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Abstract

Topics in relative arbitrage, stochastic games and high-dimensional PDEs
by

Tianjiao Yang

The relative arbitrage portfolio introduced in Stochastic Portfolio Theory (SPT), out-
performs a benchmark portfolio over a time-horizon with probability one. Following this
concept, when an investor competes with both market and peers, does relative arbitrage
opportunity exist as well? What is the best performance one can achieve? What is the
impact on market dynamics and investors when a large group competes in this way?

This thesis constructs a framework of multi-agent optimization under SPT to tackle
these questions. With a market model depending on stock capitalizations and targeted
investors, we analyze the market behavior and optimal investment strategies to attain
relative arbitrage in a large population regime under some market conditions.

We show a unique equilibrium for relative arbitrage in N-player and mean field games
(MFG) with mild conditions on the equity market, by modifying extended MFG with
common noise and its notion of the uniqueness in Nash equilibrium. The optimal arbi-
trage can be decomposed and generated using the idea of functionally generated portfo-
lios. In this way, the constraints on relative return and investment time horizon can be
specified.

The second part of the thesis studies numerical aspects of solving high dimensional
PDEs with multiple solutions, and learning relative arbitrage opportunities. A grid based
solution for relative arbitrage is derived in volatility stabilized market models. We then
study deep learning schemes for non-unique solutions of PDEs. Experiments on solving

the non-negative minimal solution of a Cauchy problem is provided.
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Chapter 1

Introduction and preliminaries

This chapter introduces the background of the main topics used in this thesis, including
Stochastic Portfolio Theory and Stochastic Games. The notations introduced in this
chapter will be used repeatedly in the following chapters. The outline of the thesis is in

the end of this chapter.

1.1 Stochastic portfolio theory

The basic assumptions and the settings of stock capitalizations in this thesis fall under
Stochastic Portfolio Theory (SPT), introduced by Robert Fernholz [26], which analyzes
portfolio behavior and equity market structure.

Stochastic portfolio theory assumes the existence of a local martingale deflator.The
paper [65] further discusses the relation between the no-arbitrage hypothesis and Stochas-
tic Portfolio Theory. Here, no assumption is made regarding the existence of an equiva-
lent (local) martingale measure, i.e., arbitrage opportunities are not excluded. [28] shows
that relative arbitrage can exist in equity markets that resemble actual markets, and

it resulted from market diversity, a condition that prevents the concentration of all the
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market capital into a single stock. While [27] shows that diversity is not the proximate
cause for the existence of relative arbitrage, but instead this cause appears to lie in a
condition related to the variance rates of the stocks in the market. This variance-related
condition can pertain even in the absence of diversity.

It is commonly used by market participants to compare the performance of an invest-
ment strategy with a benchmark index. Among different metrics and tools to capture
opportunities that outperform a benchmark portfolio, relative arbitrage established in
Stochastic Portfolio Theory (SPT), see Fernholz [26], is of special interest to investment

and portfolio management.

1.1.1 Market and its Properties

In a market model, there are n stocks with prices-per-share driven by K independent
Brownian motions W = (W,..., W) on a filtered probability space, K > n. A stock

price process X;, ¢ = 1,...,n satisfies

dX;(t) = X;(t)(B(t)dt + ) ou(t)dWi(t),
k=1

with its rates of return 4(-) and the volatilities o(-).
7;(t) is the proportion of wealth V' (¢) at time ¢ that is invested in stock i. To emphasize
the dependence of wealth on the initial capitalization v and portfolio, we write V(t) =

Vv (t), and

AVoT(t) &
Vv7r Z

In particular, we will use market portfolio m;(-) in the future, which is in proportion



Introduction and preliminaries Chapter 1

to the weight of each stock,

We denote X () as the total capitalization: X (¢) = X(t) + ... + X, (¢).
Investing according to the portfolio process m(-) amounts to ownership of the entire

market. The resulting wealth process is

Apply Ito’s rule, the dynamics is
K
dm;(t) = m;(t) l%’mdt + Z Ti?<t)de(t):|, 1=1,...,n. (1.1)
k=1

Here 7 () is the matrix with entries 73'(t) := o (t) — 2J;_, m;(t)o;i(t), €; the ith unit

vector in R and the vector y™(t) is with the entries ™ (¢) := (e;,—m(t))"(5(t)—a(t)m(t)).

1.1.2 Relative Arbitrage

The relative arbitrage problem is first defined in SPT, the focus of which is to generate
a strategy that outperforms a benchmark portfolio almost surely at the end of a certain
time span and look for the highest relative return. It shows in [28] that relative arbitrage
can exist in equity markets that resemble actual markets, and that the relative arbitrage
results from market diversity, a condition that prevents the concentration of all the
market capital into a single stock. Specific examples of the market including the stabilized
volatility model, in which relative arbitrage exists, are introduced in [27]. To relax the

assumptions about the behavior of the market imposed in SPT, [68] considers relative
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arbitrage in regulated markets where dividends and the merge and split of companies are
taken into account.

Suppose we use portfolio p; and py to generate wealth processes from the same initial
wealth, i.e., V*1(0) = V*2(0) = 1. There is an arbitrage of portfolio p; relative to py if

VP (T) dominates V#2(T') almost surely at the end of time span [0, T
P(VP(T) = Vo (T)) =1, P(VP(T) > VP(T)) > 0.

The concept of arbitrage in arbitrage theory can be understood as a portfolio relative to

an all zero-valued strategy.

Desired properties of the market

A natural question follows is When does relative arbitrage exist? This section recalls

some properties of the market which are used to show the existence of relative arbitrage.

Definition 1.1.1 (Non-degeneracy and bounded variance). A market is a family M =
{X1,..., Xy} of n stocks, each of which is defined as in (2.1), such that the matriz o(t)
is nonsingular for every t € [0,00), a.s. The market M is called nondegenerate if there

exists a number € > 0 such that for x e R"
P(za(t)z” = €||z||?,Vt € [0,0)) = 1,

The market M has bounded variance from above, if there exists a number M > 0 such
that for r € R"

P(zra(t)z” < M||z||?, vt € [0,0)) = 1.

Remark 1. Let w be a portfolio in a nondegenerate market. Then there exists an € > 0
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such that forv=1,...,n,

T7(t) = €(1 — Tax(t))?, Vt € [0, 0) (1.2)

K24

almost surely. Indeed, this is directly from definition 1.1.1, and 7] (t) = ;i (t) — 20u.(t) +

Qrr(t), where o (t) = 7' (t)a(t)w(t). Details of the proof can be found in [26].

Intuitively, no single company can ever be allowed to dominate the entire market in

terms of relative capitalization.

Definition 1.1.2 (Diversity of market). The model M of (2.1), (2.2) is diverse on the
time-horizon [0,T], with T > 0 a given real number, if there exists a number n € (0,1)
such that

max m; :=m) <1-nV0<t<T (1.3)

1<isn

almost surely and M is weakly diverse if there exists a number n € (0,1) such that
1 (T
TJ m(Odt <1-n,¥ 0<t<T (1.4)
0
almost surely.

Optimal arbitrage

The market portfolio plays an important role as numeraire and the relative arbitrage
with respect to the market is a common interest for investors. In Fernholz and Karatzas
[22], the best possible investment strategy to capture relative arbitrage with respect to the
market portfolio is characterized as the minimal proportion of initial market capitalization
X(0) :=x1 4 ...+ x, as initial wealth to start with, so that at terminal time the wealth

V(T) outperforms the total market capitalization X (7).

5
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The best arbitrage opportunity is further analyzed in [23] in a market with Knightian
uncertainty. The smallest proportion of the initial market capitalization is described as
the min-max value of a zero-sum stochastic game between the investor and the mar-
ket. Further investigation of exploiting relative arbitrage opportunities has been done
in [6, 29, 64, 65]. Assuming the market is diverse and sufficiently volatile, functionally
generated portfolios introduced in SPT is a tool to construct portfolios with favored re-
turn characteristics. The optimization problem from the functional generated portfolio
point of view is handled in [72]. The papers [56] and [71] connect relative arbitrage with

information theory and optimal transport problems.

1.2 Stochastic Games

Games are defined as mathematical models of strategic interaction among rational
decision makers. In many situations, every party in the game interacts not only once.
Instead, their actions are inter-temporal strategies because of ongoing interactions over
time based on historical information. This type of game is modelled in repeated games.

Stochastic games first introduced by Lloyd Shapley [66] further generalize repeated
games. Stochastic game models a repeated interaction between several participants in
which the underlying state of the environment changes stochastically, and it depends
on the decisions of the participants. The play proceeds by steps according to transition
probabilities controlled jointly by the players. Each player faces a Markov decision process
in which they maximize a total payoff criterion.

In most parts of this thesis, we apply models under the umbrella of stochastic differen-

tial games. Specifically, a stochastic differential game consists of the following elements:

e A set of players £ € {1,...,N};
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e State dynamics X; on the probability space (€2, F, P) equipped with a complete
and right-continuous filtration F. The time evolution of the state is represented by

a stochastic differential equation
dX; = B(Xy, m)dt + o (X, m)dWy, e (0,T],

XO = Zo,
W, is independent F-Brownian Motion of the same dimension as that of X;.
e A set of action profiles for each player A = Al x ... x AV;

e A cost functional, which is specific to actions and players and is with the implicit
assumption that players try to maximize their individual cost; Thus, each player
¢ want to choose their actions so as to minimize the expected value of the cost

functional J respectively.
T
Iw) = 9(Xn) + | 7
0

As a special case, when N = 1, the model is equivalent to a stochastic control problem.

1.2.1 Notions of equilibrium

In N player games, since the controls are allowed to differ from one player to another,
the expected cost functionals Ji,...,Jy may not be the same. Except for some very
specific cases, it is hard to find controls my,..., 75 that minimize simultaneously all
J1, ..., Jy. Instead of solving the problem globally, the idea of consensus is formalized
by the concept of Nash equilibrium (NE). Players choose their strategies optimally given

correct beliefs about the strategies of the other players, while no player has incentive to
7
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change their strategy.

Definition 1.2.1 (Nash Equilibrium). A vector 7% = (7n%,...,7%) of admissible strate-

gies is a Nash Equilibrium if, for allmte A andi=1,...,n,

Jf(ﬂ_é* 77._2*) < Jé(ﬂ_€ 7T~_e*>7

i g IR}

where w(-) = (71(-),..., 7V ().

1.2.2 Mean field games

The introduction of “mean fields” arising from physics provides a solution to simplify
the modelling of all inter-particle interactions when there are a large number of particles
in a dynamic system. The pioneering work of Lasry and Lions [49] and Huang et al.
[39] of Mean field game theory adapts this methodology to agents interacting through
information and strategies in a game setting.

Non-zero-sum N-player games are notoriously hard to solve. With a coupled system of
N differential equations, explicit solutions of equilibria are difficult to find. Furthermore,
there is no existence theorem for approximate Nash equilibria in such games. The agents
of mean field game theory are less sophisticated than the players of N-player game theory
since they base their strategies only on the statistical state of the mass of co-agents.
Mean field games are expected to be more effective and tractable than N player games
because of the decoupling of PDEs rooted in differential calculus and measure theory.
In return, mean field games might give us more information about the finitely many
investors situation.

A special class of stochastic differential games under the following assumptions is

considered, for the discussion of mean field games:
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Assumption 1. (1) All the players are indistinguishable (statistically identical) in
their behavior, and a single player’s influence on the outcome of the game dimin-

ishes as the number of players tends to infinity.

(2) All the players are strongly symmetric in the sense that an individual player is only

affected by the statistical distribution of the private states of the other players.

An individual’s private state may have different sources of randomness - the idiosyn-
cratic noise, which is independent from the other players; and the common noise, which
is noise in the environment that affects everyone. In general, we deal with the model for

a symmetric system of size NV, that is given by a system of N SDEs of the form:

dXZ = b(t, Xt7 s Oét)dt + U(t, Xt, s Oét)thZ + Uo(t, Xt, Mt Oét)dBt,

fort e [0,T], T >0,ie{l,..., N}, where (B,W!' ..., W?¥)is a sequence of independent
k-dimensional Wiener processes on some complete probability space (£, F,P). b, o, 0¢ are
measurable functions defined on [0,7] x R* x P(R*). P(R¥) is the space of probability
measures on R* endowed with the topology of weak convergence. Denote 71" as the

empirical distribution of the N private states, that is

1 N
:ut - N j§:1 6X;7

d; denotes the unit mass (Dirac measure) at = € E, where E is a compact metric space.
When searching for a Nash Equilibrium of a large number of players, zi¥ is not affected by
a deviation of a single player. Furthermore, because of de Finetti’s law of large numbers,
we expect that these empirical measures converge when the size N — 0.

When the impact of the common noise exists, the limiting environment must be

given by a stochastic flow (p)we[o,r7 of probability measures describing the conditional
9
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distribution of the population in equilibrium given the realization of the common noise,
owing to the theory of propagation of chaos. A general mean field game formulation in

this case is
(i) Fix an adapted process [0,T] 3t — u, € P(RF).

(ii) Solve the stochastic control problem
T
lgﬁE[ f f(tv Xt7 Mty at>dt + g(XT7 MT):|
@ 0

SUbjeCt to dXt = b(t7 Xt7 K, at)dt + U(t7 Xt7 Kt at)th + 00(t7 Xt7 K, at)dBt7
X() = Xp-.
(1.5)
(iii) Given an optimal control, find the corresponding conditional laws (u}), t € [0, 7]

of the optimally controlled state process (X}), t € [0,T] given W.
(iv) Find a fixed point (g)sefo,rq, such that p, = pf, for all t € [0, T7.

The large population system in early MFG theory is reformulated by [13] into the
stochastic version to accommodate the common noise. With the notion of weak mean
field games, [45] and [16] study the mean field game with common noise in the open
loop equilibrium. [45] assures that the weak MFG solutions characterize the limits of
approximate Nash equilibria. In an approximate Nash equilibrium, this requirement
is weakened to allow the possibility that a player may have a small incentive to do
something different. If a sequence of N-player approximate equilibria exists, then its
limits are described by weak MFG solutions. Conversely, if a weak MFG solution exists,
then it is achieved as the limit of some sequence of N-player approximate equilibria.

Intuitively speaking, even in the limit N — oo, the equilibrium distribution of the

population should still feel the influence of the common noise W, and for that reason, it

10
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should not be deterministic. The common noise turns the forward Kolmogorov equation
into a forward stochastic Kolmogorov equation.

Our paper applies the philosophy of mean field games from [15] and [35] to search
for approximate Nash equilibrium when N — oco. This approach of comparing N-player
game and the corresponding mean field game is also discussed in [48], where the Merton

problems with constant equilibrium strategies are studied.

1.3 Outline of the thesis

Thesis organization in a nutshell

The organization of this paper is as follows. Chapter 2 introduces the market with
N investors as a well-posed interacting particle system. Chapter 3 discusses the relative
arbitrage problem and the benchmark we use in the rest of the thesis under a finite
particle system.

In Chapter 4, the existence of relative arbitrage is proved and the optimization of
relative arbitrage is derived in N-player games with different information structures.
Chapter 5 proceeds the relative arbitrage equilibrium of extended mean field games and
presents an example with explicit equilibrium and optimal strategies. We show that the
mean field game limit is indeed a nice approximation to the N-players game.

Nevertheless, only a few specific types of mean field games under certain conditions
have unique closed form equilibria solutions. We present in Chapter 6 that the functional
generated portfolios (FGP) results for a large population and its connection with Nash
equilibrium results in previous chapters. In Chapter 7, numerical schemes are investi-
gated for the solvability of Nash equilibrium in N-player games and mean field games,
focusing on volatility-stabilized models. Lastly, Chapter 8 discusses deep learning solu-

tions towards the PDE systems in relative arbitrage problems.
11
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Outline

It is commonly used by market participants to compare the performance of an invest-
ment strategy with a benchmark index. To better describe and analyze the market based
on SPT, this paper investigates the following questions: How do we capture the competi-
tive behaviors of participants in the financial market? With additional information about
these investors, how do we improve the market model and make portfolio suggestions?
We want to enable portfolio managers or asset management entities to customize their
portfolio optimization strategies based on the preference and selection of benchmarks.

This paper forms a stochastic differential game system of equity market, where in-
vestors aim to pursue outperformance to the market index and peer investors. We intro-
duce the mean field interaction among participants and study the relationship between
the N-player game and mean field game set-up of our problem of interest.

One focus of our work is on the multi-agent optimization theory for relative arbi-
trages. Our model arises from the pioneering work of Fernholz and Karatzas [22], which
characterizes the best possible relative arbitrage with respect to the market portfolio. We
construct a general framework for multi-player portfolio optimization problems without

the requirement of the existence of an equivalent martingale measure.

e Market, investors and their mean field interactions

This paper first considers N investors in an equity market M over a time horizon
[0,7]. We consider N is big, so that the equity trading of this group as a whole
contributes to the evolution of the market; whereas individuals among the group
are too “small” to bring changes to the market. These investors interact with
the market through a joint distribution of their wealth and strategies, particularly
for example, through the total investments of this group to the assets. There

are n stocks with prices-per-share driven by n independent Brownian motions W =
12
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(Wi, ..., W,) on afiltered probability space. The n-dimensional price process XY =

(X, ..., XN) follows a nonlinear stochastic differential equation
dxN(t) = XN ), XN (), vN)dt + XN (o (t, XV (1), vV )dW, (1.6)

in which its drift 8 and diffusion o coefficients also depend on the joint empirical

measure v of portfolio strategy 7* and wealth V¢ ¢ =1,..., N of N investors.

1 N
wZNZQWw (1.7)

We show the market model is well-posed through a finite dynamical system.

Another focus of our work is to build up the finite and infinite player game frame-
work of relative arbitrage. This also provides a novel application to the N-player games
and mean field games. After the discussion of N-player game, we establish a modified
extended mean field game and a scheme to seek the mean field equilibrium: The infinite-
player system involves two different fixed point conditions about the cost functional and
the state processes, whereas only one of them is required to be unique. Our paper ap-
plies the philosophy of mean field games to search for approximate Nash equilibrium

when N — o0.

e Relative arbitrage as a N-player game’s equilibrium

To specify what we mean by relative arbitrage opportunities in this problem set-up,
we first define a benchmark process V¥ by the weighted average performance of

the market and the investors

N
=

V() =6 XN () + (1-4) %i Vi, o<t
=1

13
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with a fixed weight 0 € [0, 1]. An investor achieves the relative arbitrage if his/her
terminal wealth can outperform this benchmark by c¢,, a constant personal index
for the investor ¢, given at time 0. Furthermore, A" denotes all admissible, self-

financing long-only portfolios for N investors.

The first question raised in this paper is: What is the best strateqy one can take,
so that the arbitrage relative to the above benchmark can be attained? Specifically,
every investor we study aims to outperform the market and their competitors, start-
ing with as little proportion of the benchmark capital as possible. Mathematically,
given the other (N — 1) investors’ portfolios 77¢ € AV~1  the objective of investor

¢, 0 =1,...,N,is formulated as
u'(T) = inf {wf e (0,00) ‘ Int(-) € A such that v* = WVN(0), VY(T) > e VN (T)},

where V/(-) := V¥ (.) is the wealth process generated by 7‘(-) with initial wealth

vt

Since the interactions of a large group of investors are through stocks, portfolios
and wealth, the next question that arises is: Is it possible for every investor to take
the optimal strategy in the market M ¢ We characterize the optimal wealth one can
achieve by the unique Nash equilibrium of the finite population game. Under some
market conditions, u’(T —t, XN (t), Y(t)) is the smallest nonnegative solution of a
Cauchy problem (3.13)-(3.15), where Y(t) is the empirical mean of v/, see (2.5).
We distinguish the PDE characterization using open loop or closed loop controls

respectively. The unique Nash equilibrium is achieved by a strategy

(1) o= my(t) + XN () Dy, 0(t) + Y (707") 5Dy, 0(1),

Jj=1

14
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where
1-0 1 &
¢ ¢ k k
v (t) = logup_, + XN N Z V¥ loguy_,.
k=1
fori=1,...,n,£=1,...,N. It turns out that 7/* and uf%_, are proportional to ¢,

for £ =1,..., N. We show the existence of relative arbitrage through the Fichera
drift [31].
¢ Relative arbitrage as a mean field game’s equilibrium

The relative arbitrage problem provides a new application and some modifications
in mean field games. Because of the special problem set-up, there are two mean
field measures that evolve in different directions, while the uniqueness of Nash equi-
librium depends on one of the measures. In particular, the mean field benchmark
is given by

V(T):=6-X(T)+ (1 —0)-mp, m:=E[V|FE].

On the other hand, the state processes depend on the conditional law of wealth
and strategies v := Law(V, 7| FP?) with respect to the Brownian motion B. This

yields the McKean-Vlasov SDEs of stock prices

dXt = B(Xta Vg, mt)dt + S(Xt, Vy, mt)dBt, te (O, T]

X(0) = x;
and a representative player’s wealth

d‘/;f = ﬂ-(t)/B(Xta V, mt)dt + ﬂ-(t)o-(Xh Vi, mt)dBt7 le (07 T]

A modified extended mean field game model with common noise is introduced. Both

15
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open and closed loop equilibrium are considered here regarding the well-posedness

of the mean field system and the approximation of games.

We summarize these results in the following diagram.

Market dynamics Relative arbitrage of N investors

| |

Theorem 4.2.1

N-particle dynamics N-player Nash Equilibrium

Proposition 5.3.2 Proposition 5.3.5  Proposition 5.3.6

|

Mean Field Equilibrium

Theorem 5.1.1

co-particle dynamics

Alternatively, the optimal strategies in N-player games and mean field games can be
formulated as functional generated portfolios (FGP). This could be a possible remedy for

the computational issues in relative arbitrage problems.

e Numerical solutions of high-dimensional PDEs and volatility-stabilized

market

We explore the numerical schemes for stochastic portfolio theory and high-dimensional

PDEs. Both of these topics suffer intractabilities in general.

We first develop a grid based solution for relative arbitrage in volatility stabilized
models. We start from market models without influence of investors, such as the

ones used in [26], [22], and [27]. For example if the stock processes follow

dXi(t) = X (t)dt + /X:(0) X (£)dWi(2),

16
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for i = 1,...,n. In this case, the best investment opportunity for arbitrage relative

to the market portfolio is characterized as

X)) X)) E[X(T) + ..+ X (T)]
X)X X)X (T)

w(T —t,X(1)) t e [0,T].
A numerical scheme is developed based on Bessel processes to avoid the inefficiency

of a traditional finite difference scheme.

The thesis then presents deep learning schemes that work for more general mar-
ket models and high dimensional PDEs with multiple solutions. Above all, the
non-negative minimal continuous solution of Cauchy problems appeared in relative
arbitrage problems of our interest. We first develop a deep learning scheme similiar
to [67]. Then we propose a probabilistic numerical scheme where the associated
reflected BSDE problem achieves an approximation of the non-negative minimal

continuous solution.

17



Chapter 2

Finite dynamical system of equity

market

This chapter serves to construct the market model and the finite dynamical system we
use frequently in the rest of the thesis. The market model contains the processes of stock
capitalization and trading volume on each stock. We showed in [42] that the finite-particle
SDE system of stock and trading volume processes admits a unique solution under certain
market conditions. We also compare several investment strategies constructed from the

market model we use.

2.1 Market Model

We consider an equity market and focus on the market behavior and a group of
investors in this market. The number of investors we include is large enough to affect
the market as a whole. Nevertheless, there are possibly other investors apart from this

very group we consider.

18
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2.1.1 Capitalizations

For a given finite time horizon [0, T'], an admissible market model M we use in this pa-
per consists of a given n dimensional Brownian motion W (-) := (Wy(-),..., W,(-))" on the
probability space (€2, F,P) of the space 2 of continuous functions. Filtration I represents
the “flow of information” in the market, where F := {F(t)}o<i<oo = {0(w(s));0 < s < t}
with F(0) := {&,Q}, mod P. W (-) is adapted to the P-augmentation of F. All the local
martingales and supermartingales are with respect to the filtration [ if not written out
specifically.

Thus, there are n risky assets (stocks) with prices-per-share XV (-) = (XN (-),..., XY ("))

driven by n independent Brownian motions as follows: for ¢t € [0,T], w € Q,

dXN(t) = XN (t)(Bi(t,w)dt + Zn] on(t,w)dWi(t), i=1,...,n, (2.1)

k=1

or

t 1 n n t
XN(t) = 2N exp {f (Bi(s,w) — 3 Z o(s,w)))2dt + ZJ aik(s,w)de(s)},
0 k=1 k=10

with the initial condition X¥(0) = 2. We assume that dim(W(t)) = dim(X"(¢)) = n,
that is, we have exactly as many sources of randomness as there are stocks in the market
M. The market M is hence a complete market. The dimension n is chosen to be large

" stands

enough to avoid unnecessary dependencies among the stocks we define. Here,
for the transpose of matrices.

Here, 5(:) = (B1(),.--,6n(*)) : [0,T] x Q@ — R™ as the mean rates of return for
n stocks and o(-) = (0i(*))nxn : [0, T] x © — GL(n) as volatilities are assumed to be

invertible, F-progressively measurable in which GL(n) is the space of n x n invertible real

matrices. Then W(-) is adapted to the P-augmentation of the filtration F. To satisfy the

19



Finite dynamical system of equity market Chapter 2

integrability condition, we assume

iJOT <|6,~(t,w)| + aii(t,w)>dt < o, (2.2)

where a(-) := o(-)o’(+), and its 4,j element «;; is the covariance process between X;¥

andX]Nforléi,jén.

2.1.2 Wealth and Portfolios

In the above market model, there are N small investors, “small” is in the sense that
each individual of these N investors has very little influence on the overall system. An

investor ¢ uses the proportion 7¢(t) of current wealth V*(¢) to invest in the stock i at

each time ¢ for ¢ = 1,..., N. The wealth process V¢ of an individual investor ¢ is
dV*E(t) 0 dXN () y ¢
— 7 E £t Z =t 2.
v~ & O YO (29)

Since equity prices move according to the supply and demand for stock shares, we consider

the average capital invested as a factor in the price processes.

Definition 2.1.1 (Investment strategy, long only portfolio and average capital invested).

We define the the following items related to proportion w° as below:

(1) An F-progressively measurable and adapted process ©° : [0,00) x Q — R" is called

an investment strateqy if

Jo (|7 (t,w)B(t,w)| + 7 (t,w)a(t,w)r’(t,w))dt < o, T e (0,0),we,as.
(2.4)

The strateqy here is self-financing, since wealth at any point of time is obtained by

trading the initial wealth according to the strategy 7(-).
20
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(2) Each () = (zt(-),..., 75 ())) is a long-only portfolio if it is a portfolio that takes

»in

values in the set
A, ={r=(m,.,m) ERYm =0,...,m, =2 0;m + ...+ 7, = 1}.

An investment strategy that takes value in A, is called an admissible strategy,
and we denote the admissible set as A. If 7° € A, for all ¢ = 1,..., N, then
1 N

(rt,...,7N) € AN. In the rest of the paper, we only consider strategies in the

admissible set A.

(3) Each investor { uses the proportion mt(t) of current wealth V'(t) to invest in the
ith stock at each time t. The average amount Y;(t) invested by N players on stock

1 18 assumed to satisfy

Yi(t) :%va(t)wf(t) :f %(r,w)dr—i—J S r(r @) dWi(r), t e (0, 0)

=1 0 0 =1
LS eyt
N;v (0)7/(0) = v
(2.5)
fori=1,...,n, where y(:) and 7(-) are assumed to satisfy

znl JT <|%(t,w)| + ¢ii(t,w))dt < o (2.6)

for every T € [0,00), ¥(-) := 7(-)7'(+).

In fact, the average capitalization Y(t) := (Vi(t),..., Vu(t)), t = 0 may depend on

XY and 7. The process in Definition 2.1.1(3) here is defined for simplicity.
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2.2 Construction of investment strategies

We investigate several investment strategies formulated from the wealth and strategies

(VE(-), 7(+)) of a group of N investors.

Theorem 2.2.1. Given investment strategies 7° € N, { = 1,...,N as in Defini-

tion 2.1.1, define the following wealth processes with the same starting capitalization

vl =v for every ¢ =1,... N:

o The wealth \7(t) achieved by the average of the N portfolios used by the N investors,

V() = VT(t), where (t) ::% (1),

{=1

o The arithmetic average wealth V (t) of the N investors,
| X
V(t) == > Vit).
RS ONG0

e The wealth ‘v/(t) 18 generated by takes the proportion of capitalization of a certain

stock in the market as the corresponding strategy of that stock,

SOV S m Ve
DI TOVEO R NI

V(t):=V7(t), where ¥i(t):=

We have
V) <V(t), V(E)<V(t) foranyte (0,).

Proof.
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The arithmetic average V (¢) follows

=%;N1exp{ [ ) (566.00- 252 st [ (s, hotssramits)}. 20

0

~

V(t) turns out to be the geometric average wealth, since

log V/ (t) J Z?TZI s,w)(B(s,w) — 04(82 w))ds

N f NEM(S,W)U(S,W)M(S) +logv (2.8)

SO
N ¥
-([1v o)
=1
By the inequality of arithmetic and geometric means that for a sequence (z1,...,x,),
YT Ty < (1 + ...+ x,), we have V(t) < V(¢t) for t € [0,T], when the initial

wealth of each investor is the same.
To prove the second inequality about the relationship between V (¢) and ‘v/(t), we first
write out V(t) as

a(s,w)

V(1) = vexp { | m;w%)vﬂ(s)ws,w) - g

t 1 al Vi ¢
tf s AT eV “”“’“”dw“)}

vt (s)

_ Uﬂexpze VI {f () (B(s. ) — g f wf/(s)a(s,w)dW(s)}.

2 0
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The logarithm of V(t) is therefore

mgV@y:—W;LTEEjv%ﬂbgv%w. (2.9)

V(
V() 1 - ¢
log —— = — - = t)log V(
SOREOALCEMEED
— 1 1<
@WW—7N2W®@W@
/=1
<logV(t) — % -VlegV(t) = 0.

The first line is simply combining the expressions in (2.8) and (2.9); the inequality on the
second line holds because of the concavity of function log(z) and Jensen’s inequality. The
third line is from the convexity of function xlog(x), and Jensen’s inequality. Therefore,
V(t) < V(t) for any t € (0, 0).

A quick computation shows that the wealth process that strategy 7(t) generates is
exactly V(). Hence building a portfolio using 7(¢) is one way to get V().

To sum up, for all ¢ > 0, V(t) < V(t) = V(t). That is, the wealth of taking the
average strategy earns less than the average wealth or the wealth of applying 7;(t). The
equality V(¢) = V(t) = V() = V(t) holds for each ¢ = 1,..., N, if cach investor is of

the same wealth at time ¢. O

2.3 General finite dynamical system

The interaction among the players we consider here is of the mean field type, in

that whenever an individual player (investor) has to make a decision, he or she may not
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be able to see the individual private information of the other players but may see the
average of functions of the private states of the other players. We use the mean field
interaction particle models from Statistical Physics to describe the market - We model
the N investors as N particles, for fixed N.

For any metric space (X,d), P(X) denotes the space of probability measures on X
endowed with the topology of the weak convergence. P,(X) is the subspace of P(X) of
the probability measures of order p, that is, u € Py(X) if §, d(z, z0)?u(dr) < oo, where
xo € X is an arbitrary reference point. For p > 1, u, v € P,(X), the p-Wasserstein metric

on P,(X) is defined by

W,(vi,15)P :=  inf J d(z,y)Pr(dz, dy),
XxX

WEH(Z/l,I/Q)

where d is the underlying metric on the space. II(vq,15) is the set of Borel probability
measures ™ on X X X with the first marginal v; and the second marginal 5. Precisely,
k(A x X) =11(A) and k(X x A) = 1,(A) for every Borel set A < X.

Also, denote by C([0,T];R%) the space of continuous functions from [0, 7] to R%.
In this paper, we often take X = R% when considering a real-valued random variable
or take X as the path space X = C([0,T];R%) for a process, where a fixed number dj
will be specified later. P,(R%) equipped with the Wasserstein distance W, is a complete

separable metric space, since R% is complete and separable.

Definition 2.3.1 (Empirical measure in the finite N-particle system). Consider (V¢ 7*) €
C([0,T];Ry) x C([0,T]; A) that are F-measurable random variables, for every investor
¢ =1,...,N. We define empirical measures v~ € P*(C([0,T],R;) x C([0,T],A)) =
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P2(C([0,T], Ry x A)) of the random vectors (VE(t), 7(t)) as

LN
t = N Z l(t t 2 07
where &, 1s the Dirac delta mass at v € Ry x A. Thus for any Borel set A < R, x A,
1< 1 G
)= § 2Oty = 3 #HES N (VI 7(0) € 4)

where #{-} represents the cardinality of the set.

Denote XN = (XN (t),..., XN (), Vi = (VI(t),...,VN(t)) for t = 0. For a fixed
N, with vV in definition 2.3.1 that generalizes Y(t), we can generalize the (n + N)-

dimensional system as
dxy = XNpt, XN vMydt + XNo(t, &N v Yaw,; &Y =x) (2.10)
and for £ =1,..., N,
dvit = Viatpt, XN vNydt + Viclo(t, XN vNaw,; Vi =t (2.11)
A strong solution of the conditional Mckean-Vlasov system (2.10)-(2.11) is a triplet
(A%, v, ") e (C([0, T, RY), C([0, T],RY), P*(C([0, T], Ry x A))).

We made the following assumptions on the triplet to ensure that the system (2.10)-(2.11)
is well-posed. In the following sections we shall assume the well-posedness of the system

despite the assumptions on system coefficients or strategy processes for simplicity.

Assumption 2. The initial wealth and strategies of the N players are i.i.d samples from
26
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vl the distribution of (vo,mo). The stock price vector x} at time 0 has a finite second

moment, E|xY|?> < o, and is independent of Brownian motion {W;}.

| - | denotes Euclidean norm of R valued process and Frobenius norm of R¥*" values

processes, d = n or N in particular. Let
bz(ta z, V) = fzﬁz(t7 x, l/), Sik(t7 z, V) = xio-ik(ta z, V)'

Assumption 3. Assume the Lipschitz continuity and linear growth condition are sat-
isfied with Borel measurable mappings b(t,x,v), s(t,z,v) from [0,T] x C([0,T],R%}) x

PAC([0,T],RY x AN)) to R™. That is, there exists a constant L € (0,), such that
|b(t,z,v) —b(t,Z,0)| + |s(t,z,v) — s(t,z,D)| < L[|z — Z| + Wa(v, V)]
for a constant C% € (0, ),
\2B(t, z, V)| + |zo(t,z, v)| < CY(1 + |z| + My(v)),

where

My(v) — < L([O,T],R+XA> |x|2dy(:t))1/2; v e Po(C([0, T], R, x A)).

Assume the following Lipschitz continuity and boundedness, L, B € (0, o0)
W B(t, z,v) =V B(t, &, D) + |vio(t, x,v) — o (t, T, V)| < L[|x — 2| +nlo’ =0 + Wa(v, D)],

WB(t, z,v)| + [v'o(t,z,v)| < B,

for everyv* e Ry, £ =1,...,N; te[0,T]; 2,7 € R?; v,0 € Po(C([0,T],RY x AN).

The admissible strategies 7(¢) might have different structures given the accessible
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information at time t.

Definition 2.3.2. A control n(t) € A is an open loop control if it is a function of
time t and initial states vg. It is called a closed loop feedback control if 7(t) € A
is a function of time t and states of every controller V(t). We denote V(t) as V, for
simplicity. It is specified by feedback functions ¢* : [0, T|x QxRY — A, for¢ =1,..., N,

to be evaluated along the path of the state process.
In this thesis we focus on open loop controls and closed loop feedback controls.

Assumption 4. Let { = 1,...,N. For a closed loop feedback control, we assume 7* is

Lipschitz in v, i.e., there exists a mapping ¢* : RY — A such that 7} = ¢*(V,).

[¢°(v) = ¢*(¥)] < nLlv - 7]

for every v,V € RY.

Proposition 2.3.1. Under Assumption 3 and 4, the (n + N)-dimensional SDE system

(2.10)-(2.11) admits a unique strong solution, for each n, N.

Proof. We restrict the discussion on the time homogeneous case, whereas the inhomoge-

neous case can be proved in the same fashion. Rewrite the system as a (n+ N)-dimension
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SDE system:
XY ()XY vl )dt + Xa(t) 2g_y o (XY, v )dWi(t)
[ | R8N e+ X0 S oA v
V., Viirl BN, v )dt + Vial'o (XN, vl )dW, (2.12)

NaN (XN vNYdt + VTN o (XN, v )dW,

= f(XtNavta Viv)dt + g(XtN7Vt7 VtN)dWlfa

where f(XY, Vi) = (fi(), .-, farn (), fil) = XY (@)Bi() for i = 1,....n, fi(-) =
m"B() for j =n+1,...,n+N. Similiarly, (XN, Vi, 1) = (g1(-), .., gnan (), g:(-) =
XNW)oi(-) fori=1,....n, g; = V{ "nl "o(XN, 1) for j=n+1,...,n+N.

Let us consider a closed loop strategy 7f = ¢‘(V,). Open loop strategies case can be

shown in the same way. Define a mapping Ly : RY — P*(C([0,T], R, x A)),
= %i (VL0 (V1)
Define F: RY ™™ — RN+ G RY™ — RN*" x R™ with
F(XN, V) = f(X, Vi, Ly(Ve); GAY, Vy) = g(X, Vi, Ly (V).

Let (x,v) = (z1,..., 20, 0% ..., 0Y) and (y,u) = (y1,.. ., Yn,ul, ..., u") be two pairs of

values of (X™N(-), V() and define a constant L,, := max{l, L, B}. By the inequality
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(a + b)? < 2(a® + b?), uniformly boundedness and Lipschitz condition of 3; and ¢,

|[F(2,v) = Fy, u)|”

< bilw, Liv(v)) = bily, L (w))[?

=1

N
+ 2 [ (0)B(x, Ly () — u'" (u)Bly, L (w))|”
=1
<L2L2 (|l — yl* + Wi(Ln(v), Ly(u)] + 2nL2 v — u?
+8NL2 [|lz — y|* + njv’ — '] + W2(Ln(v), Ly (u)],
If the strategies are of the form ¢‘(v’) and is Lipchitz continuous |¢(v?) — ¢*(0%)| <
nL|vt — 0], the last inequality above should be instead

QLEH[\x—y\Q—I—WQQ(LN(v), LN(u))]—|—8NLfn]x—y\2—|—1()nL,2n]v—u\2+8NL$,LW22(LN(U), Ly (u))].

Denote the empirical measure induced by the joint distribution of random variable u and

v by
1 N
™ = N 2 (5(“&’”2).
=1

It is a coupling of the function Ly(v) and Ly(u). By the definition of Wasserstein

distance,
WHLn(0), L)) < | [(0,0(0) — (. 6(u) PA(dv. du) < 3(L* + Do —
RN xRN
Therefore,

|[F(2,0) = Fly, w)]* < 2+ 8N) L [lo — y* + nfv — uf’],

4(N—1)2—5

v In the same vein, we conclude the Lipschitz continuity of G/(-).

when L,, <

Thus according to the existence and uniqueness conditions of multi-dimensional SDEs,
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the system (2.10)-(2.11) is well-defined. O

We will use the system in Proposition 2.3.1 for N-investor relative arbitrage problem
in Chapter 3-4. We study this (n + N)-dimensional system (2.10)-(2.11) when N — o

in Chapter 5 for mean field games.
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Chapter 3

Relative arbitrage in a finite particle

system

In this chapter we construct an investment framework that arises from the pioneering
work [22] about the optimal arbitrage opportunities relative to the market portfolio. To
analyze the market and information from investors, we propose a model in which the
market dynamics depend on a certain group of investment entities. The portfolio of

these entities of interest is determined by a relative arbitrage benchmark.

3.1 Benchmark of the market and investors

We first recall the definition of relative arbitrage in Stochastic Portfolio Theory.

Definition 3.1.1 (Relative Arbitrage). Given two investment strategies m(-) and p(-),
with the same initial capital V™(0) = V*(0) = 1, we shall say that 7(-) represents an

arbitrage opportunity relative to p(-) over the time horizon [0,T], with a given T > 0, if

P(V™(T) = V/(T)) =1 and P(V™(T) > V"(T)) >0,
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The market portfolio m is used to describe the behavior of the market: By investing

in proportion to the market weight of each stock,

i=1,...,n, t=0. (3.1)

Consider the wealth process V™ (-) generated by the market portfolio. Let V™(0) = zy,

and since

- X 2 0, (3.2)

de zn] dXN( ) dXN(t)
the market portfolio amounts to the ownership of the entire market - the total capital-

1zation

XNty = XN+ ...+ XN(),te (0,T];  XN(0) := .

The performance of a portfolio is measured with respect to the market portfolio
and other factors. For example, asset managers improve not only absolute performance
compared to the market index, but also relative performance with respect to all collegial
managers - they try to exploit strategies that achieve an arbitrage relative to market and

peer investors. We next define the benchmark of the overall performance.

Definition 3.1.2 (Benchmark). Relative arbitrage benchmark VN (T), T € (0,0), which
15 the weighted average of performances of the market portfolio and the average portfolio

of N investors, is defined as

VN(T) = 5 XN(T) + % Z (3.3)

with a given constant weight 0 < § < 1.

The second term (1 —0) - + SV VYT), is the average amount of wealth at T

We assume each investor measures the logarithmic ratio of their own wealth at time
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T to the benchmark in (3.3), and searches for a strategy with which the logarithmic ratio
is above a personal level of preference almost surely. For ¢ = 1,... N, we denote the
investment preference of investor ¢ by ¢, a real number given at ¢ = 0. Note that ¢, is an
investor-specific constant, and so it might be different among individuals £ = 1,..., N.
An arbitrary investor ¢ tries to achieve

Vi(T)
VA(T)

log > ¢y, as.  orequivalently, VYT) = e“V¥(T), aus. (3.4)

Thus V¥(T) is the benchmark and an investor ¢ aims to match eV (T') based on their

preferences.

Assumption 5. Assume that the preferences of investors c, are statistically identical

and independent samples from a common distribution Law(c).

Proposition 3.1.1. We have the following properties of ¢, and 6.

1. If every investor achieves relative arbitrage opportunity in the sense of (3.4), then

we must have

(1]:76) ;Nlec‘ <1 (3.5)

2. Relative arbitrage in the sense of (3.4) is guaranteed, if (c1,...,cy) satisfies that

_ VY(T)
T min{XN(T),VY(T),...,VN(T)}

Ce

for every=1,....N a.s. (3.6

Its proof is given in Appendix A.1. A special case that ¢, = ¢ (constant) for every
¢ =1,...,N. We already know from [22] and [23] that any ¢, < 0 is a valid level of
satisfaction. (3.5) in Proposition 3.1.1 tells us that ¢, can be a small positive number.
Investors pursuing relative arbitrage should follow the condition (3.5) for ¢,.

The following theorem shows that benchmark V¥ is a valid wealth process
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Theorem 3.1.1. Benchmark VN (t) = 6XV(t) + (1 —6) SV V() can be generated
from a strategy I1(-) := (II1(+),...,I1,(+)) € A,

SXN() + (1 —=8)Vi(t)

IL(t) =

where Y;(t) is defined in (8.16).

Proof. To show V(t) is a wealth process generated by a strategy, we use (2.3) and get

)

7)

. X ] N n RS
R~ (X0 IRV RO

=1 Xz(t) 7
and
1—6 i ,
VN (0) = dag + —— Y 0,
' N =1
where
_0XN() i
XN () + (1 ot >‘

VN (t)
Further computations show that I1;(t) satisfies self-financing condition (2.4). II € A since

SN IL(t)=1land 0 < IL(t) < 1,i=1,...,n. O

3.2 Optimization in relative arbitrage

Assumption 6. We assume the existence of a market price of risk process 6 : [0, 00) x

QxPHC([0,T],Ry x A)) — R, an F-progressively measurable process such that for any
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(t,w,v) € [0,00) x Q x P*(C([0,T],R; x A)),
o(t,w,v)0(t,w,v) = f(t,w,v), T(t,w,v)0(t,w,v)="y(t,w,v); (3.7)

T
IP’(J 10(t, w, )| Pdt < 0, 9T € (0, oo)) _1,

0

In the scope of complete market, Assumption 6 shows that the price of risk process
0(t) governs both the risk premium per unit volatility of stocks and trading volumes,
since the market is simultaneously defined by the stocks and the investors. The group
of investors we consider in this paper influences the stock capitalization through the
trading volumes driven by the same W(:). Thus it does not bring an extra risk factor
to the market. In future sections, We shall see the relationship in (3.7) is a key to more
tractable and practical results in game formations. We take F = F* MY = FW from now
on.

Next we define the deflator based on the market price of the risk process.

Definition 3.2.1. We define a local martingale L(t),
dL(t) = 0(t)L(t)dW;, t=0.
Equivalently,
t 1 t
L(t) == exp { —f & ()W (s) — -J lo(s)|[Pds}, 0 <t <on.
0 2 Jo

Thus under Assumption 6, the market is endowed with the existence of a local mar-

tingale L with E[L(7")] < 1. We denote the discounted processes ‘75() = V*()L(-), and
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X() := X()L(-). VE(-) admits
dVE(t) = dVE(t)L(t) = VE@) (7" ()o(t) — 0'(8))dW (t);  VE(0) = Dy (3.8)

Remark 2. With Assumption 0, assume the market M has bounded variance. Denote
SN vf = 0. On [0,T], given the existence of relative arbitrage in the sense of (3.4)
and Definition 3.1.2, if

co < log vy —log(dxg + (1 —0)v), (3.9)

then the process L(-) is a strict local martingale, i.e., E[L(T)] < 1.

This can be proved by contradiction, assuming L(T) is a martingale. Then by Gir-
sanov theorem, Qp(A) := E[L(T)14], A € F defines a probability measure that is equiva-
lent to P.We can show A*(t) := Vi(t) —e*(6X (t) + (1-0)~ SV V) ds a martingale

under Qr. Thus the existence of relative arbitrage opportunities implies
EQT[AYT)] = E9T[AY(0)] = ve — €69 — (1 — §) = 0,

contradicting to (3.9). This is a generalization of Proposition 6.1 in [2/] where the single
investor case 1s studied.

Conversely, for a real number T > 0, if L(T) is a martingale and ¢, = logv, —
log(dzo+ (1—98)v) for€ =1,..., N, then no arbitrage relative to the market and investors

is possible on the time horizon [0,T].

Now, we shall answer the questions posed in Chapter 1: Given the portfolios

of all but investor ¢, what is the best strategy to achieve relative arbitrage for investor
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¢ =1,..., N, and if there exists such an optimal strategy, is it possible for all N investors
to follow it? We first utilize an idea in the same vein of optimal relative arbitrage in
22], i.e., using the optimal strategy 7%, the investor ¢ will start with the least amount
of the initial capital (or initial cost) relative to VY (0), in order to match or exceed
the benchmark eV (T) at the terminal time T, that is, given 7~¢(-), each investor £

optimizes

u'(T) = inf {wé € (0, ) ‘ I7t(-) € A such that v* = W VN (0), VY™ (T) = e - VN(T)}.

(3.10)
Specifically, by (3.2), if everyone uses market portfolio with same initial wealth v* = v for
a constant v > 0 and every /, their wealth is then V¢(t) = xloXN(t). When the investor

adopts the same initial amount of benchmark, i.e., v = x(, and ¢, = 0, then

V() = 6X () + (1 — 6)—X(t) = X(1).

Zo

Therefore in this case a single investor or multiple non-distinguishable investor with
market portfolio will match the market.

The following proposition characterizes one’s best relative arbitrage opportunities by
the customized benchmark e - V¥(T), for any ¢ = 1,...,n, T and N are fixed real

numbers.

Proposition 3.2.1. v*(T) in (3.10) can be derived as e“VN(T)’s discounted expected
values over P

u(T) = E[e“VN(T)L(T)] / V™ (0). (3.11)

This result is essential to the PDE characterization of the objective u‘(T) in Sec-
tion 3.3. It is derived from the supermartingale property of vt () and martingale repre-

sentation theorem, see Appendix A.2 for the details of the proof. To use the martingale
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representation results in a complete market, we shall assume that F = F ANy — FW

where F¥"¥ is the filtration generated by the o-fields {o(XN(s), V(s);0 < s < t),¢ = 0}.

3.3 PDE characterization of the best relative arbi-

trage

Assumption 7. We assume [(-), o(-), 7(-) and 7(-) take values in R} x R, are time-

homogeneous and the process (X™(t), Y(t)),t = 0 in Definition 2.1.1 is Markovian, i.e.,
XN (0)B:(t) = bi(X™ (1), V(t)),

XY (Oou(t) = siw(XN (1), V(1)) Zn: sin(t)sn(t) = ag (XN (1), V(1))
k=1
%i(t) = %X (@), (), Ta(t) = T (XN (), V(1))
where b;, Sig, aij, Vi, i (0,00)" x (0,00)" — R are Héolder continuous.
We define @‘ : (0,00) x (0,00)" x (0,00)" — (0,00) from the processes (X™(-), V("))
starting at (x,y) € (0,00)™ x (0,00)", and write the terminal values

a“(T) .= a(T,x,y); £=1,...N. (3.12)

We use the notation D; and D;; for the partial and second partial derivative with
respect to the ith or the sth and jth variables in X (¢), respectively; D, and D,, for the

first and second partial derivative in Y(t).

Assumption 8. There exist a function H : R" x R" — R" of class C?, such that

b(X> Y) = 2&(X, y)D:cH<X7 Y)7 7(X7 Y) = 2¢(X7 y)DyH(Xa Y)a
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ie, bi(r) = 25 aij()DiH (), 1(-) = 2goy Ypg()DgH(-) in component wise for i,p =

7=1

After the direct calculation based on (3.20) and (9) in the next section, @‘(-) follows

a Cauchy problem

ot (1,%,y)

5 = Ai‘(1,x,y), 1€ (0,2), (x,y) € (0,00)" x (0,0)", (3.13)
or
a'(0,x,y) = e*, (x,y) € (0,00)" x (0,0)", (3.14)
where
R 26 D;ii (1,%,y)
_ D24~€ 7 ) Ay
) 55 St ()« 2P

i=1j=1

2(1 — §)D,yu’(r, x, y))

RS ,
5 Z_:pqu( U(T’X7Y)+5X'1+(1—5)y-1

LM:

(3.15)
)ip(X, Y Dfpf/(T,x,y)

(5Dpﬁz(7', x,y) + (1 = 0)Dsat(1,x,y)
0x-1+(1-9)y-1 '

szy

We emphasize that (3.13) is determined entirely from the volatility structure of XV ()

and Y(-). Moreover, ¢, enters into the initial condition (3.14).

3.3.1 Proof and computational details of PDE characterization

=

We first show some main steps of computing (3.13)-(3.15).
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Hence the infinitesimal operator for the process (XY™ (-),Y(+)) can be written as

n n

Lf= ZZawxy Uf—l—?DfDH(xy)]
11] 1
+22¢pqu qu+2DprH(XY)]
p=1g=1
%ZZST (%, y)Dipf + 5 2273 )pi (%, ¥) Dyi

i=1p=1
where (757),:(x,¥) = (s77)ip(%,¥) = 30| s (%, y)7pr(%, y) and by the definition of 6(-)
in (3.7) and Assumption 8,
9(X7 Y) = 28(X7 y)DIH(X> Y) = QT(Xa y>DyH(X7 y)>
or
0(x,y) = s" (x,y) D, H(x,y) + 7 (x,y) D, H(x,y). (3.16)

Then it follows from (3.16) and It6’s lemma applying on H(-) that

fo BN (1), V()W (1)
. f (SN0, VO)DLH X (1), V() + 7 (XN (1), V(1) Dy HXN (1), V(1)) dW (1)

_H(XN(), V() — Hxy) - j LH(XN (), (1)t
(3.17)
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1
—J 16(t)|)?dt

J 18" (XN (X), Y (1)) D H (XN (1), V(1)) + 7'(XN (1), V(1)) Dy H (XN (1), V(1)) |[*dt

JZZCLU (x,y)D;H(x,y)D;H(x,y)dt

zl]l

f ST (. y) D H (. y) Dy H .y )i

0 p=1g¢=1

JZZ sT)ip(X,¥) DiH(x,y) DgH (%, y)dt.

i=1p=1

Thus

) =exp{ - [ w3 [ lotsyras)

= exp { — H(XN (1), V(1) + H(x,y) - JO (k(XY(s), Y(s)) + %(XN(S)yy(S)))dS}

where
_ZZ% H(x,y) +3D;H(x,y)D;H(x,y)],
i=1j5=1
k Z Z dqu =~ y H(x,y) +3D,H(x,y)D,H(x,y)]
i=1j5=1
Zn: ” ZpDny)DH(xy)

1
for (x,y) € (0,00)™ x (0,00)". Since

SV = S S V), (3.18)

{=1 i=1/¢=1

we have the expression of benchmark
—52@ (1-0 2 =o0x-1+(1-0)y-1, (3.19)
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where 1 is 1 x n column vector having all n elements equal to one. Let us denote
g(x,y) == VN(0)e ¥ = (5x - 1+ (1 - §)y - 1)e H¥),

G(T,x,y) = B [g(X™ (T), P(T))e W M @)oo
Denote 7 :=T —t. (3.11) can be rewritten as

G(T,x,y)
g(xy)

~(

o (r,x,y) = e (3.20)

Assumption 9. Assume that g(-) is Hélder continuous, uniformly on compact subsets
of RY xR%, ¢ = 1,...,N; G(-) is continuous on (0,00) x (0,00)" x (0,00)", of class
C%((0,00) x (0,00)™ x (0,00)™).

The function G(-) yields the following dynamics by Feynman-Kac formula,

oG -
S (mxy) = LG(rxy) = (k(x,y) + k(x,¥))G(T,x,y),  (T:xy) € Ry x RY x RY,

G(0,x,y) =g(x,y), (x,y) € R} x RY.
(3.21)
Under Assumption 9, @‘(7,x,y) € C?((0,0) x (0,00)" x (0,00)") is bounded on K x
(0,00)™ x (0,00)™ for each compact K < (0, 0).
Plugging (3.20) in the above equations set and using the Markovian property of g(-)

gives

ot (t,x,y)

Sk y) = L@ (X y)g(x,y)) = (k(xy) + k(x,y)) @ (8%, ¥)g(x,y)-
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For simplicity, we write ‘() in place of @‘(¢,x,y). It follows

ou'(t)
ot

D;g(x,y) N aé(t)Dijg(X7Y))

(x 2 it i
al]( 7y) (DZ] (t) + QDZ (t> g(X, y) g(X, Y)

ek

DN | —

1

a;;(x,y) (Dia’f(t) n af(z)M) D;H(x,y)

7

9(x,y)

_l’_
o
NS

—_

7

+ S DA Hx.y) + 3D H(x,y)DH e )i (1)
1 N x 2 ,f/ af Dqg(x, Y) aé qug(x, Y)
+ 2 p;l Upq(X,Y) (qu (t) +2D,u’ (1) 9(x,y) + a0’ (1) —g(x, v) >

3

12 daxy) (Dpa%w v a%w%) D, H(x.y)

LS D (3 + 3D, ), HOe )

o ), 2 it ey Drg(x,y) o Dig(x,y)
- 3 67y (g0 + Dty 22XV 4 p ey Pistey)
~{ Dipg<X7y)
T 9(x,y) >

n

— > (s7)ip(x,y) DiH(x,y) D, H (x, y )i (t).

7,p=1

We can simplify this equation with the following computations.

By (3.19), and the definition of g(-),

Dig(x7 Y) (5

— = =-D;H(x,y) + )
g(x,y) (xy) x-14+(1-9)y-1

Dyg(x,y) 1-4

ZINY) _ _p g .
9(x,y) P <X’y>+c5)<-1+(1—(5)y-1
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Th second order derivative with respect to x is

Dijg(x,y) d(D;H(x,y)+ D;H(x,y))

9(x,y) ox-1+4(1-4)y-1

- DiH(x,y) + D;H(x,y)D;H(x,y),

and the counterpart of second order derivative with respect to y is of the same structure

Dyg(x,y) (1-0)(D,H(x,y) + D,H(x,y))

gxy) ox-1+(1—d)y-1
- D}%qH(X7 y) + DPH(X> Y)DqH<Xa Y),

Dyg(x,y) _ §D;H(x,y) + (1 —0)DyH(x,y))

— D?pH(X, y) + D;H(x, Y)DpH(X7 y)-

As a result when the drift (+) and volatility term 7(-) in (8.16) is given, (3.13) - (3.15) are
satisfied. We distinguish the optimal arbitrage objective @‘(-) under different information
structures in the next section when (8.16) is specified with the function of wealth processes

and strategies.

Theorem 3.3.1. Under Assumption 7,8, and 9, the function @‘ : [0,00) x (0,00)" x
(0,00)" — (0, 1] is the smallest non-negative continuous function, of class C* on (0,00) x

(0,00)", that satisfies @*(0,-) = e* and

ot (1,%,y)

it 3.22
at = AU’ (7-7 X, Y)v ( )

where A(-) follows (3.15).

Proof of this theorem can be found in Appendix A.2.
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3.3.2 Cauchy problem in different information structure

To see the difference of PDE characterization from using open and closed loop con-
trols, we first study the dynamics of the trading volume Y;(t), ¢« = 1,...,n which is
assumed to follow (2.5) previously.

In general, the investment strategy is a function ¢ of time, wealth or noise depending

on the information structure,
e
_ 4 ‘
dyi(t) = + ; ()i (1, V).
By It0’s formula on ¢‘(t, V) : [0,T] x RY — A,

AV (t)mi(t)

=V () (05t V) (, VIB(E) + D (t, V) + D VD) (1, V)B(8) Ded (¢, V) di

/=1

FSV) D VOV V)al)em (1, V)ig,olt, V)i (3.23)

N

+ 3¢, V)a(t)e™ (t, V) Dl (t, V)dt

m=1

+ VA (65t V)o' (, V) +va t)6! (t)o (t) Degt(t, V) dW,.

As a result, when searching for Nash equilibrium, we get a more specific form of the

optimal strategy m**.
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Characterization with open loop controls
Recall definition 2.3.2, specifically we consider here controls 7(t) given by the deter-
ministic functions ¢*: [0,T] x Q@ - A, £ =1,..., N,

T (t) = o' (t, v, Wioz), (3.24)

for every t = 0, v := (v',...,0"), v* = aYT)VN(0), Woy is the path of n-dimensional

Wiener process between time 0 and time ¢. From (3.23),

V(1) = v (1)l (1)

1 o 1 &

NZ (; OV (£)"()B(E) + VEasi(t) NZ (Ha(t)dW (1)
- (3.25)

Thus we can write out explicitly the coefficients 7(-), ¥ (-) in (8.16) and the Cauchy

problem of objective @’ for each ¢

~0
w = Aif(1,x,y), 7€ (0,0), (x,y)€ (0,0)" x (0,0)",
orT

a'(0,x,y) = e, (x,¥) € (0,00)" x (0,0)",
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where

Al (1, x,y) =

20Dt (1, %,y) >
x-1+(1-9)y-1

2(1 — §)D,yu’(r, x, y))
0x-14+(1-9)y-1

-
=

s
Il

_
<
Il

—_

ai(x,y) (D3 (7, %,¥) +

_|_
M=
M=

Ua(,3) (D2 (., y) +

(3.26)
3 D5 e ) D (%, )
e, dD,u (1,x,y) + (1 — §) Dt (7,x,y)
* ;;(ST Jin(%,¥) 0x-14+(1-9)y-1 ’
The process 7(-) and ¥ (-) follow
Tik = i Vg Z ¢é Uzk
Upg(x,5) = Y, VAV () ()™ (#)a(t)di ()] (1), (3.27)

Characterization with closed loop controls

However, in closed loop control, a player at time ¢ has complete information of the

states of all the other players at time ¢. A general closed loop control is given by the

form

7(t) = 6 (t, Vios)-

While a closed loop Markovian control is given by

w'(s) = ¢'(s, VL), (3.28)
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for each (t,z), where ¢’ : [0,T] x Q x R? — A, Vi = (V1(s),...,V¥(s))", and

(VE(s))s<s<r is the unique solution of

In particular, for £ = 1,..., N, if m,(t) is of the form ¢*(¢, V}), then by Itd’s formula

dVi(t)mt(t)
=VE() (5 (8, V) (1, VO B(E) + Dugi (8, V) + VE(£)¢"(t, V) B(t) Dol (. V7)) dt

3.29)
1 (
+ 5 Te(6(t V)a()o(t, VO (V) (V) Didi(t, V) + 2D (t, V1)) dt
+ V) (651, V' (1, V) (t) + VIR (£, Vo (t) Degi (1, V) AW
Hence the Cauchy problem in the closed loop feedback case is
~¢
WUXY) _ pitr.x,y), e (0,0), (xy) e (0,0)" % (0,0)"
a'(0,x,y) = e, (x,y) € (0,00)" x (0,0)",
where
1 L 2 ~¢ 25Diﬂ'e(7_a X, Y)
At (. x.y) 5;;%] Y (Diju (7.%,y) + x-1+(1=9)y- 1>
| R ., 2(1 = 8) Dyt (7, x,y)
+2Z_;Z_; quy( (T’X’Y)+5x-1+(1—5)y-1>
e (3.30)
+ZZ pryDu(Txy)
i=1p=1
N 5Dp7f/(7', x,y) + (1 = 0)D;i*(1,x,y)
+z;pZ:1 Jin(%,) 0x-14+(1-9)y-1 '
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Denote ¢4(t, V) := ¢!(t, V) + VE(t) Dot (t, V1),

N

Ypg(X,y) = D, VIOV () (1, V)™ (1, V) at) g (t, VO (t, V). (3.31)

lm=1

3.4 Existence of Relative Arbitrage

The Cauchy problem (3.13)-(3.14) admits a trivial solution @‘(7,x,y) = e“. Thus
we need (7,%,y) to take values less than ¢, indicating that the uniqueness of Cauchy
problem fails.

Through the Follmer exit measure [30] we can relate the solution of Cauchy problem
u‘(-) to the maximal probability of a supermartingale process staying in the interior of
the positive orthant through [0,7"]. Following the route suggested by [22] and [64], there
exists a probability measure Q on (€2, F), such that P is locally absolutely continuous
with respect to Q: P << Q, A(T) is a Q-martingale, and dP = A(T")dQ holds on each
Fr, T € (0,00). We can characterize ‘(t) by an auxiliary diffusion which takes values in

the nonnegative orthant [0, 00)%"/{0}.
Definition 3.4.1 (Auxiliary process and the Fichera drift). We define the following

1. The auziliary process ¢ = ((1, ..., Con) 18 defined as

dG;(-) = b(C())dt + 6 (C()dWy,  G(0) =G, i=1,...,2n,

where
(5 Z;L:l aij (x,y) . .
~ Sx-1+(1—=8)v-1 ZfZ:Z;"'7n7
bl'(X, y) _ ox-1+(1-d)y-1
0 ifi=n+l, ..., oo,
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a
a'LJ(Xuy> Zf%] = 17 R (5

aij(%,Y) = § ¢y;(x,y) ifij = n+1, ..., 2n,

0 otherwise.

2. The Fichera drift is defined as

fori=1,...,2n, (x,y) € (0,00)" x (0,00)".
Assumption 10. The functions b;(+), oix(-) are of class C*((0,0)™ x (0,0)™) and satisfy
the linear growth condition
oGy + llsGe )l < CA+[Ix[+lyl)),  (xy) e RY x RY. (3.32)
a;;(+) satisfy the nondegeneracy condition, i.e., if there exists a number € > 0 such that

ai(x,y) = e(|[x[]* + [ly[]*), (x,y) € R} x RT..

Definition 3.4.2. If Assumption 10 holds and

n

. 1 &
> <bz~<x, y)n; + = Y Djag(x, y)) <0, (3.33)
24

i=1

where n = (N1, ..., Ny,) is the outward normal vector to G, then 0G is an obstacle from

inside. 0G is an obstacle from outside if the (3.33) is replaced by

Z <Bi(X, y)n; + %Z Dja;;(x, y)) > 0. (3.34)
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Assumption 11. The system of (*(+) admits a unique-in-distribution weak solution with

values in [0, 00)™ x [0,00)"/{0}.

We set T* := {t = 0[¢*(t) € O?"} as the first hitting time of auxiliary process ¢(-) to

O?" the boundary of [0, 0)?".

Proposition 3.4.1. With the nondegeneracy condition of a;;, suppose that the functions
oi(+) are continuously differentiable on (0,00)%"; that the matriz a(-) degenerates on O?";
and that the Fichera drifts for the process C*(+) can be extended by continuity on [0, c0)*".
For an investor £, if fi(-) = 0 holds on each face of the orthant, then @‘(-,-) = e, and
no arbitrage with respect to the market portfolio exists on any time-horizon. If fi(-) <0
on each face {x) = 0}, i = 1,....n and {y; = 0}, i = n+1,...,2n of the orthant,
then @'(-,-) < e and arbitrage with respect to the market portfolio erists, on every

time-horizon [0, T] with T € (0, 0).

Proof. With the nondegeneracy condition of covariance (a;;)1<ij<n, Theorem 2 in [22]

suggests that
(T, x,y) = e“Q[T* > T], (T,x,y)e[0,00) x [0,0)" x [0,00)".

For the first claim, we only need to show the probability Q[7* > T| = 1, for (T,x,y) €
[0,0) x [0,00)™ x [0,00)". Denote a bounded and connected C*® boundary Gg := {z €
R?* z; < 0,]|2]] < R}, and R can be arbitrarily large. Then from Theorem 9.4.1 (or

Corollary 9.4.2) of [31], since

n

. 1 & .
Z <bi<X7 y) — 5 2 Djaij(x7y))ni <0,
i=1 Jj=1

in which n = (ny,...,ny,) is the outward normal vector at (x,y) to O*", the boundary

O?" is an obstacle from outside of Gp, i.e., G := Bg(0)/Gg. The Fichera vector field
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points toward the domain interior at the boundary. Let R — oo, the boundary is not
attainable almost surely for (x,y) € [0, 0)?".

If f;(-) <0 on each face {z; = 0},i=1,...,2n, then

n

R 18 .
Z (bi(X, y) = 5 Z Djaij(XaY))ni =0,
=1

i=1
and the Fichera drift at O*" points toward the exterior of [0,00)?". It is equivalent to
show that Q[T > T| < 1, for (T,x,y) € [0,0) x [0,00)" x [0, )", we only need to show
Q[T* < T] > 0, i.e., the boundary {z; = 0}, i = 1,...,2n, is attainable by ¢*(-).
From Chapter 11 and 13 in [31], every point in dG is a regular point, and thus

lim QQZ(TH < o0, ||C£(7'g) — 2zl <) =1,

2—20,2€

where 79 is the exit time from G. Therefore, if zp € ¥ 1= U?" {z e R : z; = 0} n G, for
a fixed & such that By (zp) := n?",{z € R?" : z; > 0} n Bs(20) is a proper subset of G, we

have

o If [|¢f — 2ol <,
Q(19 < 0, (19 e X) > 0.

o If ||Cz€_ZOH >,

inf Q.(¢'(r?) € Bs(z0), 79 < o) > 7,

where
2n

A=Wz eR™: 2 >0,z — 2l =n}.
=1

Now take € A and a continuous sample path w, such that w,(0) = zp, w,.(7,) = r, and

wi(s) ¢ A for 0 < s < 7., where 7, := inf{t > 0: ¢*(t) € A}. Consider an e-neighborhood
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New, of w, € C(G),
New, = {0 € C(0) : w(0) = &, [l —will <& w(n) =} < fwe: C'(r,w) € A},
then the support theorem in [69] shows that
Q¢ (New.) > 0,

where ¢ : [0,00) — R?" is continuously differentiable, and || - || is the supremum norm

||w1 - w2|| = SUPggs<r, |W1 — w2|7 Wi, W € C(g) Hence

Q. (New,) < Qu (1w < 0, (1) € A).

Therefore

Qerp(C(T9) € B, 7 < 0) = Que(¢H(79) € B, 79 < 0)
> B [Q., (C(1%) € 2,79 < 0) - 1(¢Y(), 7w < 0)| 7]
= Eut[Qeer (C(79) € 2,77 < 0) - 1((H(1) € A, 72 < 0)]
> ch[igg(@z(g’f(fg) e ¥, 79 <) 1(¢n) e A, T, < 0)]

> %chg(&(n) €A T, <).

The equality in the above expressions is from the strong Markov property of ¢/(-).
In conclusion, the process ‘() attain the set U?"{z; = 0} with positive probability,

so (-, +) < 1 when Fichera drift f;(-) < 0. O

Therefore investor ¢ can find relative arbitrage opportunities with a unique @‘, the

minimal solution of (3.22) given f;(-) < 0 on each face of O?".
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Chapter 4

Relative arbitrage in N-player games

Investors aiming to achieve relative arbitrage in the market model introduced earlier
are characterized in N-player games in the cases with open and closed loop information
structures. We pay special attention to the uniqueness of Nash equilibrium and the rela-
tionship between mean field terms p’¥*, vV*. We then provide approaches to search for
Nash equilibrium of N investors seeking best arbitrage opportunities. The approach em-
ploying Markovian condition of market coefficients will also be useful in the formulation

of mean field games.

4.1 N-player games set-up

As we have seen in the previous sections, the stock prices and investors’ wealth are
coupled. Variation of one investor’s strategies contributes to the change of the trading
volume of each stock, and thus the change of stock prices. Consequently, the wealth
of others is affected by this investor. In addition, all the investors considered here are
competitive. They attempt to not only behave better than the market index but also

beat the performance of peers exploiting similar opportunities - everyone simultaneously
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wishes to optimize their initial wealth to achieve a relative arbitrage.
Investors interact with each other, adopt a plan of actions after analyzing other
people’s options, and finally, make decisions. This motivates us to model the investors

as participants in a N-player game.

4.1.1 Construction of Nash equilibrium

The solution concept of this N-player game is Nash equilibrium. In this spirit, assum-
ing that the others have already chosen their own strategies, a typical player computes
the best response to all the other players, which amounts to the solution of an optimal
control problem to minimize the expected cost @‘. Specifically, when investor ¢ assumes
the wealth of other players are fixed, they wish to take the solution of (3.13) and (3.14)

as their wealth to begin with so that
1
VHT) = e“VN(T) =6 - e“XN(T) + (1 -0) - €5 > VHT).
=1

We articulate the definition of Nash equilibrium in this problem.

Definition 4.1.1 (Nash Equilibrium). A vector 7% = (7%*,... 7%*) of admissible strate-

] n

gies in Definition 2.1.1 is a Nash Equilibrium, if for all 7t e A andi=1,...,n,
JUr w7t < JH b m ), (4.1)

where the cost to investor { yields

J(r) ;= inf {we >0 ‘VWZVN(O)’”Z(T) > GC‘VN(T)}a
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where w(-) = (7'(-),..., 7 (-)). Hence,
i}l& J () = u*(T). (4.2)

Since v* = wfe* VN (0), the infimum is attained, and

JH(7: 0, 20) = e

T ) .
exp ! { f ﬂf’(ﬂt - éatﬂf)dt + f Wflai(t)th} <ot (4.3)

0 0

Each individual aims to minimize the relative amount of initial capital, beginning with
which one can match or exceed the benchmark.

In addition, we recall the information structure and the types of actions that players
take in a game. It is an open loop Nash equilibrium if the admissible strategies satisfy

the conditions of Definition 4.1.1, with the control 7¢(¢) given by the form
ﬂj(t) = (be(ta v, W[O,t])v (44)

for every t = 0, v := (v, ..., v"), v* = a*(T)VN(0), Wip, is the path of the Wiener pro-
cess between time 0 and time ¢ deterministic functions ¢* : [0, 7] xQ — A, £ =1,..., N.

Here, 7—¢ is the process with the same trajectories as the (7'*,... 7%, .. . V%)

, even
after player ¢ changes strategy from 7% to m‘. Thus the strategies 7% for k # ¢ of the
other players are not affected by the deviation of player /.

However, in closed loop equilibria, the trajectory of the state of the system enters
the strategies, then when ¢ change 7*(t) to 7‘(t), other players are likely to be affected.
Players at time ¢ have complete information of the states of all the other players at time t,
or in other words we allow feedback strategies. As a special case in closed loop equilibria,

a Markovian equilibrium is the admissible strategies profile 7* = (7'*,... 7%, ... «™*)
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of the form

' (s) = ¢'(s, V7, (4.5)

for each (¢,z), where ¢ : [0,T] x Q x R? — A, VL% := (V1(s),...,VN(s))", and

(VE(s))s<s<r is the unique solution of

dv (3) Zﬂ_lé( )dXzN(S) Ve(t) 14 ¢

. —_— = <s<T.
Viis) = TXN(s) R

4.1.2 The uniqueness of Nash equilibrium

Subsequently, we clarify the notion of unique Nash equilibrium we will apply in this
paper. Investors pay more attention to the change of the wealth processes than the
change of the strategies, since two different strategy processes may result in the same
wealth at time T'. Therefore we investigate the uniqueness in distribution of wealth, and
we use the strong uniqueness here because it satisfies the nature of the investment goal

in this paper.

Definition 4.1.2. With the same conditions in Definition 2.5.1, we define empirical
measures of the random vectors (Vé(t)) e RY, given the initial measure pl €

PA(R4),

¢=1,..,N

R
N . _
Hy = N Z 5V£(t)'
=1
We denote the measure flow p := (ud)ieqo 17-

We give the following notion of the uniqueness of N-player game Nash equilibrium.

We do not require the optimal control to be unique.

Definition 4.1.3. We say that the uniqueness holds for Nash equilibrium if any two
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solutions plY, Y, defined on (2, F,F,P), with the same initial law pl) € P*(R,),

where p is the empirical distribution of wealth processes as in definition 4.1.2.

Denote the mean field interactions ;¢ and v under the Nash equilibrium of N-player
games as ¢V and vV*. Generally, the uniqueness of V* is a less restricted condition than
the uniqueness of ¥V*. Starting from a uniquely fixed optimal v™* or u’V*, we analyze

N

whether the counterpart V* or vV* is unique. We elaborate on this point as follows.

e If there is a unique optimal v¥* or %Zé\f:l Oves(),nir(ry) 10 the sense of Defini-
tion 4.1.1 then it implies that its marginal distribution p* or % Zévzl Oyex(y) is the

unique Nash equilibrium defined by Definition 4.1.3.

e However, the converse is not true - A unique u’* does not necessarily give unique
optimal v*. When searching for NE, suppose the optimal path V* € C([0, T]; R")

is unique for each ¢. By (2.12), the process follows

V() = of exp { [[# )6 - atopas+ [ wf’<s>a<s>dws}- (46)

0 0

the solution can be written by different stochastic processes. Thus there could be

multiple possible quantities of optimal measure v"*.

To put this conclusion another way, there could be multiple solutions of 7% () that
generated the unique V** or y* for £ = 1,..., N. In the next section (Proposition 4.2.1
and Proposition 4.2.2), we show methods to attain one solution of the optimal strategies

{m%(t)}iz1.. . that generate the unique optimal wealth V. It assumes each dW;(t) term
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of dV*(t) is identical to that of dVN (t)u’(T —t, XN (t), V(t)).

4.2 Optimal arbitrage opportunities in N-player game

Nx* Nx

From the relationship of u™* and v™* we can see that the key to search for Nash
equilibrium is the fixed point condition on the control space. Since requiring V** to be
unique does not determine 7* or vV*, both pV* and vV* should be fixed through 7.

Thus we search for the equilibrium in the control space by fixed point argument -
Assume all controls 7%(-), k # ¢ are chosen, player ¢ will choose the optimal strategy m*
that achieves optimal value function. Then one solves the equation of wealth processes
(2.3) and trading volume (2.5) with the equation of optimal cost function (3.22). If the
corresponding optimal strategy 7* agrees with 7, then the associated p” is the Nash
equilibrium. We will see in the next chapter that this also provides a route for searching
mean field equilibrium.

We specify the methodology below.

Searching Nash equilibrium in N-player game

1. Suppose we start with a given set of control processes  := (7t,..., 7). With the

empirical distribution " and vV, solve the N-particle system (2.10) and (2.11).

2. We get J(-) from pv and vV. Solve @(T) := infrep J*(7) and the corresponding

optimal control 7*. We find a function ® so that 7* = & (7).

3. If there exists 7, such that # = ®(#), then p’¥* := %Zé\; 810,46y is the Nash

equilibrium.

We have the following result of Nash equilibrium strategies. As in Chapter 3, we

consider investment decisions based upon the current market environment only, in order
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to preserve the solution of (3.13)-(3.15), u*(T — ¢, AN (t), Y(t)) in Markovian market

model.

Proposition 4.2.1. Under Assumption 7,8, and 9, Nash equilibrium is attained when

the strategies yield

al = my(t) + XN (t)D,, 0 (t) + i(m‘l)jil?ij%) (4.7)

j=1

fort=1,... N, where

iy ~0 N 1-0 ¢ ¢ ~0 N
v (t) = logu (T — t, X7 (1), V(1)) + SNXN ;IV (t)loga (T —t, X (), V(t)), (4.8)
and
D, v (t) = D,, loga*(T —t, XN (t) y(t))+1—_5§lvf(t)D log @(T —t, XN (1), V(1))
T4 Ty Y Y (5NXtJV ~ Ty Y Y )
¢ ~¢ N 1-0 ¢ ~ ¢ N
D, 0°(t) = Dy, logu" (T —t, X" (t), Y(t)) + WE VE(t) Dy, logu' (T —t, X7 (t), Y(1)).
tog=1

u‘(t) is the smallest nonnegative solution in the Cauchy problem.

Proof. For a given choice of m € A, @ := infcy J*(7) is uniquely determined by the

smallest nonnegative solution of (3.22). A choice of 7 € A satisfies (2.11), i.e.,

avyt = Vir s, XN v )dt + Virjo(t, XY, v )dw,, Vg =",

For simplicity we denote a‘(T —t, X~,);) as @*(T —t). Assuming that all controls 7*(-),

k # € are chosen, player ¢ will choose the optimal strategy 7* that achieves

VE () = eV () a (T — ). (4.9)
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Suppose every player ¢ = 1,..., N follows the relationship V*(:) = e« VN()a!(T — ),

then sum up the left hand side of (4.9) with respect to £, i.e., S0 | V*(-) yields

Z V() Z e(0XN() + (1 -96) Z Ve ())a (T — ot
= = =1

Solve Y7, V*(-) from above and plug the solution back to (4.9). Then it follows

R eer s e

B e“ut (T — )0 XN (t)
(1= 8)% S e i (T —t)

(4.10)

Without loss of generality, assume X (0) = V™(0), then

t 1 t
log X (t) = log V™(t) = logxg + J m’ (8 — éasms)ds + J m;o(s)dWs.
0 0

vm (0)

Thus equivalently we can write,

1 N
log V™ (t) =log(e”d) + log X (t) + log (T — t) — log (1 — (1 — N Z
=1

=log vf* f m/, ozsms )ds —i—f m;o(s)dW;

+ log @' (T —t) — log @“(T)

—log(1—-(1-4 %; G (T —t)) +log (1— (1 -6 %; (T
(4.11)

and
o _ dxoetut(T)
1— (1= 68)& 30 eceti?(T)

¢

With a fixed set of control processes 7¢, we solve 4 _,, and expect that the optimal
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strategy 7% will coincide with the fixed 7¢(-). Thus we can find the Nash equilibrium
strategy by comparing V% in (4.11) and V* defined in (2.11). By Ito’s formula on @‘(-)

as a function of X" and )}, we obtain

NE n
ai)(T —t)dt + > R(T — t, XN, V) dWi(t),

N
du (T —t) = (La o 2

where p = T'—t, for t € [0, T], L is the infinitesimal generator of (x,y) € (0,20)" x (0, o)™,

ie.,

L' (p) =b(x,y) - 021" (p) + 7(x,¥) - 0 (p)

+strfaley) 2, (0) + 06, y) - B (p) + (57 + 7)) - ()]

and

Ry(T —t,x,y) = > oun(x,y)2: D" (T — t) + ) 7pu(x, ) Dy’ (T — 1).

=1 p=1

Thus the local martingale term in (4.11) is

Jm (s)+LW;_SZR£(T—S)de(S)

AL § 8 rir -

By comparing the drift and volatility of (2.11) and (4.11), we arrive at (4.7). Notice

the consistency condition is in the space of control as indicated in Section 4.1.2. O]

Remark 3. The intuition of the proof above is to form a fized point problem on the
control space by comparing the strategy 7 that generated dynamics (2.11) and the optimal
strategqy generated (4.9). The optimal strateqy is a mapping of the 7, we denote it as
O(7). (4.7) is a solution of T = ®(7).

As can be seen from the proof, the above result also holds true without the Markovian
63



Relative arbitrage in N-player games Chapter 4

assumption 7. We consider functions depending on the path (X[]gt],y[07t]) hence the op-
timal strategy of the Nash equilibrium (4.7) can be obtained with the solution of optimal

arbitrage in the form u*(T —t, X[gt],y[o,t]), which is defined in (3.11).

Remark 4. We have the following constraints on the solution of optimal strategies and
optimal wealth.
First, since the wealth processes should be nonnegative, the wealth V* = 0 in (4.10),

we have for ¢ =1,...,N.

Vé*(t) _ " eqﬁ,é(zﬂ _]f/)éX]\i(t) >
— (L= 0)w 2peq e nt(T —t)

b

hence we get the constraint

N
et (T —t) <
=1

‘ -
(=%

1
N 1-—

Second, optimal strategies (4.7) should satisfy >;_, wi*(t) = 1. We look further into

this constraint in Chapter 6.

The end of Section 3.3 suggests that optimal strategies are linearly dependent on
e“, £ =1,...,N. To illustrate, the investors pursuing relative arbitrage end up with
the terminal wealth V*(T) proportional to e if starting from the same initial wealth.
However, at every time ¢, the information of every V*(t), £ = 1,..., N is required to
pinpoint the optimal strategy. Therefore, a mean field regime is discussed in the next
chapter to resolve the complexity in N-player game.

We conclude from the above arguments that although we start from an open loop
control as defined in Definition 4.4, we end up with closed loop feedback strategies in
Nash equilibrium. One possible reason for this result is that the average trading volume

of investors is in the stock price dynamics, so a change of strategy of one investor would
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give rise to the change of stock capitalization and thus influence the other players. In
this way, the players at time ¢ have information of the states of all the other players at
time t in a latent way.

As mentioned in Remark 3, the approach in Proposition 4.2.1 is suitable for either
Markovian or non-Markovian controls. Next, we provide another approach to solve specif-
ically for controls of closed loop Markovian or open loop form. This approach will be

useful when we derive the mean field equilibrium in the next section.

Proposition 4.2.2. Under Assumption 7,8, and 9, when controls of a closed loop Marko-
vian form (4.5), or an open loop ¢(t,v,W;) are adopted, there is a Nash equilibrium

™ = (7', ..., 7), where for ¢ = 1,..., N, ©* follows (4.7).

Proof.

The Markovian condition in Assumption 7 gives

EF[VV(T)L(T)|F ()]
VN (OL()

= @' (T —t, XN (1), V(1))

where @‘(+) is the minimal nonnegative solution of (3.22). Again we use the property for

0 <t <T that Vi(t) = VN(#)a (T —t, XN (t),V(t)), the deflated wealth process
VEt) == V(1) L(t) = EF[VN(T)L(T)|F]
is a martingale. As a result, the dt terms in dV*(¢) will vanish, namely,

A

Vi) = VH0) + i Lt VEs)BR(T — s, X(s),V(s))dW(s), 0 <t < T, (4.12)
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where

Bk(tax7ﬂ-) = ZU,k(X,Y)l’ZDZIOgU ( _t X y + Z ka X y D logu (T_t7X7Y)
m=1

i=1

+ Z 5§NN<§? (296 oild) = Oul,y )

z‘1xz

Z Z <V€ mioi(t) — VI(1)Ok(x, Y)>~

1=1/0=1

Thus we have the fixed point problem

Wf*(t> = XzN(t>DZ 1Og ’LNLK(T - tv X, Y) + Ti(x7 Y)O-_l(x7 Y)Dk 1Og QZK(T - t7 X, Y)

SXN(t) (1-6) & (4.13)

g O gy VOO,

where V% (t) is generated from 7% (t).

Next, we check the consistency condition of 7* in (4.13) and 7 we start with. Define
amap ® : A — A, we want to find a fixed point so that ®(r) = w. By Brouwer’s
fixed-point theorem, since A is a compact convex set, there exists a fixed point for the
mapping ®. In Nash equilibrium, we assume that all players follow the strategy 7* - if

we multiply both sides by V¢ and then summing over £ = 1,...,n in (4.13), it gives

N VN N
l l
D VIR®) = ey [ X0 Z 0D, log 7! (T~ t,x.)

Z )ji(x,y Z Vg(t)Dy]. log@(T — t,x,y)
5XN
+

=

=1

(t) IS
VN—@m-(t)N;vf(t)].
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After some computations we conclude

T = my(t) + Xi () Dy, 0N () + Y (1071 i(8)D,, v (1), (4.14)

j=1
where 0V (t) satisfies (4.8). O

Remark 5. In (4.13) the last two terms

SXN(t)

(1-9) ¢
v O+ R

D Ve (e)

(=1

is of the same expression as the strateqy used to generate benchmark VN (t) in Theo-

rem 3.1.1.

Proposition 4.2.1 and 4.2.2 provide the general method to search for Nash equilibrium
and a set of optimal strategies achieving the Nash equilibrium. We prove next that the

Nash equilibrium is unique.

Nx

Proposition 4.2.3. A sufficient condition of unique Nash equilibrium p™* in the sense

of Definition 4.1.3 is the first exit time from the set K, is greater than T, i.e., 7% > T

where

Kt:

(N —(1-9) Zévzl etul (T — t))2 K . . vN
<07 No| Yy, e Dy (T — t)] ) T = inf{t = 0, XN(1) ¢ Ko} (4.15)

(T —t) is the solution of the Cauchy problem (3.13) - (3.15).

Proof. To investigate the uniqueness of Nash equilibrium, we look at a mapping on the

empirical mean of wealth m?. As discussed in Remark 3, with the optimal strategies

7 as the solution of a fixed point problem, such that 7 = ®%(7), ®* : A — A, we get
my* =+ SV 8¢ 4¢) for every ¢ € [0, T] is the Nash equilibrium.
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Now we search for the Nash equilibrium on the space of the empirical mean of wealth
mY. Define Yi(t) := E[V(t)al(t)|FV] for every £, t € [0,T] and filtration F}V generated
by common noises W. Solve @’ := inf ey J% (7). Thus we get (4.10) as the solution V*(t)
as a function of the given ®(ml), where ® : R, — R,. So the Nash equilibrium is
achieved if there exists a fixed point mapping ® : R, — R, such that ®(m{) = m. We
will derive the function ®(§) in (4.17).

Let y™™ := (y1,¥2,---,Yn_1). To clarify the mapping and contraction argument of
the fixed point problem, we do a transformation on @‘(T — ¢,X,y) such that we look
at a Cauchy problem of @‘(T — t,x,y) instead, where y := (y ™", >, v;). We have
S Vi(t) = myY from (3.18).

In Cauchy problem (3.13) - (3.15), for p=1,...,n, if p < n,

- ol (T —t,x,y) o (T —t,x,y
Dpf/(T—t,X,y): u( agj Xy)_|_ u( ag Xy>.
p n

I

Ifp=n,

o (T —t,Xx,y
Dpf/(T—t,x,Sf) _ U( a~ 7X7Y)
Yn

So the Cauchy problem of @*(T — t,x,y) yields

R A ) _ 20Du (1, %, )
, 1 ) 2'~£ 7 ) <™y
Au (T,X,y) —2 ZZazj(Xay)(DZ]u (T,X,Y) + ox-1 + (1 - 5)5, ’ 1>

NAY (ot oy 208Dy (7, %, F)
T2 Zi Zl%‘I(X’ y) (Dﬁquz(T’X’Y) T+ (1-o)y-1 >
T (4.16)

Ty (5 DX F) 4 (1 6)Di' (. x. §)
D 2 7 il )

From (4.10), the empirical mean of optimal wealth m;¥ = + SV VE(t) should satisty
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the consistency condition mY = ®(m¥) where ®(-) is

SXN(t) S et (T — t,x,y ", €)

B(E) = . 417
( ) N — (1_5)22\[:1 ecea£<T_t7X7yin7£) ( )
Denote D,, as the partial derivative with respect to mY, D, a‘(T —t) = W.

Thus the derivative of ®(ml) given XV () is

NSXN ()N | e D, i (T — t)
(N = (1=0) XN, ecet(T —1))*

®'(m;") =

We denote A, = N — (1 — 0) X, e“@’(T — t). In addition, 0 < @/(T —t) < 1, ¢ is
bounded by max{cy,...,cy} for a fixed N. Hence |®'(ml¥)| < 1 is satisfied when

0 < XN(t) < =L, (4.18)

for every t. For simplicity, we set D; = NJ| Zévzl e D, it (T —t)|, and K; := (0, %%). By
mean value theorem, and since ® is continuous, we get ® is a contraction of m.

The first exit time for the interval K, is 7% = inf{t > 0; XY (¢) ¢ K;} as in (4.15).

If 7% > T then Nash equilibrium generated by (4.7) is unique using Banach fixed point

theorem.

]

Given %, if 3(t) and «(t) are deterministic processes, X (¢) is a log-normal distri-

bution where

t

log XV (£) ~ N(log N+ f (B(t) %a(t))dt, f

0 0

a(t)dt).
As a result, with the solution @ of (3.22), the probability of attaining the unique Nash
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equilibrium is

ity — é(ﬁ(t)—%a(t))dt>

lo
P(XN(t)e K,) = N( & ¥ o)

where N is the cumulative distribution function of a standard Gaussian distribution.
In general this is not the case. For example we discuss market dynamics in volatility-
stablized models in Chapter 7, where market dynamics can be constructed from time

changed Bessel processes.
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Mean field relative arbitrage

problem

It is expected that in large population games, a mean field formulation is more tractable
than the N-player games and might help disclose more about the finitely many investors
situation. Section 5.1 establishes the optimization of relative arbitrage using extended
mean field games. Section 5.3 constructs a Mckean-Vlasov SDE of the form that the
coefficients of the diffusion depend on the joint distribution of the state processes and
the control, and show the propagation of chaos holds to provide proofs of the market
model used in Section 5.1. Through approximate Nash equilibrium, we justify that the
mean field formulation is an appropriate generalization of N-player relative arbitrage
problem. In the last section, we extend the results in previous sections using smooth

functions of probability measure flows.
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5.1 Extended Mean Field Games

We have observed that it is unlikely to get a tractable equilibrium from N-player
game, especially when N is large. In this section, we study relative arbitrage for the
infinite limit population of players. With propagation of chaos results provided, a player
in a large game limit should feel the presence of other players through the statistical
distribution of states and actions. Then they make decisions through a modified objective
that involves mean field as N — oo. For this reason, we expect the MFG framework to

be more tractable than N-player games.

5.1.1 Formulation of Extended Mean Field Games

We formulate the model on (2, F,F = (F})se[o,r7, P) which support Brownian motion
B, a n-dimensional common noise, equally distributed as W. The systemic effect of
random noises towards the market might be different when we consider a finite or infinite
group of investors interacting with the market. B is adapted to the P-augmentation of F
and can explain the limiting random noises in the market M when N — co. We denote
the natural filtration induced by (B;)iso as FP = o(Bs : 0 < s < t). The admissible
strategies 7(-) € A follow similar conditions as (2.4) and is FZ-progressively measurable.

In general, the capitalization and state processes depend on the joint distribution of
(V4 7h), £ =1,..., N, while the cost function is related to the empirical distribution of
the private states. With a given initial condition o € P*(C([0,T];Ry)) as a degenerate

distribution of value 1, we define the conditional law of V(t) given F? as
p = Law(V (¢)|FP), (5.1)

and the conditional law of (V(¢),7(t)) given FB with a given initial condition vy €
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P2C([0,T]; Ry x A)), is
vy := Law(V (t), 7 (t)| FP).

The mean field game model is constructed upon McKean-Vlasov SDEs of stocks and

wealth
dX (1) = X(O)B(X (L), n)dt + X ()o(X (1), )dB,,  Xo = x: (5.2)
dv (¢ - dX;(t
Wi)) = ;m(t) X, (i)). (5.3)

A player competes with the market and the entire group with respect to the bench-

mark

V(T) = - X(T) + (1 - 6) - L F0) dpr(v), (5.4)

is the weighted sum of total capitalization and the first moment of measure . f: R, —
R, be a Borel function with f(V(¢)) € L* for t € [0, T].

We give the following Assumption 12 for the mean field set-up.

Assumption 12. We assume the following items for the capitalization processes, wealth

and preference of investors.
(1) Assume x € L*(Q, Fo, ;R ), and E[supc,<r [|(V (1), X(2))][*] < 0.

(2) In addition to Assumption 5, the preference ¢ assumed to be independently and
identically distributed as ¢’ from a distribution L, and are independent with common

noise B.

With infinitely many investors of interest, the relative arbitrage problem can be mod-
elled as mean field games and the players become indistinguishable. This is explain briefly
in the following Remark 6. The detail of theoretical support for the McKean-Vlasov sys-

tem and mean field game models is presented in Section 5.3.
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Remark 6. From Proposition 5.5.1-5.5.3, we show that the above McKean-Vlasov prob-
lem admits a unique solution, where v; := Law(V (t), 7 (t)|FP). Furthermore, the weak
limit of measure flow v € P*(C([0,T]; Ry x A)) in Definition 2.3.1 is exactly v;. Thus
VEi(t) is asymptotically identical independent copies given the common noise B when
¢ =1,...,.N, N - . Hence we consider a representative player which is randomly
selected from the infinite number of investors in mean field set-up. Small deviations of a
single player would not influence the entire system given the common noise B.
However, notice that the results in Section 5.3 are based on the Lipschitz conditions
of market coefficients and function of the strategies ¢(-). But in this section, we consider
the McKean-Vlasov system (5.2)-(5.3) when {m;(t)}efo.r, fori =1,...,n is fived. Thus

we avoid the assumption of a Lipschitz condition for ¢(-).

5.1.2 Mean Field Equilibrium

Every player tries to minimize the relative amount of initial capital with respect to
that of the benchmark V(7). That is, a representative player seeks to minimize the
objective

J* (13,0, 20) = inf {w >0 |V Om(T) > eCV(T)}. (5.5)

We define the mean field equilibrium below, which appears as a fixed point of best

response function.
Definition 5.1.1. (Mean Field Equilibrium) Let 7 (-) € A be an admissible strategy,

then it gives mean field equilibrium (MFE) if J*" in (5.5) satisfies

JHY(m*) = inf J*Y ().

TEA

Analogous to Definition 4.1.3, we do not require the optimal control to be unique in
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Definition 5.1.2.

Definition 5.1.2. We say that uniqueness holds for the MFG equilibrium if any two
solutions p®, u°, defined on filtered probabilistic set-ups (Q, F,F,P), with the same initial

law po € P*(R.),

where p is the distribution of wealth processes as in (5.1).

Specifically, we consider the mean field interaction is through the expected invest-
ments of an investor on assets - the conditional expectation of the product of wealth and

controls, i.e.,
dZ(t) = dE(V (t)7(t)| FE) = v(X (1), Z(t))dt + 7(X(t), Z(t))dB,,  Zo =z,  (5.6)
where
dX;(t) = X;(t)5(X(t), Z2(1)))dt + Xi(t)o (X (1), Z(t))dB,  Xi(0) = ;.

and a representative player’s wealth V' (t) is generated from a strategy m(¢) € A through
(2.3). We take F = FXZ = F5 in order to characterize the optimal arbitrage for the rest
of the sections.

In particular, A = arginf, cp J#¥(m) denotes the set of optimal controls. In the
control problem, the flow of measure (mr, Z(T')) is frozen conditional on the common
noise. (mp, Z(T)) is an equilibrium if there exists 7* € A such that the fixed point of the
mean field measure exists, i.e., my = E[V}|FF]; Z(T) = E[Z2*(T)|FF]. In this section,
we consider

inf J*¥ (1) = inf J™(n),

TEA TEA
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and after computations we have that the objective function follows

COX(T) + (1 — &)my

J () = e ST ot (1= 6)my exp ! {Jo 7' () (B(t, X, Zp) — %omr(t))dt

(5.7)

+LT7T’(t)a(t,Xt,Zt)dBt}.

The representative agent’s optimal initial proportion to achieve relative arbitrage can

be characterized as

uw(T) := inf J* (7)) = E[e“V(T)L(T)]/V(0), (5.8)

TEA

Assumption 13. There exist a function H : R?. x R" — R of class C?, such that
b(x,z) = 2a(x,2z) D, H(x,z), ~v(x,2)=2¢(x,2z)D,H(x,2z),
Using an analogous proof in Section 3.1.1 about @‘(-),

L(t) = exp { — H(X(t), 2(t)) + H(x,2) — f (k(X(s)) + /%(Z(s»)ds}, (5.9)

0

where

k(x,z) := — Z Z aij(;’ 2) [D}H(x,z) + 3D;H(x,z)D; H (x, z)],

k(x,z): = — Z > M[ngﬂ(x, z) + 3D, H (x,2) D H (x,2z)]

+ Z Z(STT)ipDiH(X, Z)Dp]{(x7 Z)

i=1p=1
for (x,2z) € (0,00)"™ x (0,00)".

Under Assumption 13, and assuming the Markovian market coefficients g(-), o(-),y(-),
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7(-) for (x,2z) € R} x R" as in Assumption 7,
X2 (5.10)

where

9(x,2) i= (52 ot (1o 5>m>6H<x,z)7
=1
G(T,x,z) = Ep[g()((T), Z(T))e~ 5o k(X(t),Z(t))+15(X(t),z(t))dt]7
where m = )" | 2.

Assumption 14. Assume that g(-) is Hélder continuous, uniformly on compact subsets
of Rt x R%, ¢ = 1,...,N; G(-) is continuous on (0,00) x (0,00)" x (0,00)", of class
C?((0,90) x (0,90)" x (0,90)").

The function G(-) yields the following dynamics by Feynman-Kac formula,

oG -
E(T, x,z) = LG(7,x,2) — (k(x,2) + k(x,2))G(,x,2), (7,x,2) e Ry x R} x R,

G(0,x,z) =g(x,2), (x,2z) € R} x R},
(5.11)
Under Assumption 14, (1, x,z) € C?((0,20) x (0,00)™ x (0,00)") is bounded on K x
(0,00)™ x (0,00)™ for each compact K < (0,00). We derive that (5.8) solves a single

Cauchy problem as opposed to the N-dimensional PDEs system in N-player game,

ou(r,x,2)

p > Au(r,x,z), u(0,x,2) = €, (5.12)
-
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20 D; it
where At(7,x,z) = (7%, 2) )

J;“”XZ< (T’X’Z)+5X-1+(1—5)z-1
2.
p=1gq

Z )ip(x,2) D (T, %, z)

1p=1

N | —
1=

Il
—

%

_l’_

= 2(1 —0)Dyu(r,x,2)
; quZ( u(T’X’Z)+5X~1+(1—5)z-1>

N —

+
INgE

7

HM:

i 5D Li(1,x,2) + (1 = 8) Dy’ (1, %, 2)
4 Jin(,2) ox-1+(1-0)z 1 ’

for 7 € (0,0), (x,2z) € (0,00)™ x (0,00)".

The steps of searching equilibrium for extended mean field game with joint measure of
state and control is formulated in [15]. The paper [17] manifests an example of extended
mean field games with application in price anarchy. They use two different measures as
law of the state processes and the law of control.

The steps to seek equilibrium we introduce is different in that a modified version of
extended mean field game is discussed, where the state processes and cost functional
depend on different measures, and uniqueness of Nash equilibrium is specified here. In
the following, we show the steps to attain a unique equilibrium in an open loop or closed

loop Markovian form.

In the same vein of the arguments in Section 4.1.2, we can show the uniqueness of
v* leads to the uniqueness of p* while the reverse way is not true. More explicitly,
Z* = E[V*m*|FP] is not expected to be unique. Since the diffusion process of Z(T) is
given by Definition 2.1.1(3) and (5.6), we consider the fixed point over the control space
when it comes to Z(T) = E[Z}|FE].

Steps of Solving Mean Field Game

(i) Start with a fixed ¢ such that © = (7(t))o<t<r = ¢(v, Bjo,r7) or ¢(V (t)), the open
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loop and feedback function respectively, and solve
dv (t) = m(t)B(X (1), Z(t))dt + m(t)o(X(t), Z(t))dB:,  V(0) = a(T)V(0) := vy,

dX;(t) = X;(6)5;(X(t), Z(t))dt + X;(¢ anazk (6))dBi(t), i=1,...,n,
k=1
where Z;(t) = E[V (t)m(t)|FP] for 0 <t < T, Z(t) = (Z1(t), ..., Zu(1)).

(ii) For all 0 <t < T, my; = E[V;|FP] on Ry, where V is the path generated from the

fixed ¢. Thus given m = (my)o<i<r, Solve

inf J™7 (1) = w(T) = E[e“(6 X (T) + (1 — §)my) L(T)] / V(0),

TEA

using X (T') from step (i). The corresponding optimum

¢* := arg inf J*¥ () = arg inf J™? (7).
meA meA

Define the mapping ¢* = ®(¢).
(iii) Find ¢ such that ¢* = ®().

By It6’s formula we have

N
~

3 [ VO 5 200, 2B, 0 < 519
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where

I(p,x,2) = Z oix(x,2)1; Dy, logu(p, X, z) + Z Tik(x,2) D, log i(p, x, z)

i=1 J=1

VOX(W) ([ wm A=omif
(5.14)

Remark 7. We use vol to represent the volatility of a process to simplify the notations
from now on. Let p =T —t, t € [0,T]. In general, if searching for Nash equilibrium

when my is fixed, then

In(p,z,2) = Z oik(x,2)x; D, logu(p,x,z) + Z Tik(x,2) D, log i(p, x, z)

i=1 j=1

= X (t) T §
"Ly (Z?_l iUik(ﬂ—@k(x,z)) Yy voldLmy) Ly

If the coefficients () and 7(-) in Z(t) dynamics can not be observed, it can be distin-
guished in the same sense as (3.27) and (3.31). Then (5.14) and Proposition 5.1.1 can

be expressed more explicitly from there.

In the following theorem we derive the mean field equilibrium by fixed point conditions

on the control space.

Proposition 5.1.1. Under Assumption 3, 7, 12, and 1/, there exists a Mean Field

Equalibrium p*. It is attained at

1

7 (t) = X/ (t) Dy, logu(T —t) + i(TJ_l)ji(X, z)D. logu(T —t)

5X*(t) (1 5)j1 (5.15)
0 m; (t) + W)tﬂ*(t%
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or equivalently

VA (t)
3X (1)

T (8) = M (t) + m? )V (#) D, log (T — 1) +

; 5 (to");i(x,2) D, log a(T — t).
j=1

If the corresponding Nash equilibrium p* is unique in the sense of Definition 5.1.2, then

the first exit time from the interval K, is greater than T, i.e., 7% > T where

] < (1- (1 - OE[a(T - )| F7))’

B = S[E[e Dyii(T — £)| FP]] ) , Tho=inf{t > 0; X(¢) ¢ Ki}.  (5.16)

Proof. We adopt a similiar path to obtain a solution of optimal strategy 7*(-) and the
uniqueness of equilibrium in Proposition 4.2.1 and 4.2.2. When searching for mean
field equilibrium, we start from a given choice of 7 (t) € A, for any ¢t € [0,7]. The
McKean-Vlasov system (5.2)-(5.3) can be solved with the given 7(¢) € A and the optimal
value @(7T) of the minimization problem (5.8). Every player in the mean field game acts
optimally by following

V*(t) = eV*(t)a(T — t), (5.17)

with the rest of the pack assumed to be fixed.
Thus by
VX(t) = 06X} + (1 = OE[eV*()U(T — t)|FF],

we solve (5.17) which yields

eou(T —t)

Vi = i s senr =

(X*(t) - 80— ) (BIX ()1 F] - X°(1)). (5.18)

81



Mean field relative arbitrage problem Chapter 5

After comparing log V*(¢) in (5.3) and (5.18), this yields

() = my(t) + %m;(t)V*(t)Dmi log a(T — tt Z )ji(x,2) D, loga(T —t).

(T —t,x,z) is the smallest nonnegative solution in (5.12).
The derivation of 7* ensures that it generates a wealth process V*. Thus with condi-
tions for 7* € A,,, it follows that (5.15) gives the admissible optimal strategy 7* € A.
Next, we show the equilibrium is unique. We fix the process m solve the optimal
control problem for V*. We first perform a transformation of @(-) on variables z =

(21, ..., 2,). The transformed vector
z=(21,...,20) = (21, -+, Zn_1,m),

where denote m = " | z;, since my = >, Zi(t).
To simplify, let D,,a(T —t) = D,a(T —t,x,z"",m). Thus taking derivative with
respect to m follows

ou(T —t,x,2)

Dpii(T — t) = =
Zn

(5.19)

Denote ®(m;) := E[V(t)|B], it is equivalent to show that there is the unique fixed

point mapping ®(m;) = m;, where ®(-) yields

SX*(WE[ecu(T — t,x,27",&)|FF]
1— (1—0)E[eca(T — t,x,27,&)|FP]’

o) =

and the derivative

SX*()E[e“Deti(T — t,x,27", )| FF]

(€)=
( ) (1 N (1 _ 5)]]2[@0’11(T — t,X,Zinaf)’EBD

R
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By the smoothness of @(7T —t) based on Assumption 15, & : R, — R, is a continuous

function of m. Furthermore, we set

Ay =1—(1-0E[e“w(T —t)|FP], D, =d|E[e“D,a(T —t)|FF]|,

Dy a(T — t) is derived in (5.19). By mean value theorem, ® is a contraction of m, if
7K > T, where 75 = inf{t > 0; X(t) ¢ K}, K, := [0, %€>~ As a result, the mean field
=

equilibrium generated by (5.15) is unique when the first exit time from K is less than

T. [l

Remark 8. Following from Remark 7, if when searching for the equilibrium on the space

of my, then
7 (t) = X/ (t)D,, logu(T Z 1)ji(x,2)D., loga(T — t)
0X*(t) (1- 5) -
) m;(t) + 0 (vol(stmt)a )i(x,z),

vol(dLymy) in the above is from (5.14). In particular, (5.15) with open loop control can

be expressed as

TH(t) = XF(t) Dy, log (T Z t)D,, log (T —t)
i=1 (5.20)

Li(my (0,071 — Vimi(t)),

F(a(-),x,2z) = 2 m;D;logu(T —t)

j=1

2o X; (1) Dy log (T — t) D loga(T — t) + 377, D, loga(T —t)
1—>7, Djloga(T —t)
(1= 08)Lemy 337 (00"); D2, log a(T — t)
VH(t)(1 = Xjoy Djloga(T —t))
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Hence

X7 (t)Dy, log a(T —t) + Ztmy(t) + L2 Lymy (0,071);
ﬂ'; (t> = 5 X, - .
5 — Flu(),x, z)

It is clear from (5.15) that the mean field strategy actually depends on (X(t), Z(t)),
which means the optimal strategies are driven by capitalization and trading volumes,
regardless of the information structure of the strategies we set up in the beginning.
Similiar to the observations in Chapter 4 of N-player game, 7 is independent of preference

¢, meaning that the representative player’s preference level ¢ is not a crucial factor when

exploiting strategies.

5.2 Generalized results with flows of measure

As in the beginning of this chapter, we denote p; in (5.1) as the conditional law
of V(t) given FB. That is, y := Law(V (t)|FF), with a given initial condition pg €

P2(C([0,T];R,)). The conditional law of (V/(¢), 7(t)) given FZ, i.e.,
vy := Law(V (t), 7(t)|FP)

with a given initial condition vy € P*(C([0,T]; Ry x A)). In general, players interact
through the measure flow ;1 and v instead of the conditional expectations E[V (¢)|B] and
E[V (t)m(t)| B], respectively. In this case the benchmark is as defined in (5.4). The player
feels the presence of the group through the joint distribution of wealth and strategies.

In this section, we show how the results about the mean field Cauchy problem (5.12)
changed according to the replacement of continuous functions by probability measures.
We first recall some basic notions of the differentiability of a function f with respect to
probability measures.

Definition 5.2.1 (Linear derivative). For any f : R" x Py(R™) — R, the linear derivative
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%ﬁ"m : R" %X Py(R™) x R™ is a bounded continuous function defined as follows. For every

pt, (' € Po(R™), denote p* = A+ (1= M)t

Feom) — Fla ) ”ff” ) e — ) ().

In [12], L-derivative provides a vector space structure by lifting functions f of proba-
bility measures in Py(R") to flat vector space L2(Q, F,P;R"). Let the function f defined

on the Hilbert space, and we have f(x) = f(Law(x)), x € L2(Q, F,P;R").

Definition 5.2.2 (L-derivative). L-derivative of f at pg, denoted as (0,.f)(to,) satisfies

f(u) = fpo) + E[0,f (Law(Xo))(Xo) - (X = Xo)] + o(|| X = Xol|2).

f on Py(RY) is said to be L-differentiable if its lift function f is Fréchet differentiable at

Xo.

The relationship between L-derivative and linear derivative is

8Mf(x,u,v) = av%ﬂu’v)

The above definitions come into use because we need a chain rule for derivatives of
functions of capitalization processes X (t), wealth process V' (¢), trading volume V ()m;(t).

We simplify the notations as
dX} = b;(t)dt + 5,(t)dB,

dV; = B(t)dt + S(t)dB;

dV (t)m;(t) = bl (t)dt + 5¢(t)d By,
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where 7 = (7(t))o<t<r = ¢(V, Bjo,r7) or ¢(V(t)), the open loop and feedback function

respectively.

By Itd’s formula with flow of measure, F'e Ct1([0,T] x R x P*(R x A) x Po(R)),

we have
dF(t7Xt>ﬂt> Vt) = atF(t>Xt>ﬂt> Vt)dt
+ (EF(Xta ,uta Vt) + E;LF(Xta ,uta Vt) + ,C,/F(t, Xta ,uta I/t))dt

+ Z O, F(ry Xy, pi)d By + O (t, X, pu, v, v)5(v, pue) pe (dv)d By

i=1 R
(5.21)
where
n _ 1 n ~
EF(t7Xt7/’Lt7 Vt) = 2 axz‘F(t7Xt7Mt7 Vt>b(Xt7/1’t> + 5 Z axiaij(t7Xt7/th7 Vt)a(Xtulut>7
i=1 ij=1
£yF(t7Xta Lot Vt) = auF(thth, Vi, U)B(%/ﬁt)ﬂt(dv)dt
Rn

1 _
+ §J Tr[0,0,F (t, Xy, pe, v, v) A(v, ) | pe (dv)

1 _
+ 5 JJ Tr[&i@vF(t, Xt, Mty Vi, U, 'l?)A('U, ut)]ut(dv>ut(dz7)
+ J Tr[0,0,F(t, Xu, pu, i, 0)5(v, 1) 5% (v, pe) | pe (dv) v (dw).

The counterpart £, F(t, Xy, pu, ;) is similar to the above.
Assume the Markovian market coefficients 3(-), o(-), v(-), 7(-) for (x,v) € R%} x
P2(R). We modify function H(-) defined first in Assumption 13. Assume there exist a

function H : R" x P*(R; x A) — R of class C?, such that
b(x,v) = 2a(x,v)D. H(x,v), ~(x,v)=2(x,v)D,H(x,v),

where D, H(x,v) is the L-derivative of H(-) with respect to v as defined in Defini-
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tion 5.2.2.
G(7,x, p, V)

u(T, X, u,v) = €e°
( ) 9(x, 1, v)

(5.22)

where

g, ) = (52 # =) [ 70 duto) )0,

f: Ry — R, be a Borel function with f(V(¢)) € L' for t € [0,T].
G(T,x, 1, v) = EF[g(X(T), i, vp)e Jo HEO) +R0)d]

where m = > | 2.

Assumption 15. Assume that g(-) is Hélder continuous, uniformly on compact subsets
of R x P2(Ry x A), £ =1,...,N; G(-) is continuous on R x R" x P?(R; x A), of
class C*(R™ x R? x P3(R, x A)).

The function G(-) yields the following dynamics by Feynman-Kac formula,

oG ~
E(T, x,z) = LG(T,x,2) — (k(x,z) + k(x, z))G(T, X, Z), (1,x,2) e Ry x R} x RY,

G(0,x,2z) =g(x,2), (x,2) e R} x R".
(5.23)
Under Assumption 15, a(7, x, i, v) € C*(R™ x R x PRy x A) x Py(R;.)) is bounded
on K xR x P?(R; x A) x Po(R. ) for each compact K < R".. Especially, we note that the
difference from the previous chapters is that here u(t, x, y1, ) continuously L-differentiable
at p and v; 0,0,u(t,x, u,v)(v) € R"*", is locally bounded and is jointly continuous for

any (t,%,p1,v,v) in Ry x R% x P2(Ry x A) x Pa(Ry) x R”.
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By Feynman-Kac formula with flows of measure and (5.22), we get

’\"’e t
ou'( g?/hV)g(X’ )

=L (t, %, 1, v)g(x,v)) + Lo, (@ (t, %, 1, ¥)g (%, 1)) + L (@ (8, %, 1, v)g(x,v))
— (k(x,v) + l;:(x, )it (t,x, p, v)g(x, V),

where

a; '<Xa V)
jT[ijH(x, v) +3D;H(x,v)D,;H(x,v)],

=
M=

k(x,v) = —

%

Il
—_
<.
Il
Jut

k(x, D2 H(x,v) + 3D,H (x,v)D,H(x,v)]

ipDiH (x,v)DyH (x, V).

Ly
2

i M: i M:

We can also adapt the mean-field Cauchy problem (5.12) and mean field equilibrium
with the above modifications about probability measure flows p and v. Following from
Definition 5.3.1, when searching for mean field equilibrium, we start from each arbitrary
strategy m and solve the McKean-Vlasov system with measured-valued stochastic process
v = ()o<t<r on Ry x A adapted to the filtration generated by the random measure B.
We search for the mean field equilibrium through the fixed point problem on the control

space.
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5.3 Connecting N-player game and mean field game

of relative arbitrage optimization

5.3.1 The limit of dynamical systems

In this section we attempt to show that in the limit N — oo, stock capitalization
vector X (t) := (X1(¢),..., X,(t)) and the wealth of a representative player will satisfy
Mckean-Vlasov SDEs. The paper [52] provides weak and strong uniqueness results of
McKean-Vlasov equation under relaxed regularity conditions. Differentiating from the
usual Mckean-Vlasov SDEs of the form that the coefficients of the diffusion depend on
the distribution of the solution itself, we here consider the joint distribution of the state

process V' (-) and the control 7 € A, and show the propagation of chaos holds.

Definition 5.3.1. Let (X;)o<i<r be a solution of (5.24) on the tuple (Q, F,F,P). The
random variable L(V (), 7(t)) provides a conditional law of (V(t),#(t)) given FB. v =
(i} = {Law(V (1), 7#(1))|FB) locer : Q€ w — L(V(w, ), 7 (w,-)) be the flow of marginal

conditional distributions of X given the common source of noise.

We consider the market under the Markovian model as in Assumption 7. The goal is

to study the McKean-Vlasov system

dX(t) = X(t)B(X(t),n)dt + X(t)o (X (t),n)dB;, Xy = x; (5.24)
AV (t) = n(t)B(X(t), v )dt + w(t)o (X (t), vr)dBy, V(0) = vp, (5.25)
where B(-) = (By(:), ..., B,(+)) is n-dimensional Brownian motion. v := Law(V, 7| FP).

Remark 9. Same as the finite dynamical system in Chapter 2, we analyze a McKean-

Viasov system with initial states given, vy is with the same law as v*
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(Q,F,F P).

However, when solving relative arbitrage problems in mean field games, the initial
value is obtained using the objective u(T'), that is, vo = u(T)V(0).

The following proposition shows that vV has a weak limit v € P2(C([0,T]; Ry x A))
with W, distance. We denote C* = C([0, T]; R, x A) as the path space equipped with

the supremum norm ||z[| = sup,cp 7y |z:|. We assume the boundedness of coefficients as

in the finite system.

Assumption 16. Consider the control process w(-) in open loop or closed loop Markovian
form as (4.4) or (4.5), respectively.

In particular, we can generalize the strategy in closed loop Markovian form as m =
&(Vy,vi). We assume m is Lipschitz in v, i.e., there exists a mapping ¢ : C([0,T],RY) x
PA(C([0,T],RY x A)) — A such that .

6(v,v) = 6V, D) < L[njv — 0] + Wa(v, V)]

for every v,v e RY, v, e P2(C([0, T],RY x A)).

Proposition 5.3.1. Under Assumption 3, 12, and 10, there exists a unique strong solu-

tion of the Mckean-Viasov system (5.24)-(5.25).

Proof. Define the truncated supremum norm ||z||; and the truncated Wasserstein distance

on P*(C*) as in [46]. ||z[[f := supoe, s,

)= ot |l =yl ay).

mell(p,v)

Define ® : P?(C4) — P?(C*) so that

®(v) = Law(V¥, | FP). (5.26)
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We need to show (5.24) and (5.25) uniquely solve the fixed point problem (5.26).
We take two arbitrary measures v, v* € P?(C*), and denote the wealth involving
measure v as V¥, and stock capitalization vector involving v as X¥. By Cauchy-Schwarz,

Jensen’s inequality and Lipschitz conditions in Assumption 3 and 16, it follows

v ve Vb Vb
E[[I(v", x7) — (v, )|}

t
<arm| [ V0 (1)806) = V7 (0 (3Gx P+ o) — b | 7 |
0
s 2
+ 4E[ sup J VY () (r)o(x, 1) — V”b(r)w”b(r)a(x, v")dB,
oss<t | Jo
s 2
+ sup f X" o(x,v") — X" o(x,1")dB, ]:tB]
oss<t | Jo
¢
<aer | [V VPl - AP e Wi 7P|
0

By Gronwall’s inequality,

E[[V*" — V*I[ZIFP] < B[V, 27 — (v, 27 |[IFP] < CTE[J: W (v v))dr],
(5.27)
where Cp = 4(T + 4)L? exp(4(T + 4)L?).
Define a mapping L : R, — P*(C([0,T],R, x A)),

L(V;) = Law(Vy, p(V2)) = v,
then it follows that for (v,u) € Ry x Ry,
W;3(L(v), L(u)) < n(2L* + D)o — ul* + 2L*W5(L(v), L(w)),

and hence
a v® Vb
Wi (v, v)) < CLE[|[VY = V7| 7].
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n(1+2L?)
1-212

where C,, =

If 7(-) is an open loop control, i.e., 7(t) = ¢(vo, v, Bor),
E[||=" — 7 [[}|F] < PEW; (', )IFP] < PRS0, 1)) (5.28)
If 7(+) is in the closed loop Markovian form, i.e., w(t) = ¢(t, V(t), 1),

E[||x" — || FP] < 2L°B[|[V*" = V|7 + W3 (7, 1})]
t
< 8(T + 4) L exp(4(T + 4)L*)E[ J W2(ve, V) dr] + 2L*E[W2 (V2 VD).
0
(5.29)

Then the coupling of ®(v;), P(vo) gives

E[d7(®(vg), @A) < E[II(V"", 7)) = (V¥ 7)) |7 FF]
T (5.30)

< CBl | ot ),
0

where Cr = (3 + 2L*C,,)Cr for closed loop Markovian controls, and Cr = (1 + L?C,,)Cr

for open loop controls. After induction, we get

(CeT)*
k!

E[d7(2"(vg), @ (v7))] < E[d}(vi, vr)].

Following Banach’s fixed point theorem we conclude that ® has a unique fixed point. [

Subsequently, we show in the following proposition that MFE strategies coincide with

the limit of optimal empirical measure in the weak sense.

Proposition 5.3.2. Under Assumption 3, 12, and 16, the limits v; = limy_ ),
pe = limy o Y exist in the weak sense for t € [0,T] with respect to the 2-Wasserstein

distance, where v € P2(C4), u™ € P2C([0,T];R,)).

92



Mean field relative arbitrage problem Chapter 5

Proof. Let wealth process (U*) be the solution of (5.25) with 7(-) as closed loop Marko-

vian dynamics ¢ : [0,T] x Ry — A,

dU(t) = U ()" (¢, U (1) B( X, ve)dt + UL (1) (t, U (1)) o (X, v)dB,,  U*(0) = 2,
(5.31)

or of open loop dynamics

dUe(t) = Uf(t)¢f(vf’ B[O,T])B(‘Xta Vt)dt + Ue(t)¢€(véa B[O,T])O-(Xtu Vt)dBta Ue(o) = Uz‘
(5.32)
for £ =1,...,N. The initial states v’ are i.i.d copies of v. The initial value of U*(0) is of

the same law with V¢(0) by Assumption 12.

BV 6 07) — 6 I < Cral [ Wi mar] < e [ o, vy
’ ’ (5.33)
for t € [0, T], CF is defined in Proposition 5.3.1. For simplicity, let us discuss in the case
of closed loop dynamics, the result of which can be generalized to open loop dynamics.
We follow the coupling arguments in [15], the empirical measure of (V¢ U*) is a
coupling of the N-player empirical measure vV defined in Definition 2.3.1 and 7V, where

7N are the empirical measure of N i.i.d samples U’ in (5.31) or (5.32). Thus
N
20N M) 1 ot vh) € L0TTEVY |2
d; ( Ng (Ve (V) = (U (UY)IF,  as. (5.34)
By the triangle inequality and (5.33), (5.34),
t

E[d?(vN, v)dr] < 2E[d?(7N,v)] + 2CFE[ L d2 (VN v)dr],
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and then by Gronwall’s inequality and set ¢ = T', it follows
EW2 (N, v)] < 2> FTRIWE(5N, v)]. (5.35)

Since (U¢,7%), £ =1,..., N is independent given the noise B, use conditional law of

large numbers (See Theorem 3.5 in [51]),

n—o0

N
P( lim Z fUS T —E[f(U" 79| FP]) =1, for everyf € Cy(R")
=1

We then apply Theorem 6.6 in [57], which gives that on a separable metric space, v — v

weakly,
lim d(x,xo)Ql/N(dx)zj d(x,z0)*v(dz) a.s.,

N—w RN RN
which lead us to

EW:(7N,v)] — 0.

Therefore by using triangle inequality, it leads to E[W2(v",v)] — 0. We can use

similar methods to derive E[W2(uV, )] — 0. O
Next we show the convergence of n-dimensional continuous stochastic process XV ().

Assumption 17. On the probability space (2, F,P), there exists positive constants 6 such

that the following conditions on 3 and o:

¢
J | (r, x,v)|dr < n(x,v)|t — sllTM,

s

t
| 1aat ez < e - o 5

s

where t,s € [0,T], and n, & being F-measurable functions with values in (0, 00) x P?(C4)
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such that B[n(z,v)?] < oo, E[¢(z,v)?] < .

Proposition 5.3.3. If Assumption 12 and 17 holds, then there exists n dimensional
continuous process X defined on the probability space (2, F,P), such that {IP’XN} converges
weakly to {P*} as N — oo, X(t) = limy_,o XN (t) exists a.s. for all t € [0,T]. XN (t) is
defined in (2.10).

Proof. First we show that {P¥"} is tight. A sequence of measures ™ on P2(C([0,T];R.))

is tight if and only if

(i) there exist positive constants M, and v such that E{|x"|"} < M, for every N =

1,2,...,

(i) there exist positive constants M, and d;, d such that E{|XN(t) — AN (s)[} <

M|t — s|'*92 for every N, t,s € [0,k], k=1,2,....

The proof of this can be found in [43].
With x € L*(Q, Fo,P;R") in Assumption 12, condition (i) in the above statement
holds.

To check condition (ii), by Cauchy—Schwarz inequality,

XN (E) — XN (s)[? =\XN(t) XY () .+ \XN(t) - X (s)
-3

i=1

) Bi(r dr+2 P)oa(r )de(r)‘Q

&),
Lam )W (r )‘2).

Then for any constant ¢ in Assumption 17, by [t0’s isometry,

<i( SR

B[V (1) — AV ()P < (n+ 1) Z( — 0+ [ o)W )

<n(n+ 1)(E[n(w, v)?] + E[¢(w, V)Q]) It — 5|2,
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where E[n(w, v)?] + E[¢(w, v)?] < co. Thus condition (ii) follows.

By Prokhorov theorem [8], tightness implies relative compactness, which means here
that each subsequence of {X*} contains a further subsequence converging weakly on the
space C([0, T];R?). As a result, a subsequence exists such that X () = limy_, XV (¢)
a.s.. Then if every finite dimensional distribution of {P¥"} converges, then the limit of

{P*"} is unique and hence {P¥"} converges weakly to {P*} as N — co. O

Proposition 5.3.4. Under Assumption 3, 12, 16 and 17, The solution of Mckean-Vlasov

system (5.24)-(5.25) is the weak limit of the solution of N-particle system (2.10)-(2.11).

Proof. For (5.24) and (2.10), it is equivalent to show that the drift and volatility of X;

matches the weak limit of that of X (¢), i.e.,

t t

i B(s, X(s),vs)ds = lim ) B(s, XN (s), v (s))ds, (5.36)
L o(s, X(s),vs)ds = ]\lfl_r)réo ) o(s, XN (s), vV (s))ds. (5.37)

in the weak sense.

By Assumption 3, with the Lipschitz constant L,

2

H f (B(s, XN, v - 5(5,2(87%))6;3‘

L2

< | 18(s, &N, vN) — B(s, Xy, vy)|[22ds

s 17s

<L2<L E[lXN — X,2]ds + EE[WQ(ugV, ys)Q]ds>.
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By Ito’s isometry, we have

M (s, &Ny Yaw, — f (5, X, )
<M XN, Ny, — f (X, vs)

_IE f|a XN v — (s, A, 1/5)|2d3]

+M (X, )W, — f (X, vs)

s S

<L2EHO (AN — X2+ W2, v ))ds].

From the results in Proposition 5.3.2 and 5.3.3, by Lebesgue dominated convergence

theorem,

t
lim B(s, XN UMY — B(s, Xy, vs))ds ’ =
0 L2

s » Vs
N—o0

lim Hf o(s, XN, VN — o(s, X, VS))dsH; =

s » Vs
N—o0

We conclude (5.36)-(5.37).

Hence we conclude that the limit of the finite particle system exists in the weak sense,
and matches the solution of the Mckean-Vlasov SDEs system.

When N — oo, the limiting system is driven by X; and v, := Law(V (), w(t)|FP).

The stock market follows
dX; = X,5(X, 1))dt + Xyo (X, v)dBy,  Xo = X,
and a generic player’s wealth is
dV(t) = w(t) (X, 1))dt + 7(t)o (X, v)dBy,  V(0) = vg. (5.38)
m is fixed in (5.25) and (2.11). O

Remark 10. [t also follows that Z(t) is the weak limit of Y(t) in Proposition 5.5./.
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With the notations in Definition 2.1.1 (3), if we consider the mean Z(t) of the measure
Law(V (t), w(t)|FP), we can get Z(t) = limy_, V(t) exists in the weak sense, and the

limit Z(t) match the solution of the Mckean-Viasov SDE

dZ(t) = v(X, Z()dt + 7(X,, Z(t))dB,. (5.39)

5.3.2 Approximate N-player Nash equilibrium and mean field
equilibrium

In this section we justify if mean field game is an appropriate generalization of N-
player relative arbitrage problem.

From the optimal strategy (5.15) derived in MFE and Definition 2.3.2. In mean field
games with mean field interactions as the distributions u; and v, for ¢ = 1,...,n, the

players adopt

T (t) = " (e iz, ). (5.40)

Assumption 18. Let the function of strategy w“(-) be ¢*(-) : C([0, T],RY)xP2(C([0, T], RY x

A)) — A. We assume ¢' is Lipschitz , i.e.,

|¢Z(X7 K, V) - QZSZ()NQ /77 ;” < L[|X - }~(| + nW2(:uu ﬁ) + WQ(”? D)]

for every v, 7 e RY, v, 7 e P2(C([0,T],RY x A))
We conclude in the following proposition that the MFE we obtain agrees with the
limit of the finite equilibrium, and that the optimal arbitrage in the sense of (3.10)

strongly converges to optimal arbitrage in the mean field game setting (5.8).

Proposition 5.3.5. Under Assumption 3, 7, 12, 17, 18, and suppose the first exit time

from the random intervals K, and K, satisfies min{r™, 75} > T in (4.15) and (5.16).
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Then u(T) = limy_,o u*(T) a.s, for every ¢, { =1,...,N, and T € (0, 0).

Proof.

We want to show that as N — oo, the Nash equilibrium of the N-player game in the
system (2.10)-(2.11) converges to the mean field equilibrium in the system (5.24)-(5.25).
The optimal strategy 7% (-) as functions ¢*(X;, s, v;) and ¢* (XN, ul¥, V) are used in
Nash equilibrium of N-player game and mean field game, respectively. Thus, we look at
the limit of the optimal cost in N-player game and the mean field optimal cost.

We get Po (XN, V, V) is tight on the space C([0, T];R™) x C([0, T];RY) x P*(C*)
and the weak limit of P o (XN, V) exists, following from Proposition 5.3.1 - 5.3.3.
Note that the results in Proposition 5.3.1 - 5.3.3 under Assumption 16 can be generalized
with Assumption 18 instead.

By using the Markovian property of 7(-), and Assumption 7 on (-) and o(-), we have

EF* [eccV™ (T) L(T)| F}V]
VN(t)L(t) ’

(T —t) =

W(T— 1) = EF[eV(T)L(T)|FF]

where FX"Y = FW F¥Z = FB and

Given the current states of XV (t), V(t), X(t) and Z(t), then by the uniform inte-
grability of X(-) and V(-), and Lebesgue dominated convergence theorem, we get the
deflator L(X(t), Z(t)) = limy o L(XN (1), V(1)) a.s., and V(T —t) = limy_o, V¥ (T —t)

99



Mean field relative arbitrage problem Chapter 5

in the weak sense for ¢ € [0,T]. ¢ is i.i.d samples from Law(c) by Assumption 5.
Therefore as N — oo,

u'(T) := inf J*(7%) — inf J**(7*) = u(T)

TEA TEA

in the weak sense, and u(T — t) is the weak limit of u*(T" — t) when the trajectories of

the current values are fixed. O

Next, we show here that MFE can be used to construct an approximate Nash equi-
librium for the N-player game. Since we derive strong equilibrium in both N-player and
mean field game, p and p are measurable with respect to the information generated by

W and B, respectively.

Definition 5.3.2. For ey > 0, an open-loop en-equilibrium is a tuple of admissible

controls

¢ = ("), 0NN (D))osier, OVt € A A,

for every £, such that

JH ™) < inf J*(p, oV ) + e,
peA
where p € A is an open loop control, and ¢ is of the form in (5.40).
An closed-loop en-equilibrium is a tuple ¢ such that

J(o™) < inf JE(pN) + en,
peA

where each component in ¢V is defined in (5.40); pN = (p(Upyq), oV (Upy)), in
which Uy is the N-vector of wealth processes generated by this strategy, p : [0,T] x
C([0,T;RY) — A is of the form (p(t,Upy))o<t<r, ¢~ is defined in (5.40). For any

(=1,....,N, ot and p are F-progressively measurable functions.
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To check if the strategies in mean field equilibrium can form an approximate open
loop N-player Nash equilibrium, we consider N strategies that use the same ¢* in the
mean field case. A simplified situation is when p;, v, fixed from mean field equilibrium,

then the corresponding strategies ¢ for £ = 1,..., N in N-player game is

¢ = ¢" (X, i, i) (5.41)

A more realistic construction is to use p¥ or v}V instead, that is,

¢ = " (X iy 1), (5.42)

Although closed loop controls (5.40) are distributed, when considering players in
the N-player game adopt the optimal strategy from the associated mean field game,
the strategies in the form (5.41) or (5.42) are not distributed closed feedback form,
i=1,...,n. In fact (5.41) yields an open loop Nash equilibrium. Both (5.41) and (5.42)
may depend on the past trajectory of common noises.

Therefore besides approximate open loop Nash equilibrium, to check if an approxi-
mate closed loop Nash equilibrium can be constructed from (5.40), we prove approximate
Nash equilibrium result in “semi-closed loop form” introduced in [15].

We show the details of approximate Nash equilibrium in Proposition 5.3.6.

Proposition 5.3.6. Under Assumption 3, and 18, there exists a sequence of positive real
numbers (ex)ns1 converging to 0, such that any admissible strategy 7 = (7} )iefor) for
the first player

JN’Z(plaﬂ—Q*a"'aﬂ—N’*)>J_€N, gzl,...,N.

Proof. This proposition is proved for both open and closed loop problems in the N-player

game, adapted from the methods in [15] and [47]. Strategies in the form of (5.41) are
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easier to deal with than (5.42), and it only gives rise to the approximate open loop

equilibrium. Therefore in this proof we focus on strategies (5.42).

e Use MFE to approximate open loop Nash equilibrium.

Without loss of generality, by the symmetry of the game, we only need to focus on
player 1. For a fixed number of players N, each player utilizes the optimal strategy
7 from (5.40) in the associated mean field game. Thus the actual strategy ¢ for
player ¢ is (5.41) or (5.42), ¢ =1,...,N.

Let 7T§N) = (7l(t),..., 7N (t)) € AN. We want to show the cost functional of MFE
is the limit of N-player game cost with 7(™) and player 1 cannot be too better off
in the approximate equilibrium sense when he/she deviates from 7(¥), in a fixed
number N-player game, namely, JV (7)) is indeed an e-Nash equilibrium with
ey — 0as N — o0, ie.,

lim JY (™) = J2(7*) and JN¥(@W™) = JV* — ey with lim ey = 0,
N—ow N—o

where JV* is the optimal cost in N-player game, for a fixed N.

Under 7)., the corresponding wealth follows

AV (t) = V*(t)m; (B(Xe, v )dt + o(Xe, v")dW,), £=1,...,N,

and the joint empirical measure of the wealth processes and MFE control functions
is

1 N
Nx _ —
v = N;(S(Vé*(t)ﬂf*)'
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If V) deviates to (p,7~!), the state processes are

dv1<t) = Vl(t>pt</B(Xt7 thv)dt + O-(Xh VtN)th>)

dV*it) = VAT (B(Xe, vV dt + o( Xy, vY)dWy,), € # 1,
and the empirical measures are

1 = 1 i
m= 5 <5v1<t) +2 5W(t>)> v = (5<v1(t>,p> +2, 5<v1**(t>,w*>>~
=2

(=2

Let

1 N 1 N
N-1 E N-1 E
M = —N 1 4 5\/*2(15)7 v = —N 1 4 5(V‘*(t),7r*)'

We can see that for £ > 1, the difference of V% (t) and V*(#) is solely on the measure

N *
v, and v,;' .

By the definition of Nash equilibrium, with an arbitrary p € A, we trivially have
ey = JN (@™ —inf JN(p, 771 = 0,

for some fixed ey. J*(7*) = J*(p) by the definition of Mean Field Equilibrium. It

suffices to show that as N — oo
T (p. ) — T (p) (5.43)
uniformly in p, where J*(p) is subject to
dVP = VPp(B( Xy, vy)dt + o( Xy, v4)dBy).

From the expression of cost functional J in (4.3), we only need to show (u¥, ) —
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(e, v¢). Since vV* — v as N — o0 in the weak sense with respect to W2 as proved

in Proposition 5.3.2. By (5.35),

E[ sup Wi(v", vy )] S EV (™, M )] <

s€[0,T]

, (5.44)

=ie

where 1 is the time-t marginal of u € P?(C4). C is a constant depend on Cr, T

and v.

Use (5.27),

E[ sup Wy (v~ 1))

7S

s€[0,T7]
N
SB[ sup (V2 = VI + e, 025 - (Xl )
SE OT (=2
C J t
<— + sup W2V vN)ds |,
N Z [LTE[O,S] 2( )

The constant C' is different from the above value of C', but it does not depend on

N. By Gronwall’s inequality and (5.44), it follows

E[ sup Wi ("™, v,)]

s€[0,T]

N
S

Nx*

We showed in Proposition 5.3.2, v,'* weakly converges to ;. Therefore we get

N N N)

v;w — vy weakly, as N — co. Thus (1", ;") — (4, 1) follows.

The objective we use here is a stochastic function of stochastic processes. We have

1 L i, x) L x. We can find a subsequence { N} such that

T T
lim ai(XtN,yt]V)th—J oi( Xy, v)dB,

N—w0 0 0
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weakly through It6’s isometry and Ly convergence. As a result, by (4.3) and (5.7),

lim JN(p, )

N—0

= eXp { pr B( X, ) — ;a(Xt, v)p(t))dt — ij(t)’ai(Xt, yt)dBt}

0 0

ZJ“’”(p).

e Use MFE to approximate semi-closed loop Nash equilibrium:

From the expression of cost functional J in (4.3), we need to show (U}, ¥, v}¥) —

(V1)

The distinctive characteristic for a closed loop control is that it depends on the
wealth and the deviation of the strategy in turn influence all the investors’ wealth.
Hence when 7\ deviate to (p, 7 !) := (p(UL), 7*(U2), ..., 7 (UY)), and the state

processes become

dUl = Ulp(UH(b( Xy, vi¥)dt + s( Xy, v))dWy),

AU} = Ufm* (U])(0(Xe, v )dt + s(Xp, v )dWy), € # 1,

and the empirical measure is

N
1
N
Vi =N <5(U3,pt> + 2 5(Uf,w:)>>

(=2

while the state process with p; in mean field game is

VP = VEp(B(Xe vi)dt + 0 (X, 1) dB,).
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By (5.29), (5.30),

N

1
L sup WEO2 "] < B[ sup 1 DY (vt - v
5€[0,T] sefor) NV —1 =2
I ) a0 )
C [
< ]EfsupW,,,f,vds]
N_lé_ZQ l 0 rel0,s] 2( )
O t
< —+C]Elj sup Wi (v~ 1*,1/7{V)d3],
N 0 r€l0,s]
it follows
N,—1x N c
E[ sup Wy (", v )] < &

s€[0,T]

The constant C' does not depend on N.

Next we want to show U! — VP, since p € A is bounded,
|XU . XV‘Q + ’Ul _ VP‘?
J IXVb(s,vY) — XYVb(s,v,)|ds)? f \Ulpb(s — VPp,b(s,vs)|ds)?
f Ut pao (s, ) — VPpoo(s, 1) dIW,)? f XVo(5.0%) — XV or(s,v2)|dTV,)?
< [ IXEB6.2) = XM P+ X o5,02) = XY som)

+ [Uspsb(s, X', vy) = VEpsb(s, X¢7, v I + U pso (s, 14") = VIpso (s, 14)|[*ds

t
<COLQJ <|X§f — XY+ U = VPR WEWY, )>ds.
0

Cy is a constant depending on the Lipschitz constant of coefficients, C'r and C' above.
By Gronwall’s inequality,

U = VPP < X = XTP + (U = VPP < W3 w)

s 7
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Therefore we conclude (U}, N, vN) — (VF, s, vi). Then p(UL, u, v)N) — p(VE, s, v4).

lim Jy(p, 7~ ") = J*"(p)
N—0

O

Thus we have the propagation of chaos for N-player games of relative arbitrage prob-
lems, and the corresponding mean field games can be used to approximate finite-player
games. The last section justifies that the influence of each single player on the whole
system is diminishing as N gets larger. Asymptotically we can consider a representative

player and solve a single optimization problem instead.
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Chapter 6

Functionally Generated Portfolios
(FGP)

A versatile tool introduced in Stochastic portfolio theory is portfolio generating functions.
This class of functions is usually smooth functions of market weights, which allows us
to create portfolios with well-defined return characteristics and obtain probability-one
constraints on the return relative to the market portfolio. In this chapter, we extend the
current characterization of FGP to FGP in market models influenced by investors.

We start from a review of the original formulation of FGP. Portfolio generating func-
tions can create well-performing portfolios that have little requirement on the estimation

of the drifts or volatilities of the stocks.

log <“//;((?)> = log (%) + JT g(t)dt, T e|0,0),

with

&) = 5] o 20 DHCm) - m(m, (10

i=1j=1
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where 1™ (-) is defined by 7™(-) in the dynamics (1.1),

R = Y TROTRO).

This formulation if based on the fact that with a strategy m, log V" (t) depends solely on
m(0), m(t) and a finite variation process related to time-aggregated market volatility.
Using this almost sure pathwise decomposition formula, it was able to formulate condi-
tions under which the portfolio outperforms the market portfolio with probability 1 for
all sufficiently long horizons. With appropriate generating functions, this allows us to
obtain probability-one constraints on the relative return.

[25] proved the characterization of the portfolios that are functionally generated. [56],
[71] shows essentially that no other portfolio functions, other than those that are func-
tionally generated, can beat the market in the long run without additional assumptions

in discrete time.

6.1 FGP in N-player market

In this section, we construct portfolio generating functions to create portfolios with
relative arbitrage. The idea is that deterministic functions defined on A™ can be used to
generate portfolios, and in this way, we will be able to get information on the behavior
of portfolios.

Since we use the benchmark V(t), we first define the relative return of a stock versus

the weighted average of market portfolio and sum of investors’ portfolio.

Definition 6.1.1. (Relative return) For portfolios 7, the relative return process of

109



Functionally Generated Portfolios (FGP) Chapter 6

versus a benchmark n(t) is defined by

VT(t)
n(t)

log

A benchmark that is commonly used is the market portfolio. Based on definition 3.1.1,
with the weighted average of market portfolio and average portfolio as a benchmark, we
develop the following definitions which use certain real-valued functions of the market
weights and functions of the strategies of investors to generate portfolios. The goal is to
find conditions so that the wealth process of investors ¢ dominates a big proportion of
the weighted average of the market and the investors.

Therefore, by the similar notation in definition 6.1.1, we look for a decomposition of
the relative return of 7 versus e“V(t) as the sum of generating functions of y and ,
and a drift process.

Recall that the market portfolio follows the dynamic (1.1), we rewrite it as follows

and define 77(¢) and ~/"(t) for future use.
dm;(t) = my(t) ['yz’»"dt + Z T[,Z(t)de(t)], i=1,...,n. (6.1)
k=1

Here 7™(t) is the matrix with entries 77(t) := o (t) — D"

i1 my(t)ojx(t), e; is the ith unit

vector in R™ and the vector 4™ (t) is with the entries 4™ (t) := (e;—m(t)) (8(t) —a(t)m(t)).

Let I be the identity matrix of size n, and 1 be the n-dimension column of ones.

Theorem 6.1.1. Let G{, G : U — (0,00) be positive C? functions defined on a neigh-
borhood U of A such that for all i, x;D;log G4 (z), z;D;log G5(z) are bounded on A. For

€ [0,T], GY, G generate the portfolio

() = GL(t) + GL(t) + R(t) (6.2)
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where

Gi(t) = (D;log G (m(t))m;(1))n(I — 1m(t)); G5(t) = Dlog GH(V(1))7(t)o " (1);

SAN() + (1= 6)Y(t)

R0 =)

The process

V()

dlog o oN G

= dlog G2(Y(t)) + dlog G1(m(t)) + d=;,t € [0,T7], a.s. (6.3)

is with a drift process Z(-) such that a.s., for t € [0,T],

=) _~

= & natmin) + G nate 1) - 1(Héf (1ol + [|4(1)ol P ~ Hw%uz)
2Gf Z D;;Gj(m Z

WZ Dy GAY (1)) 1),

i,j=1

(6.4)
We denote Dlog G5(Y(t)) as the row vector (D;log G5(V(t)))n.

Proof. By Ito’s lemma,

&: 7-(-5/ _@T‘_Z D! 1 "o 2
dlog - on < (t)(ﬁ(t) > (t)) RI(DB() + 5IIR' () (t)|>dt o

+ (77(t) = R/ (1)) o (t)dW (t).
Since G and Gs are twice continuously differentiable function, it follows

D;;G{(m(t))
G{ gm(t))
Dyylog GH(Y(1)) = 2272t GG;%’;))

D,y log G (m(1)) = ~ D;log G (m(1)) D; log G4 (m(1)),
(6.6)

— Dilog G5(Y(t))D;jlog G5(YV(t))
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Then using (6.6) and Ito’s lemma,

dlog G{(m(t)) + dlog G5(V(t))

_ 2 Dilog G (m(t))dm(t)

QGg Z D G (mn () (£)m (£) (Y, 73 ()7 (1)t
- ZD log G (m(#))D; log Gi<m<t>>mi<t>mj<t><; QLN
-+ Z D;log GL(V(1))dYi(t)
. m X, DGO )

- Z D;log GE(V(1))D; log G(V(t) )by (1)dt,

1]1

The local martingale part of (6.5) and (6.7) are the same, and this leads to

() = [(Dilog Gi(m(t))m;(t)),(I — 1m'(t)) + Dlog Go(V(1))7(H)o ™" (1)] + R(t),

for t € [0, 7], and for each £. Substitute this result into (6.5),

{4

dlog eceV(t)

=dlog G5(YV(t)) + dlog G{(m(t))

—{ @0 (—atm(®) + G5(t)(~a)x'()
W( Jol 2+ 1G5 |1 o)

2Gf Z D;;Gi(m QIO

k=1

l\i)lr—A

1
m@% ZJGK( ())@Z)m( )}dt.
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Thus we conclude (6.2) and (6.3). O

6.2 Optimal arbitrage strategies and equilibrium us-
ing FGP

We characterize the strategies (4.14) achieved in Nash equilibrium using functionally
generated portfolios. FGP methodology could be easier to use than the dynamics of the
portfolios since there is randomness in the model, which is difficult for analysis.

In (4.14), the strategy is generated by a function of market portfolio and average

trading volume,

7(t) = [(aa log u’(m, y)m;), (I —1m/(t)) + % logu‘(m,y)7(t)o " (t)] + R(t). (6.8)

7

More importantly, the notion of optimal strategies (4.14) can be treated through The-
orem 6.1.1. Let GY{, G5 : U — (0, 0) be positive C? functions defined on a neighborhood
U of A such that for all 4, 2;D;log G{(z), z;D;log G5(z) are bounded on A. We write

a‘(t,x,y) = u’(t,m,))), then by taking the derivatives of XN (t), Y(¢t), it follows

XN () D;logaf(T—t, XN (t),Y(t)) = | D;log Gf(m(t))—i D;log G (mi(t)))my(t) |my(t);

i=1
Do )u(xN, y) Dy, log @(T — £, XN (2), V(1)) = (D;log GV (1)a(t)o ' (t)e].
j=1

When we express 7(+) explicitly using the methodology in Section 3.3.2, we can sim-

plify the above to a functional characterization without the coefficients 7(-) and o(+). For

example, if open loop strategies (4.4) is used, then by the dynamics of ) in (3.25), we
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have
n

7=1

(ro™1);i(x",y) Dy, log @ (T—t, XN (1), V(1)) = %(Dj log G5(V(1)))n > m(OV (£)7(2).
=1

Furthermore, we can use portfolio generating functions to find conditions on invest-

ment strategies by >, m(t) = 1, t € [0,T]. We get

1-0 <
00 0
NOXN(f) ;Vtwt e

where w! := X;(t)D;log@‘(t) + 7:(t)o~(t) Dy, log @'(t). Hence Y VE(t)w'(t) = 0 or
OXN(t) = (1-90)~ SV VE(t). The latter indicates that the market consists of the N
investors we considered. If w*(t) = 0, then every investor is the same, and their strategy

follows the market portfolio. If w’(t) # 0, then 1'Gs(t) = 0, and
2.2 Dilog Ga(t)(r(t)o ! (¢)): = 0. (6.9)
j=li=1

Remark 11. (6.9) comes from the fact that 1'F(t) = 0 and 1'R(t) = 1.

In general, the function G(-) is chosen so that
1'G(t) = —n - dey(t).
We will show later that ¢, has to be a constant or a stochastic process. (6.2) and (6.4)

only depends on the volatility structure of X;(t) and I1;(t).

Remark 12. [20] discuss the case when the benchmark is the market portfolio. It con-
structs generating functions that allow us to obtain portfolios with well defined relative

returns with respect to the market. Following the same conditions as above theorem, F
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generates the portfolio ™ with weights
m(t) = (Dilog F(m(t))m;(t));, — [(Dlog F(m(t)))'m(t) + 1'lm(%) (6.10)

From this functionally generated aspect, we can use the portfolio representation (6.8)
to analyze relative arbitrage in a more specific problem with relaxed constraint: An
investor expects to reach the goal of relative arbitrage by a specific terminal time, as

opposed to every fixed T' € (0,00) in previous chapters.

6.3 Applications

Portfolio generating functions can create portfolios with desirable well-defined return
characteristics.

We showed in Section 6.2 the arbitrage opportunities in terms of portfolio generated
functions over time horizon [0,T] for any T > 0. In this section we use an example
to demonstrate another type of relative arbitrage - long term relative arbitrage. This
type of goal provides more flexibility when setting up a model and relaxes some of the
assumptions on stock dynamics. For example, certain forms of drifts and volatilities are
required for the Fichera drift argument in Section 3.4.

Now we want to show M contains strong arbitrage opportunities relative to the
performance benchmark, at least for sufficiently large real numbers T' > 0. We illustrate
this path by example 6.3.1. We employ the idea of functionally generated portfolios [26]
to seek optimal strategies. By doing so, we may reduce the intractability of the N-player
game problem.

If the model M of (2.1), (2.2) is weakly diverse over the time-horizon [0,T], and if

strong non-degeneracy condition holds, then M contains strong arbitrage opportunities
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relative to the market portfolio, at least for sufficiently large real numbers 7" > 0. Denote

e, the 7th unit vector in R".

Example 6.3.1. Suppose that M is nondegenerate, weakly diverse in [0,T], and has
bounded variance, see Definition 1.1.1-1.1.2. We assume for t € [0,T], there exists

constants cy, N., M, > 0 such that
VE)/V(0) = eoX N (1) L(1);

1=1

Consider the function Gy and Gy are defined by

Gi(z) = Hiﬁz’, Go(z)=1- %fo
i=1 '

G and Gy generate the portfolio

Then 7 strictly dominates VN (t) in (3.3) if

nN? —2n? — 2
—2en + 2M n? — 21"2—554720 + Mn? (n(n -1)+ 1N2 pinax(7) >

~%n — 5 min

T>

The notations of constants and details of the proof can be found in Appendix 6.1.

Lemma 6.3.1. A matriz A is semi-definite if and only if (vAy')? < (xAx")(yAy') for all
x, y in R™. The equality holds if and only if xA and yA are linearly dependent.
116



Functionally Generated Portfolios (FGP) Chapter 6

Lemma 6.3.2. If A = (a;;) is a positive semi-definite matriz, then there is an index k
such that ay, = a;j, for any i and j. In other words, the largest entry of the matriz A

appears on the diagonal.
We show here the derivation in Example 6.3.1.

Proof of Example 6.5.1. Let M be a market without dividends. Suppose that M is
nondegerate and has bounded variance. Suppose M is weakly diverse in [0,T]. Consider
the function G; and Gy are defined as in example 6.3.1.

n o m, "om? .
[ m; < Z:Tlm < Z’:Tlm implies that

1 N? N?
< <=, 1-—< <1——
0 Gl(m) TLQ’ 2 GQ(y(t)) 2n
then
2 1 N?
1—— <1 1 <—=+1—-—.
0g Gi(m) + log G2(Y(t)) e o

The portfolio (6.11) generated by G; and Gy implies

7l > max{0,1 — (n+ XN () VN () (1 — 1) + <$%)> o (te);  (6.12)

7 < minfl + S (VO )V () + (

40 -1
N T

Go((t

geeey =1,... =1,... =1,...

geeey =1,...

We'll use the following results to simplify =(7):
(i) M is nondegenerate, weakly diverse and has bounded variation;

(i) + <>, m? <1 implies that 0 < [[(1 — nm)|| < y/n(n — 1);
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. . N _ N —
Y (m)? < 1implies || 3,0, 7¥()70 o < || X2 7Ol - [I7ll2 - [lo7 ]2 <

N )\maz (w) 1

A’mi'n(a)7
trix A € R™" \/Trace(AA") = ||A|lr < +/n||Al]2, where || - |2 is the matrix

induced norm. Trace(r7™) = Y7 SV 75 = ned (1 — ﬂfl))z, then ||7]]2 =

N
DI 7T51))23

where the norm for 7 and o' is matrix induced norm. For a ma-

(iii) || and |ay;| for any ¢ and j is bounded by lemma 6.3.2, thus we could easily get

A

V()1 (t)o (t)B(t) > My; By lemma 6.3.1, ela(t)m(t) < (eja(t)e;)(m’(t)a(t)m(t))
MM'||m(t)|]? < MM', where e}a(t)e; < M||e;||?, m'(t)a(t)m(t) < M'||m(t)|]?.

—Y(®)

Gy B T (080) + ai(1) 2 dﬂ’(o}dt

2

Q)J {e;au)mm(t)l — ¢l ml* + m P CICHORE A OLIG)

M 1 ol ¢
_ _ 2, - o ¢ _—1112| _ Sq1-4112
+ |l = nm] Fam)l T ] = Sl }dt

..... )
- £ e M Moy X ST
_g OTmaX]Wﬂth
where
d(t) = 1 — pm — (1) + G;?;(z))ml,
mase [/ [? > [max{0,1~ (n + @5%)(1 ) - %T(ml(wei}]?
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Hence, for t € [0, T,

VZ —_
S Lty m g+ T[MM = D e -

2 2n

N %(n(n —1)+ s ]—VNTQ A;‘nrr;aéq))]

Then 7 strictly dominates the weighted average VV (¢) if

nN? —2n? — 2
—2€Tl + 2Mﬂ—n2 - %l + Mn2 (n(n p— 1) _|_ N2 égnax(‘r) >

3 —
- 1= 3

T=>

]

Thus to solve an optimization problem for relative arbitrage opportunities, alterna-
tively, we can study the optimization of generating functions. The researches in [41],
[73], [20] bridge connections between functionally generated portfolios and Cover’s uni-
versal portfolios [19]. Universal portfolio is the average of all constant-weighted portfolios
weighted by their performances.

Note that the wealth ‘v/(t) defined in Theorem 2.2.1 is the average of every investor’s
portfolio weighted by their performances when N — co. The relationship V(¢) < V (t)

satisfies Cover’s celebrated result when 7 is constant portfolios.
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Chapter 7

Volatility-stabilized model (VSM)

and its numerical methods

This chapter starts to look at the tractability of a single-player relative arbitrage model
- the problem studied in [22]. In Section 7.1, we summarize some important properties
in stock capitalization and market portfolio dynamics, which are closely related to Bessel
processes. In Section 7.2, we give a numerical solution for optimal arbitrage in the
volatility-stabilized market by simulating stocks from Bessel bridges and using the tool
of finite differences and interpolations. With the support of the first two sections, we

derive in Section 7.3 a numerical scheme for multi-player optimal arbitrage problems.

7.1 Volatility-stabilized market model

The volatility stabilized model is introduced in [27], it possesses similar characteristics
in real markets such as the leverage effect, where rates of return and volatility have a
negative correlation with the stock capitalization relative to the market {my;(¢)};=1 _ n.

In a market described in Section 1.1.1 where investors have no influence on the stock
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price processes nor other investors. A general form of the capitalizations in volatility

stabilized model is

dXi(t) = kX (A)dt + /X (OXOAWi(t), i=1,....n, (7.1)

where n > 2, k € [3,1].

7.1.1 Bessel process

We study the Bessel process and some of its properties as the Bessel process is closely

related to the stock capitalizations.

Definition 7.1.1. For every m = 0 and x = 0, the unique strong solution of the equation

dQy = mdt + 2+/|Qs|dW;, Qo = x

is called the square of m-dimensional Bessel process started at x. Wy is a linear BM,
<W, W>t == t

Based on process QQ;, the m-dimensional Bessel process follows

R, == sqn(Q)V|Q:l, Ro = sgn(z)+/z.

Let T > 0, denote the process X := {X,,s € [0,T]} as the m-dimensional Bessel
bridge with Xy =  and X1 = ¢ € R. Loosely speaking, X is the process R conditioned
to take the value c at time 7. When m > 2, the Bessel bridge between 0 and 0 over [0, 1]

is the unique solution to

m—1 X
dX, = ( oX, —Ttt)dterWt, Xo=x>0.
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The squared Bessel bridge of dimension m is the unique solution to

t t 2Xt
X =2 | /X dW, + m — 1 ds.
0 0

— S

See [63] for more details. Generally we may use a change of measure approach to get

diffusion of Bessel bridge.

7.1.2 Bessel and Jacobi processes in volatility-stabilized models

The stock capitalization X (t) as the unique-in-distribution solution of (7.1), can be
written as a time changed squared Bessel process. In [34], Bessel process and volatility-
stabilized processes with time change are studied in detail. The total market capitaliza-
tion is

X(t) = ge 2B,

where ¢ = 2k — 1, B(+) is a Brownian motion

B(t) — ZL s ()dWi(s),

its quadratic variation (B); = t, and Wi (+), ..., W,(:) are independent standard Brownian
motions.

We define a continuous, strictly increasing time change

A(t) := ;lfo X(s)ds.

For each process R;(t) = +/X;(A=1(¢)), i = 1,...,n, A1(t) serves as the clock.
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ATL(t) = 4§ R;l—fs). We write out the independent Bessel processes Ry(-), ..., R,(-)

m—1

dR;(u) = du + dW;(u),

77777

. A~ (u)
W) = | VN0 < u < e

and (W;, W) (u) = udy. It follows that Q;(-) = R2(-) for i = 1,...,n are independent
squared Bessel processes with order m. Q(-) = Q1(-) + ... + Q,(-) is a Bessel process
with order mn.

The market weights {m;},—; ., in the volatility-stabilized market models is the Jacobi

-----

diffusion process, or Wright-Fisher diffusion in general.

dm,(t) = (1 — ¢)(1 — nmy(t))dt + +/m;(t)(1 — my(t))dWi(t).
with 37, m; = 1, W;(t) is negatively correlated with
el ifi#

: (T—m) (-,

cov(Wi(t), Wy(t)) =

The joint density of market weights, at fixed times and suitable stopping times is derived

by [55].
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7.2 Grid-based numerical solution of optimal arbi-

trage in VSM

We start from a one-player relative arbitrage problem over [0, 7], which is studied in

[22]: Consider the process

dXi() = X()dt + /XX ) dWi(D), (7.2)
or equivalently
d(log X;(t)) — ﬁ(t)dt + ,u%(t)dWi(t).

Let X(t) := (Xi(t),...,Xn(t)). Recall that under Assumption 6, we defined the local
martingale L(t) in Definiton 3.2.1.
The best investment opportunity for arbitrage relative to the market portfolio is

characterized as
u(T) := inf {w > 037 (-) € A s.t. VX Oy > X(T), a.s.}, (7.3)

where X(T') = Xo(T) + ... + X, (T).

It has shown in [22] that with Markovian market coefficients, (7.3) can be expressed

uw(T —t,X(t)) = E[L(ngi))()((g)) iy (7.4)
If the market follows (7.2), the resulting solution u(-) is
CE[L(MX(T)|F]  Xa(t)... X,(1) Xi(T)+ ...+ X,.(T)
oI =0 XO) =R X Xn(t)El X.(T).. X,(T) ‘ ft]
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7.2.1 Challenges of the estimation through finite differences

The optimal quantity « in (7.3) is the minimal non-negative continuous solution

ue CY2([0,T] x R") of the semi-linear parabolic Cauchy problem,

oU IR o ai(x) DU (T, X)
—<T,X)Z§ZZ%( X)DLU (7T, %) + > > — (7.6)
i=1j=1 i1 1 Ln

u(0) = 1. (7.7)

In the case of (7.2), a;; = \/7(5”, where 6;; = 1ifi = j, and d;; = 0 otherwise. To
tackle (7.6) - (7.7) with finite difference methods yield several challenges. First, U(,x)
is on an unbounded domain of (7,x) € Ry x R}. Some artificial boundary conditions
of U(r,x) are required for the implementation. Second, The solutions of (7.6) - (7.7)
are not unique. It is a delicate issue to select the correct minimal nonnegative solution,
especially with a constant initial condition (7.7) and extra boundary conditions. Last
but not least, the grid based numerical schemes are notoriously expensive in terms of its
computational costs, known as “curse of dimensionality”.

One way to reduce these obstacles under grid-based schemes is to consider the prob-
abilistic representation (7.5), where only first order derivative are required to discretize
the processes X;(-), 1 =1,...,n

The solution of (7.2) takes values in (0, 20)™ as noted in [27], thus X(¢) and should not
explode or goes to zero. However simulating X' (¢) by discretizing (7.2) with, for example,
Euler scheme, produces X(t) values that are very close to zero inevitably. This cause
numerical overflow when approximating (7" — ¢, X'(t)) by (7.5), especially the product
terms X;(-)...X,(:). In numerical experiments we found the approximated solution
explode or goes to zero quite frequently even when the dimension of stocks is as small as

n = 2.
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Fortunately thanks to special properties of VSM, we can simulate {X ()}, by

time-changed Bessel processes.

7.2.2 Simulation Algorithm

The m dimensional Bessel process is generated from the Euclidean norm |- | of m-

dimensional Brownian motion W.

Ry(w) = [W(t,w)| = (Wi(t,w)? + ... + Wy (t,w)?)3.

[NIE

In between of the interpolation points, we model it by the Bessel bridge X of dimen-
sion 2 starting at Xy, such that it finishes at Xy, at time T" = ¢;,;. We simulate Bessel

bridges R? based on Brownian bridges,
Ry = vl = [ 2,u)°]",

i=1

where Y; := (Y;) is the Brownian bridge from a € R™ to b € R"™ over [0,T),

b-Y,
T—t

dY, = dt +dB,, Y, =a.

Hence R} = |a|, and by Itd’s formula

m—1 R 23" yY m - (0) 4
de _ = t i=1"1 dt t_dW(z)
f <2ng T—t " RNT 1) +; Ry

\ . (7.8)
m—1 R DN
_ . i= dt + d7Z,
< 2R T —t  RYT —1) ‘
where z = |b|. Fori=1,...,n, {Wt(i)} is a sequence of independent Brownian motions.

Z; is a standard Brownian motion since the Levy’s theorem follows that the volatility
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(2) :
Y, . . . .
term Z; = ) :.L:l -+ d Wt(z) is a standard Brownian motion. As a simple example, assume
T

Ry = 0, m = 1, the 1 dimensional Bessel bridge can be generated from the Brownian

bridge Yy = a and

-Y
- Ydt +dB,, x=bor —b, forte (0,T).

dy, =
A

Apart from these methods, in [50], the author looks for the exact simulation by
sampling from the probability distribution of squared Bessel bridges and Bessel processes
by randomized gamma distribution. The PDF of the squared Bessel bridge (X;)o<i<r

conditional on Xy = a and X = ¢,

. T z+y  z2t\ L(yzy/t)L(yz/(T — 1))
HOT ) = e T8 - 5 ) PR

z(T—t)
T

J=AL r=E s 0<t<T.

where = = =D

Details of the algorithm

The goal is to estimate u through

u(T —t, X(t)) =

We develop an algorithm to use X'(¢) as input and simulate {X'(s)}i<s<r so that L(T)
and thus u(T' — t) can be obtained.
Given the starting time s € [0,7T], the time changed stock capitalization processes

follow squared Bessel processes in m dimension,
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with uniform mesh t;, := s + kAt, i = 1,...,n. The time-changed total capitalization of
the stocks is Y(t) := >, Yi(tx). Here, denote the clock as 6. The mapping of 0 to
is

Qk = A_l(tk> =

-
~

With this, we can find the required range of uniform mesh so that Oy_1 <T < 0y for an
appropriate N.

Next we refine the last segment [0y_1,0x] by the Bessel bridge process (7.8) between
(On_1,X(On_1)) and (O, X(On)).

X7 = R (o x0m)(T):

Thus the desired X (7') is solved by interpolating Rb vo1).x(0x) (On—1) and R o) x(on) (ON)-
For example, a linear interpolating result is

On — 0 0—0n_1

X(e) RX 9]\] 1 9N)<8N71) Rb 91\7 1 (GN)(0N>7

On — On-1 On —On—1

and let § = T, we get the estimation of X;(T") and X (7).
Now we can calculate the optimal arbitrage which is a conditional expectation in
(7.5). As an example, (7.2) corresponds to squared Bessel processes of dimension m = 4.

Then the optimal arbitrage objective at terminal time is

W(Tg) = Lo (T9) ]

E — .
T+ ..+ Ty, [Xl(TJ) X, (T9)

To solve ur_; x, in general, we have




Volatility-stabilized model (VSM) and its numerical methods Chapter 7

We demonstrate the steps of the algorithm in Algorithm 1.

Algorithm 1 Solve u by simulating bessel processes in VSM

Input: n = # of estimating stock processes, Ny = # of uniform meshes on [0,7], m =

10:

11:

12:

13:

dimension of the time changed Bessel processes to model X;(¢) for i =1,...,n.
for s <— 0 to Nr do
Initialize the states X (s) := (z1,...,x,), Oy = s.
k<0
while 6, < T do
k<—k+1,t,:=s+ kAt
Generate n, samples of m-dimensional independent Brownian Motion W ()
Simulate n, independent, m-dimensional squared Bessel processes Y;(t;) =
x; + (Zlgzl W(tg))g) and mn-dimensional squared Bessel processes Y (tx) =
Z?:l Y;(tk>-
Opi1 = 05 + %At, where At :=T/Ny.
end while

Collect {6y, . .., 0k+1}; Simulate the squared Bessel bridge Rg{(ek), X( (T). Eval-

Ok+1)
uate X;(7T') by interpolation techniques between non-uniform mesh points (6, 0k 1).
Compute deflator L(+), and apply it to obtain u(7T — s, Xj).

end for

return The optimal arbitrage path (T — ¢, X (t)) for t :== sAt, s =0,1,..., Np.

The implementation of Algorithm 1 and numerical examples are carried out in Python.

For the sake of consistency with previous sections and simplicity, the numerical examples

are based on (7.2), but we can implement Algorithm 1 under other VSM as well.

Figure 7.1 shows the evolution of u(7T —t¢,x) with respect to stock values respectively

in one simulation. We generate Bessel processes of m = 4 dimension and illustrate the
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Figure 7.1: Approximated u(7,x) along mesh grids of x. The comparison of computing
without (left) or with (right) Bessel bridges. 7" = 1 with n = 2 stocks.

performance improvements of simulating Bessel bridges for interpolation in both figures.

We approximate u(T" — ¢, X' (t)) conditional on fixed X'(¢) by one Monte Carlo simu-
lation u”(T" — ¢, X (t)). The given X'(t) is sampled from a Gamma distribution. The left
subfigure shows the simulated results from a time changed squared Bessel process. In the
right subfigure, we refine the simulation in the last time grid [fy — 1,0y] by using the
Bessel bridge as Algorithm 1 does. By comparing the two figures, we can see the need
for further refinement of the last time grid: We can achieve a more accurate simulated
result especially when x takes values close to zero without increasing the computing time
too much.

In Figure 7.1, the grid size At = 0.01, and the refinement by Bessel bridges is using
time increment A? = 0.001. The number of sample paths m = 200 of Brownian motions
is used to generate Bessel processes.

We then repeat the simulations multiple times and take the average of the results to
improve accuracy. We present the result in the plots below.

We compute the statstics of u¥*™ (T, x) across x; € (2,100), for ¢ = 1,2. In 60 times of

simulations, the mean of u"*™(T,x) is 0.539 and the standard deviation is 0.203. In 100

130



Volatility-stabilized model (VSM) and its numerical methods Chapter 7

070

06
0.65
';_ 05 :_
L': ; 0.60
% 04 e
3
® &
@ £ 055
E 03 3
= =
= m
E o2 £ 0.50
=]
& S
0l 045
00 T T T T T r 040 T T T T T
o 20 40 B0 a0 100 0 20 40 60 80 100
Initial captitalization x, Initial captitalization x,

Figure 7.2: Approximated u(T,x) with (z1,22) generated from a Gamma distribution.
The comparison of computing with (left) or without (right) the initial condition u(0,x) =
1 when t = T. At = 0.01, interpolation with Bessel bridges is using time increment
Ab = 0.001; number of sample paths m = 200 of Brownian motions to generate Bessel
processes. T' = 1 with n = 2 stocks.

times of simulations, the mean of u”*™(T', x) is 0.532 and the standard deviation is 0.126.
In 250 times of simulations, the mean of u"*™ (7T, x) is 0.531 and the standard deviation
is 0.122.

Next, we summarize the result from the statistics of the output in 100 times of Monte
Carlo simulations. Figure 7.2 and Figure 7.3 show the evaluated quantity of u"*™ (T —t, x)
along x and time ¢ axis respectively.

We recognize in Figure 7.2 that when stock capitalization tend to a very small positive
values, the optimal arbitrage quantity u also decreases significantly.

When study the evolution along the time axis as demonstrated from Figure 7.3, the
optimal arbitrage quantity u(7 — t) stays near zero before terminal time 7" and sees
a immediate surge to 1 since when time to maturity equals zero, or t = T, the given
condition is u(0,x) = 1. Therefore, boundary conditions might can be added to (7.6)-

(7.7) in numerical computations,

u(r,x) =0, (7,x)e€ (0,T] x O"/{0}, (7.9)
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Figure 7.3: Approximated u(T — t,z) with (z1,x2) randomly generated from a Gamma
distribution. The comparison of computing with (left) or without (right) the close-to-
zero initial values. At = 0.01, interpolation with Bessel bridges is using time increment
A’ = 0.001; number of sample paths m = 200 of Brownian motions to generate Bessel
processes. T' = 1 with n = 2 stocks.

where O" is the boundary of the domain [0, c0)™.

7.3 A mean field relative arbitrage result

Next, we encompass a class of market models for mean field regimes, where the models
exhibit selected characteristics of real equity markets and provide a tractable mean field
equilibrium.

The smaller stocks tend to have greater volatility than the larger stocks. We construct
the stock capitalization coefficients using this similar idea in VSM. Meanwhile, the trading
volume and the volatility of a stock tends to be negatively correlated. The parameters
B, o, v, T in M are set to the following specific forms which agree with these market
behaviors. For 1 < 7,7 < n, with infinite number of investors,

Bi(t) = (1 + C)m,
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Yi(t) = Zi(t);  bi(t) = Zi(t)dy;.

From (5.12),

—8u(7', x,2) > Au(1,%x,z), u(0,x,2) =€,
oT
i 20D;u(T,%,2)
where u(r,x,2z) = Z;ZZ( TX’Z)+5X-1+(1—5)Z-1>

.

1

2

I 2(1 —0)D;u(r,x,2)
+§Zz( Urx ) T =021

p=1

N Z": (5Du7xz) + (1 = 8)D;it(7,%,2)
0x-1+(1-4§)z-1

i=p=1
n

+ > VDT, x,z),
i=p=1

for 7 € (0,0), (x,2z) € (0,00)™ x (0,00)".
We can check that the Fichera drift f;(-) < 0. Similiarly to Proposition 3.4.1, we can

get u(-) < 1. When ¢ =1,

bil(x,y)  Xi(t)Bi(x,y) 1

Do Hi(x,y) := wixy) axy) @

The benchmark in this case is V(t) = § X (t) + (1 — d)my.

I . Ty
L
U= 5o x0
60(5aT_t

my = E[V*(t)|B] = 1—(1—=9)eElur—_|B]
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Thus by (5.22),

Xi(t)... Xn(t) V(T) B

V(t) E[Xl(T) . X,(T) 7]
. 1— (1 — 5)60E[UT_t|B] Xl(t) e Xn(t)
B 1—(1—0d)ee X(t)

u(lT —t) =

X(T) |
X(T) ... X, (T)

E[

After taking the conditional expectation of u(T —t) given FZ in the above equation, we

obtain the result
(T —1) i (7.10)
uw(T —t) = )
1—(1—4d)e(l — 77%(4)7

where
X(T)
X(T) ... X.(T)

7]
By Theorem 5.1.1, the optimal strategy 7 of investor £ in a mean field game is

72 (t) = M () + S (OV* () D log (T — 1) + — L0

1 5 ml)zi lOg fb(T — t).

We denote p; as the conditional density of V' (¢) given By, which follows

dpy =[ = 2 (V(O)m(t)B(t)pe) + S (V ()7 (1)0(1))*Quape]dt — V()7 (£)o (£)(Cupr) AW,

{7 2 (D Z:(1)

V()Y ml) Z@%@@wwp

v*“l\')l»—t

pt+ VZﬂ'

Next, plug 7} (¢) into the equation of p;, and let m; = §uvpi(v)dv, i.e., the consistency

condition, we can obtain a closed form solution of 7*(¢) in terms of X' (t), Z(t), Ur_;.

Remark 13. We show here the approach to compute the explicit dynamics of m; when
the function of v(-) and 7(-) are given. This same approach can be used when y(-) and

7(+) need to be solved using (3.23).
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Grid-based numerical schemes in the mean-field case are similar to Algorithm 1, but
without the same coefficient structure in VSM, we should generate processes (X(-), Z(+))
and the objective (7.10) differently. It is worth mentioning that the dimension of stocks,
the number of time discretization and the number of sample paths all add the complexity
in the algorithm and cause the increase of computation time significantly. When it
comes to a multi-investor problem we discussed in Chapter 4-5, more dimensions of
complexities is included besides the finite difference issue we addressed in Section 7.2:
N-player problem requires all estimations of optimal function v, ¢ = 1,..., N; while
mean field problem needs estimations of mean field measures. The boundary conditions

for z is harder to be understood intuitively or to be characterized.
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Chapter 8

Numerical approaches to

High-dimensional PDEs

This chapter starts another important topic of the thesis. We study deep learning schemes
to deal with multiple solutions of high-dimensional PDEs. We carry out experiments on
solving the non-negative minimal solution of relative arbitrage Cauchy problems as an

example.

8.1 Introduction on learning high dimensional PDE
and stochastic games

Traditional ways to solve PDEs usually rely on evolution of operators along spatio-
temporal grids. This poses expensive computational costs especially for high-dimensional
PDEs or the so-called “curse of dimensionality”: the memory requirements and complex-
ity grow exponentially with the dimension.

The following works give mesh-free methods on the probabilistic approximation meth-

ods for PDEs based on suitable deep learning approximations for BSDEs. The deep
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BSDE approach introduced in [37] tackles a class of high-dimensional semilinear PDEs
by reformulating the PDESs using backward stochastic differential equations. Independent
realizations of a standard Brownian motion will act as training data, and the gradient
of the unknown solution is approximated by neural networks. There is a related ap-
proach for FBSDEs in [62], where the parameters of the neural network are learned by
minimizing the loss function over the full time horizon.

To adapt the deep BSDE method for nonlinear PDEs, [40] proposes deep backward
schemes to solve high dimensional nonlinear PDEs. At each time step, the solution and
its gradient are estimated simultaneously by the minimization of sequential loss functions
through backward induction. [7] explains the connection between fully nonlinear second-
order PDEs and 2BSDEs, and introduces the deep 2BSDE scheme.

The deep learning algorithm, or “Deep Galerkin Method” (DGM) first studied in
[67], uses a deep neural network to combine least squares of differential operators and
conditions. By randomly sampling spatial points and time points, it is free of the need
of a global mesh. See [61] and [32] for the papers that use this spirit . Their algorithm
estimates simultaneously by backward time induction the solution and its gradient by
multi-layer neural networks, while the Hessian is approximated by automatic differenti-
ation of the gradient at the previous step.

The second topic of primary interest is numerical methods to solve large population
stochastic differential games. A lot of the learning algorithms in high-dimensional PDEs
we just introduced can be applied to numerical computation of stochastic differential
games.

To solve mean field games problems numerically, one possible way is to solve the
discretized system of forward-backward PDEs. The finite-difference scheme is first intro-
duced by [1], focusing on stationary and evolutive versions of MFG models. Existence

and uniqueness properties and the bounds for the solutions of the discrete schemes are
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also proved. The paper [2] extends the aforementioned finite difference scheme to ex-
tended mean field games where the players interact through both the states and controls.
Similar to Section 8.1, to avoid computational difficulties grid-based characterization of
the Nash equilibrium to two coupled equations: a Hamilton-Jacobi-Bellman equation
and a Fokker-Planck equation. It discusses in [18] about deep neural networks for solv-
ing MFGs, with a particular Deep Galerkin Method architecture, to approximate the
density and the value function by NNs separately.

A different way is to simulate the learning and decision-making process in mean field
games. Following the similarity of the process of reinforcement learning and stochas-
tic games, there is literature using Markov decision process (MDP) and reinforcement
learning algorithms to solve MFG problems in a model-free way - no knowledge of an
exact mathematical model of the MDP is required. In [36] proposes a simulator based
Q-learning algorithm with Boltzmann policy (GMF-Q). [70] proposes a policy-gradient
based algorithm for MFC and a two-timescale approach to solve MFG with finite state
and action spaces. A unified two-timescale Mean Field Q-learning for MFG and MFC
is studied in [4]. The paper [11] connects the theories of MFGs and GANSs, where two
neural networks for HJB equation and FP equation are trained in an adversarial direction
of time.

A different aspect to solve stochastic games is through the nature of the evolution
of optimal strategy through a learning process with iterative interaction among players,
called fictitious play. It is first introduced by [9] and is adapted to learning mean field
games in [14]. Literature utilizing this idea with deep neural networks can be found in

[38] for N-player stochastic differential games and [60] for MFG in continuous time.
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8.2 Solving optimal arbitrage by deep learning based

methods

From previous chapters we deal with Cauchy problems with non-unique solutions.
Motivated by that, we discuss deep learning schemes to solve high dimension PDEs with
non-unique solutions.

We recall briefly about some concepts in neural networks and notations. Mathemat-
ically, a neural network can be defined as a directed graph with vertices representing
neurons and edges representing links. The dimension of each layer depends on the num-
ber of neurons of that layer. One basic form of neural networks is the feedforward neural
network. It is composed of each layer’s affine transformation A, and nonlinear transfor-

mations ¢, where

Ag(l‘) = Wyx + 6@, (81)

where W, and 3, are the weight and bias term of the layer ¢, / = 1,..., L. These param-

eters in neural networks are usually trained using gradient based optimizers iteratively.

8.2.1 Learning Algorithms

We first use a mesh-free method similar to the idea in [67], in order to deal with
higher dimension problems. We randomly sample time and spatial pairs and use deep
learning to solve the PDE problems.

We use the system (8.2)-(8.3), which admits multiple solutions, as an example.

—— — Au(1,x) =0; u(0,x)=1 (8.2)
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where

Au(r,x) = %Z Z aij (X)D%U(T, X) + Z Z aij(x)?iu(ﬁ x) (8.3)

i=1j=1 i=1j=1
Inputs and Network Structure

The training data for the designed neural network consists of random samples from the
internal region on which the PDE is defined; and the random sample from the terminal
condition.

Since the input X(-) follows the stock capitalization processes, we can include this
information in the sampling distribution. For VSM models, we sample {X;(t)}i=1,..n
following a Bessel process. Various approaches to get samples from Bessel processes
are discussed in Section 7.2. This guarantees the sampling region is general enough
to represent the true values of stock capitalization. This also reduces the problem of
over-fitting since the samples used for training can be generated many times from Bessel
processes to satisfy the requirement of generalization.

The hidden layers use the similiar idea of LSTM layers. Each layer produces weights
based on the last layer, determining how much of the information gets passed to the next

layer.

Loss function

With samples (¢;, x;), the goal is to approximate u with an approximating function

f(t,z;©) given by a deep neural network with parameter set © in every layer from (8.1)
@ = {W£76Z}£:1'

The parameter set © is optimized with respect to the loss function with regularization

terms.
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We can write a general differential equation as
F(t,u(t,z), O, Opu, Opzu) = 0. (8.4)

The first loss term L;(0,,) is for the distance of the actual (zero) value of the operator

F in (8.4) and the value of F(t, 4, 0st, 04U, 0, 0) with estimated u. Let
HfH%o,T]xJRQ = Z |f(tn,xn)|2.
(tnsan)

Therefore for (8.2),

OW(T — tp, Xn; 0y))

Ly(©,) = | ="

— AW(T — t,,x,;0,)||, (8.5)

where the operator A is defined in (8.3). w and the counterparts of derivatives
with respect to x is computed by automatic differentiation.
The second term is for the initial condition so that the output at 7 = 0 satisfies

u(r,x) = 1.

Ly(0n) = [16(0,xx; On)) — 1[ry (8.6)

xy € R? is the space sample at time 0. Note that we sometimes need to imposes more
penalty to the deviations from the initial conditions, and this can be done by scaling the

loss terms.

Multiple solution

Another tricky part in algorithm design here is that the algorithm needs to distinguish

multiple solutions and search for the non-negative minimal solution. Most of the works
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on solving high-dimensional differential equations focus on equations that admit a unique
solution. However it is of a great practical need to tackle an ODE or PDE problem that
might have multiple solutions, or to model problems as differential inequalities. One of
the applications in ODE is the Bratu equation also mentioned in [33], which has been
used to model combustion phenomena as well as temperatures in the sun’s core.

One general goal is to find all possible solutions of an equation that permits non-
unique solutions. The paper [33] deals with this goal for one dimensional ODE. Since
the N different solutions of an equation can be trained by a neural network with the
same architecture, the same number of layers and units, but with different weights, an
additional loss function term that characterizes the pairwise distances of solutions can
be added.

We demonstrate outcomes that correspond to multiple solutions of the Cauchy prob-
lems and corresponding relative error for different number of iterations in Figure 8.1. In
particular the relative error is constantly zero when the trivial solution 4(0,x) = 1 is
achieved. We did not distinguish the correspondence of solution curves and relative error
curves here since that does not give us more information about solutions.

We can see that to learn a solution from a PDE system with nonunique solutions,
more information and knowledge about the PDE itself is needed.

If we take the observed boundary condition of volatility stabilized model into account,

we learn the PDEs with the artificial boundary condition (7.9) and loss L3(0,,),

L3(0,) = |[a(T — t,%0; ©n))l0,11x0n 10} (8.7)

i.e., the new loss function is

L(©,) = L1(0,) + L2(0,) + L3(0,).
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Figure 8.1: Training results of (7.6)-(7.7) on time horizon [0,7] where T' = 1. It uses
uniform meshes of x; € (0,200], i« = 1,2. The size of sample pairs (¢,x) in the internal
area and the initial time area is 500 and 100, respectively.

We summarize this method in Algorithm 2. The approach is similar to Deep Galerkin
Method, but we improve some details in the method in order to solve the nonuniqueness

of PDEs.
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Algorithm 2 Learning Cauchy problem based on deep Galerkin (CDG)

1: Generate random samples pairs (t,,x,) € [0,7] x R. For initial conditions, draw

random samples x € R when ¢t = 0.

2: Compute the loss function L(-) by

L(@n) =L (@n) + L2(@n) + L3(6n>a (8'8)

where Ly, Ls is defined in (8.5)-(8.6), L3(0,,) in (8.7).

3: Take stochastic gradient descent at a point (s,,x,),

®n+1 = @n - OénV@L(@7 Sn).

Repeat stage 1-3 until convergence criterion is satisfied.

8.2.2 Numerical Experiment

We carry out the experiment using Pytorch in Python. We explain the details in the
algorithm implementation below.

The choice of distributions and functions that we draw the samples (¢,z) from is
important to the performance of learning. The performance of the deep learning model in
Algorithm 2 can be boosted by incorporating some special characteristics in the associated
differential equations. For example in VSM, we know = behave like Bessel process, so for

a pair of interior sample (t,,x,), we first sample t,, from a uniform distribution

ty = to+ (1 — to)U, (8.9)

to = le — 10, U is a random number sampled from standard uniform distribution. Then
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use t,, we get the corresponding

T, = 20 + (500 — x¢) - L, - N?, (8.10)

where o = le — 10, AV is a random number sampled from standard normal distribution.
We name Algorithm 2 with input in the form (8.9) - (8.10) as CDG-BE. We will justify
this choice of input by comparing it with z, sampled from other distributions that do
not depend on time or different dependence with time variables. One example we use is
a normal distribution independent of ¢,,, named as CDG-RN.

Specifically, the loss function that we use is L(0,,) = L1(0,) + 10+ Ly(0,,) + L3(0,,).
To avoid the cliff region of gradients in parameter updates, especially because of the
initial condition u(0) = 1 in our algorithm, we clip the gradient of loss functions with
the threshold value 100.

The layer parameters (weight and bias) are defined and initialized using Xavier ini-
tialization. The network was trained for a number of iterations (epochs), with random
re-sampling of points for the interior and terminal conditions every 1000 iterations. Pa-
rameter optimization is updated by Adam optimizer, with a learning rate a,, = le — 03
and MultiplicativeLR learning rate scheduler. In terms of hyperparameters, we use the
number of layers L = 3, the number of nodes in each layer M = 50. We use the sigmoid
function as the activation function in every layer.

We run the algorithm with epoch = 50 (sampling stages), and the number of iterations
in each epoch is 100. Each time the sample size of the internal domain n; = 500, and
the sample size of the initial domain ny = 100.

We first present a preliminary training result with a uniform mesh in Figure 8.2.

We show an example of how training with prior information improves the efficiency

and accuracy of learning the solutions. It contains the output curves from multiple times
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Figure 8.2: A trained curve of u(7,x) on 7 € [0,1] with n = 10 stocks. The space
variables x; € [1,200], fori=1,...,n

of training in Figure 8.3. The following Figure 8.3a is a curve trained with sample of x
generated from normal distribution.

In general when a PDE has no analytical result and grid-based method is also hard
to compute in high dimensions. We have seen in Chapter 7 that there is a class of models
with probabilistic representation that is implementable by finite difference method, that
is, volatility-stabilized model, We compare our machine learning result with the result in
Chapter 7 u¥™(t,x) as a metric through uniform grids of time and space. In Table 8.1
we record the error for all sample pairs (¢,,x,) between i, (t,, X,) and ©’™(t,,x,) to
evaluate the performance. i, (t,,X,) is evaluated differently with prior information as
(8.9)-(8.10) or without (sampling x from a normal distribution). This comparison is done
by repeatedly running the algorithm for 20, 80, and 500 times.

We omit the output curve of all zero values in the plot in order to have a closer
observation on the plausible minimal solutions, since the output curve of all zero values

is not a solution of (7.6)-(7.7). However, we can solve this issue easily by using the
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(¢) Training output 4(T,x) curve repeated 80 (d) Training output 4(T,x) curve repeated 500
times of training CDG-BE. times of training CDG-BE.

Figure 8.3: The comparison of trained curves 4(7,x) with the boundary condition on
x; € [1,200], ¢ = 1,2. The training is repeated 20, 80, 500 times. Time horizon [0, 7]
where 7" = 1.
relative error.

The non-zero curves have higher MAE/MSE and achieve all-one values more often
than using prior information about capitalization processes.

We see that when the training times increased from 20 times to 500 times as in
Figure 8.3b-8.3d, the minimal solution curve comes closer to the baseline result u"*™.

Meanwhile, we do not see a significant improvement from running 500 times to running

1000 times.
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Table 8.1: Accuracy metric of minimal curve ,,;, from training with multiple number
of times, using (8.10) input (CDG-BE) or normal input (CDG-RN), comparing with the
baseline solution u"*™

Training times (M) for CDG-BE | Training times (N) for CDG-RN

M=20 | M=80 M=500 N=20 | N=80 N=500
MAE | 0.13304 | 0.12170 0.09092 0.39900 | 0.40116 0.38187
MSE | 0.01965 | 0.01713 0.01000 0.16000 | 0.16187 0.14668

Remark 14. To better distinguish different solution outputs, we can define a metric

=3 it w0, (t, 7).

to compare the value of two outputs u;(-), u;(-) from learning algorithms, where (-, -) is
a given distance metric.

Note that another way to distinguish training outcomes is to compare the correspond-
ing parameters except the single bias term that represents the constant in a solution. A
magjor drawback of this technique is that training is inefficient, since different set of model

parameters return the same set of solutions.

8.3 Minimal solution of high-dimensional PDEs

The challenges in the aforementioned method to solve PDEs with multiple solutions
is obvious: There are several sources of the uncertainties and inaccuracies while learning
the objective u(T — t,x).

Each time we carry out the entire training with given number of epochs, we obtain

an optimal outcome u(-),

(8.11)
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which can be perceived as either a global optimum or a local optimum in the minimization
problem (8.8). fM(-),..., f®) are the functions of L layers.

We run the entire training repeatedly for 15 times and illustrate the 15 outputs in
Figure 8.1. The learned (8.11) and the consisting parameters might be approximations of
different solutions of (8.2)-(8.3). However, it is hard to distinguish outputs as the same
or different solution of the PDE by the parameters, because even for the same output u,
it could be induced by a different set of parameters. Under the unsupervised nature, it
is hard to find a standard to indicate whether it learned a correct solution of (8.2)-(8.3).

In certain model set-ups, for instance, in the class of volatility-stabilized models,
we can compare the deep learning outputs with the Monte-Carlo type of solution in
Chapter 7. However generally, there is a lack of analytical results or good approximations
to compare the performance of our algorithm to.

The system (8.2)-(8.3) admits multiple solutions and its continuous minimal non-
negative solution is the unique outcome we intend to solve. So in this section we focus on
the minimal solution of a PDE system, and there is no longer a need to distinguish the
multiple solutions as in Section 8.2. We propose a method based on reflected BSDEs to
solve the minimal solution of PDEs. This method can be applied to a class of differential
equations of which the solution is forced to stay above a given stochastic process, called

the obstacle. Hence we can try to seek a lower bound of (8.2)-(8.3).

8.3.1 BSDEs characterization

We first review some related concepts of BSDEs. For simplicity of notations, we adopt
the specific dimensions of processes as previous relative arbitrage problems.

Recall that a solution pair {(Y;, Z;);0 < t < T} of adapted processes with values in
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R x R" such that
T
]E[ sup Y| +f |Zt|2dt] < oo, (8.12)
1 0

te[0,T

solves almost surely the BSDE
T T
Yi=¢&+ f f(Ys, Zs)ds — f ZdWs,t < s <T. (8.13)
t t

fly,z,w) : RxR"x Q- R, £ L3(Q, F,P;R).
The assumption below ensures the existence and uniqueness of the solution of BSDE
(8.13). But note that the major goal of this chapter is to deal with PDEs and BSDEs

that admit the nonuniqueness of the solutions.

Assumption 19. The driver f is Lipschitz in (y, z) uniformly in (t,w) € [0,T] x Q, i.e.,
Vyi,ya € R™, Va1, 20 € R™ [ f(t,w,01,21) — f(t,w, 42, 22)| < Cp(|yn — ol + |21 — 22])

for every (t,w) € [0,T] x Q. {f(t,0,0)}oct<r is progressively measurable on [0,T] x
and

T
EJ £(£,0,0)]2ds < .
0
We also recall the comparison principle in [58].

Proposition 8.3.1. Let Assumption 19 hold. We suppose also gy — g1 is bounded and

nonnegative, fo — fi1 is bounded and nonnegative. Let (Y1(-), Z1(-)) € (R™,R™ ™) solves

Yilt) = g1 + f (5. Ya(s), Za(s))]ds — f Z,(5)dW (s),
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and (Yo(+), Zo(+)) solves

Yo(t) =90+J

t

Then

Definition 8.3.1. The BSDE (8.13) has a minimal solution (Xy,Y:, Z) if for any other
solution (X],Y/, Z}) of (8.13), we have Y; <Y/ a.s., for allt <T.

Minimal solutions of Cauchy problem

Next we connect the minimal solution of parabolic differential equations with the
minimal solution of its BSDE formulation. We use the Cauchy problem in the rela-
tive arbitrage model here to explain, but it can extend to other parabolic differential
equations.

We start from a simplified relative arbitrage problem over [0, 7] as we did in Chap-
ter 7. The optimal arbitrage u is the minimal non-negative continuous solution u €

C12([0,T] x R™) of the semi-linear parabolic Cauchy problem (7.6)-(7.7),

ou IR ) = a;(x) Diu(T, X)
E(T,X) = §;;@ij(X)DU“(T’X) +;; T+ ..,
u(0,x) =

We derive here the connection of the nonnegative minimal solution u(7,x) of Cauchy
problem under Markovian assumption where 7 is the time to maturity, to the nonnegative
minimal solution of an uncoupled FBSDE. We follow a similiar route of the nonlinear

Feynman-Kac theorem proved in [54], where it connects the unique solution of BSDE
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and quasilinear parabolic PDEs.

Proposition 8.3.2. Suppose u € CY2([0,T] x R™) is a solution of (7.6). Define X (t) :=
(X1(t),..., Xu(t)), for each X;(t), i =1,...,n,

Then {F}iefor)-adapted processes { X", Y0* Z6*} = { X" w(T — r, XH"), (sVu)(T —

r, X'*)} solves
T T
w(T —t, X)) = u(0) — f fxhe yhe zhe)dr — f (ZETdW (1), (8.14)
¢ ¢

where
f(t, X, Y, Z,) =b(x)(s7(t, &) sT (¢, X)) (Dyu(r,x))"
1

o s G A)Deu(n ) (8.15)

1
=b T xNV 'z, - ———M 1 t, X)) Z;.
(x)(s™ (t, X)) t it ..+, s( +) Zs

Equivalently, we can rewrite (8.14) as

uw(T —t) =u(T) + L f(X(s),u, Du)ds + L ZsdW (s).

Proof. Use Ito’s formula on u(T, x)

du(T —t, X(t)) = (Lu — (z—u)(T —t, X(t))dt + Zn: Ry (T —t, X (t))dWi(t),

oT el

where R(7,x) is n-dimensional vector with elements Ry (7,x) = D" | z;5:(x) Du(T, x).

Plug the Cauchy problem (7.6) in, we get the minimal non-negative continuous solu-

152



Numerical approaches to High-dimensional PDEs Chapter 8

tion of the above equation satisfies U(0) = 1,

du(T — t, X(t)) = f(X(t),u, Du)dt + zn] Ri(T — ¢, X(£))dWi(t),

k=1

where f(x,U,DU) = 3 b(x)Diu(r,x) — Y, S P07 . R(T — r,x).

i=1 T1+...+Tp

For Vt < T, integrate du(T — r, X (r)) with respect to time r, r € [t,T],

w(T —t) = u(0) — ft f(X(r),u, Du)dr — J ZEdW (r).

t

Therefore { X5 u(r, X*), (sVu)(r, X*)} where u e CH2([0,T] x R™) solves (8.13).
Consider any continuous function u : [0,00) x (0,00)" — [0,0) solves (7.6)-(7.7).

u*(1,x) < u(7,x), for every (7,x). Thus by Definition 8.3.1, for any triple
{07, ulr, X07), (Vus)(r, 79}

we have u*(7,x) < u(7,x). Therefore {X"* u*(r, X*), (Vu*s)(r, X-*)} is the minimal

solution among non-negative continuous solutions. O

Proposition 8.3.3. As the previous set-up, under probability space (2, F,P), a solution
triple {( X, Y, Z;);0 < t < T} of {Fibefo,r)-adapted processes with values in R™ x R x R"
of
T T
Y = g(Xp") — J fX= YR 725 dr — f Z0 AW, t < s < T. (8.16)

s

{X5" Y << the unique solution of the forward SDE

X, =x+ Lt b(r)dr + f: s(r)dW (r) (8.17)
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such that
T
]E[ sup Y| +f |Zt|2dt] < o, (8.18)
0

te[0,T']
where f(x,y,z,w) : R" x R x R” x Q — R satisfies (8.15), g(w) : 2 — R".
Then u(T —t, X;) =Y, solves (7.6) and uw e CH2([0,T] x R™).

Proof. uw(T —t,x) = Y;"*, u(0,x) = g(x) where (X,Y, Z) is a solution of BSDE (8.13).

From [54], for some deterministic u € C%*([0,T] x R™).

w(lT —t, ) —u(T — s, Xy) JfXT,K,Z)dr—JZdWT,
thus
t+h
u(T — (t+ h), Xttfh) u(T —t,x) = —J fx. Y, Z)dr — f Z.dW,
t t
As a result
m—1
tj,x
g(x) —u(T —t,x) = )} (T —tj1,%) = u(T = tj, 47
=0
+ U(T — tj+1, Xttjjl() - U(T —t, QJ))
m—l tj
=3 [ by X8+ 500, 20 ar
j=0 Jt
m—1 oty
#3012 - (Tuo) ey, a0))
j=0 Ytj

wheret =ty <t; <...<t, =T. Useasequence of time such that lim,, supjgm_l(tjﬂ—

t;) = 0, and we get

w(T —t,x) = g(x) — L [Lu(T —r,x) + f(x,u(T —r,x),(Vus)(r,x))]dr,
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where g(x) = u(0). Thus we see u € CH2([0,T] x R") solves (7.6).
Thus if we have minimal solution of BSDE (8.16), Y;* < Y; then correspondingly it

holds uwp_, < ur—. O

In the following part, we explain a possible way to approach the minimal solution of

BSDEs.

Reflected BSDE Implementation

Consider the reflected BSDE, i.e., constraint of lower bound u(t) =Y, = S;, 0 < t <

T. S; is a continuous obstacle process.

T T
Y = g(Xr) + J F(X, Y, Z,)ds — f ZdW, + Ky — K, t <s < T. (8.19)
t t

{K;} is continuous nondecreasing predictable process, such that Ky = 0,

JT(Kt — S)dK; = 0. (8.20)

(8.20) acts as a minimal push since the push happens only when the constraint is attained
Y, =5

The minimal solution of (8.19) (Y, Z, K) is in the sense that for any other solution
V.2 ).y <Y,

Regarding the Cauchy problem of our interest, its corresponding reflected BSDE
solution {(Y;, Z;, K;),0 < t < T} of Fi-progressive measurable processes take values in
(R,R™,R,).

Recall that we can use the penalization method in [21] to approximate the minimal

solution with (Y, ZV K™). Let (z(t))” = max(—x(t),0), for continuous and increasing
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process Ky, it follows

¢ ¢ -
K; = sup <g(Xt) +J f(X., Y., Z.)dr —J ZrdWT) ,

0<s<t s
T T -
Kr—K; = sup (g(X%x) + J fxHm yhe ZH%)dr — J Zﬁ’”dWr> :
t<s<T s s
An open question here is to rigorously investigate the relationship between minimal
non-negative continuous solution u* of Cauchy problem (7.6) and reflected BSDE (8.19)
with constraint Y, = 0, for all ¢ € [0, T']. By Proposition 8.3.2 - 8.3.3, the former solution

of (7.6) can be written as {Y;,0 < ¢t < T}, a solution of the forward SDE from (8.16),

t t
Y, =Y + J F(X,Y,, Z)dr + f Z,dW,, Vi 20, 0<t<T. (8.21)
0 0

We compare the above with the solution of (8.19), which can be written as

t t
Y, =Y, + f £, Y, Z,)dr + f Z.dW, — K, st. Y, >0, 0<t<T. (8.22)
0

0

However the solutions of (8.21) and (8.22) are not unique, the comparison principles

cannot be applied.

Remark 15. To learn the solution of (8.14), we should avoid modeling the evolution
of X using the finite difference approximations X (ty), where 0 =ty < ... < tg =T,
k=0,...,K. For example, recall the dynamics (7.2). As mentioned in Chapter 7, al-
though we could ensure positive values of discretized X (t), k =0, ..., K through logarith-
mic characterization of the dynamics, it can happen quite frequently that the discretized
dynamics evolve to be a small quantity that goes near zero which causes overflow and
loss of precision problem. In volatility stabilized models, we can model X (-) using Bessel

processes to solve this issue.
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If we consider (8.19)-(8.20) with Y; = 0, 0 <t < T, we can implement the BSDE and
use penalization method in [21] to approzimate the minimal solution with (Y~ ,ZN K™).
For example, with n-dimensional Brownian motion W on a mesh of [0,T], i.e., 0 =ty <

...ytny =T, a Euler scheme yields

Yol = Yo = fO) (b — 1) = (27 (00), Wor = We — (B — K,

n

The initial value u(t = 0,x = xo) is given. Thus

tn+1

tn+1
K —-K)= Nf (YN —S,)"ds
tn

= N[(YY,, = St)” — (Y = i) ]At

n+1

8.3.2 Learning minimal solutions of Cauchy problem

To learn the solutions and especially the minimal solutions of PDEs, we analyze the
PDE and its related obstacle problem instead of dealing with BSDE and reflected BSDE

directly.

Obstacle problems

An obstacle {S;,0 < t < T} is a continuous progressively measurable real-valued

process satisfying that Sp is bounded almost surely, and

E[ sup S7] < oo,

0<t<T

Given the obstacle process Sy, the viscosity solution of obstacle problem (8.23) is shown
in [21] to be equivalent to the associate reflected BSDE (8.19).

As is explained in Chapter 3, the solution Y; of (8.13) is constrained to stay above
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Y; = S;. Thus, we can instead study the probabilistic representation of solutions of some

obstacle problems for PDEs. S; = h(1,X,), 7 =T —t.

minfu(r,x) — h(7,%x), ;u — Au(r,x)] =0, (7,x) € (0,7) x R".

u(0,x) = g(x), xeR"

Or equivalently

0 =0d-u— Au(T, %), {(7,2) : u(t,x) > h(t,x)},
u(r,x) = h(7,x), (1,2) : (0,T) x R",
(8.23)
u(r,x) € CV*([0,T] xR"),  {(r.2) : u(r,x) = h(7,%)},
u(0,x) = g(x), x € R™
While the non-negative solution of a parabolic PDE of our interest is
0 = dru — Au(r,x), (1,2) : (0,T) x R",
u(r,x) = hr,x), (r,2) : (0,T) x R",
(8.24)

u(t,x) e CH*([0,T] x R™),  (7,2):(0,T) x R",

u(0,x) = g(x), reR"™

Since we are looking for the minimal solutions satisfying the above (8.23) and (8.24)

correspondingly, we have optimization problems

min u(7, X)
(8.25)
subject to (8.23).
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and

min u(7, X)
(8.26)
subject to (8.24).

As we can see, the domain D, of (8.25) is a subset of the domain D, of (8.26), D; < Ds,.
In other words, (8.23) relaxes the constraints (8.24). Denote u™(7,x) := minu'(7,x) as
the optimal value of (8.25) and w*(7,x) : minu(r,x) as the optimal value of (8.26). If
both problems are feasible, then v (7, x) < u*(7,x).

We earlier proved that the optimal arbitrage opportunity exists because of the Fichera
drift. Therefore in order to search u* we put a constraint that «* > 0. Hence h(7,x) =0

here. Further investigation can be carried out for u* < 1.

Algorithm for searching minimal solution of parabolic PDEs

We investigate the deep learning based solutions of the obstacle problem (8.23) and
the Cauchy problem with the non-negativity constraint of solutions (8.24). This is equiv-
alent to learning BSDE (8.14) and reflected BSDE (8.19)-(8.20) and more implementable.
Here (8.20) is

Y, >0, 0<t<T. (8.27)

We use the same network structure and similiar implementation details about input,
hyperparameters and loss functions in Section 8.2. Then we add different loss functions
in order to implement (8.23) and (8.24).

Next, we use a smooth penalty function to restrict the trained terminal value (7', x,,; ©,,) €

(0,1). In Figure 8.4, we show a sketch of the penalty function

p(z) = (a — z)sigmoid(hy(a — x)) - he + (z — b)sigmoid(hs(x — b)) - hy, (8.28)

Here let a = 0, b = 1, hy = hy = 10, hg = hy = 20 in (8.28) and the loss term follows
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Figure 8.4: The penalty function p(z;a,b) between [a,b] = [0,1], hy = hy = h3 = hy =
10.

and

Ly(©n) = p((tn, Xp; On)), (8.29)

to guarantee that it does not create extra local minimums. Local minimums increase
the time of searching for the goal significantly, especially in this problem where we have
multiple solutions of the PDE system.

The loss function used for optimizing parameters here is then consisted of L;(-) in

(8.5), La(-) in (8.6), Ls(-) in (8.7), La(-) in (8.29),

L(O,) = L1(©,) + La(©,) + Ls(6,) + La(©,). (8.30)

We carry out the deep learning scheme in Algorithm 2 for 80 times of training and
compare with or without the loss term L4(©,,). In the following graphs, Figure 8.5a and
Figure 8.6a correspond to multiple solutions u°**(0,,) of the obstacle problem ((8.19) with

obstacle inequality (8.27)). While the obstacle inequality is not presented in Figure 8.5b
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and Figure 8.6b, i.e., these two plots correspond to multiple solutions of (7.6)-(7.7). We
can see that learning the associated obstacle problem tends to give smaller solutions than
the original PDEs. In addition, the smallest solution curve of (8.19) and (8.27) is lower
than the smallest curve of (7.6)-(7.7). More importantly, as we will see more clearly
in the end of this section, modelling the associated obstacle problem/ reflected BSDE
pushes the trained solution significantly closer to the benchmark minimal solution from

Monte-Carlo methods.
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(a) Training output 4°%* (T, x) curve of (8.23). (b) Training output 4(7,x) curve of (8.24).

Figure 8.5: The comparison of trained curves 4(7,x) with and without an inequality
constraint on x; € [1,200], ¢ = 1,2. The training is repeated 15 times.
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(a) Training output (7T, x) curve of (8.23). (b) Training output 4(7,x) curve of (8.24).

Figure 8.6: The comparison of trained curves 4(7,x) with and without an inequality
constraint on x; € [1,200], ¢ = 1,2. The training is repeated 80 times.
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We summarize the process of learning the minimal solution of Cauchy problems by

obstacle problem in Algorithm 3. Asin Algorithm 2, ¢,, is sampled from uniform distribu-

Algorithm 3 Obstacle Cauchy deep Galerkin (O-CDG)

1: Generate random samples pairs (,,%,) € [0,7] x R, and sample pairs (7,,,x2) €
[0, 7] x O"/{0}. For initial conditions, draw random samples x € R} when ¢t = 0.
2: Compute the loss function L(-) by

L(©,) = >, Li(©,), (8.31)

where Ly, Ly is defined in (8.5)-(8.6), L3(+) is in (8.7) and L4(-) in (8.29).
3: Take stochastic gradient descent at a point s,

®n+1 = @n — OénV@L(@7 Sn).

4: Repeat stage 1-3 until convergence criterion is satisfied.
5: Repeat stage 1-4 for sufficient amount of times and take the smallest training output.

tions, and x, is sampled from another distribution that is a function of the corresponding
time sample point ¢,. The sufficient amount of repetitions in Algorithm 2 is in the sense
that no more significantly smaller output curves can be learned from more repetitions of
training.

The training is on the time horizon [0, 7] where T' = 1. The size of sample pairs (¢, z)
in internal area and initial time area is 500 and 100, respectively.

We lay out the accuracy metrics of the current obstacle method O-CDG with previous
methods (CDG-BE and CDG-RN) in Table 8.1 in order to present the performance
improvements.

We can extend this chapter’s result to the mean field problem in Chapter 5. More

specifically, (5.8) and the non-negative minimal continuous solution of (5.12).
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(b) Training output 4(T,x) curve repeated 500
times of training.

(a) Training output 4(T,x) curve repeated 80
times of training.

Figure 8.7: The comparison of trained curves @(7,x) of (8.23) with the boundary con-
dition on x; € [1,200], i = 1,2. The training is repeated 80 and 500 times.

Table 8.2: Accuracy comparison of minimal curve u with the current state of the art
u”™. We show the performance metrics for O-CDG, CDG-BE and CDG-RN in 80 and
500 times of training.

Training times
O-CDG CDG - BE CDG - RN
M=80 M=500 M=80|M =500 N=80|N =500
MAE | 0.11115 0.09199 0.12170 0.09092 0.40116 0.38187
MSE | 0.01371 0.00898 0.01713 0.01000 0.16187 | 0.14668
Conclusion

High-dimensional PDEs are very widely used in science and engineering models. In
the beginning of this chapter, we introduced the current literature on solving high-
dimensional PDEs which focuses on the PDEs with unique solution.

Generally PDEs we deal with may admit to multiple solutions. The uniqueness of the
solution usually requires specific conditions on the operators of PDEs and their initial
and boundary conditions. However PDEs with multiple solutions is a challenging topic
both theoretically in that it is hard to have a comparison principle alike result, and

numerically, in that it adds more complexity onto high-dimensional problems. We can
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train multiple times to get approximations to different solutions of the PDEs. But how
to efficiently determine and distinguish different solutions from a large number of outputs
remains a challenge.

We propose several remedies for learning PDEs with non-unique solutions.

Firstly, since the nonuniqueness of PDEs is often caused by insufficient boundary and
initial conditions, adding artificial conditions that can be justified for specific problems
can help. For example, in the relative arbitrage problem of volatility stabilized market, we
add artificial boundary conditions to the PDE. A suitable artificial boundary condition
is also helpful in grid-based methods when solving PDEs numerically.

Secondly, when using deep learning methods, applying prior information of specific
problems to the learning would improve the training performance in a large scale. In deep
Galerkin method we used, the inputs rely on sampling from time and space variables.
Specify a suitable distribution of samples follow is a substantial factor to the training
performance in this case.

Thirdly, we propose to use the associated reflected BSDE or obstacle problem of the
PDE to clarify the range of multiple solutions. O-CDG method is helpful for finding the
minimal solution as well as narrow the range of true solutions in PDEs with non-unique
solutions.

The approach we propose in this chapter unfold more general forms of PDE prob-
lems one can approximate the solutions by deep learning. In particular, we provide an
application of this deep learning approach, that is, the minimal non-negative solution of

a Cauchy PDE in relative arbitrage problems.
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We list some interesting topics that can be studied in the future.

Open questions

e There can be various ways to model the interaction of markets and investors. First,
let us consider the same market model we provide in this thesis, with information of
a group of investors coming into the market dynamics. Then a different information,
or investors compete with others in a more general way - a general benchmark.
Second, we can consider mean field control problems with cooperative players or a
different game model similar to the one in [23], where the market opposed to an

investor is constructed as a zero-sum 2-player game.

e From the numerical aspect, we have seen that the volatility-stabilized market model
provides us with a computationally easy way to simulate the solution of Cauchy
problems of our interest. However in general a deep learning scheme for PDEs
might not have a plausible baseline solution and thus it is difficult to check the
performance of deep learning results. How do we solve this issue? What metrics

are we able to use in a more general case?

e We discussed relative arbitrage problems when given some terminal time 7" > 0,
i.e., the goal of the investors we consider is to realize relative arbitrage over a fixed

horizon [0, T]. We can relax this by taking terminal time T*, an investor-wise input.

Another concept short term relative arbitrage has been discussed in several refer-
ences to show relative arbitrage opportunities over arbitrarily short time horizons.
Short term relative arbitrages in certain volatility-stabilized market models are dis-
cussed in [5] using functionally generated portfolios. We can think about the short

term relative arbitrage opportunities in our model.

Moreover, based on the current results from Nash equilibrium and functionally
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generated portfolio, can we relieve the requirements on coefficient estimation for

practical use?
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Appendix

A.1 Market dynamics and conditions

Proof of Propositions 3.1.1. Since everyone follows V¥(T) = e“V™(T), we sum up this
expression for £ = 1,...,N to get an inequality of 3, V¥(t)/N, and (3.5) follows
immediately in Proposition 3.1.1. Next, (3.6) in Proposition 3.1.1 can be easily derived

from Definition 3.1.1 that if

‘0N V(T _
¢ < log <VN—(T)> =1 g(5XN(25)+(1—5)%22V_1V@(T)>7 (=1,....N,

then the relative arbitrage exists in the sense of (3.4). O

A.2 Relative arbitrage and Cauchy problem

Proof of Proposition 3.2.1. From Ito’s formula, discounted process Ve () admits
dVE(t) = V() (x"()o (t) — 0'(1))dW (1);  VE(0) = Ty,
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and V* (+) is a supermartingale. For this reason, we get from (3.10) that for an arbitrary
wt,

WYV 0) = E[VY] = E[}?(T)Mf + L(T)(1 - 5)606% i VZ(T)] =7,
/=1

Hence, u‘(T) = p".
To prove the opposite direction u*(T) < p’, we use martingale representation theorem

(Theorem 4.3.4, [53]) to find

U'(t) := E[e“VN(T)L(T)|F] = fﬁ'(s)dWs +pf, 0<t<T, (A1)

0

where p : [0,T] x Q — R* is F-progressively measurable and almost surely square in-
tegrable. Next, construct a wealth process Vi(-) = U‘(-)/L(-), it satisfies Vi (0) = p,

Vi(T) = e VN(T). If we plug a trading strategy

() = g QOB + U O]

into (3.8), further calculations imply Vi(-) = VP () > 0 a.s. VPh#(.) is the wealth
process from h,(-). Therefore, h.(-) € A with exact replication property VP (T) =

e“VN(T) a.s. Consequently, p* > u*(T) for

4

V]{’?(O) e {w > 0]37" € A, given 7 (-) e AN, 5.t VeV O e“VN(T)}.
Thus, we proved u/(T) = E[eVN(T)L(T)] / V™ (0). O

Proof of Theorem 5.5.1. Suppose a solution of (3.22) and (3.14) is @* : C*((0,0) x

(0,50)" % (0,00)") = (0,0). Define N(t) := @ (T—t, Xy, Vo.)e* VN () L(t), 0 < t < T

By calculating dN(t)/N(t) and using the inequality (3.22), we get that the dt terms

in dN(t)/N(t) is always no greater than 0. N(t) is a local supermartingale. And since
168



N(t) = 0T — t, Xjo.q, Vio.y)e“ VN () L(t) = 0, N(t) is a supermartingale.

Hence N(0) = @Y(T,x,y)VN(0) = EF[N(t)] = EP[e«VN(T)L(T)] holds for every
(T,x,y) € (0,00) x (0,00)" x (0,00)". Then @*(T,x,y) = EF[e“VN(T)L(T)]/VN(0) =
(T, x,y). O
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