not share a

vertex in A, the corresponding tasks also do not share the corresponding vertices in Opt .

From this it follows that M cannot map distinct vertices in A to the same vertex in Opt .

Lemma 4.5. Given an output AOE A, and an optimal AOE Opt ≡ A, with task set T , let

T and T ′ be two distinct tasks in T . If StA(T ) 6= StA(T ′), then StOpt(T ) 6= StOpt(T
′). If

EndA(T ) 6= EndA(T ′), then EndOpt(T ) 6= EndOpt(T
′).

Proof. Suppose for a contradiction that StA(T ) 6= StA(T ′), but StOpt(T ) = StOpt(T
′) (the

other case is symmetrical). Let u = StA(T ) and v = StA(T ′). Consider the following

(exhaustive) cases for u and v:

1. u and v have no incoming edges
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2. u or v has an incoming unlabeled edge, but neither u nor v has an incoming task edge

3. u or v has an incoming task edge A

In case 1, applying rule 1 results in merging u and v. However, since A is the output of the

algorithm, no rule can be applied to A. This is a contradiction.

In case 2, u and v cannot have the same incoming neighbors or else rule 1 would apply. We

may assume without loss of generality that there exist a vertex w and an unlabeled edge

(w, u), such that the edge (w, v) does not exist. By Lemma 4.4, there exists a task A where

w = EndA(A). Since A A T and A ≡ Opt (by Lemma 4.2), then by Lemma 4.1, A Opt T ,

so A Opt T
′, since StOpt(T ) = StOpt(T

′). Again by Lemma 4.1, A A T ′, so there is a path

P from w to v. If |P | = 1, then this contradicts that (w, v) does not exist. Suppose |P | > 1.

Then we show there exist some vertex w′ 6= w and an unlabeled edge (w′, v). The following

cases are exhaustive:

(a) P contains a path from u to v. As such a path to v exists and v has no incoming task

edge, there exist a vertex w′ and an unlabeled edge (w′, v) (w′ 6= u), not belonging to P

unless rule 3 can be applied to vertex v and its incoming neighbor in path P .

(b) P does not contain a path from u to v. As |P | > 1, an unlabeled edge (w′, v) belonging

to path P exists.

Given the existence of (w′, v), by Lemma 4.4, there exists a task B where w′ = EndA(B).

B  A T ′, so by reasoning similar to the above, B  A T . Then, one can apply rule 2 and

either remove edge (w′, v) in case a or (w, u) in case b (Figure 4.4); this contradicts the

definition of A.

In case 3, we can assume without loss of generality that u has an incoming task A; consequently,

u = EndA(A). Then, by Lemma 4.1, we have A  Opt T
′ and thus A  A T ′ via a path P .
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Consider the following cases for P :

(a) P contains a task edge B

(b) P is a sequence of unlabeled edges

In case a, by Lemma 4.1 B  Opt T
′, and thus B  Opt T , and therefore B  A T . This

creates a cycle between u and EndA(B), contradicting Corollary 4.1.

In case b, illustrated in Figure 4.5, since rule 3 cannot be applied (if it could, this would

contradict the definition of A), there exist a vertex x not on the path from u to v, and an

edge (x, v) (a task edge or an unlabeled edge). Therefore, there exists a task B where either

v = EndA(B) or by Lemma 4.4, x = EndA(B). Considering Opt and applying Lemma 4.1,

B  Opt T so B  A T . This path either creates a cycle in A or allows for removing edge

(x, v) by rule 2, which is a contradiction.

Thus if StA(T ) 6= StA(T ′), then StOpt(T ) 6= StOpt(T
′).

Lemma 4.6. Given an output AOE A, and an optimal AOE Opt ≡ A, with task set T , let

T and T ′ be two distinct tasks in T . If EndA(T ) 6= StA(T ′), then EndOpt(T ) 6= StOpt(T
′).
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Proof. The proof, which is in Appendix ??, uses essentially the same approach as the proof

of Lemma 4.5: supposing that the two vertices are the same, then using the fact that A and

Opt have the same reachability relation on their tasks, and the definition of A as having no

more rules to apply, to derive a contradiction.

There is one remaining technicality: we have defined an optimal AOE as being acyclic; the

question arises whether one could reduce the number of vertices by allowing (unlabeled)

cycles. However, this is not the case; it is easy to see that any unlabeled cycle can be merged

into one vertex, reducing the number of vertices, without changing the reachability relation

on the tasks.

We are ready to prove our main results.

Theorem 4.1. Given a canonical AOE G, the algorithm produces an optimal AOE Opt ≡ G.

Proof. Let A be the output AOE produced by the algorithm on G. Given any optimal AOE

Opt and A, the mapping M in Definition 4.9 is injective: suppose for a contradiction that u

and v are distinct vertices in A, and w = M(u) = M(v). Then by the definition of M , either

u, v, and w have the same incoming task, or u, v, and w have the same outgoing task, or

there exist tasks T and T ′ such that (without loss of generality) u = EndA(T ), v = StA(T ′),

and EndOpt(T ) = w = StOpt(T
′). By Lemmas 4.5 and 4.6, all three of these cases imply that

u = v.

Therefore, |V (Opt)| = |V (A)|. Furthermore, A ≡ G, by Lemma 4.2. The theorem follows.

Theorem 4.2. Given an input, the algorithm produces the same output regardless of the

order in which the rules are applied.

Proof. As stated in subsection 4.1.1, all task edges of an input canonical AOE G are present
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in any output of the algorithm and the mapping determines the vertices. Therefore, it

suffices to show that any two graphs output by the algorithm have the same set of unlabeled

edges. Suppose for a contradiction that A1 and A2 are two distinct outputs of the algorithm,

resulting from applying different sequences of rules. By Theorem 4.1, the algorithm always

produces an optimal AOE. Therefore, |VA1| = |VA2 | = |VOpt|. Since A1 6= A2, there is an

unlabeled edge (u, v) in A1 (without loss of generality) that is not in A2. By Lemma 4.4, there

exist task edges T and T ′ such that u = EndA1(T ) and v = StA1(T
′). We have T  A1 T

′.

Since by Lemma 4.1 and Lemma 4.2, A1 and A2 both preserve the reachability relation of

the tasks of G, we have T  A2 T
′. Consider the cases for path P from T to T ′ in A2:

1. There exists a task A in P other than T and T ′.

2. Path P is a sequence of unlabeled edges.

In case 1, we have T  A2 A A2 T
′ and therefore, T  A1 A A1 T

′. Then by rule 2, one

can remove the edge (u, v), which contradicts the definition of A1.

In case 2, the length of P is at least two, and P contains a vertex w. By Lemma 4.4,

there exist tasks A and B where w = EndA2(A) = StA2(B). Now, since A1 ≡ A2, both

graphs are optimal, and both graphs are outputs of the algorithm, Lemma 4.6 implies that

EndA1(A) = StA1(B). Call this vertex x. Then there exists a path from u to v, through x,

by Lemma 4.1, and one can remove the edge (u, v) by rule 2. This contradicts the definition

of A1.

It is tempting to imagine that Theorem 4.2 implies uniqueness of the optimal AOE. However,

this is not the case: the unlabeled edges of an optimal AOE are not determined by our

bijection. Figure 4.6 shows an optimal AOE graph that our algorithm cannot produce

(because it violates Lemma 4.4). One way to see the optimality is to expand the graph naively
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Figure 4.6: An optimal AOE graph that the algorithm cannot produce.

into a canonical AOE, apply the algorithm, and verify that the resulting number of vertices

is the same.

4.6 Analysis

Let n be the number of vertices in a canonical AOE (which is linear in the number of tasks),

and m the number of unlabeled edges. (The number of task edges is O(m).) There are

at most O(n + m) iterations in the algorithm, because each iteration either merges two

vertices or removes an edge, by applying one of the three rules. This requires finding an

edge to remove (O(m) potential edges) or two vertices to merge (O(n2) potential pairs), then

performing the merge or the removal. Intuitively, our algorithm runs in polynomial time as it

takes polynomial time to find and apply a rule.

We provide a faster implementation of our algorithm than the naive approach. The algorithm

transforms a canonical AOE graph G into an optimal AOE graph by applying rules 1, 2 or

3. For simplicity, we label the vertices 1, . . . , n. At each iteration, compute a reachability

matrix M for the current graph. M [u][v] indicates whether there exist zero, one, or more

than one paths from u to v. In order to compute M , for all u and v initialize M [u][v] = 1 if

the edge (u, v) exists. Then sort the vertices in topological order (such an ordering exists

according to Lemma 4.3). For each vertex v in this order, and for each vertex u, set M [u][v]
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Algorithm 1: the proposed transformation algorithm.

Data: Canonical AOE G
Result: Optimal AOE Opt

1 while true do
2 Initialize and compute the reachability matrix M ;
3 Remove, by rule 2, all unlabeled edges (u, v) where M [u][v] = 2;
4 if rule 1 applies then
5 apply rule 1;
6 else if rule 3 applies then
7 apply rule 3;
8 else
9 return the graph;

to min(2,
∑

w∈W (M [u][w])), where W is the set of all vertices w such that either w = v

or there exists an edge (w, v). This procedure takes O(nm) time. Algorithm 1 provides a

summary.

Given the reachability matrix, an unlabeled edge (u, v) is removed by rule 2 in O(1) time, if

M [u][v] ≥ 2. Therefore, checking rule 2 for all edges takes O(m) time.

Without loss of generality, for rule 1, we only consider merges of pairs of vertices with the

same outgoing neighbors. This requires, for each vertex u with no outgoing task edge, a

sorted list of outgoing neighbors (S[u]). To obtain such lists for all vertices, list unlabeled

edges as pairs of vertices and sort all the pairs with two bucket sorts: first over the first

elements of the pairs, then over the second elements. Breaking the sorted list into chunks of

pairs with the same first element (say u), gives the outgoing neighbors of u, in the second

elements of the pairs, in a numerically sorted order. This takes O(m) time. Then find pairs of

vertices to merge, if any exist: first, bucket sort vertices based on their out-degree. Vertices

in different buckets cannot be merged by rule 1. For each bucket b containing vertices with

degree d (0 ≤ d < n), call MergeDetection(b, d):

The vertices in each resulting bucket have the same outgoing neighbors and can be merged

by rule 1. As each vertex with degree d appears in one bucket in each of d + 1 iterations,
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10 Function MergeDetection(bucket a, i):
11 if i = 0 then
12 return bucket a
13 else
14 bucket sort vertices v of a based on S[v][i]
15 foreach newly created bucket a′ do
16 MergeDetection(a′, i− 1)

this sort takes O(
∑

v(deg(v))) = O(m) time. Upon merging vertices u and v, name the new

vertex min(u, v).

To check rule 3, for each vertex v, compute I(v): the intersection of the reachable sets of the

incoming neighbors of v. This takes O(mn) time.

Consider only those unlabeled edges (u, v) that meet the preconditions of rule 3 concerning

the existence of outgoing and incoming tasks of u and v respectively. Test whether the last

point in rule 3 applies to edge (u, v) by testing in O(n) time whether all outgoing neighbors

of u are in I(v).

Computing the reachability matrix takes O(mn) time, and using this matrix to check for rule

2 takes O(m) time per iteration. Checking for rule 1 or 3 takes O(mn) time per iteration.

Further, the outer loop in Algorithm 1 runs at most n times as it either merges two vertices

or returns the output. This gives a total complexity of O(mn2) for our algorithm.

4.7 Conclusion

Our algorithm reduces the visual complexity of an activity-on-edge graph, making it easier

to understand bottlenecks in a project. The algorithm repeatedly applies simple rules and

therefore can be implemented easily. We have shown that the algorithm runs in O(mn2) time.

One question for future work is whether this analysis is tight. Another question is whether
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some other algorithm could achieve an optimal graph more efficiently.

Furthermore, one can measure the complexity of a graph in other ways. One question for

future work is whether one can minimize the number of edges in an AOE graph in polynomial

time. Another question is whether one can, in polynomial time, convert an AOE graph G

into a graph that (i) has the same potential critical paths as G, and (ii) has a plane drawing

with fewer edge crossings than all other graphs satisfying (i). It would also be interesting to

implement this algorithm and run it on realistic graphs arising in project planning, and to

evaluate the visual complexity of the resulting graphs in terms of the measures described

above.
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Chapter 5

Conclusion

In Chapter 2, we have developed two parameterized algorithms for representing k-leaf roots

and ultimately recognizing k-leaf powers with bounded degeneracy. We leave the problems of

finding a better dependence on the parameters and recognizing the parameterized complexity

of k-leaf powers for graphs of bounded clique-width as open problems.

Following the work on the paradigm of parameterized complexity, we have studied the

parameterized complexity of finding subgraphs with hereditary properties on graphs belonging

to hereditary graph classes and established a framework which settles the parameterized

complexity of numerous graph classes by checking some characteristics of the underlying

hereditary properties.

Further, we have proposed as O(mn2)-time algorithm to simplify activity-on-edge graphs

used for visualization of project schedules. Given an input activity-on-edge graph, the output

of the algorithm is an activity-on-edge graph with the same critical paths as the input with

the minimum possible number of vertices. We leave the problem of optimizing the number of

unlabeled edges as an interesting open problem.
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complexity of independent set in H-free graphs. Algorithmica, 82(8):2360–2394, 2020.

[17] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network analysis in the social
sciences. science, 323(5916):892–895, 2009.

[18] G. Borradaile, D. Eppstein, and P. Zhu. Planar induced subgraphs of sparse graphs. J.
Graph Algorithms & Applications, 19(1):281–297, 2015.
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September 1, 2006, Proceedings, volume 4162 of Lecture Notes in Computer Science,
pages 238–249. Springer, 2006.

[34] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm
for the directed feedback vertex set problem. In C. Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 177–186. ACM, 2008.

[35] Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded degrees
and errors. SIAM J. Comput., 32(4):864–879, 2003.

[36] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discret. Math.,
86(1-3):165–177, 1990.

[37] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inform. and Comput., 85(1):12–75, 1990.

75



[38] B. Courcelle. On the expression of graph properties in some fragments of monadic second-
order logic. In N. Immerman and P. G. Kolaitis, editors, Descriptive Complexity and
Finite Models: Proceedings of a DIMACS Workshop, January 14–17, 1996, Princeton
University, volume 31 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages
33–62. American Mathematical Society, Providence, RI, 1997.

[39] B. Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook of graph grammars and computing by graph transfor-
mation, Vol. 1, pages 313–400. World Scientific, River Edge, NJ, 1997.

[40] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars.
J. Comput. System Sci., 46(2):218–270, 1993.

[41] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150,
2000.

[42] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[43] K. K. Dabrowski, V. V. Lozin, H. Müller, and D. Rautenbach. Parameterized algorithms
for the independent set problem in some hereditary graph classes. In C. S. Iliopoulos
and W. F. Smyth, editors, Combinatorial Algorithms - 21st International Workshop,
IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers, volume 6460 of
Lecture Notes in Computer Science, pages 1–9. Springer, 2010.

[44] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display
of planar upward drawings. Discrete and Computational Geometry, 7(4):381–401, 1992.
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In A. Brandstädt, D. Kratsch, and H. Müller, editors, Graph-Theoretic Concepts in
Computer Science, 33rd International Workshop, WG 2007, Dornburg, Germany, June
21-23, 2007. Revised Papers, volume 4769 of Lecture Notes in Computer Science, pages
76–85. Springer, 2007.

[72] R. Halin. S-functions for graphs. J. Geometry, 8(1-2):171–186, 1976.

[73] F. Harary. Graph theory. Addison-Wesley, 1991.

[74] E. Havvaei and N. Deo. A game-theoretic approach for detection of overlapping
communities in dynamic complex networks. International Journal of Mathematical and
Computational Methods, 1:313–324, 2016.

[75] E. Havvaei and N. Deo. A game-theoretic approach for detection of overlapping
communities in dynamic complex networks. CoRR, vol. abs/1603.00509, 2016.

[76] P. Healy, A. Kuusik, and S. Leipert. A characterization of level planar graphs. Discrete
Math., 280(1-3):51–63, 2004.

[77] P. Healy and N. S. Nikolov. Hierarchical Graph Drawing. In R. Tamassia, editor,
Handbook of Graph Drawing and Visualization, pages 409–453. CRC Press, 2014.

78



[78] D. Hermelin, M. Mnich, and E. J. van Leeuwen. Parameterized complexity of induced
graph matching on claw-free graphs. Algorithmica, 70(3):513–560, 2014.
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