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Abstract

Topics in relative arbitrage, stochastic games and high-dimensional PDEs

by

Tianjiao Yang

The relative arbitrage portfolio introduced in Stochastic Portfolio Theory (SPT), out-

performs a benchmark portfolio over a time-horizon with probability one. Following this

concept, when an investor competes with both market and peers, does relative arbitrage

opportunity exist as well? What is the best performance one can achieve? What is the

impact on market dynamics and investors when a large group competes in this way?

This thesis constructs a framework of multi-agent optimization under SPT to tackle

these questions. With a market model depending on stock capitalizations and targeted

investors, we analyze the market behavior and optimal investment strategies to attain

relative arbitrage in a large population regime under some market conditions.

We show a unique equilibrium for relative arbitrage in N -player and mean field games

(MFG) with mild conditions on the equity market, by modifying extended MFG with

common noise and its notion of the uniqueness in Nash equilibrium. The optimal arbi-

trage can be decomposed and generated using the idea of functionally generated portfo-

lios. In this way, the constraints on relative return and investment time horizon can be

specified.

The second part of the thesis studies numerical aspects of solving high dimensional

PDEs with multiple solutions, and learning relative arbitrage opportunities. A grid based

solution for relative arbitrage is derived in volatility stabilized market models. We then

study deep learning schemes for non-unique solutions of PDEs. Experiments on solving

the non-negative minimal solution of a Cauchy problem is provided.
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Chapter 1

Introduction and preliminaries

This chapter introduces the background of the main topics used in this thesis, including

Stochastic Portfolio Theory and Stochastic Games. The notations introduced in this

chapter will be used repeatedly in the following chapters. The outline of the thesis is in

the end of this chapter.

1.1 Stochastic portfolio theory

The basic assumptions and the settings of stock capitalizations in this thesis fall under

Stochastic Portfolio Theory (SPT), introduced by Robert Fernholz [26], which analyzes

portfolio behavior and equity market structure.

Stochastic portfolio theory assumes the existence of a local martingale deflator.The

paper [65] further discusses the relation between the no-arbitrage hypothesis and Stochas-

tic Portfolio Theory. Here, no assumption is made regarding the existence of an equiva-

lent (local) martingale measure, i.e., arbitrage opportunities are not excluded. [28] shows

that relative arbitrage can exist in equity markets that resemble actual markets, and

it resulted from market diversity, a condition that prevents the concentration of all the
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Introduction and preliminaries Chapter 1

market capital into a single stock. While [27] shows that diversity is not the proximate

cause for the existence of relative arbitrage, but instead this cause appears to lie in a

condition related to the variance rates of the stocks in the market. This variance-related

condition can pertain even in the absence of diversity.

It is commonly used by market participants to compare the performance of an invest-

ment strategy with a benchmark index. Among different metrics and tools to capture

opportunities that outperform a benchmark portfolio, relative arbitrage established in

Stochastic Portfolio Theory (SPT), see Fernholz [26], is of special interest to investment

and portfolio management.

1.1.1 Market and its Properties

In a market model, there are n stocks with prices-per-share driven by K independent

Brownian motions W “ pW1, . . . ,WKq on a filtered probability space, K ě n. A stock

price process Xi, i “ 1, . . . , n satisfies

dXiptq “ Xiptqpβptqdt`
K
ÿ

k“1

σikptqdWkptq,

with its rates of return βp¨q and the volatilities σp¨q.

πiptq is the proportion of wealth V ptq at time t that is invested in stock i. To emphasize

the dependence of wealth on the initial capitalization v and portfolio, we write V ptq “

V v,πptq, and

dV v,πptq

V v,πptq
“

n
ÿ

i“1

πiptq
dXiptq

Xiptq
.

In particular, we will use market portfolio mip¨q in the future, which is in proportion

2



Introduction and preliminaries Chapter 1

to the weight of each stock,

miptq :“
Xiptq

Xptq
, i “ 1, . . . , n.

We denote Xptq as the total capitalization: Xptq “ X1ptq ` . . .`Xnptq.

Investing according to the portfolio process mp¨q amounts to ownership of the entire

market. The resulting wealth process is

V m
ptq “

V mp0q

Xp0q
Xptq.

Apply Ito’s rule, the dynamics is

dmiptq “ miptq

„

γmi dt`
K
ÿ

k“1

τmik ptqdWkptq



, i “ 1, . . . , n. (1.1)

Here τmptq is the matrix with entries τmik ptq :“ σikptq ´
řn
j“1 mjptqσjkptq, ei the ith unit

vector in Rn and the vector γmptq is with the entries γmi ptq :“ pei´mptqq1pβptq´αptqmptqq.

1.1.2 Relative Arbitrage

The relative arbitrage problem is first defined in SPT, the focus of which is to generate

a strategy that outperforms a benchmark portfolio almost surely at the end of a certain

time span and look for the highest relative return. It shows in [28] that relative arbitrage

can exist in equity markets that resemble actual markets, and that the relative arbitrage

results from market diversity, a condition that prevents the concentration of all the

market capital into a single stock. Specific examples of the market including the stabilized

volatility model, in which relative arbitrage exists, are introduced in [27]. To relax the

assumptions about the behavior of the market imposed in SPT, [68] considers relative

3



Introduction and preliminaries Chapter 1

arbitrage in regulated markets where dividends and the merge and split of companies are

taken into account.

Suppose we use portfolio ρ1 and ρ2 to generate wealth processes from the same initial

wealth, i.e., V ρ1p0q “ V ρ2p0q “ 1. There is an arbitrage of portfolio ρ1 relative to ρ2 if

V ρ1pT q dominates V ρ2pT q almost surely at the end of time span r0, T s

P
`

V ρ1pT q ě V ρ2pT q
˘

“ 1, P
`

V ρ1pT q ą V ρ2pT q
˘

ą 0.

The concept of arbitrage in arbitrage theory can be understood as a portfolio relative to

an all zero-valued strategy.

Desired properties of the market

A natural question follows is When does relative arbitrage exist? This section recalls

some properties of the market which are used to show the existence of relative arbitrage.

Definition 1.1.1 (Non-degeneracy and bounded variance). A market is a family M “

tX1, . . . , Xnu of n stocks, each of which is defined as in (2.1), such that the matrix αptq

is nonsingular for every t P r0,8q, a.s. The market M is called nondegenerate if there

exists a number ε ą 0 such that for x P Rn

PpxαptqxT ě ε||x||2, @t P r0,8qq “ 1,

The market M has bounded variance from above, if there exists a number M ą 0 such

that for x P Rn

PpxαptqxT ďM ||x||2, @t P r0,8qq “ 1.

Remark 1. Let π be a portfolio in a nondegenerate market. Then there exists an ε ą 0

4



Introduction and preliminaries Chapter 1

such that for i “ 1, . . . , n,

τπiiptq ě εp1´ πmaxptqq
2, @t P r0,8q (1.2)

almost surely. Indeed, this is directly from definition 1.1.1, and τπiiptq “ αiiptq´2αiπptq`

αππptq, where αππptq “ π1ptqαptqπptq. Details of the proof can be found in [26].

Intuitively, no single company can ever be allowed to dominate the entire market in

terms of relative capitalization.

Definition 1.1.2 (Diversity of market). The model M of (2.1), (2.2) is diverse on the

time-horizon r0, T s, with T ą 0 a given real number, if there exists a number η P p0, 1q

such that

max
1ďiďn

mi :“ mp1q ă 1´ η, @ 0 ď t ď T (1.3)

almost surely and M is weakly diverse if there exists a number η P p0, 1q such that

1

T

ż T

0

mp1qptqdt ă 1´ η, @ 0 ď t ď T (1.4)

almost surely.

Optimal arbitrage

The market portfolio plays an important role as numeraire and the relative arbitrage

with respect to the market is a common interest for investors. In Fernholz and Karatzas

[22], the best possible investment strategy to capture relative arbitrage with respect to the

market portfolio is characterized as the minimal proportion of initial market capitalization

Xp0q :“ x1 ` . . .` xn as initial wealth to start with, so that at terminal time the wealth

V pT q outperforms the total market capitalization XpT q.

5



Introduction and preliminaries Chapter 1

The best arbitrage opportunity is further analyzed in [23] in a market with Knightian

uncertainty. The smallest proportion of the initial market capitalization is described as

the min-max value of a zero-sum stochastic game between the investor and the mar-

ket. Further investigation of exploiting relative arbitrage opportunities has been done

in [6, 29, 64, 65]. Assuming the market is diverse and sufficiently volatile, functionally

generated portfolios introduced in SPT is a tool to construct portfolios with favored re-

turn characteristics. The optimization problem from the functional generated portfolio

point of view is handled in [72]. The papers [56] and [71] connect relative arbitrage with

information theory and optimal transport problems.

1.2 Stochastic Games

Games are defined as mathematical models of strategic interaction among rational

decision makers. In many situations, every party in the game interacts not only once.

Instead, their actions are inter-temporal strategies because of ongoing interactions over

time based on historical information. This type of game is modelled in repeated games.

Stochastic games first introduced by Lloyd Shapley [66] further generalize repeated

games. Stochastic game models a repeated interaction between several participants in

which the underlying state of the environment changes stochastically, and it depends

on the decisions of the participants. The play proceeds by steps according to transition

probabilities controlled jointly by the players. Each player faces a Markov decision process

in which they maximize a total payoff criterion.

In most parts of this thesis, we apply models under the umbrella of stochastic differen-

tial games. Specifically, a stochastic differential game consists of the following elements:

• A set of players ` P t1, . . . , Nu;

6



Introduction and preliminaries Chapter 1

• State dynamics Xt on the probability space pΩ,F , P q equipped with a complete

and right-continuous filtration F. The time evolution of the state is represented by

a stochastic differential equation

dXt “ βpXt, πtqdt` σpXt, πtqdWt, t P p0, T s,

X0 “ x0,

Wt is independent F-Brownian Motion of the same dimension as that of Xt.

• A set of action profiles for each player A “ A1 ˆ . . .ˆ AN ;

• A cost functional, which is specific to actions and players and is with the implicit

assumption that players try to maximize their individual cost; Thus, each player

` want to choose their actions so as to minimize the expected value of the cost

functional J respectively.

Jpπq “ gpXT q `

ż T

0

fpXt, πtqdt

As a special case, when N “ 1, the model is equivalent to a stochastic control problem.

1.2.1 Notions of equilibrium

In N player games, since the controls are allowed to differ from one player to another,

the expected cost functionals J1, . . . , JN may not be the same. Except for some very

specific cases, it is hard to find controls π1, . . . , πN that minimize simultaneously all

J1, . . . , JN . Instead of solving the problem globally, the idea of consensus is formalized

by the concept of Nash equilibrium (NE). Players choose their strategies optimally given

correct beliefs about the strategies of the other players, while no player has incentive to

7



Introduction and preliminaries Chapter 1

change their strategy.

Definition 1.2.1 (Nash Equilibrium). A vector π`˚ “ pπ`˚i , . . . , π
`˚
n q of admissible strate-

gies is a Nash Equilibrium if, for all π`i P A and i “ 1, . . . , n,

J `pπ`˚i , π
´`˚
i q ď J `pπ`i , π

´`˚
i q,

where πp¨q “ pπ1p¨q, . . . , πNp¨qq.

1.2.2 Mean field games

The introduction of “mean fields” arising from physics provides a solution to simplify

the modelling of all inter-particle interactions when there are a large number of particles

in a dynamic system. The pioneering work of Lasry and Lions [49] and Huang et al.

[39] of Mean field game theory adapts this methodology to agents interacting through

information and strategies in a game setting.

Non-zero-sumN -player games are notoriously hard to solve. With a coupled system of

N differential equations, explicit solutions of equilibria are difficult to find. Furthermore,

there is no existence theorem for approximate Nash equilibria in such games. The agents

of mean field game theory are less sophisticated than the players of N -player game theory

since they base their strategies only on the statistical state of the mass of co-agents.

Mean field games are expected to be more effective and tractable than N player games

because of the decoupling of PDEs rooted in differential calculus and measure theory.

In return, mean field games might give us more information about the finitely many

investors situation.

A special class of stochastic differential games under the following assumptions is

considered, for the discussion of mean field games:

8
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Assumption 1. (1) All the players are indistinguishable (statistically identical) in

their behavior, and a single player’s influence on the outcome of the game dimin-

ishes as the number of players tends to infinity.

(2) All the players are strongly symmetric in the sense that an individual player is only

affected by the statistical distribution of the private states of the other players.

An individual’s private state may have different sources of randomness - the idiosyn-

cratic noise, which is independent from the other players; and the common noise, which

is noise in the environment that affects everyone. In general, we deal with the model for

a symmetric system of size N , that is given by a system of N SDEs of the form:

dX i
t “ bpt,Xt, µt, αtqdt` σpt,Xt, µt, αtqdW

i
t ` σ0pt,Xt, µt, αtqdBt,

for t P r0, T s, T ą 0, i P t1, . . . , Nu, where pB,W 1, . . . ,WNq is a sequence of independent

k-dimensional Wiener processes on some complete probability space pΩ,F ,Pq. b, σ, σ0 are

measurable functions defined on r0, T s ˆ Rk ˆ PpRkq. PpRkq is the space of probability

measures on Rk endowed with the topology of weak convergence. Denote µNt as the

empirical distribution of the N private states, that is

µNt “
1

N

N
ÿ

j“1

δXi
t
,

δx denotes the unit mass (Dirac measure) at x P E, where E is a compact metric space.

When searching for a Nash Equilibrium of a large number of players, µNt is not affected by

a deviation of a single player. Furthermore, because of de Finetti’s law of large numbers,

we expect that these empirical measures converge when the size N Ñ 8.

When the impact of the common noise exists, the limiting environment must be

given by a stochastic flow pµtqtPr0,T s of probability measures describing the conditional

9



Introduction and preliminaries Chapter 1

distribution of the population in equilibrium given the realization of the common noise,

owing to the theory of propagation of chaos. A general mean field game formulation in

this case is

(i) Fix an adapted process r0, T s Q tÑ µt P PpRkq.

(ii) Solve the stochastic control problem

inf
αPA

E
„
ż T

0

fpt,Xt, µt, αtqdt` gpXT , µT q



subject to dXt “ bpt,Xt, µt, αtqdt` σpt,Xt, µt, αtqdWt ` σ0pt,Xt, µt, αtqdBt,

X0 “ x0.

(1.5)

(iii) Given an optimal control, find the corresponding conditional laws pµ‹t q, t P r0, T s

of the optimally controlled state process pX‹
t q, t P r0, T s given W .

(iv) Find a fixed point pµtqtPr0,T s, such that µt “ µ‹t , for all t P r0, T s.

The large population system in early MFG theory is reformulated by [13] into the

stochastic version to accommodate the common noise. With the notion of weak mean

field games, [45] and [16] study the mean field game with common noise in the open

loop equilibrium. [45] assures that the weak MFG solutions characterize the limits of

approximate Nash equilibria. In an approximate Nash equilibrium, this requirement

is weakened to allow the possibility that a player may have a small incentive to do

something different. If a sequence of N -player approximate equilibria exists, then its

limits are described by weak MFG solutions. Conversely, if a weak MFG solution exists,

then it is achieved as the limit of some sequence of N -player approximate equilibria.

Intuitively speaking, even in the limit N Ñ 8, the equilibrium distribution of the

population should still feel the influence of the common noise W0, and for that reason, it

10
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should not be deterministic. The common noise turns the forward Kolmogorov equation

into a forward stochastic Kolmogorov equation.

Our paper applies the philosophy of mean field games from [15] and [35] to search

for approximate Nash equilibrium when N Ñ 8. This approach of comparing N -player

game and the corresponding mean field game is also discussed in [48], where the Merton

problems with constant equilibrium strategies are studied.

1.3 Outline of the thesis

Thesis organization in a nutshell

The organization of this paper is as follows. Chapter 2 introduces the market with

N investors as a well-posed interacting particle system. Chapter 3 discusses the relative

arbitrage problem and the benchmark we use in the rest of the thesis under a finite

particle system.

In Chapter 4, the existence of relative arbitrage is proved and the optimization of

relative arbitrage is derived in N -player games with different information structures.

Chapter 5 proceeds the relative arbitrage equilibrium of extended mean field games and

presents an example with explicit equilibrium and optimal strategies. We show that the

mean field game limit is indeed a nice approximation to the N -players game.

Nevertheless, only a few specific types of mean field games under certain conditions

have unique closed form equilibria solutions. We present in Chapter 6 that the functional

generated portfolios (FGP) results for a large population and its connection with Nash

equilibrium results in previous chapters. In Chapter 7, numerical schemes are investi-

gated for the solvability of Nash equilibrium in N -player games and mean field games,

focusing on volatility-stabilized models. Lastly, Chapter 8 discusses deep learning solu-

tions towards the PDE systems in relative arbitrage problems.

11
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Outline

It is commonly used by market participants to compare the performance of an invest-

ment strategy with a benchmark index. To better describe and analyze the market based

on SPT, this paper investigates the following questions: How do we capture the competi-

tive behaviors of participants in the financial market? With additional information about

these investors, how do we improve the market model and make portfolio suggestions?

We want to enable portfolio managers or asset management entities to customize their

portfolio optimization strategies based on the preference and selection of benchmarks.

This paper forms a stochastic differential game system of equity market, where in-

vestors aim to pursue outperformance to the market index and peer investors. We intro-

duce the mean field interaction among participants and study the relationship between

the N -player game and mean field game set-up of our problem of interest.

One focus of our work is on the multi-agent optimization theory for relative arbi-

trages. Our model arises from the pioneering work of Fernholz and Karatzas [22], which

characterizes the best possible relative arbitrage with respect to the market portfolio. We

construct a general framework for multi-player portfolio optimization problems without

the requirement of the existence of an equivalent martingale measure.

• Market, investors and their mean field interactions

This paper first considers N investors in an equity market M over a time horizon

r0, T s. We consider N is big, so that the equity trading of this group as a whole

contributes to the evolution of the market; whereas individuals among the group

are too “small” to bring changes to the market. These investors interact with

the market through a joint distribution of their wealth and strategies, particularly

for example, through the total investments of this group to the assets. There

are n stocks with prices-per-share driven by n independent Brownian motions W “

12



Introduction and preliminaries Chapter 1

pW1, . . . ,Wnq on a filtered probability space. The n-dimensional price process XN “

pXN
1 , . . . , X

N
n q follows a nonlinear stochastic differential equation

dXN
ptq “ XN

ptqβpt,XN
ptq, νNt qdt` XN

ptqσpt,XN
ptq, νNt qdWt, (1.6)

in which its drift β and diffusion σ coefficients also depend on the joint empirical

measure νNt of portfolio strategy π` and wealth V `, ` “ 1, . . . , N of N investors.

νNt :“
1

N

N
ÿ

`“1

δpV `ptq,π`ptqq (1.7)

We show the market model is well-posed through a finite dynamical system.

Another focus of our work is to build up the finite and infinite player game frame-

work of relative arbitrage. This also provides a novel application to the N-player games

and mean field games. After the discussion of N -player game, we establish a modified

extended mean field game and a scheme to seek the mean field equilibrium: The infinite-

player system involves two different fixed point conditions about the cost functional and

the state processes, whereas only one of them is required to be unique. Our paper ap-

plies the philosophy of mean field games to search for approximate Nash equilibrium

when N Ñ 8.

• Relative arbitrage as a N-player game’s equilibrium

To specify what we mean by relative arbitrage opportunities in this problem set-up,

we first define a benchmark process VN by the weighted average performance of

the market and the investors

VNptq :“ δ ¨XN
ptq ` p1´ δq ¨

1

N

N
ÿ

`“1

V `
ptq, 0 ď t ď T ,

13
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with a fixed weight δ P r0, 1s. An investor achieves the relative arbitrage if his/her

terminal wealth can outperform this benchmark by c`, a constant personal index

for the investor `, given at time 0. Furthermore, AN denotes all admissible, self-

financing long-only portfolios for N investors.

The first question raised in this paper is: What is the best strategy one can take,

so that the arbitrage relative to the above benchmark can be attained? Specifically,

every investor we study aims to outperform the market and their competitors, start-

ing with as little proportion of the benchmark capital as possible. Mathematically,

given the other pN ´ 1q investors’ portfolios π´` P AN´1, the objective of investor

`, ` “ 1, . . . , N , is formulated as

u`pT q “ inf
!

ω` P p0,8q
ˇ

ˇ

ˇ
Dπ`p¨q P A such that v` “ ω`VNp0q, V `

pT q ą ec`VNpT qu ,

where V `p¨q :“ V v`,π`p¨q is the wealth process generated by π`p¨q with initial wealth

v`.

Since the interactions of a large group of investors are through stocks, portfolios

and wealth, the next question that arises is: Is it possible for every investor to take

the optimal strategy in the marketM? We characterize the optimal wealth one can

achieve by the unique Nash equilibrium of the finite population game. Under some

market conditions, u`pT ´ t,XNptq,Yptqq is the smallest nonnegative solution of a

Cauchy problem (3.13)-(3.15), where Yptq is the empirical mean of νNt , see (2.5).

We distinguish the PDE characterization using open loop or closed loop controls

respectively. The unique Nash equilibrium is achieved by a strategy

π`‹i ptq :“ miptq `X
N
i ptqDxi ṽptq `

n
ÿ

j“1

pτσ´1
qjiDyj v̄

`
ptq,

14
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where

v̄`ptq :“ log u`T´t `
1´ δ

δXN
t

¨
1

N

N
ÿ

k“1

V k
t log ukT´t.

for i “ 1, . . . , n, ` “ 1, . . . , N . It turns out that π`‹i and u`T´t are proportional to c`

for ` “ 1, . . . , N . We show the existence of relative arbitrage through the Fichera

drift [31].

• Relative arbitrage as a mean field game’s equilibrium

The relative arbitrage problem provides a new application and some modifications

in mean field games. Because of the special problem set-up, there are two mean

field measures that evolve in different directions, while the uniqueness of Nash equi-

librium depends on one of the measures. In particular, the mean field benchmark

is given by

VpT q :“ δ ¨XpT q ` p1´ δq ¨mT , m :“ ErV |FBs.

On the other hand, the state processes depend on the conditional law of wealth

and strategies ν :“ LawpV, π|FBq with respect to the Brownian motion B. This

yields the McKean-Vlasov SDEs of stock prices

dXt “ βpXt, νt,mtqdt` spXt, νt,mtqdBt, t P p0, T s

X p0q “ x;

and a representative player’s wealth

dVt “ πptqβpXt, νt,mtqdt` πptqσpXt, νt,mtqdBt, t P p0, T s

V p0q “ ũpT qVp0q.

A modified extended mean field game model with common noise is introduced. Both

15
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open and closed loop equilibrium are considered here regarding the well-posedness

of the mean field system and the approximation of games.

We summarize these results in the following diagram.

Market dynamics Relative arbitrage of N investors

§

§

§

đ

§

§

§

đ

N -particle dynamics
Theorem 4.2.1

ÝÝÝÝÝÝÝÑ N -player Nash Equilibrium

Proposition 5.3.2
§

§

§

đ

Proposition 5.3.5
§

§

§

đ

Proposition 5.3.6
İ

§

§

§

8-particle dynamics
Theorem 5.1.1

ÝÝÝÝÝÝÑ Mean Field Equilibrium

Alternatively, the optimal strategies in N -player games and mean field games can be

formulated as functional generated portfolios (FGP). This could be a possible remedy for

the computational issues in relative arbitrage problems.

• Numerical solutions of high-dimensional PDEs and volatility-stabilized

market

We explore the numerical schemes for stochastic portfolio theory and high-dimensional

PDEs. Both of these topics suffer intractabilities in general.

We first develop a grid based solution for relative arbitrage in volatility stabilized

models. We start from market models without influence of investors, such as the

ones used in [26], [22], and [27]. For example if the stock processes follow

dXiptq “ Xptqdt`
a

XiptqXptqdWiptq,
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for i “ 1, . . . , n. In this case, the best investment opportunity for arbitrage relative

to the market portfolio is characterized as

upT ´ t,X ptqq “ X1ptq . . . Xnptq

X1ptq ` . . .`Xnptq

ErX1pT q ` . . .`XnpT qs

X1pT q . . . XnpT q
, t P r0, T s.

A numerical scheme is developed based on Bessel processes to avoid the inefficiency

of a traditional finite difference scheme.

The thesis then presents deep learning schemes that work for more general mar-

ket models and high dimensional PDEs with multiple solutions. Above all, the

non-negative minimal continuous solution of Cauchy problems appeared in relative

arbitrage problems of our interest. We first develop a deep learning scheme similiar

to [67]. Then we propose a probabilistic numerical scheme where the associated

reflected BSDE problem achieves an approximation of the non-negative minimal

continuous solution.

17



Chapter 2

Finite dynamical system of equity

market

This chapter serves to construct the market model and the finite dynamical system we

use frequently in the rest of the thesis. The market model contains the processes of stock

capitalization and trading volume on each stock. We showed in [42] that the finite-particle

SDE system of stock and trading volume processes admits a unique solution under certain

market conditions. We also compare several investment strategies constructed from the

market model we use.

2.1 Market Model

We consider an equity market and focus on the market behavior and a group of

investors in this market. The number of investors we include is large enough to affect

the market as a whole. Nevertheless, there are possibly other investors apart from this

very group we consider.

18
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2.1.1 Capitalizations

For a given finite time horizon r0, T s, an admissible market modelM we use in this pa-

per consists of a given n dimensional Brownian motion W p¨q :“ pW1p¨q, . . . ,Wnp¨qq
1 on the

probability space pΩ,F ,Pq of the space Ω of continuous functions. Filtration F represents

the “flow of information” in the market, where F :“ tFptqu0ďtă8 “ tσpωpsqq; 0 ă s ă tu

with Fp0q :“ tH,Ωu, mod P. W p¨q is adapted to the P-augmentation of F. All the local

martingales and supermartingales are with respect to the filtration F if not written out

specifically.

Thus, there are n risky assets (stocks) with prices-per-share XNp¨q “ pXN
1 p¨q, . . . , X

N
n p¨qq

driven by n independent Brownian motions as follows: for t P r0, T s, ω P Ω,

dXN
i ptq “ XN

i ptqpβipt, ωqdt`
n
ÿ

k“1

σikpt, ωqdWkptqq, i “ 1, . . . , n, (2.1)

or

XN
i ptq “ xNi exp

"
ż t

0

pβips, ωq ´
1

2

n
ÿ

k“1

pσikps, ωqqq
2dt`

n
ÿ

k“1

ż t

0

σikps, ωqdWkpsq

*

,

with the initial condition XN
i p0q “ xNi . We assume that dimpW ptqq “ dimpXNptqq “ n,

that is, we have exactly as many sources of randomness as there are stocks in the market

M. The market M is hence a complete market. The dimension n is chosen to be large

enough to avoid unnecessary dependencies among the stocks we define. Here, 1 stands

for the transpose of matrices.

Here, βp¨q “ pβ1p¨q, . . . , βnp¨qq
1 : r0, T s ˆ Ω Ñ Rn as the mean rates of return for

n stocks and σp¨q “ pσikp¨qqnˆn : r0, T s ˆ Ω Ñ GLpnq as volatilities are assumed to be

invertible, F-progressively measurable in which GLpnq is the space of nˆn invertible real

matrices. Then W p¨q is adapted to the P-augmentation of the filtration F. To satisfy the
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integrability condition, we assume

n
ÿ

i“1

ż T

0

ˆ

|βipt, ωq| ` αiipt, ωq

˙

dt ă 8, (2.2)

where αp¨q :“ σp¨qσ1p¨q, and its i, j element αi,j is the covariance process between XN
i

and XN
j for 1 ď i, j ď n.

2.1.2 Wealth and Portfolios

In the above market model, there are N small investors, “small” is in the sense that

each individual of these N investors has very little influence on the overall system. An

investor ` uses the proportion π`i ptq of current wealth V `ptq to invest in the stock i at

each time t for ` “ 1, . . . , N . The wealth process V ` of an individual investor ` is

dV `ptq

V `ptq
“

n
ÿ

i“1

π`i ptq
dXN

i ptq

XN
i ptq

, V `
p0q “ v`. (2.3)

Since equity prices move according to the supply and demand for stock shares, we consider

the average capital invested as a factor in the price processes.

Definition 2.1.1 (Investment strategy, long only portfolio and average capital invested).

We define the the following items related to proportion π` as below:

(1) An F-progressively measurable and adapted process π` : r0,8q ˆ Ω Ñ Rn is called

an investment strategy if

ż T

0

p|π`1pt, ωqβpt, ωq| ` π`1pt, ωqαpt, ωqπ`pt, ωqqdt ă 8, T P p0,8q, ω P Ω, a.s.

(2.4)

The strategy here is self-financing, since wealth at any point of time is obtained by

trading the initial wealth according to the strategy πp¨q.
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(2) Each π`p¨q “ pπ`1p¨q, . . . , π
`
np¨qq

1 is a long-only portfolio if it is a portfolio that takes

values in the set

∆n :“ tπ “ pπ1, ..., πnq P Rn
|π1 ě 0, . . . , πn ě 0;π1 ` . . .` πn “ 1u.

An investment strategy that takes value in ∆n is called an admissible strategy,

and we denote the admissible set as A. If π` P A, for all ` “ 1, . . . , N , then

pπ1, . . . , πNq P AN . In the rest of the paper, we only consider strategies in the

admissible set A.

(3) Each investor ` uses the proportion π`i ptq of current wealth V `ptq to invest in the

ith stock at each time t. The average amount Yiptq invested by N players on stock

i is assumed to satisfy

Yiptq :“
1

N

N
ÿ

`“1

V `
ptqπ`i ptq “

ż t

0

γipr, ωqdr `

ż t

0

n
ÿ

k“1

τikpr, ωqdWkprq, t P p0,8q

1

N

N
ÿ

`“1

V `
p0qπ`i p0q “: yi

(2.5)

for i “ 1, . . . , n, where γp¨q and τp¨q are assumed to satisfy

n
ÿ

i“1

ż T

0

ˆ

|γipt, ωq| ` ψiipt, ωq

˙

dt ă 8 (2.6)

for every T P r0,8q, ψp¨q :“ τp¨qτ 1p¨q.

In fact, the average capitalization Yptq :“ pY1ptq, . . . ,Ynptqq, t ě 0 may depend on

XN and π. The process in Definition 2.1.1(3) here is defined for simplicity.
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2.2 Construction of investment strategies

We investigate several investment strategies formulated from the wealth and strategies

pV `p¨q, π`p¨qq of a group of N investors.

Theorem 2.2.1. Given investment strategies π` P ∆n, ` “ 1, . . . , N as in Defini-

tion 2.1.1, define the following wealth processes with the same starting capitalization

v` “ v for every ` “ 1, . . . , N :

• The wealth rV ptq achieved by the average of the N portfolios used by the N investors,

rV ptq :“ V π
ptq, where πptq :“

1

N

N
ÿ

`“1

π`ptq.

• The arithmetic average wealth V ptq of the N investors,

V ptq :“
1

N

N
ÿ

`“1

V `
ptq.

• The wealth qV ptq is generated by takes the proportion of capitalization of a certain

stock in the market as the corresponding strategy of that stock,

qV ptq :“ V qπ
ptq, where qπiptq :“

řN
`“1 π

`
i ptqV

`ptq
řn
i“1

řN
`“1 π

`
i ptqV

`ptq
“

řN
`“1 π

`
i ptqV

`ptq
řN
`“1 V

`ptq
.

We have

rV ptq ď V ptq, rV ptq ď qV ptq for any t P p0,8q.

Proof.
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The arithmetic average V ptq follows

V ptq “
v

N

N
ÿ

`“1

exp
!

ż t

0

π`1ps, ωq

ˆ

βps, ωq´
αps, ωq

2

˙

ds`

ż t

0

π`1ps, ωqσps, ωqdWkpsq
)

. (2.7)

rV ptq turns out to be the geometric average wealth, since

log rV ptq “

ż t

0

1

N

N
ÿ

`“1

π`1ps, ωqpβps, ωq ´
αps, ωq

2
qds

`

ż t

0

1

N

N
ÿ

`“1

π`1ps, ωqσps, ωqdWkpsq ` log v

“
1

N

N
ÿ

`“1

log V `
ptq,

(2.8)

so

rV ptq “

ˆ N
ź

`“1

V `
ptq

˙
1
N

.

By the inequality of arithmetic and geometric means that for a sequence px1, . . . , xnq,

n
?
x1 ¨ . . . ¨ xn ď

1
n
px1 ` . . . ` xnq, we have rV ptq ď V ptq for t P r0, T s, when the initial

wealth of each investor is the same.

To prove the second inequality about the relationship between rV ptq and qV ptq, we first

write out qV ptq as

qV ptq “ v exp

#

ż t

0

1
řN
`“1 V

`psq

N
ÿ

`“1

π`
1

psqV `
psqpβps, ωq ´

αps, ωq

2
qds

`

ż t

0

1
řN
`“1 V

`psq

N
ÿ

`“1

π`
1

psqV `
psqσps, ωqdW psq

+

“ v
N
ź

`“1

exp
V `psq

řN
`“1

V `psq

!

ż t

0

π`1psqpβps, ωq ´
αps, ωq

2
qds`

ż t

0

π`1psqσps, ωqdW psq
)

.
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The logarithm of qV ptq is therefore

log qV ptq “
1

řN
`“1 V

`ptq

N
ÿ

`“1

V `
ptq log V `

ptq. (2.9)

Compare (2.8) and (2.9) by taking the ratio log
rV ptq
qV ptq

:

log
rV ptq

qV ptq
“

1

N

`

N
ÿ

`“1

log V `
ptq ´

1

V

N
ÿ

`“1

V `
ptq log V `

ptq
˘

ď log V ptq ´
1

V
¨

1

N

N
ÿ

`“1

V `
ptq log V `

ptq

ď log V ptq ´
1

V
¨ V log V ptq “ 0.

The first line is simply combining the expressions in (2.8) and (2.9); the inequality on the

second line holds because of the concavity of function logpxq and Jensen’s inequality. The

third line is from the convexity of function x logpxq, and Jensen’s inequality. Therefore,

rV ptq ď qV ptq for any t P p0,8q.

A quick computation shows that the wealth process that strategy qπptq generates is

exactly V ptq. Hence building a portfolio using qπptq is one way to get V ptq.

To sum up, for all t ą 0, rV ptq ď V ptq “ qV ptq. That is, the wealth of taking the

average strategy earns less than the average wealth or the wealth of applying qπiptq. The

equality rV ptq “ V ptq “ qV ptq “ V `ptq holds for each ` “ 1, . . . , N , if each investor is of

the same wealth at time t.

2.3 General finite dynamical system

The interaction among the players we consider here is of the mean field type, in

that whenever an individual player (investor) has to make a decision, he or she may not
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be able to see the individual private information of the other players but may see the

average of functions of the private states of the other players. We use the mean field

interaction particle models from Statistical Physics to describe the market - We model

the N investors as N particles, for fixed N .

For any metric space pX, dq, PpXq denotes the space of probability measures on X

endowed with the topology of the weak convergence. PppXq is the subspace of PpXq of

the probability measures of order p, that is, µ P PppXq if
ş

X dpx, x0q
pµpdxq ă 8, where

x0 P X is an arbitrary reference point. For p ě 1, µ, ν P PppXq, the p-Wasserstein metric

on PppXq is defined by

Wppν1, ν2q
p :“ inf

πPΠpν1,ν2q

ż

XˆX
dpx, yqpκpdx, dyq,

where d is the underlying metric on the space. Πpν1, ν2q is the set of Borel probability

measures π on X ˆ X with the first marginal ν1 and the second marginal ν2. Precisely,

κpAˆ Xq “ ν1pAq and κpXˆ Aq “ ν2pAq for every Borel set A Ă X.

Also, denote by Cpr0, T s;Rd0q the space of continuous functions from r0, T s to Rd0 .

In this paper, we often take X “ Rd0 when considering a real-valued random variable

or take X as the path space X “ Cpr0, T s;Rd0q for a process, where a fixed number d0

will be specified later. PppRd0q equipped with the Wasserstein distanceWp is a complete

separable metric space, since Rd0 is complete and separable.

Definition 2.3.1 (Empirical measure in the finiteN -particle system). Consider pV `, π`q P

Cpr0, T s;R`q ˆ Cpr0, T s;Aq that are F-measurable random variables, for every investor

` “ 1, . . . , N . We define empirical measures νN P P2pCpr0, T s,R`q ˆ Cpr0, T s,Aqq –
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P2pCpr0, T s,R` ˆ Aqq of the random vectors pV `ptq, π`ptqq as

νNt :“
1

N

N
ÿ

`“1

δpV `ptq,π`ptqq, t ě 0,

where δx is the Dirac delta mass at x P R` ˆ A. Thus for any Borel set A Ă R` ˆ A,

νNt pAq “
1

N

N
ÿ

`“1

δA
pV `ptq,π`ptqq “

1

N
¨#t` ď N : pV `

ptq, π`ptqq P Au,

where #t¨u represents the cardinality of the set.

Denote XN
t “ pXN

1 ptq, . . . , X
N
n ptqq, Vt “ pV 1ptq, . . . , V Nptqq for t ě 0. For a fixed

N , with νNt in definition 2.3.1 that generalizes Yptq, we can generalize the pn ` Nq-

dimensional system as

dXN
t “ XN

t βpt,XN
t , ν

N
t qdt` XN

t σpt,XN
t , ν

N
t qdWt; XN

0 “ xN0 (2.10)

and for ` “ 1, . . . , N ,

dV `
t “ V `

t π
`
tβpt,X

N
t , ν

N
t qdt` V

`
t π

`
tσpt,X

N
t , ν

N
t qdWt; V `

0 “ v`. (2.11)

A strong solution of the conditional Mckean-Vlasov system (2.10)-(2.11) is a triplet

pXN ,V, νNq P pCpr0, T s,Rn
`q, Cpr0, T s,RN

` q,P2
pCpr0, T s,R` ˆ Aqqq.

We made the following assumptions on the triplet to ensure that the system (2.10)-(2.11)

is well-posed. In the following sections we shall assume the well-posedness of the system

despite the assumptions on system coefficients or strategy processes for simplicity.

Assumption 2. The initial wealth and strategies of the N players are i.i.d samples from
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νN0 the distribution of pv0, π0q. The stock price vector xN0 at time 0 has a finite second

moment, E|xN0 |2 ă 8, and is independent of Brownian motion tWtu.

| ¨ | denotes Euclidean norm of Rd valued process and Frobenius norm of Rdˆn values

processes, d “ n or N in particular. Let

bipt, x, νq :“ xiβipt, x, νq, sikpt, x, νq “ xiσikpt, x, νq.

Assumption 3. Assume the Lipschitz continuity and linear growth condition are sat-

isfied with Borel measurable mappings bpt, x, νq, spt, x, νq from r0, T s ˆ Cpr0, T s,Rn
`q ˆ

P2pCpr0, T s,RN
` ˆ ANqq to Rn. That is, there exists a constant L P p0,8q, such that

|bpt, x, νq ´ bpt, rx, rνq| ` |spt, x, νq ´ spt, rx, rνq| ď Lr|x´ rx| `W2pν, rνqs

for a constant CG P p0,8q,

|xβpt, x, νq| ` |xσpt, x, νq| ď CG
p1` |x| `M2pνqq,

where

M2pνq “

ˆ
ż

Cpr0,T s,R`ˆAq
|x|2dνpxq

˙1{2

; ν P P2pCpr0, T s,R` ˆ Aqq.

Assume the following Lipschitz continuity and boundedness, L,B P p0,8q

|v`βpt, x, νq´rv`βpt, rx, rνq|` |v`σpt, x, νq´rv`σpt, rx, rνq| ď Lr|x´ rx|`n|v`´rv`|`W2pν, rνqs,

|v`βpt, x, νq| ` |v`σpt, x, νq| ď B,

for every v` P R`, ` “ 1, . . . , N ; t P r0, T s; x, rx P Rn
`; ν, rν P P2pCpr0, T s,RN

` ˆ ANq.

The admissible strategies πptq might have different structures given the accessible
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information at time t.

Definition 2.3.2. A control πptq P A is an open loop control if it is a function of

time t and initial states v0. It is called a closed loop feedback control if πptq P A

is a function of time t and states of every controller Vptq. We denote Vptq as Vt for

simplicity. It is specified by feedback functions φ` : r0, T sˆΩˆRN
` Ñ A, for ` “ 1, . . . , N ,

to be evaluated along the path of the state process.

In this thesis we focus on open loop controls and closed loop feedback controls.

Assumption 4. Let ` “ 1, . . . , N . For a closed loop feedback control, we assume π` is

Lipschitz in v, i.e., there exists a mapping φ` : RN
` Ñ A such that π`t “ φ`pVtq.

|φ`pvq ´ φ`prvq| ď nL|v ´ rv|

for every v, rv P RN
` .

Proposition 2.3.1. Under Assumption 3 and 4, the pn ` Nq-dimensional SDE system

(2.10)-(2.11) admits a unique strong solution, for each n, N .

Proof. We restrict the discussion on the time homogeneous case, whereas the inhomoge-

neous case can be proved in the same fashion. Rewrite the system as a pn`Nq-dimension
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SDE system:

d

¨

˚

˝

XN
t

Vt

˛

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

XN
1 ptqβ1pXN

t , ν
N
t qdt`X1ptq

řn
k“1 σ1kpXN

t , ν
N
t qdWkptq

. . .

XN
n ptqβnpXN

t , ν
N
t qdt`Xnptq

řn
k“1 σnkpXN

t , ν
N
t qdWkptq

V 1
t π

11
t βpXN

t , ν
N
t qdt` V

1
t π

11
t σpXN

t , ν
N
t qdWt

. . .

V N
t π

N 1
t βpXN

t , ν
N
t qdt` V

N
t π

N 1
t σpXN

t , ν
N
t qdWt

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

:“ fpXN
t ,Vt, ν

N
t qdt` gpXN

t ,Vt, ν
N
t qdWt,

(2.12)

where fpXN
t ,Vt, νtq “ pf1p¨q, . . . , fn`Np¨qq, fip¨q “ XN

i ptqβip¨q for i “ 1, . . . , n, fjp¨q “

πj´nt βp¨q for j “ n` 1, . . . , n`N . Similiarly, gpXN
t ,Vt, νtq “ pg1p¨q, . . . , gn`Np¨qq, gip¨q “

XN
i ptqσip¨q for i “ 1, . . . , n, gj “ V j´n

t πj´nt σpXN
t , νtq for j “ n` 1, . . . , n`N .

Let us consider a closed loop strategy π`t “ φ`pVtq. Open loop strategies case can be

shown in the same way. Define a mapping LN : RN
` Ñ P2pCpr0, T s,R` ˆ Aqq,

LNpVtq “
1

N

N
ÿ

`“1

δpV `t ,φ`pVtqq
“ νNt .

Define F : RN`n
` Ñ RN`n, G : RN`n

` Ñ RN`n ˆ Rn, with

F pXN
t ,Vtq “ fpXt,Vt, LNpVtqq; GpXN

t ,Vtq “ gpXt,Vt, LNpVtqq.

Let px, vq “ px1, . . . , xn, v
1, . . . , vNq and py, uq “ py1, . . . , yn, u

1, . . . , uNq be two pairs of

values of pXNp¨q,Vp¨qq and define a constant Lm :“ maxt1, L,Bu. By the inequality
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pa` bq2 ď 2pa2 ` b2q, uniformly boundedness and Lipschitz condition of βi and φ`,

|F px, vq ´ F py, uq|2

ď

n
ÿ

i“1

|bipx, LNpvqq ´ bipy, LNpuqq|
2

`

N
ÿ

`“1

|v`φ`pvqβpx, LNpvqq ´ u
`φ`puqβpy, LNpuqq|

2

ď2L2
mr|x´ y|

2
`W2

2 pLNpvq, LNpuqs ` 2nL2
m|v ´ u|

2

` 8NL2
mr|x´ y|

2
` n|v` ´ u`|2 `W2

2 pLNpvq, LNpuqs,

If the strategies are of the form φ`pv`q and is Lipchitz continuous |φ`pv`q ´ φ`prv`q| ă

nL|v` ´ rv`|, the last inequality above should be instead

2L2
mr|x´y|

2
`W2

2 pLNpvq, LNpuqqs`8NL2
m|x´y|

2
`10nL2

m|v´u|
2
`8NL2

mW2
2 pLNpvq, LNpuqqs.

Denote the empirical measure induced by the joint distribution of random variable u and

v by

π̃ “
1

N

N
ÿ

`“1

δpu`,v`q.

It is a coupling of the function LNpvq and LNpuq. By the definition of Wasserstein

distance,

W2
2 pLNpvq, LNpuqq ď

ż

RNˆRN
|pv, φpvqq ´ pu, φpuqq|2π̃pdv, duq ď

n

N
pL2

` 1q|v ´ u|2

Therefore,

|F px, vq ´ F py, uq|2 ď p2` 8NqL2
mr|x´ y|

2
` n|v ´ u|2s,

when Lm ă
b

4pN´1q2´5
1`4N

. In the same vein, we conclude the Lipschitz continuity of Gp¨q.

Thus according to the existence and uniqueness conditions of multi-dimensional SDEs,
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the system (2.10)-(2.11) is well-defined.

We will use the system in Proposition 2.3.1 for N -investor relative arbitrage problem

in Chapter 3-4. We study this pn ` Nq-dimensional system (2.10)-(2.11) when N Ñ 8

in Chapter 5 for mean field games.
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Chapter 3

Relative arbitrage in a finite particle

system

In this chapter we construct an investment framework that arises from the pioneering

work [22] about the optimal arbitrage opportunities relative to the market portfolio. To

analyze the market and information from investors, we propose a model in which the

market dynamics depend on a certain group of investment entities. The portfolio of

these entities of interest is determined by a relative arbitrage benchmark.

3.1 Benchmark of the market and investors

We first recall the definition of relative arbitrage in Stochastic Portfolio Theory.

Definition 3.1.1 (Relative Arbitrage). Given two investment strategies πp¨q and ρp¨q,

with the same initial capital V πp0q “ V ρp0q “ 1, we shall say that πp¨q represents an

arbitrage opportunity relative to ρp¨q over the time horizon r0, T s, with a given T ą 0, if

P
`

V π
pT q ě V ρ

pT q
˘

“ 1 and P
`

V π
pT q ą V ρ

pT q
˘

ą 0.
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The market portfolio m is used to describe the behavior of the market: By investing

in proportion to the market weight of each stock,

πm
i ptq :“

XN
i ptq

XNptq
, i “ 1, . . . , n, t ě 0. (3.1)

Consider the wealth process V mp¨q generated by the market portfolio. Let V mp0q “ x0,

and since

dV mptq

V mptq
“

n
ÿ

i“1

πm
i ptq ¨

dXN
i ptq

XN
i ptq

“
dXNptq

XNptq
, t ě 0, (3.2)

the market portfolio amounts to the ownership of the entire market - the total capital-

ization

XN
ptq “ XN

1 ptq ` . . .`X
N
n ptq, t P p0, T s; XN

p0q :“ x0.

The performance of a portfolio is measured with respect to the market portfolio

and other factors. For example, asset managers improve not only absolute performance

compared to the market index, but also relative performance with respect to all collegial

managers - they try to exploit strategies that achieve an arbitrage relative to market and

peer investors. We next define the benchmark of the overall performance.

Definition 3.1.2 (Benchmark). Relative arbitrage benchmark VNpT q, T P p0,8q, which

is the weighted average of performances of the market portfolio and the average portfolio

of N investors, is defined as

VNpT q “ δ ¨XN
pT q ` p1´ δq ¨

1

N

N
ÿ

`“1

V `
pT q, (3.3)

with a given constant weight 0 ď δ ď 1.

The second term p1´ δq ¨ 1
N

řN
`“1 V

`pT q, is the average amount of wealth at T .

We assume each investor measures the logarithmic ratio of their own wealth at time
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T to the benchmark in (3.3), and searches for a strategy with which the logarithmic ratio

is above a personal level of preference almost surely. For ` “ 1, . . . , N , we denote the

investment preference of investor ` by c`, a real number given at t “ 0. Note that c` is an

investor-specific constant, and so it might be different among individuals ` “ 1, . . . , N .

An arbitrary investor ` tries to achieve

log
V `pT q

VNpT q
ą c`, a.s. or equivalently, V `

pT q ě ec`VNpT q, a.s. (3.4)

Thus VNpT q is the benchmark and an investor ` aims to match ec`VNpT q based on their

preferences.

Assumption 5. Assume that the preferences of investors c` are statistically identical

and independent samples from a common distribution Lawpcq.

Proposition 3.1.1. We have the following properties of c` and δ.

1. If every investor achieves relative arbitrage opportunity in the sense of (3.4), then

we must have

p1´ δq

N

N
ÿ

`“1

ec` ă 1; (3.5)

2. Relative arbitrage in the sense of (3.4) is guaranteed, if pc1, . . . , cNq satisfies that

ec` ď
V `pT q

mintXNpT q, V 1pT q, . . . , V NpT qu
for every ` “ 1, . . . , N a.s. (3.6)

Its proof is given in Appendix A.1. A special case that c` “ c (constant) for every

` “ 1, . . . , N . We already know from [22] and [23] that any c` ď 0 is a valid level of

satisfaction. (3.5) in Proposition 3.1.1 tells us that c` can be a small positive number.

Investors pursuing relative arbitrage should follow the condition (3.5) for c`.

The following theorem shows that benchmark VN is a valid wealth process
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Theorem 3.1.1. Benchmark VNptq “ δXNptq ` p1 ´ δq 1
N

řN
`“1 V

`ptq can be generated

from a strategy Πp¨q :“ pΠ1p¨q, . . . ,Πnp¨qq P A,

Πiptq “
δXN

i ptq ` p1´ δqYiptq
VNptq

,

where Yiptq is defined in (8.16).

Proof. To show Vptq is a wealth process generated by a strategy, we use (2.3) and get

dVNptq
VNptq

“
1

VNptq

ˆ

δdXptq `
1

N
p1´ δq

N
ÿ

`“1

n
ÿ

i“1

V `π`i ptq
dXiptq

Xiptq

˙

“

n
ÿ

i“1

Πiptq
dXiptq

Xiptq
, for t P p0, T s,

and

VNp0q “ δx0 `
1´ δ

N

N
ÿ

`“1

v`,

where

Πiptq “
δXNptq

VNptq
miptq `

p1´ δq

NVNptq

N
ÿ

`“1

V `π`i ptq

“
δXN

i ptq ` p1´ δqYiptq
VNptq

.

Further computations show that Πiptq satisfies self-financing condition (2.4). Π P A since
řN
i“1 Πiptq “ 1 and 0 ă Πiptq ă 1, i “ 1, . . . , n.

3.2 Optimization in relative arbitrage

Assumption 6. We assume the existence of a market price of risk process θ : r0,8q ˆ

ΩˆP2pCpr0, T s,R`ˆAqq Ñ Rn, an F-progressively measurable process such that for any
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pt, ω, νq P r0,8q ˆ Ωˆ P2pCpr0, T s,R` ˆ Aqq,

σpt, ω, νqθpt, ω, νq “ βpt, ω, νq, τpt, ω, νqθpt, ω, νq “ γpt, ω, νq; (3.7)

P
ˆ
ż T

0

||θpt, ω, νq||2dt ă 8, @T P p0,8q

˙

“ 1.

In the scope of complete market, Assumption 6 shows that the price of risk process

θptq governs both the risk premium per unit volatility of stocks and trading volumes,

since the market is simultaneously defined by the stocks and the investors. The group

of investors we consider in this paper influences the stock capitalization through the

trading volumes driven by the same W p¨q. Thus it does not bring an extra risk factor

to the market. In future sections, We shall see the relationship in (3.7) is a key to more

tractable and practical results in game formations. We take F “ FXN ,Y “ FW from now

on.

Next we define the deflator based on the market price of the risk process.

Definition 3.2.1. We define a local martingale Lptq,

dLptq “ θptqLptqdWt, t ě 0.

Equivalently,

Lptq :“ exp
!

´

ż t

0

θ1psqdW psq ´
1

2

ż t

0

||θpsq||2ds
)

, 0 ď t ă 8.

Thus under Assumption 6, the market is endowed with the existence of a local mar-

tingale L with ErLpT qs ď 1. We denote the discounted processes pV `p¨q :“ V `p¨qLp¨q, and
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pXp¨q :“ Xp¨qLp¨q. pV `p¨q admits

dpV `
ptq “ dV `

ptqLptq “ pV `
ptq

`

π`1ptqσptq ´ θ1ptq
˘

dW ptq; pV `
p0q “ pv`. (3.8)

Remark 2. With Assumption 6, assume the market M has bounded variance. Denote
řN
`“1 v

` :“ v̄. On r0, T s, given the existence of relative arbitrage in the sense of (3.4)

and Definition 3.1.2, if

c` ă log v` ´ logpδx0 ` p1´ δqv̄q, (3.9)

then the process Lp¨q is a strict local martingale, i.e., ErLpT qs ă 1.

This can be proved by contradiction, assuming LpT q is a martingale. Then by Gir-

sanov theorem, QT pAq :“ ErLpT q1As, A P F defines a probability measure that is equiva-

lent to P.We can show ∆`ptq :“ V `ptq ´ ec`pδXptq ` p1´ δq 1
N

řN
`“1 V

`ptqq is a martingale

under QT . Thus the existence of relative arbitrage opportunities implies

EQT r∆`
pT qs “ EQT r∆`

p0qs “ v` ´ e
c`δx0 ´ e

c`p1´ δqv̄ ě 0,

contradicting to (3.9). This is a generalization of Proposition 6.1 in [24] where the single

investor case is studied.

Conversely, for a real number T ą 0, if LpT q is a martingale and c` ě log v` ´

logpδx0`p1´δqv̄q for ` “ 1, . . . , N , then no arbitrage relative to the market and investors

is possible on the time horizon r0, T s.

Now, we shall answer the questions posed in Chapter 1: Given the portfolios

π´`p¨q :“ pπ1
p¨q, . . . , π`´1

p¨q, π``1
p¨q, . . . , πNp¨qq,

of all but investor `, what is the best strategy to achieve relative arbitrage for investor

37



Relative arbitrage in a finite particle system Chapter 3

` “ 1, . . . , N , and if there exists such an optimal strategy, is it possible for all N investors

to follow it? We first utilize an idea in the same vein of optimal relative arbitrage in

[22], i.e., using the optimal strategy π`‹, the investor ` will start with the least amount

of the initial capital (or initial cost) relative to VNp0q, in order to match or exceed

the benchmark ec`VNpT q at the terminal time T , that is, given π´`p¨q, each investor `

optimizes

u`pT q “ inf

"

ω` P p0,8q
ˇ

ˇ

ˇ
Dπ`p¨q P A such that v` “ ω`VNp0q, V v`,π`

pT q ě ec` ¨ VNpT q
*

.

(3.10)

Specifically, by (3.2), if everyone uses market portfolio with same initial wealth v` “ v for

a constant v ą 0 and every `, their wealth is then V `ptq “ v
x0
XNptq. When the investor

adopts the same initial amount of benchmark, i.e., v “ x0, and c` “ 0, then

VNptq “ δXptq ` p1´ δq
v

x0

Xptq “ Xptq.

Therefore in this case a single investor or multiple non-distinguishable investor with

market portfolio will match the market.

The following proposition characterizes one’s best relative arbitrage opportunities by

the customized benchmark ec` ¨ VNpT q, for any ` “ 1, . . . , n, T and N are fixed real

numbers.

Proposition 3.2.1. u`pT q in (3.10) can be derived as ec`VNpT q’s discounted expected

values over P

u`pT q “ E
“

ec`VNpT qLpT q
‰

{VNp0q. (3.11)

This result is essential to the PDE characterization of the objective u`pT q in Sec-

tion 3.3. It is derived from the supermartingale property of pV `p¨q and martingale repre-

sentation theorem, see Appendix A.2 for the details of the proof. To use the martingale
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representation results in a complete market, we shall assume that F “ FXN ,Y “ FW ,

where FXN ,Y is the filtration generated by the σ-fields tσpXNpsq,Ypsq; 0 ă s ă tq, t ě 0u.

3.3 PDE characterization of the best relative arbi-

trage

Assumption 7. We assume βp¨q, σp¨q, γp¨q and τp¨q take values in Rn
` ˆ Rn

`, are time-

homogeneous and the process pXNptq,Yptqq, t ě 0 in Definition 2.1.1 is Markovian, i.e.,

XN
i ptqβiptq “ bipXN

ptq,Yptqq,

XN
i ptqσikptq “ sikpXN

ptq,Yptqq,
n
ÿ

k“1

sikptqsjkptq “ aijpXN
ptq,Yptqq,

γiptq “ γipXN
ptq,Yptqq, τikptq “ τikpXN

ptq,Yptqq,

where bi, sik, aij, γi, τi : p0,8qn ˆ p0,8qn Ñ R are Hölder continuous.

We define ũ` : p0,8q ˆ p0,8qn ˆ p0,8qn Ñ p0,8q from the processes pXNp¨q,Yp¨qq

starting at px,yq P p0,8qn ˆ p0,8qn, and write the terminal values

ũ`pT q :“ ũ`pT,x,yq; ` “ 1, . . . N. (3.12)

We use the notation Di and Dij for the partial and second partial derivative with

respect to the ith or the ith and jth variables in XNptq, respectively; Dp and Dpq for the

first and second partial derivative in Yptq.

Assumption 8. There exist a function H : Rn
` ˆ Rn

` Ñ Rn
` of class C2, such that

bpx,yq “ 2apx,yqDxHpx,yq, γpx,yq “ 2ψpx,yqDyHpx,yq,
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i.e., bip¨q “
řn
j“1 aijp¨qDjHp¨q, γpp¨q “

řn
q“1 ψpqp¨qDqHp¨q in component wise for i, p “

1, . . . , n.

After the direct calculation based on (3.20) and (9) in the next section, ũ`p¨q follows

a Cauchy problem

Bũ`pτ,x,yq

Bτ
“ Aũ`pτ,x,yq, τ P p0,8q, px,yq P p0,8qn ˆ p0,8qn, (3.13)

ũ`p0,x,yq “ ec` , px,yq P p0,8qn ˆ p0,8qn, (3.14)

where

Aũ`pτ,x,yq “1

2

n
ÿ

i“1

n
ÿ

j“1

aijpx,yq
´

D2
ijũ

`
pτ,x,yq `

2δDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`
1

2

n
ÿ

p“1

n
ÿ

q“1

ψpqpx,yq
´

D2
pqũ

`
pτ,x,yq `

2p1´ δqDpũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yqD
2
ipũ

`
pτ,x,yq

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yq
δDpũ

`pτ,x,yq ` p1´ δqDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1
.

(3.15)

We emphasize that (3.13) is determined entirely from the volatility structure of XNp¨q

and Yp¨q. Moreover, c` enters into the initial condition (3.14).

3.3.1 Proof and computational details of PDE characterization

We first show some main steps of computing (3.13)-(3.15).
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Hence the infinitesimal operator for the process pXNp¨q,Yp¨qq can be written as

Lf “
n
ÿ

i“1

n
ÿ

j“1

aijpx,yq
“1

2
Dijf ` 2DifDjHpx,yq

‰

`

n
ÿ

p“1

n
ÿ

q“1

ψpqpx,yq
“1

2
Dpqf ` 2DpfDqHpx,yq

‰

`
1

2

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yqDipf `
1

2

n
ÿ

i“1

n
ÿ

p“1

pτsT qpipx,yqDpif,

where pτsT qpipx,yq “ psτ
T qippx,yq “

řK
k“1 sikpx,yqτpkpx,yq and by the definition of θp¨q

in (3.7) and Assumption 8,

θpx,yq “ 2spx,yqDxHpx,yq “ 2τpx,yqDyHpx,yq,

or

θpx,yq “ sT px,yqDxHpx,yq ` τ
T
px,yqDyHpx,yq. (3.16)

Then it follows from (3.16) and Itô’s lemma applying on Hp¨q that

ż ¨

0

θ1pXN
ptq,YptqqdW ptq

“

ż ¨

0

`

s1pXN
ptq,YptqqDxHpXN

ptq,Yptqq ` τ 1pXN
ptq,YptqqDyHpXN

ptq,Yptqq
˘

dW ptq

“HpXN
p¨q,Yp¨qq ´Hpx,yq ´

ż ¨

0

LHpXN
ptq,Yptqqdt,

(3.17)
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1

2

ż ¨

0

||θptq||2dt

“
1

2

ż ¨

0

||s1pXN
ptq,YptqqDxHpXN

ptq,Yptqq ` τ 1pXN
ptq,YptqqDyHpXN

ptq,Yptqq||2dt

“
1

2

ż ¨

0

n
ÿ

i“1

n
ÿ

j“1

aijpx,yqDiHpx,yqDjHpx,yqdt

`
1

2

ż ¨

0

n
ÿ

p“1

n
ÿ

q“1

ψpqpx,yqDpHpx,yqDqHpx,yqdt

`

ż ¨

0

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yqDiHpx,yqDqHpx,yqdt.

Thus

Lptq “ exp

"

´

ż t

0

θT psqdW psq ´
1

2

ż t

0

||θpsq||2ds

*

“ exp

"

´HpXN
ptq,Yptqq `Hpx,yq ´

ż t

0

pkpXN
psq,Ypsqq ` k̃pXN

psq,Ypsqqqds
*

,

where

kpx,yq :“ ´
n
ÿ

i“1

n
ÿ

j“1

aijpx,yq

2
rD2

ijHpx,yq ` 3DiHpx,yqDjHpx,yqs,

k̃px,yq : “ ´
n
ÿ

i“1

n
ÿ

j“1

ψpqpx,yq

2
rD2

pqHpx,yq ` 3DpHpx,yqDqHpx,yqs

`

n
ÿ

i“1

n
ÿ

p“1

psτT qipDiHpx,yqDpHpx,yq

for px,yq P p0,8qn ˆ p0,8qn. Since

N
ÿ

`“1

V `
ptq “

n
ÿ

i“1

N
ÿ

`“1

V `
ptqπ`i ptq, (3.18)

we have the expression of benchmark

VNp0q “ δ
n
ÿ

i“1

xi ` p1´ δq
n
ÿ

i“1

yi “ δx ¨ 1` p1´ δqy ¨ 1, (3.19)
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where 1 is 1ˆ n column vector having all n elements equal to one. Let us denote

gpx,yq :“ VNp0qe´Hpx,yq “
`

δx ¨ 1` p1´ δqy ¨ 1
˘

e´Hpx,yq,

GpT,x,yq :“ EP“gpXN
pT q,YpT qqe´

şT
0 kpX

N ptqq`k̃pYptqqdt‰.

Denote τ :“ T ´ t. (3.11) can be rewritten as

ũ`pτ,x,yq “ ec`
Gpτ,x,yq

gpx,yq
. (3.20)

Assumption 9. Assume that gp¨q is Hölder continuous, uniformly on compact subsets

of Rn
` ˆ Rn

`, ` “ 1, . . . , N ; Gp¨q is continuous on p0,8q ˆ p0,8qn ˆ p0,8qn, of class

C2pp0,8q ˆ p0,8qn ˆ p0,8qnq.

The function Gp¨q yields the following dynamics by Feynman-Kac formula,

BG

Bτ
pτ,x,yq “ LGpτ,x,yq ´

`

kpx,yq ` k̃px,yq
˘

Gpτ,x,yq, pτ,x,yq P R` ˆ Rn
` ˆ Rn

`,

Gp0,x,yq “gpx,yq, px,yq P Rn
` ˆ Rn

`.

(3.21)

Under Assumption 9, ũ`pτ,x,yq P C2pp0,8q ˆ p0,8qn ˆ p0,8qnq is bounded on K ˆ

p0,8qn ˆ p0,8qn for each compact K Ă p0,8q.

Plugging (3.20) in the above equations set and using the Markovian property of gp¨q

gives

Bũ`pt,x,yq

Bt
gpx,yq “ Lpũ`pt,x,yqgpx,yqq ´

`

kpx,yq ` k̃px,yq
˘

ũ`pt,x,yqgpx,yq.
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For simplicity, we write ũ`ptq in place of ũ`pt,x,yq. It follows

Bũ`ptq

Bt
“

1

2

n
ÿ

i,j“1

aijpx,yq

ˆ

D2
ijũ

`
ptq ` 2Diũ

`
ptq
Djgpx,yq

gpx,yq
` ũ`ptq

Dijgpx,yq

gpx,yq

˙

` 2
n
ÿ

i,j“1

aijpx,yq

ˆ

Diũ
`
ptq ` ũ`ptq

Digpx,yq

gpx,yq

˙

DjHpx,yq

`
1

2

n
ÿ

i,j“1

aijrD
2
ijHpx,yq ` 3DiHpx,yqDjHpx,yqsũ

`
ptq

`
1

2

n
ÿ

p,q“1

ψpqpx,yq

ˆ

D2
pqũ

`
ptq ` 2Dpũ

`
ptq
Dqgpx,yq

gpx,yq
` ũ`ptq

Dpqgpx,yq

gpx,yq

˙

` 2
n
ÿ

p,q“1

ψpqpx,yq

ˆ

Dpũ
`
ptq ` ũ`ptq

Dpgpx,yq

gpx,yq

˙

DqHpx,yq

`
1

2

n
ÿ

p,q“1

ψpqrD
2
pqIpyq ` 3DpHpx,yqDqHpx,yqsũ

`
ptq

`

n
ÿ

i,p“1

psτT qippx,yq

ˆ

D2
ipũ

`
ptq `Diũ

`
ptq
Dpgpx,yq

gpx,yq
`Dpũ

`
ptq
Digpx,yq

gpx,yq

` ũ`ptq
Dipgpx,yq

gpx,yq

˙

´

n
ÿ

i,p“1

psτT qippx,yqDiHpx,yqDpHpx,yqũ
`
ptq.

We can simplify this equation with the following computations.

By (3.19), and the definition of gp¨q,

Digpx,yq

gpx,yq
“ ´DiHpx,yq `

δ

δx ¨ 1` p1´ δqy ¨ 1
,

Dpgpx,yq

gpx,yq
“ ´DpHpx,yq `

1´ δ

δx ¨ 1` p1´ δqy ¨ 1
.
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Th second order derivative with respect to x is

Dijgpx,yq

gpx,yq
“ ´

δpDiHpx,yq `DjHpx,yqq

δx ¨ 1` p1´ δqy ¨ 1

´D2
ijHpx,yq `DiHpx,yqDjHpx,yq,

and the counterpart of second order derivative with respect to y is of the same structure

Dpqgpx,yq

gpx,yq
“ ´

p1´ δqpDpHpx,yq `DqHpx,yqq

δx ¨ 1` p1´ δqy ¨ 1

´D2
pqHpx,yq `DpHpx,yqDqHpx,yq,

Dipgpx,yq

gpx,yq
“ ´

δDiHpx,yq ` p1´ δqDpHpx,yqq

δx ¨ 1` p1´ δqy ¨ 1

´D2
ipHpx,yq `DiHpx,yqDpHpx,yq.

As a result when the drift γp¨q and volatility term τp¨q in (8.16) is given, (3.13) - (3.15) are

satisfied. We distinguish the optimal arbitrage objective ũ`p¨q under different information

structures in the next section when (8.16) is specified with the function of wealth processes

and strategies.

Theorem 3.3.1. Under Assumption 7,8, and 9, the function ũ` : r0,8q ˆ p0,8qn ˆ

p0,8qn Ñ p0, 1s is the smallest non-negative continuous function, of class C2 on p0,8qˆ

p0,8qn, that satisfies ũ`p0, ¨q ” ec` and

Bũ`pτ,x,yq

Bt
ě Aũ`pτ,x,yq, (3.22)

where Ap¨q follows (3.15).

Proof of this theorem can be found in Appendix A.2.
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3.3.2 Cauchy problem in different information structure

To see the difference of PDE characterization from using open and closed loop con-

trols, we first study the dynamics of the trading volume Yiptq, i “ 1, . . . , n which is

assumed to follow (2.5) previously.

In general, the investment strategy is a function φ of time, wealth or noise depending

on the information structure,

dYiptq “
1

N

N
ÿ

`“1

dV `
ptqφ`ipt,Vq.

By Itô’s formula on φ`pt,Vq : r0, T s ˆ RN
` Ñ A,

dV `
ptqπ`i ptq

“V `
ptq

`

φ`ipt,Vqφ
`
pt,Vqβptq `Dtφ

`
ipt,Vq `

N
ÿ

`“1

V `
ptqφ`pt,VqβptqD`φ

`
ipt,Vq

˘

dt

`
1

2
V `
ptq

N
ÿ

`,m“1

V `
ptqV m

ptqφ`pt,Vqαptqφm1pt,VqB2
`mφ

`
ipt,Vqdt

`

N
ÿ

m“1

φ`pt,Vqαptqφm1pt,VqDmφ
`
ipt,Vqdt

` V `
ptq

`

φ`ipt,Vqφ
`
pt,Vqσptq `

N
ÿ

`“1

V `
ptqφ`ptqσptqD`φ

`
ipt,Vq

˘

dWt.

(3.23)

As a result, when searching for Nash equilibrium, we get a more specific form of the

optimal strategy π`‹.
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Characterization with open loop controls

Recall definition 2.3.2, specifically we consider here controls π`ptq given by the deter-

ministic functions φ` : r0, T s ˆ Ω Ñ A, ` “ 1, . . . , N ,

π`ptq “ φ`pt,v,Wr0,tsq, (3.24)

for every t ě 0, v :“ pv1, . . . , vNq, v` “ ũ`pT qVNp0q, Wr0,ts is the path of n-dimensional

Wiener process between time 0 and time t. From (3.23),

dYiptq “
1

N

N
ÿ

`“1

dV `
ptqπ`i ptq

“
1

N

N
ÿ

`“1

`

φ`iptqV
`
ptqφ`ptqβptq ` V `

Btφ
`
iptq

˘

dt`
1

N

N
ÿ

`“1

φ`iptqV
`
ptqφ`ptqσptqdW ptq.

(3.25)

Thus we can write out explicitly the coefficients τp¨q, ψp¨q in (8.16) and the Cauchy

problem of objective ũ` for each `

Bũ`pτ,x,yq

Bτ
“ Aũ`pτ,x,yq, τ P p0,8q, px,yq P p0,8qn ˆ p0,8qn,

ũ`p0,x,yq “ ec` , px,yq P p0,8qn ˆ p0,8qn,
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where

Aũ`pτ,x,yq “1

2

n
ÿ

i“1

n
ÿ

j“1

aijpx,yq
´

D2
ijũ

`
pτ,x,yq `

2δDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`
1

2

n
ÿ

p“1

n
ÿ

q“1

ψpqpx,yq
´

D2
pqũ

`
pτ,x,yq `

2p1´ δqDpũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yqD
2
ipũ

`
pτ,x,yq

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yq
δDpũ

`pτ,x,yq ` p1´ δqDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1
.

(3.26)

The process τp¨q and ψp¨q follow

τik “
1

N

N
ÿ

`“1

φ`iptqV
`
ptq

n
ÿ

i“1

φ`iptqσikptq,

ψpqpx,yq “
N
ÿ

`,m“1

V `
ptqV m

ptqφ`ptqφmptqαptqφ`iptqφ
m
j ptq. (3.27)

Characterization with closed loop controls

However, in closed loop control, a player at time t has complete information of the

states of all the other players at time t. A general closed loop control is given by the

form

π̂`ptq “ φ̂`pt, V̂r0,tsq.

While a closed loop Markovian control is given by

π`psq “ φ`ps,Vt,x
s q, (3.28)
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for each pt, xq, where φ` : r0, T s ˆ Ω ˆ Rn
` Ñ A, Vt,x

s :“ pV 1psq, . . . , V Npsqqt,x, and

pV `psqqtďsďT is the unique solution of

dV `psq

V `psq
“

n
ÿ

i“1

π`i psq
dXN

i psq

XN
i psq

, V `
ptq “ v`t , t ď s ď T.

In particular, for ` “ 1, . . . , N , if π`ptq is of the form φ`pt, V `
t q, then by Itô’s formula

dV `
ptqπ`i ptq

“V `
ptq

`

φ`ipt, V
`
qφ`pt, V `

qβptq `Dtφ
`
ipt, V

`
q ` V `

ptqφ`pt, V `
qβptqD`φ

`
ipt, V

`
q
˘

dt

`
1

2
Trpφpt, V `

qαptqφpt, V `
qqpV `

ptqq2
`

V `
ptqD2

``φ
`
ipt, V

`
q ` 2D`φ

`
ipt, V

`
q
˘

dt

` V `
ptq

`

φ`ipt, V
`
qφ`pt, V `

qσptq ` V `
ptqφ`pt, V `

qσptqD`φ
`
ipt, V

`
q
˘

dWt.

(3.29)

Hence the Cauchy problem in the closed loop feedback case is

Bũ`pτ,x,yq

Bτ
“ Aũ`pτ,x,yq, τ P p0,8q, px,yq P p0,8qn ˆ p0,8qn,

ũ`p0,x,yq “ ec` , px,yq P p0,8qn ˆ p0,8qn,

where

Aũ`pτ,x,yq “1

2

n
ÿ

i“1

n
ÿ

j“1

aijpx,yq
´

D2
ijũ

`
pτ,x,yq `

2δDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`
1

2

n
ÿ

p“1

n
ÿ

q“1

ψpqpx,yq
´

D2
pqũ

`
pτ,x,yq `

2p1´ δqDpũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1

¯

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yqD
2
ipũ

`
pτ,x,yq

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx,yq
δDpũ

`pτ,x,yq ` p1´ δqDiũ
`pτ,x,yq

δx ¨ 1` p1´ δqy ¨ 1
.

(3.30)
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Denote φ̃`ipt, V
`q :“ φ`ipt, V

`q ` V `ptqD`φ
`
ipt, V

`q,

ψpqpx,yq “
N
ÿ

`,m“1

V `
ptqV m

ptqφ`pt, V `
qφmpt, V `

qαptqφ̃`ipt, V
`
qφ̃mj pt, V

`
q. (3.31)

3.4 Existence of Relative Arbitrage

The Cauchy problem (3.13)-(3.14) admits a trivial solution ũ`pτ,x,yq ” ec` . Thus

we need ũ`pτ,x,yq to take values less than ec` , indicating that the uniqueness of Cauchy

problem fails.

Through the Föllmer exit measure [30] we can relate the solution of Cauchy problem

u`p¨q to the maximal probability of a supermartingale process staying in the interior of

the positive orthant through r0, T s. Following the route suggested by [22] and [64], there

exists a probability measure Q on pΩ,Fq, such that P is locally absolutely continuous

with respect to Q: P ăă Q, ΛpT q is a Q-martingale, and dP “ ΛpT qdQ holds on each

FT , T P p0,8q. We can characterize ũ`ptq by an auxiliary diffusion which takes values in

the nonnegative orthant r0,8q2n{t0u.

Definition 3.4.1 (Auxiliary process and the Fichera drift). We define the following

1. The auxiliary process ζ “ pζ1, . . . , ζ2nq is defined as

dζip¨q “ b̂ipζp¨qqdt` σ̂ikpζp¨qqdWk, ζip0q “ ζi, i “ 1, . . . , 2n,

where

b̂ipx,yq “

$

’

’

&

’

’

%

δ
řn
j“1 aijpx,yq

δx¨1`p1´δqy¨1
if i = 1, . . . , n,

0 if i = n+1, . . . , 2n,
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âijpx,yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aijpx,yq if i,j = 1, . . . , n,

ψijpx,yq if i,j = n+1, . . . , 2n,

0 otherwise.

2. The Fichera drift is defined as

fip¨q :“ b̂ipx,yq ´
1

2

n
ÿ

j“1

Dj âijpx,yq,

for i “ 1, . . . , 2n, px,yq P p0,8qn ˆ p0,8qn.

Assumption 10. The functions bip¨q, σikp¨q are of class C1pp0,8qnˆp0,8qnq and satisfy

the linear growth condition

||bpx,yq|| ` ||spx,yq|| ď Cp1` ||x|| ` ||y||q, px,yq P Rn
` ˆ Rn

`. (3.32)

aijp¨q satisfy the nondegeneracy condition, i.e., if there exists a number ε ą 0 such that

aijpx,yq ě εp||x||2 ` ||y||2q, px,yq P Rn
` ˆ Rn

`.

Definition 3.4.2. If Assumption 10 holds and

n
ÿ

i“1

ˆ

b̂ipx,yqni `
1

2

n
ÿ

j“1

Dj âijpx,yq

˙

ď 0, (3.33)

where n “ pn1, . . . ,n2nq is the outward normal vector to BG, then BG is an obstacle from

inside. BG is an obstacle from outside if the (3.33) is replaced by

n
ÿ

i“1

ˆ

b̂ipx,yqni `
1

2

n
ÿ

j“1

Dj âijpx,yq

˙

ě 0. (3.34)
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Assumption 11. The system of ζ`p¨q admits a unique-in-distribution weak solution with

values in r0,8qn ˆ r0,8qn{t0u.

We set T ` :“ tt ě 0|ζ`ptq P O2nu as the first hitting time of auxiliary process ζ`p¨q to

O2n, the boundary of r0,8q2n.

Proposition 3.4.1. With the nondegeneracy condition of aij, suppose that the functions

σ̂ikp¨q are continuously differentiable on p0,8q2n; that the matrix âp¨q degenerates on O2n;

and that the Fichera drifts for the process ζ`p¨q can be extended by continuity on r0,8q2n.

For an investor `, if fip¨q ě 0 holds on each face of the orthant, then ũ`p¨, ¨q ” ec`, and

no arbitrage with respect to the market portfolio exists on any time-horizon. If fip¨q ă 0

on each face txNi “ 0u, i “ 1, . . . , n and tyi “ 0u, i “ n ` 1, . . . , 2n of the orthant,

then ũ`p¨, ¨q ă ec` and arbitrage with respect to the market portfolio exists, on every

time-horizon r0, T s with T P p0,8q.

Proof. With the nondegeneracy condition of covariance paijq1ďi,jďn, Theorem 2 in [22]

suggests that

ũ`pT,x,yq “ ec`QrT ` ą T s, pT,x,yq P r0,8q ˆ r0,8qn ˆ r0,8qn.

For the first claim, we only need to show the probability QrT ` ą T s ” 1, for pT,x,yq P

r0,8q ˆ r0,8qn ˆ r0,8qn. Denote a bounded and connected C3 boundary GR :“ tz P

R2n, zi ă 0, ||z|| ă Ru, and R can be arbitrarily large. Then from Theorem 9.4.1 (or

Corollary 9.4.2) of [31], since

n
ÿ

i“1

ˆ

b̂ipx,yq ´
1

2

n
ÿ

j“1

Dj âijpx,yq

˙

ni ď 0,

in which n “ pn1, . . . ,n2nq is the outward normal vector at px,yq to O2n, the boundary

O2n is an obstacle from outside of GR, i.e., G :“ BRp0q{GR. The Fichera vector field
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points toward the domain interior at the boundary. Let R Ñ 8, the boundary is not

attainable almost surely for px,yq P r0,8q2n.

If fip¨q ă 0 on each face tzi “ 0u, i “ 1, . . . , 2n, then

n
ÿ

i“1

ˆ

b̂ipx,yq ´
1

2

n
ÿ

j“1

Dj âijpx,yq

˙

ni ě 0,

and the Fichera drift at O2n points toward the exterior of r0,8q2n. It is equivalent to

show that QrT ` ą T s ă 1, for pT,x,yq P r0,8qˆr0,8qnˆr0,8qn, we only need to show

QrT ` ă T s ą 0, i.e., the boundary tzi “ 0u, i “ 1, . . . , 2n, is attainable by ζ`p¨q.

From Chapter 11 and 13 in [31], every point in BG is a regular point, and thus

lim
zÑz0,zPG

Qzpτ
g
ă 8, ||ζ`pτ gq ´ z0|| ă δq “ 1,

where τ g is the exit time from Ḡ. Therefore, if z0 P Σ :“ Y2n
i“1tz P R2n : zi “ 0u X G, for

a fixed δ such that B`δ pz0q :“ X2n
i“1tz P R2n : zi ą 0u XBδpz0q is a proper subset of G, we

have

• If ||ζ`i ´ z0|| ď η,

Qpτ g ă 8, ζ`pτ gq P Σq ą 0.

• If ||ζ`i ´ z0|| ą η,

inf
zPA

Qzpζ
`
pτ gq P Bδpz0q, τ

g
ă 8q ą

1

2
,

where

A :“
2n
č

i“1

tz P R2n : zi ą 0, ||z ´ z0|| “ ηu.

Now take r P A and a continuous sample path ω‹ such that ω‹p0q “ z0, ω‹pτ‹q “ r, and

ω‹psq R A for 0 ď s ă τ‹, where τ‹ :“ inftt ą 0 : ζ`ptq P Au. Consider an ε-neighborhood

53



Relative arbitrage in a finite particle system Chapter 3

Nε,ω‹ of ω‹ P CpGq,

Nε,ω‹ “ tω P CpGq : ωp0q “ ζ`i , ||ω ´ ω‹|| ă ε, ωpτ‹q “ ru Ă tω P Ω : ζ`pτ‹, ωq P Au,

then the support theorem in [69] shows that

Qζ`i
pNε,ω‹q ą 0,

where φ : r0,8q Ñ R2n is continuously differentiable, and || ¨ ||sT is the supremum norm

||ω1 ´ ω2|| “ sup0ďsďτ‹ |ω1 ´ ω2|, ω1, ω2 P CpGq. Hence

Qz0pNε,ω‹q ď Qz0pτ‹ ă 8, ζpτ‹q P Aq.

Therefore

Qζ`i 0
pζ`pτ gq P Σ, τ g ă 8q ě Qζ`i

pζ`pτ gq P Σ, τ g ă 8q

ě Eζ`i rQz0pζ
`
pτ gq P Σ, τ g ă 8q ¨ 1pζ`pτ‹q, τ‹ ă 8q|Fτ‹s

“ Eζ`i rQζ`pτ‹qpζ
`
pτ gq P Σ, τ g ă 8q ¨ 1pζ`pτ‹q P A, τ‹ ă 8qs

ě Eζ`i rinf
zPA

Qzpζ
`
pτ gq P Σ, τ g ă 8q ¨ 1pζ`pτ‹q P A, τ‹ ă 8qs

ě
1

2
Qζ`i
pζ`pτ‹q P A, τ‹ ă 8q.

The equality in the above expressions is from the strong Markov property of ζ`p¨q.

In conclusion, the process ζ`p¨q attain the set Y2n
i“1tzi “ 0u with positive probability,

so ũ`p¨, ¨q ă 1 when Fichera drift fip¨q ă 0.

Therefore investor ` can find relative arbitrage opportunities with a unique ũ`, the

minimal solution of (3.22) given fip¨q ă 0 on each face of O2n.
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Chapter 4

Relative arbitrage in N-player games

Investors aiming to achieve relative arbitrage in the market model introduced earlier

are characterized in N -player games in the cases with open and closed loop information

structures. We pay special attention to the uniqueness of Nash equilibrium and the rela-

tionship between mean field terms µN‹, νN‹. We then provide approaches to search for

Nash equilibrium of N investors seeking best arbitrage opportunities. The approach em-

ploying Markovian condition of market coefficients will also be useful in the formulation

of mean field games.

4.1 N-player games set-up

As we have seen in the previous sections, the stock prices and investors’ wealth are

coupled. Variation of one investor’s strategies contributes to the change of the trading

volume of each stock, and thus the change of stock prices. Consequently, the wealth

of others is affected by this investor. In addition, all the investors considered here are

competitive. They attempt to not only behave better than the market index but also

beat the performance of peers exploiting similar opportunities - everyone simultaneously
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wishes to optimize their initial wealth to achieve a relative arbitrage.

Investors interact with each other, adopt a plan of actions after analyzing other

people’s options, and finally, make decisions. This motivates us to model the investors

as participants in a N -player game.

4.1.1 Construction of Nash equilibrium

The solution concept of this N -player game is Nash equilibrium. In this spirit, assum-

ing that the others have already chosen their own strategies, a typical player computes

the best response to all the other players, which amounts to the solution of an optimal

control problem to minimize the expected cost ũ`. Specifically, when investor ` assumes

the wealth of other players are fixed, they wish to take the solution of (3.13) and (3.14)

as their wealth to begin with so that

V `
pT q ě ec`VNpT q “ δ ¨ ec`XN

pT q ` p1´ δq ¨ ec`
1

N

N
ÿ

`“1

V `
pT q.

We articulate the definition of Nash equilibrium in this problem.

Definition 4.1.1 (Nash Equilibrium). A vector π`˚ “ pπ`˚i , . . . , π
`˚
n q of admissible strate-

gies in Definition 2.1.1 is a Nash Equilibrium, if for all π`i P A and i “ 1, . . . , n,

J `pπ`˚i , π
´`˚
i q ď J `pπ`i , π

´`˚
i q, (4.1)

where the cost to investor ` yields

J `pπq :“ inf

"

ω` ą 0
ˇ

ˇV ω`VN p0q,π`
pT q ě ec`VNpT q

*

,
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where πp¨q “ pπ1p¨q, . . . , πNp¨qq. Hence,

inf
π`PA

J `pπq “ u`pT q. (4.2)

Since v` “ ω`ec`VNp0q, the infimum is attained, and

J `pπ; 0, x0q “ ec`
VNpT q
VNp0q

exp´1

"
ż T

0

π`1t pβt ´
1

2
αtπ

`
tqdt`

ż T

0

π`1t σiptqdWt

*

ď ω`. (4.3)

Each individual aims to minimize the relative amount of initial capital, beginning with

which one can match or exceed the benchmark.

In addition, we recall the information structure and the types of actions that players

take in a game. It is an open loop Nash equilibrium if the admissible strategies satisfy

the conditions of Definition 4.1.1, with the control π`ptq given by the form

π`ptq “ φ`pt,v,Wr0,tsq, (4.4)

for every t ě 0, v :“ pv1, . . . , vNq, v` “ ũ`pT qVNp0q, Wr0,ts is the path of the Wiener pro-

cess between time 0 and time t deterministic functions φ` : r0, T sˆΩ Ñ A, ` “ 1, . . . , N .

Here, π´` is the process with the same trajectories as the pπ1‹, . . . , π`‹, . . . , πN˚q, even

after player ` changes strategy from π`˚ to π`. Thus the strategies πk for k ‰ ` of the

other players are not affected by the deviation of player `.

However, in closed loop equilibria, the trajectory of the state of the system enters

the strategies, then when ` change π`˚ptq to π`ptq, other players are likely to be affected.

Players at time t have complete information of the states of all the other players at time t,

or in other words we allow feedback strategies. As a special case in closed loop equilibria,

a Markovian equilibrium is the admissible strategies profile π‹ “ pπ1‹, . . . , π`‹, . . . , πN‹q
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of the form

π`psq “ φ`ps,Vt,x
s q, (4.5)

for each pt, xq, where φ` : r0, T s ˆ Ω ˆ Rn
` Ñ A, Vt,x

s :“ pV 1psq, . . . , V Npsqqt,x, and

pV `psqqtďsďT is the unique solution of

dV `psq

V `psq
“

n
ÿ

i“1

π`i psq
dXN

i psq

XN
i psq

, V `
ptq “ v`t , t ď s ď T.

4.1.2 The uniqueness of Nash equilibrium

Subsequently, we clarify the notion of unique Nash equilibrium we will apply in this

paper. Investors pay more attention to the change of the wealth processes than the

change of the strategies, since two different strategy processes may result in the same

wealth at time T . Therefore we investigate the uniqueness in distribution of wealth, and

we use the strong uniqueness here because it satisfies the nature of the investment goal

in this paper.

Definition 4.1.2. With the same conditions in Definition 2.3.1, we define empirical

measures of the random vectors
`

V `ptq
˘

`“1,...,N
P RN

` , given the initial measure µN0 P

P2pR`q,

µNt :“
1

N

N
ÿ

`“1

δV `ptq.

We denote the measure flow µN :“ pµNt qtPr0,T s.

We give the following notion of the uniqueness of N -player game Nash equilibrium.

We do not require the optimal control to be unique.

Definition 4.1.3. We say that the uniqueness holds for Nash equilibrium if any two
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solutions µNa , µNb , defined on pΩ,F ,F,Pq, with the same initial law µN0 P P2pR`q,

PrµNa “ µNb s “ 1,

where µN is the empirical distribution of wealth processes as in definition 4.1.2.

Denote the mean field interactions µN and νN under the Nash equilibrium of N -player

games as µN‹ and νN‹. Generally, the uniqueness of µN‹ is a less restricted condition than

the uniqueness of νN‹. Starting from a uniquely fixed optimal νN‹ or µN‹, we analyze

whether the counterpart µN‹ or νN‹ is unique. We elaborate on this point as follows.

• If there is a unique optimal νN‹ or 1
N

řN
`“1 δpV `‹ptq,π`‹i ptqq in the sense of Defini-

tion 4.1.1 then it implies that its marginal distribution µN‹ or 1
N

řN
`“1 δV `‹ptq is the

unique Nash equilibrium defined by Definition 4.1.3.

• However, the converse is not true - A unique µN‹ does not necessarily give unique

optimal νN‹. When searching for NE, suppose the optimal path V `‹ P Cpr0, T s;Rn
`q

is unique for each `. By (2.12), the process follows

V `‹
ptq “ v` exp

"
ż t

0

π`1psq
`

βpsq ´
αpsq

2
πpsq

˘

ds`

ż t

0

π`1psqσpsqdWs

*

. (4.6)

Solving the corresponding tπ`i ptqui“1,...,n of (4.6) may rely on Malliavin calculus and

the solution can be written by different stochastic processes. Thus there could be

multiple possible quantities of optimal measure νN‹.

To put this conclusion another way, there could be multiple solutions of π`‹p¨q that

generated the unique V `‹ or µN‹ for ` “ 1, . . . , N . In the next section (Proposition 4.2.1

and Proposition 4.2.2), we show methods to attain one solution of the optimal strategies

tπ`‹i ptqui“1,...,n that generate the unique optimal wealth V `‹. It assumes each dWiptq term
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of dV̂ ‹ptq is identical to that of dVNptqu`pT ´ t,XNptq,Yptqq.

4.2 Optimal arbitrage opportunities in N-player game

From the relationship of µN‹ and νN‹ we can see that the key to search for Nash

equilibrium is the fixed point condition on the control space. Since requiring V `‹ to be

unique does not determine π‹ or νN‹, both µN‹ and νN‹ should be fixed through π`‹.

Thus we search for the equilibrium in the control space by fixed point argument -

Assume all controls πkp¨q, k ‰ ` are chosen, player ` will choose the optimal strategy π‹

that achieves optimal value function. Then one solves the equation of wealth processes

(2.3) and trading volume (2.5) with the equation of optimal cost function (3.22). If the

corresponding optimal strategy π‹ agrees with π, then the associated µN is the Nash

equilibrium. We will see in the next chapter that this also provides a route for searching

mean field equilibrium.

We specify the methodology below.

Searching Nash equilibrium in N-player game

1. Suppose we start with a given set of control processes π :“ pπ1, . . . , πNq. With the

empirical distribution µN and νN , solve the N -particle system (2.10) and (2.11).

2. We get J `p¨q from µN and νN . Solve ũ`pT q :“ infπPA J
`pπq and the corresponding

optimal control π‹. We find a function Φ so that π‹ “ Φpπq.

3. If there exists π̂, such that π̂ “ Φpπ̂q, then µN‹ :“ 1
N

řN
`“1 δpV v`,π̂` q is the Nash

equilibrium.

We have the following result of Nash equilibrium strategies. As in Chapter 3, we

consider investment decisions based upon the current market environment only, in order
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to preserve the solution of (3.13)-(3.15), u`pT ´ t,XNptq,Yptqq in Markovian market

model.

Proposition 4.2.1. Under Assumption 7,8, and 9, Nash equilibrium is attained when

the strategies yield

π`‹i “ miptq `X
N
i ptqDxi v̄

`
ptq `

n
ÿ

j“1

pτσ´1
qjiDyj v̄

`
ptq (4.7)

for ` “ 1, . . . , N , where

v̄`ptq “ log ũ`pT ´ t,XN
ptq,Yptqq ` 1´ δ

δNXN
t

N
ÿ

`“1

V `
ptq log ũ`pT ´ t,XN

ptq,Yptqq, (4.8)

and

Dxi v̄
`
ptq “ Dxi log ũ`pT ´ t,XN

ptq,Yptqq` 1´ δ

δNXN
t

N
ÿ

`“1

V `
ptqDxi log ũ`pT ´ t,XN

ptq,Yptqq,

Dyi v̄
`
ptq “ Dyi log ũ`pT ´ t,XN

ptq,Yptqq ` 1´ δ

δNXN
t

N
ÿ

`“1

V `
ptqDyi log ũ`pT ´ t,XN

ptq,Yptqq.

ũ`ptq is the smallest nonnegative solution in the Cauchy problem.

Proof. For a given choice of π P A, ũ` :“ infπPA J
`pπq is uniquely determined by the

smallest nonnegative solution of (3.22). A choice of π P A satisfies (2.11), i.e.,

dV `
t “ V `

t π
`
tβpt,X

N
t , ν

N
t qdt` V

`
t π

`
tσpt,X

N
t , ν

N
t qdWt, V `

0 “ v`.

For simplicity we denote ũ`pT ´ t,XN
t ,Ytq as ũ`pT ´ tq. Assuming that all controls πkp¨q,

k ‰ ` are chosen, player ` will choose the optimal strategy π‹ that achieves

V `‹
p¨q “ ec`VNptqũ`pT ´ ¨q. (4.9)
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Suppose every player ` “ 1, . . . , N follows the relationship V `‹p¨q “ ec`VNp¨qũ`pT ´ ¨q,

then sum up the left hand side of (4.9) with respect to `, i.e.,
řN
`“1 V

`‹p¨q yields

N
ÿ

`“1

V `‹
p¨q “

N
ÿ

`“1

“

ec`pδXN
p¨q ` p1´ δq

N
ÿ

`“1

V `‹
p¨qqũ`pT ´ ¨q

‰

.

Solve
řN
`“1 V

`‹p¨q from above and plug the solution back to (4.9). Then it follows

V `‹
ptq “ec`ũ`pT ´ tqδXN

ptq

ˆ

1`
p1´ δq

řN
`“1 e

c`ũ`pT ´ tq

N ´ p1´ δq
řN
`“1 e

c`ũ`pT ´ tq

˙

“
ec`ũ`pT ´ tqδXNptq

1´ p1´ δq 1
N

řN
`“1 e

c`ũ`pT ´ tq
.

(4.10)

Without loss of generality, assume Xp0q “ V mp0q, then

logXptq “ log
x0

V mp0q
V m
ptq “ log x0 `

ż t

0

m1
spβs ´

1

2
αsmsqds`

ż t

0

m1
tσpsqdWs.

Thus equivalently we can write,

log V `‹
ptq “ logpec`δq ` logXN

ptq ` log ũ`pT ´ tq ´ log
`

1´ p1´ δq
1

N

N
ÿ

`“1

ec`ũ`pT ´ tq
˘

“ log v`‹0 `

ż t

0

m1
spβs ´

1

2
αsmsqds`

ż t

0

m1
tσpsqdWs

` log ũ`pT ´ tq ´ log ũ`pT q

´ log
`

1´ p1´ δq
1

N

N
ÿ

`“1

ec`ũ`pT ´ tq
˘

` log
`

1´ p1´ δq
1

N

N
ÿ

`“1

ec`ũ`pT q
˘

,

(4.11)

and

v`‹0 “
δx0e

c`ũ`pT q

1´ p1´ δq 1
N

řN
`“1 e

c`ũ`pT q
.

With a fixed set of control processes π`, we solve ũ`T´t, and expect that the optimal
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strategy π`‹ will coincide with the fixed π`p¨q. Thus we can find the Nash equilibrium

strategy by comparing V `‹ in (4.11) and V ` defined in (2.11). By Ito’s formula on ũ`p¨q

as a function of XN
t and Yt, we obtain

dũ`pT ´ tq “ pLũ` ´ Bũ
`

Bρ
qpT ´ tqdt`

n
ÿ

k“1

R`
kpT ´ t,XN

t ,YtqdWkptq,

where ρ “ T´t, for t P r0, T s, L is the infinitesimal generator of px,yq P p0,8qnˆp0,8qn,

i.e.,

Lũ`pρq “bpx,yq ¨ Bxũ`pρq ` γpx,yq ¨ Byũ`pρq

`
1

2
tr
“

apx,yq ¨ B2
xxũ

`
pρq ` ψpx,yq ¨ B2

yyũ
`
pρq ` psτ 1 ` τs1qpx,yq ¨ B2

xyũ
`
pρq

‰

and

R`
kpT ´ t,x,yq “

n
ÿ

i“1

σikpx,yqxiDiũ
`
pT ´ tq `

n
ÿ

p“1

τpkpx,yqDpũ
`
pT ´ tq.

Thus the local martingale term in (4.11) is

ż t

0

m1
ipsqσpsqdW psq `

ż t

0

1

ũ`pT ´ sq

n
ÿ

k“1

R`
kpT ´ sqdWkpsq

`
p1´ δqVNptq
NδXNptq

ż t

0

N
ÿ

`“1

n
ÿ

k“1

ec`R`
kpT ´ sqdWkpsq.

By comparing the drift and volatility of (2.11) and (4.11), we arrive at (4.7). Notice

the consistency condition is in the space of control as indicated in Section 4.1.2.

Remark 3. The intuition of the proof above is to form a fixed point problem on the

control space by comparing the strategy π̂ that generated dynamics (2.11) and the optimal

strategy generated (4.9). The optimal strategy is a mapping of the π̂, we denote it as

Φpπ̂q. (4.7) is a solution of π̂ “ Φpπ̂q.

As can be seen from the proof, the above result also holds true without the Markovian
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assumption 7. We consider functions depending on the path pXN
r0,ts,Yr0,tsq hence the op-

timal strategy of the Nash equilibrium (4.7) can be obtained with the solution of optimal

arbitrage in the form u`pT ´ t,XN
r0,ts,Yr0,tsq, which is defined in (3.11).

Remark 4. We have the following constraints on the solution of optimal strategies and

optimal wealth.

First, since the wealth processes should be nonnegative, the wealth V ` ě 0 in (4.10),

we have for ` “ 1, . . . , N .

V `‹
ptq “

ec`ũ`pT ´ tqδXNptq

1´ p1´ δq 1
N

řN
`“1 e

c`ũ`pT ´ tq
ě 0,

hence we get the constraint

1

N

N
ÿ

`“1

ec`ũ`pT ´ tq ď
1

1´ δ
.

Second, optimal strategies (4.7) should satisfy
řn
i“1 π

`‹
i ptq “ 1. We look further into

this constraint in Chapter 6.

The end of Section 3.3 suggests that optimal strategies are linearly dependent on

ec` , ` “ 1, . . . , N . To illustrate, the investors pursuing relative arbitrage end up with

the terminal wealth V `pT q proportional to ec` if starting from the same initial wealth.

However, at every time t, the information of every V `ptq, ` “ 1, . . . , N is required to

pinpoint the optimal strategy. Therefore, a mean field regime is discussed in the next

chapter to resolve the complexity in N -player game.

We conclude from the above arguments that although we start from an open loop

control as defined in Definition 4.4, we end up with closed loop feedback strategies in

Nash equilibrium. One possible reason for this result is that the average trading volume

of investors is in the stock price dynamics, so a change of strategy of one investor would
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give rise to the change of stock capitalization and thus influence the other players. In

this way, the players at time t have information of the states of all the other players at

time t in a latent way.

As mentioned in Remark 3, the approach in Proposition 4.2.1 is suitable for either

Markovian or non-Markovian controls. Next, we provide another approach to solve specif-

ically for controls of closed loop Markovian or open loop form. This approach will be

useful when we derive the mean field equilibrium in the next section.

Proposition 4.2.2. Under Assumption 7,8, and 9, when controls of a closed loop Marko-

vian form (4.5), or an open loop φpt,v,Wtq are adopted, there is a Nash equilibrium

π‹ “ pπ1‹, . . . , πN‹q, where for ` “ 1, . . . , N , π`‹ follows (4.7).

Proof.

The Markovian condition in Assumption 7 gives

EP
“

VNpT qLpT q|Fptq
‰

VNptqLptq
“ ũ`pT ´ t,XN

ptq,Yptqq,

where ũ`p¨q is the minimal nonnegative solution of (3.22). Again we use the property for

0 ď t ď T that V `ptq “ VNptqũ`pT ´ t,XNptq,Yptqq, the deflated wealth process

V̂ `
ptq :“ V `

ptqLptq “ EP“VNpT qLpT q|Ft
‰

is a martingale. As a result, the dt terms in dV̂ `ptq will vanish, namely,

V̂ `
ptq “ V̂ `

p0q `
n
ÿ

k“1

ż t

0

V̂ `
psqBkpT ´ s,X psq,YpsqqdWkpsq, 0 ď t ď T, (4.12)
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where

Bkpt, x, πq “
n
ÿ

i“1

σikpx,yqxiDi log ũ`pT ´ t,x,yq `
n
ÿ

m“1

τmkpx,yqDm log ũ`pT ´ t,x,yq

`

n
ÿ

i“1

δXNptq

VNptq

ˆ

xi
řn
i“1 xi

σikptq ´Θkpx,yq

˙

`
p1´ δq{N

VNptq

n
ÿ

i“1

N
ÿ

`“1

ˆ

V `
ptqπ`iσikptq ´ V

`
ptqΘkpx,yq

˙

.

Thus we have the fixed point problem

π`‹i ptq “ XN
i ptqDi log ũ`pT ´ t,x,yq ` τipx,yqσ

´1
px,yqDk log ũ`pT ´ t,x,yq

`
δXNptq

VNptq
miptq `

p1´ δq

NVNptq

N
ÿ

`“1

V `‹
ptqπ`‹i ptq,

(4.13)

where V `‹ptq is generated from π`‹ptq.

Next, we check the consistency condition of π‹ in (4.13) and π we start with. Define

a map Φ : A Ñ A, we want to find a fixed point so that Φpπq “ π. By Brouwer’s

fixed-point theorem, since A is a compact convex set, there exists a fixed point for the

mapping Φ. In Nash equilibrium, we assume that all players follow the strategy π‹ - if

we multiply both sides by V ` and then summing over ` “ 1, . . . , n in (4.13), it gives

N
ÿ

`“1

V `
ptqπ`i ptq “

VNptq
δXNptq

„

XN
i ptq

N
ÿ

`“1

V `
ptqDxi log ũ`pT ´ t,x,yq

`

n
ÿ

j“1

pτσ´1
qjipx,yq

N
ÿ

`“1

V `
ptqDyj log ũ`pT ´ t,x,yq

`
δXNptq

VNptq
miptq

1

N

N
ÿ

`“1

V `
ptq



.
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After some computations we conclude

π`‹i “ miptq `XiptqDxi v̄
N
ptq `

n
ÿ

j“1

pτσ´1
qjiptqDyj v̄

N
ptq, (4.14)

where ṽNptq satisfies (4.8).

Remark 5. In (4.13) the last two terms

δXNptq

VNptq
miptq `

p1´ δq

NVNptq

N
ÿ

`“1

V `‹
ptqπ`‹i ptq

is of the same expression as the strategy used to generate benchmark VNptq in Theo-

rem 3.1.1.

Proposition 4.2.1 and 4.2.2 provide the general method to search for Nash equilibrium

and a set of optimal strategies achieving the Nash equilibrium. We prove next that the

Nash equilibrium is unique.

Proposition 4.2.3. A sufficient condition of unique Nash equilibrium µN‹ in the sense

of Definition 4.1.3 is the first exit time from the set Kt is greater than T , i.e., τK ą T

where

Kt “

ˆ

0,

`

N ´ p1´ δq
řN
`“1 e

c`ũ`pT ´ tq
˘2

Nδ|
řN
`“1 e

c`Dmũ`pT ´ tq|

˙

, τK “ inftt ě 0;XN
ptq R Ktu. (4.15)

ũ`pT ´ tq is the solution of the Cauchy problem (3.13) - (3.15).

Proof. To investigate the uniqueness of Nash equilibrium, we look at a mapping on the

empirical mean of wealth mN
t . As discussed in Remark 3, with the optimal strategies

π̂ as the solution of a fixed point problem, such that π̂ “ Φapπ̂q, Φa : A Ñ A, we get

mN‹
t :“ 1

N

řN
`“1 δpV̂ `t ,π̂`t q for every t P r0, T s is the Nash equilibrium.
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Now we search for the Nash equilibrium on the space of the empirical mean of wealth

mN
t . Define Yiptq :“ ErV̂ `ptqπ̂`i ptq|FWt s for every `, t P r0, T s and filtration FWt generated

by common noises W . Solve ũ` :“ infπPA J
`pπq. Thus we get (4.10) as the solution V̂ `ptq

as a function of the given ΦpmN
t q, where Φ : R` Ñ R`. So the Nash equilibrium is

achieved if there exists a fixed point mapping Φ : R` Ñ R` such that ΦpmN
t q “ mN

t . We

will derive the function Φpξq in (4.17).

Let y´n :“ py1, y2, . . . , yn´1q. To clarify the mapping and contraction argument of

the fixed point problem, we do a transformation on ũ`pT ´ t,x,yq such that we look

at a Cauchy problem of ũ`pT ´ t,x, ỹq instead, where ỹ :“ py´n,
řn
i“1 yiq. We have

řn
i“1 Yiptq “ mN

t from (3.18).

In Cauchy problem (3.13) - (3.15), for p “ 1, . . . , n, if p ă n,

Dpũ
`
pT ´ t,x, ỹq “

Bũ`pT ´ t,x, ỹq

Bỹp
`
Bũ`pT ´ t,x, ỹq

Bỹn
;

If p “ n,

Dpũ
`
pT ´ t,x, ỹq “

Bũ`pT ´ t,x, ỹq

Bỹn
.

So the Cauchy problem of ũ`pT ´ t,x, ỹq yields

Aũ`pτ,x, ỹq “1

2

n
ÿ

i“1

n
ÿ

j“1

aijpx, ỹq
´

D2
ijũ

`
pτ,x, ỹq `

2δDiũ
`pτ,x, ỹq

δx ¨ 1` p1´ δqỹ ¨ 1

¯

`
1

2

n
ÿ

p“1

n
ÿ

q“1

ψpqpx, ỹq
´

D2
pqũ

`
pτ,x, ỹq `

2p1´ δqDpũ
`pτ,x, ỹq

δx ¨ 1` p1´ δqỹ ¨ 1

¯

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx, ỹqD
2
ipũ

`
pτ,x, ỹq

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx, ỹq
δDpũ

`pτ,x, ỹq ` p1´ δqDiũ
`pτ,x, ỹq

δx ¨ 1` p1´ δqỹ ¨ 1
.

(4.16)

From (4.10), the empirical mean of optimal wealth mN
t “

1
N

řN
`“1 V̂

`ptq should satisfy
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the consistency condition mN
t “ ΦpmN

t q where Φp¨q is

Φpξq :“
δXNptq

řN
`“1 e

c`ũ`pT ´ t,x,y´n, ξq

N ´ p1´ δq
řN
`“1 e

c`ũ`pT ´ t,x,y´n, ξq
. (4.17)

Denote Dm as the partial derivative with respect to mN
t , Dmũ

`pT ´ tq “ Bũ`pT´t,x,ỹq
Bỹn

.

Thus the derivative of ΦpmN
t q given XNptq is

Φ1pmN
t q “

NδXNptq
řN
`“1 e

c`Dmũ
`pT ´ tq

`

N ´ p1´ δq
řN
`“1 e

c`ũ`pT ´ tq
˘2 .

We denote At “ N ´ p1 ´ δq
řN
`“1 e

c`ũ`pT ´ tq. In addition, 0 ă ũ`pT ´ tq ď 1, c` is

bounded by maxtc1, . . . , cNu for a fixed N . Hence |Φ1pmN
t q| ă 1 is satisfied when

0 ă XN
ptq ă

A2
t

Dt

, (4.18)

for every t. For simplicity, we set Dt “ Nδ|
řN
`“1 e

c`Dmũ
`pT ´ tq|, and Kt :“ p0,

A2
t

Dt
q. By

mean value theorem, and since Φ is continuous, we get Φ is a contraction of mN
t .

The first exit time for the interval Kt is τK “ inftt ě 0;XNptq R Ktu as in (4.15).

If τK ą T then Nash equilibrium generated by (4.7) is unique using Banach fixed point

theorem.

Given xN , if βptq and αptq are deterministic processes, XNptq is a log-normal distri-

bution where

logXN
ptq ∼ N

ˆ

log xN `

ż t

0

`

βptq ´
1

2
αptq

˘

dt,

ż t

0

αptqdt

˙

.

As a result, with the solution ũ of (3.22), the probability of attaining the unique Nash
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equilibrium is

P pXN
ptq P Ktq “ N

ˆ

log
A2
t

DtxN
´
şt

0

`

βptq ´ 1
2
αptq

˘

dt
şt

0
αptqdt

˙

,

where N is the cumulative distribution function of a standard Gaussian distribution.

In general this is not the case. For example we discuss market dynamics in volatility-

stablized models in Chapter 7, where market dynamics can be constructed from time

changed Bessel processes.
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Chapter 5

Mean field relative arbitrage

problem

It is expected that in large population games, a mean field formulation is more tractable

than the N -player games and might help disclose more about the finitely many investors

situation. Section 5.1 establishes the optimization of relative arbitrage using extended

mean field games. Section 5.3 constructs a Mckean-Vlasov SDE of the form that the

coefficients of the diffusion depend on the joint distribution of the state processes and

the control, and show the propagation of chaos holds to provide proofs of the market

model used in Section 5.1. Through approximate Nash equilibrium, we justify that the

mean field formulation is an appropriate generalization of N -player relative arbitrage

problem. In the last section, we extend the results in previous sections using smooth

functions of probability measure flows.
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5.1 Extended Mean Field Games

We have observed that it is unlikely to get a tractable equilibrium from N -player

game, especially when N is large. In this section, we study relative arbitrage for the

infinite limit population of players. With propagation of chaos results provided, a player

in a large game limit should feel the presence of other players through the statistical

distribution of states and actions. Then they make decisions through a modified objective

that involves mean field as N Ñ 8. For this reason, we expect the MFG framework to

be more tractable than N -player games.

5.1.1 Formulation of Extended Mean Field Games

We formulate the model on pΩ,F ,F “ pFtqtPr0,T s,Pq which support Brownian motion

B, a n-dimensional common noise, equally distributed as W . The systemic effect of

random noises towards the market might be different when we consider a finite or infinite

group of investors interacting with the market. B is adapted to the P-augmentation of F

and can explain the limiting random noises in the market M when N Ñ 8. We denote

the natural filtration induced by pBtqtě0 as FBt “ σpBs : 0 ď s ď tq. The admissible

strategies πp¨q P A follow similar conditions as (2.4) and is FB-progressively measurable.

In general, the capitalization and state processes depend on the joint distribution of

pV `, π`i q, ` “ 1, . . . , N , while the cost function is related to the empirical distribution of

the private states. With a given initial condition µ0 P P2pCpr0, T s;R`qq as a degenerate

distribution of value 1, we define the conditional law of V ptq given FB as

µt :“ Law
`

V ptq
ˇ

ˇFBt
˘

, (5.1)

and the conditional law of pV ptq, πptqq given FB, with a given initial condition ν0 P
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P2pCpr0, T s;R` ˆ Aqq, is

νt :“ LawpV ptq, πptq|FBt q.

The mean field game model is constructed upon McKean-Vlasov SDEs of stocks and

wealth

dX ptq “ X ptqβpX ptq, νtqdt` X ptqσpX ptq, νtqdBt, X0 “ x; (5.2)

dV ptq

V ptq
“

n
ÿ

i“1

πiptq
dXiptq

Xiptq
. (5.3)

A player competes with the market and the entire group with respect to the bench-

mark

VpT q “ δ ¨XpT q ` p1´ δq ¨

ż

Ω

fpvq dµT pvq, (5.4)

is the weighted sum of total capitalization and the first moment of measure µ. f : R` Ñ

R` be a Borel function with fpV ptqq P L1 for t P r0, T s.

We give the following Assumption 12 for the mean field set-up.

Assumption 12. We assume the following items for the capitalization processes, wealth

and preference of investors.

(1) Assume x P L2pΩ,F0,P;Rn
`q, and Ersup0ďtďT ||pV ptq, Xptqq||

2s ď 8.

(2) In addition to Assumption 5, the preference c assumed to be independently and

identically distributed as c` from a distribution Lc and are independent with common

noise B.

With infinitely many investors of interest, the relative arbitrage problem can be mod-

elled as mean field games and the players become indistinguishable. This is explain briefly

in the following Remark 6. The detail of theoretical support for the McKean-Vlasov sys-

tem and mean field game models is presented in Section 5.3.
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Remark 6. From Proposition 5.3.1-5.3.3, we show that the above McKean-Vlasov prob-

lem admits a unique solution, where νt :“ LawpV ptq, πptq|FBt q. Furthermore, the weak

limit of measure flow νN P P2pCpr0, T s;R` ˆ Aqq in Definition 2.3.1 is exactly νt. Thus

V `ptq is asymptotically identical independent copies given the common noise B when

` “ 1, . . . , N , N Ñ 8. Hence we consider a representative player which is randomly

selected from the infinite number of investors in mean field set-up. Small deviations of a

single player would not influence the entire system given the common noise B.

However, notice that the results in Section 5.3 are based on the Lipschitz conditions

of market coefficients and function of the strategies φp¨q. But in this section, we consider

the McKean-Vlasov system (5.2)-(5.3) when tπiptqutPr0,T s, for i “ 1, . . . , n is fixed. Thus

we avoid the assumption of a Lipschitz condition for φp¨q.

5.1.2 Mean Field Equilibrium

Every player tries to minimize the relative amount of initial capital with respect to

that of the benchmark VpT q. That is, a representative player seeks to minimize the

objective

Jµ,νpπ; 0, x0q :“ inf

"

ω ą 0
ˇ

ˇV ωecVp0q,π
pT q ě ecVpT q

*

. (5.5)

We define the mean field equilibrium below, which appears as a fixed point of best

response function.

Definition 5.1.1. (Mean Field Equilibrium) Let π‹p¨q P A be an admissible strategy,

then it gives mean field equilibrium (MFE) if Jµ,ν in (5.5) satisfies

Jµ,νpπ‹q “ inf
πPA

Jµ,νpπq.

Analogous to Definition 4.1.3, we do not require the optimal control to be unique in
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Definition 5.1.2.

Definition 5.1.2. We say that uniqueness holds for the MFG equilibrium if any two

solutions µa, µb, defined on filtered probabilistic set-ups pΩ,F ,F,Pq, with the same initial

law µ0 P P2pR`q,

Prµa “ µbs “ 1,

where µ is the distribution of wealth processes as in (5.1).

Specifically, we consider the mean field interaction is through the expected invest-

ments of an investor on assets - the conditional expectation of the product of wealth and

controls, i.e.,

dZptq “ dEpV ptqπptq|FBt q “ γpX ptq,Zptqqdt` τpX ptq,ZptqqdBt, Z0 “ z0, (5.6)

where

dXiptq “ XiptqβpX ptq,Zptqqqdt`XiptqσpX ptq,ZptqqdBt, Xip0q “ xi.

and a representative player’s wealth V ptq is generated from a strategy πptq P A through

(2.3). We take F “ FX,Z “ FB in order to characterize the optimal arbitrage for the rest

of the sections.

In particular, Â “ arg infπPA J
µ,νpπq denotes the set of optimal controls. In the

control problem, the flow of measure pmT ,ZpT qq is frozen conditional on the common

noise. pmT ,ZpT qq is an equilibrium if there exists π‹ P Â such that the fixed point of the

mean field measure exists, i.e., mT “ ErV ‹T |FBT s; ZpT q “ ErZ‹pT q|FBT s. In this section,

we consider

inf
πPA

Jµ,νpπq “ inf
πPA

Jm,Zpπq,

75



Mean field relative arbitrage problem Chapter 5

and after computations we have that the objective function follows

Jm,Zpπq “ ec
δXpT q ` p1´ δqmT

δ
řn
i“1 xi ` p1´ δqm0

exp´1

"
ż T

0

π1ptqpβpt,Xt,Ztq ´
1

2
αtπptqqdt

`

ż T

0

π1ptqσpt,Xt,ZtqdBt

*

.

(5.7)

The representative agent’s optimal initial proportion to achieve relative arbitrage can

be characterized as

upT q :“ inf
πPA

Jµ,νpπq “ ErecVpT qLpT qs{Vp0q, (5.8)

Assumption 13. There exist a function H : Rn
` ˆ Rn

` Ñ Rn
` of class C2, such that

bpx, zq “ 2apx, zqDxHpx, zq, γpx, zq “ 2ψpx, zqDyHpx, zq,

Using an analogous proof in Section 3.1.1 about ũ`p¨q,

Lptq “ exp

"

´HpX ptq,Zptqq `Hpx, zq ´
ż t

0

pkpX psqq ` k̃pZpsqqqds
*

, (5.9)

where

kpx, zq :“ ´
n
ÿ

i“1

n
ÿ

j“1

aijpx, zq

2
rD2

ijHpx, zq ` 3DiHpx, zqDjHpx, zqs,

k̃px, zq : “ ´
n
ÿ

i“1

n
ÿ

j“1

ψpqpx, zq

2
rD2

pqHpx, zq ` 3DpHpx, zqDqHpx, zqs

`

n
ÿ

i“1

n
ÿ

p“1

psτT qipDiHpx, zqDpHpx, zq

for px, zq P p0,8qn ˆ p0,8qn.

Under Assumption 13, and assuming the Markovian market coefficients βp¨q, σp¨q,γp¨q,
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τp¨q for px, zq P Rn
` ˆ Rn

` as in Assumption 7,

ũpτ,x, zq “ ec
Gpτ,x, zq

gpx, zq
, (5.10)

where

gpx, zq :“

ˆ

δ
n
ÿ

i“1

xi ` p1´ δqm

˙

e´Hpx,zq,

GpT,x, zq :“ EP“gpX pT q,ZpT qqe´
şT
0 kpX ptq,Zptqq`k̃pX ptq,Zptqqdt

‰

,

where m “
řn
i“1 zi.

Assumption 14. Assume that gp¨q is Hölder continuous, uniformly on compact subsets

of Rn
` ˆ Rn

`, ` “ 1, . . . , N ; Gp¨q is continuous on p0,8q ˆ p0,8qn ˆ p0,8qn, of class

C2pp0,8q ˆ p0,8qn ˆ p0,8qnq.

The function Gp¨q yields the following dynamics by Feynman-Kac formula,

BG

Bτ
pτ,x, zq “ LGpτ,x, zq ´

`

kpx, zq ` k̃px, zq
˘

Gpτ,x, zq, pτ,x, zq P R` ˆ Rn
` ˆ Rn

`,

Gp0,x, zq “gpx, zq, px, zq P Rn
` ˆ Rn

`.

(5.11)

Under Assumption 14, ũpτ,x, zq P C2pp0,8qˆ p0,8qn ˆ p0,8qnq is bounded on K ˆ

p0,8qn ˆ p0,8qn for each compact K Ă p0,8q. We derive that (5.8) solves a single

Cauchy problem as opposed to the N -dimensional PDEs system in N -player game,

Bũpτ,x, zq

Bτ
ě Aũpτ,x, zq, ũp0,x, zq “ ec, (5.12)
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where Aũpτ,x, zq “1

2

n
ÿ

i“1

n
ÿ

j“1

aijpx, zq
´

D2
ijũ

`
pτ,x, zq `

2δDiũ
`pτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1

¯

`
1

2

n
ÿ

p“1

n
ÿ

q“1

ψpqpx, zq
´

D2
pqũpτ,x, zq `

2p1´ δqDpũpτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1

¯

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx, zqD
2
ipũpτ,x, zq

`

n
ÿ

i“1

n
ÿ

p“1

psτT qippx, zq
δDpũpτ,x, zq ` p1´ δqDiũ

`pτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1
,

for τ P p0,8q, px, zq P p0,8qn ˆ p0,8qn.

The steps of searching equilibrium for extended mean field game with joint measure of

state and control is formulated in [15]. The paper [17] manifests an example of extended

mean field games with application in price anarchy. They use two different measures as

law of the state processes and the law of control.

The steps to seek equilibrium we introduce is different in that a modified version of

extended mean field game is discussed, where the state processes and cost functional

depend on different measures, and uniqueness of Nash equilibrium is specified here. In

the following, we show the steps to attain a unique equilibrium in an open loop or closed

loop Markovian form.

In the same vein of the arguments in Section 4.1.2, we can show the uniqueness of

ν‹ leads to the uniqueness of µ‹ while the reverse way is not true. More explicitly,

Z‹ “ ErV ‹π‹|FBs is not expected to be unique. Since the diffusion process of ZpT q is

given by Definition 2.1.1(3) and (5.6), we consider the fixed point over the control space

when it comes to ZpT q “ ErZ‹T |FBT s.

Steps of Solving Mean Field Game

(i) Start with a fixed φ such that π “ pπptqq0ďtďT “ φpv, Br0,T sq or φpV ptqq, the open
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loop and feedback function respectively, and solve

dV ptq “ πptqβpX ptq,Zptqqdt` πptqσpX ptq,ZptqqdBt, V p0q “ ũpT qVp0q :“ v0,

dXiptq “ XiptqβipX ptq,Zptqqdt`Xiptq
n
ÿ

k“1

σikpX ptq,ZptqqdBkptq, i “ 1, . . . , n,

where Ziptq “ ErV ptqπiptq|FBt s for 0 ď t ď T , Zptq “ pZ1ptq, . . . , Znptqq.

(ii) For all 0 ď t ď T , mt “ ErVt|FBt s on R`, where V is the path generated from the

fixed φ. Thus given m “ pmtq0ďtďT , solve

inf
πPA

Jm,Zpπq “ upT q “ E
“

ec
`

δXpT q ` p1´ δqmt

˘

LpT q
‰

{Vp0q,

using XpT q from step (i). The corresponding optimum

φ‹ :“ arg inf
πPA

Jµ,νpπq “ arg inf
πPA

Jm,Zpπq.

Define the mapping φ‹ “ Φpφq.

(iii) Find φ̂ such that φ̂‹ “ Φpφ̂q.

By Itô’s formula we have

V̂ ptq “ V̂ p0q `
n
ÿ

k“1

ż t

0

V̂ psqIkpT ´ s,X psq,ZpsqqdBkpsq, 0 ď t ď T, (5.13)
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where

Ikpρ, x, zq “
n
ÿ

i“1

σikpx, zqxiDxi log ũpρ,x, zq `
n
ÿ

j“1

τjkpx, zqDzj log ũpρ,x, zq

`

n
ÿ

i“1

δXptq

Vptq

ˆ

xi
řn
i“1 xi

σikptq ´ θkpx, zq

˙

`
p1´ δqmt

Vptq

ˆ

πiσikptq ´ θkpx, zq

˙

.

(5.14)

Remark 7. We use vol to represent the volatility of a process to simplify the notations

from now on. Let ρ “ T ´ t, t P r0, T s. In general, if searching for Nash equilibrium

when mt is fixed, then

Ikpρ, x, zq “
n
ÿ

i“1

σikpx, zqxiDxi log ũpρ,x, zq `
n
ÿ

j“1

τjkpx, zqDzj log ũpρ,x, zq

`

n
ÿ

i“1

δXptq

Vptq

ˆ

xi
řn
i“1 xi

σikptq ´ θkpx, zq

˙

`
p1´ δq

Vptq
volpdLtmtqL

´1
t .

If the coefficients γp¨q and τp¨q in Zptq dynamics can not be observed, it can be distin-

guished in the same sense as (3.27) and (3.31). Then (5.14) and Proposition 5.1.1 can

be expressed more explicitly from there.

In the following theorem we derive the mean field equilibrium by fixed point conditions

on the control space.

Proposition 5.1.1. Under Assumption 3, 7, 12, and 14, there exists a Mean Field

Equilibrium µ‹. It is attained at

π‹i ptq “ X‹
i ptqDxi log ũpT ´ tq `

n
ÿ

j“1

pτσ´1
qjipx, zqDzj log ũpT ´ tq

`
δX‹ptq

V‹ptq
m‹

i ptq `
p1´ δqmt

V‹ptq
π‹i ptq,

(5.15)
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or equivalently

π‹i ptq “ m‹
i ptq `

1

δ
m‹

i ptqV‹ptqDxi log ũpT ´ tq `
V‹ptq
δXptq

n
ÿ

j“1

pτσ´1
qjipx, zqDzj log ũpT ´ tq.

If the corresponding Nash equilibrium µ‹ is unique in the sense of Definition 5.1.2, then

the first exit time from the interval K̃t is greater than T , i.e., τ̃K ą T where

K̃t “

ˆ

0,

`

1´ p1´ δqErecũpT ´ tq|FBt s
˘2

δ
ˇ

ˇErecDmũpT ´ tq|FBt s
ˇ

ˇ

˙

, τ̃K “ inftt ě 0;Xptq R K̃tu. (5.16)

Proof. We adopt a similiar path to obtain a solution of optimal strategy π‹p¨q and the

uniqueness of equilibrium in Proposition 4.2.1 and 4.2.2. When searching for mean

field equilibrium, we start from a given choice of πptq P A, for any t P r0, T s. The

McKean-Vlasov system (5.2)-(5.3) can be solved with the given πptq P A and the optimal

value ũpT q of the minimization problem (5.8). Every player in the mean field game acts

optimally by following

V ‹ptq “ ecV‹ptqũpT ´ tq, (5.17)

with the rest of the pack assumed to be fixed.

Thus by

V‹ptq “ δX‹
t ` p1´ δqErecV‹ptqũpT ´ tq|FBt s,

we solve (5.17) which yields

V ‹ptq “
ecδũpT ´ tq

1´ p1´ δqecũpT ´ tq

´

X‹
ptq ´ δp1´ δq

`

ErX‹
ptq|FBt s ´X‹

ptq
˘

¯

. (5.18)
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After comparing log V ‹ptq in (5.3) and (5.18), this yields

π‹i ptq “ miptq `
1

δ
m‹

i ptqV‹ptqDxi log ũpT ´ tq `
V‹ptq
δXptq

n
ÿ

j“1

pτσ´1
qjipx, zqDzj log ũpT ´ tq.

ũpT ´ t,x, zq is the smallest nonnegative solution in (5.12).

The derivation of π‹ ensures that it generates a wealth process V ‹. Thus with condi-

tions for π‹ P ∆n, it follows that (5.15) gives the admissible optimal strategy π‹ P A.

Next, we show the equilibrium is unique. We fix the process m solve the optimal

control problem for V ‹. We first perform a transformation of ũp¨q on variables z “

pz1, . . . , znq. The transformed vector

z̃ “ pz̃1, . . . , z̃nq “ pz1, . . . , zn´1,mq,

where denote m “
řn
i“1 zi, since mt “

řn
i“1 Ziptq.

To simplify, let DmũpT ´ tq “ DmũpT ´ t,x, z´n,mq. Thus taking derivative with

respect to m follows

DmũpT ´ tq “
BũpT ´ t,x, z̃q

Bz̃n
. (5.19)

Denote Φpmtq :“ ErV ptq|Bs, it is equivalent to show that there is the unique fixed

point mapping Φpmtq “ mt, where Φp¨q yields

Φpξq “
δX‹ptqErecũpT ´ t,x, z´n, ξq|FBt s

1´ p1´ δqErecũpT ´ t,x, z´n, ξq|FBt s
,

and the derivative

Φ1pξq “
δX‹ptqErecDξũpT ´ t,x, z

´n, ξq|FBt s
`

1´ p1´ δqErecũpT ´ t,x, z´n, ξq|FBt s
˘2 .
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By the smoothness of ũpT ´ tq based on Assumption 15, Φ : R` Ñ R` is a continuous

function of m. Furthermore, we set

Ãt “ 1´ p1´ δqErecũpT ´ tq|FBt s, D̃t “ δ
ˇ

ˇErecDmũpT ´ tq|FBt s
ˇ

ˇ,

DmũpT ´ tq is derived in (5.19). By mean value theorem, Φ is a contraction of mt if

τ̃K ą T , where τ̃K “ inftt ě 0;Xptq R K̃tu, K̃t :“ r0,
Ã2
t

D̃t
q. As a result, the mean field

equilibrium generated by (5.15) is unique when the first exit time from K̃ is less than

T .

Remark 8. Following from Remark 7, if when searching for the equilibrium on the space

of mt, then

π‹i ptq “ X‹
i ptqDxi log ũpT ´ tq `

n
ÿ

j“1

pτσ´1
qjipx, zqDzj log ũpT ´ tq

`
δX‹ptq

V‹ptq
miptq `

p1´ δq

V‹ptq
`

volpdLtmtqσ
´1
˘

i
px, zq,

volpdLtmtq in the above is from (5.14). In particular, (5.15) with open loop control can

be expressed as

π‹i ptq “ X‹
i ptqDxi log ũpT ´ tq `

n
ÿ

j“1

πiptqπjptqDzj log ũpT ´ tq

`
δX‹ptq

V‹ptq
miptq `

p1´ δq

V‹ptq
Ltpmtpθ

1
tσ
´1
qi ´ Vtπiptqq,

(5.20)

F pũp¨q,x, zq “
n
ÿ

j“1

πjDj log ũpT ´ tq

“

řn
j“1X

‹
j ptqDxj log ũpT ´ tqDzj log ũpT ´ tq `

řn
j“1Dzj log ũpT ´ tq

1´
řn
j“1Dj log ũpT ´ tq

`
p1´ δqLtmt

řn
j“1pθ

1
tσ
´1qjDzj log ũpT ´ tq

V‹ptqp1´
řn
j“1Dj log ũpT ´ tqq

.
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Hence

π‹i ptq “
X‹
i ptqDxi log ũpT ´ tq ` δXt

Vt miptq `
1´δ
V Ltmtpθ

1
tσ
´1qi

δXt
Vt ´ F pũp¨q,x, zq

.

It is clear from (5.15) that the mean field strategy actually depends on pX ptq,Zptqq,

which means the optimal strategies are driven by capitalization and trading volumes,

regardless of the information structure of the strategies we set up in the beginning.

Similiar to the observations in Chapter 4 of N -player game, π is independent of preference

c, meaning that the representative player’s preference level c is not a crucial factor when

exploiting strategies.

5.2 Generalized results with flows of measure

As in the beginning of this chapter, we denote µt in (5.1) as the conditional law

of V ptq given FB. That is, µt :“ Law
`

V ptq
ˇ

ˇFBt
˘

, with a given initial condition µ0 P

P2pCpr0, T s;R`qq. The conditional law of pV ptq, πptqq given FB, i.e.,

νt :“ LawpV ptq, πptq|FBt q

with a given initial condition ν0 P P2pCpr0, T s;R` ˆ Aqq. In general, players interact

through the measure flow µ and ν instead of the conditional expectations ErV ptq|Bs and

ErV ptqπptq|Bs, respectively. In this case the benchmark is as defined in (5.4). The player

feels the presence of the group through the joint distribution of wealth and strategies.

In this section, we show how the results about the mean field Cauchy problem (5.12)

changed according to the replacement of continuous functions by probability measures.

We first recall some basic notions of the differentiability of a function f with respect to

probability measures.

Definition 5.2.1 (Linear derivative). For any f : RnˆP2pRnq Ñ R, the linear derivative
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δfpx,µ,vq
δµ

: RnˆP2pRnqˆRn is a bounded continuous function defined as follows. For every

µ, µ1 P P2pRnq, denote µλ “ λµ` p1´ λqµ1,

fpx, µq ´ fpx, µ1q “

ż 1

0

ż

Rn

δfpx, µλ, vq

δµ
dpµ´ µ1qpvqdλ.

In [12], L-derivative provides a vector space structure by lifting functions f of proba-

bility measures in P2pRnq to flat vector space L2pΩ,F ,P;Rnq. Let the function f̃ defined

on the Hilbert space, and we have f̃pxq “ fpLawpxqq, x P L2pΩ,F ,P;Rnq.

Definition 5.2.2 (L-derivative). L-derivative of f at µ0, denoted as pBµfqpµ0, q satisfies

fpµq “ fpµ0q ` ErBµfpLawpX0qqpX0q ¨ pX ´X0qs ` op||X ´X0||2q.

f on P2pRdq is said to be L-differentiable if its lift function f̃ is Fréchet differentiable at

X0.

The relationship between L-derivative and linear derivative is

Bµfpx, µ, vq “ Bv
δfpx, µ, vq

δµ
.

The above definitions come into use because we need a chain rule for derivatives of

functions of capitalization processes X ptq, wealth process V ptq, trading volume V ptqπiptq.

We simplify the notations as

dX i
t “ b̄iptqdt` s̄iptqdBt

dVt “ B̄ptqdt` S̄ptqdBt

dV ptqπiptq “ b̄yi ptqdt` s̄
y
i ptqdBt,
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where π “ pπptqq0ďtďT “ φpv, Br0,T sq or φpV ptqq, the open loop and feedback function

respectively.

By Itô’s formula with flow of measure, F P C1,1pr0, T sˆRn
`ˆP2pR`ˆAqˆP2pR`qq,

we have

dF pt,Xt, µt, νtq “ BtF pt,Xt, µt, νtqdt

`
`

LF pXt, µt, νtq ` LµF pXt, µt, νtq ` LνF pt,Xt, µt, νtq
˘

dt

`

n
ÿ

i“1

BxiF pr,Xt, µtqdBt `

ż

Rn
BµF pt,Xt, µt, νt, vqs̄pv, µtqµtpdvqdBt

(5.21)

where

LF pt,Xt, µt, νtq “
n
ÿ

i“1

BxiF pt,Xt, µt, νtqb̄pXt, µtq `
1

2

n
ÿ

i,j“1

BxiBxjF pt,Xt, µt, νtqāpXt, µtq,

LµF pt,Xt, µt, νtq “

ż

Rn
BµF pt,Xt, µt, νt, vqB̄pv, µtqµtpdvqdt

`
1

2

ż

Rn
TrrBµBvF pt,Xt, µt, νt, vqĀpv, µtqsµtpdvq

`
1

2

ż ż

RnˆRn
TrrB2

µBvF pt,Xt, µt, νt, v, ṽqĀpv, µtqsµtpdvqµtpdṽq

`

ż

Rn
TrrBµBνF pt,Xt, µt, νt, vqs̄pv, µtqs̄

y
pv, µtqsµtpdvqνtpdvq.

The counterpart LνF pt,Xt, µt, νtq is similar to the above.

Assume the Markovian market coefficients βp¨q, σp¨q, γp¨q, τp¨q for px, νq P Rn
` ˆ

P2pRn
`q. We modify function Hp¨q defined first in Assumption 13. Assume there exist a

function H : Rn
` ˆ P2pR` ˆ Aq Ñ Rn

` of class C2, such that

bpx, νq “ 2apx, νqDxHpx, νq, γpx, νq “ 2ψpx, νqDνHpx, νq,

where DνHpx, νq is the L-derivative of Hp¨q with respect to ν as defined in Defini-
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tion 5.2.2.

ũpτ,x, µ, νq “ ec
Gpτ,x, µ, νq

gpx, µ, νq
, (5.22)

where

gpx, µ, νq :“

ˆ

δ
n
ÿ

i“1

xi ` p1´ δq

ż

Ω

fpvq dµpvq

˙

e´Hpx,νq,

f : R` Ñ R` be a Borel function with fpV ptqq P L1 for t P r0, T s.

GpT,x, µ, νq :“ EP“gpX pT q, µT , νT qe´
şT
0 kpX ptqq`k̃pνtqdt

‰

,

where m “
řn
i“1 zi.

Assumption 15. Assume that gp¨q is Hölder continuous, uniformly on compact subsets

of Rn
` ˆ P2pR` ˆ Aq, ` “ 1, . . . , N ; Gp¨q is continuous on Rn

` ˆ Rn
` ˆ P2pR` ˆ Aq, of

class C2pRn
` ˆ Rn

` ˆ P2pR` ˆ Aqq.

The function Gp¨q yields the following dynamics by Feynman-Kac formula,

BG

Bτ
pτ,x, zq “ LGpτ,x, zq ´

`

kpx, zq ` k̃px, zq
˘

Gpτ,x, zq, pτ,x, zq P R` ˆ Rn
` ˆ Rn

`,

Gp0,x, zq “gpx, zq, px, zq P Rn
` ˆ Rn

`.

(5.23)

Under Assumption 15, ũpτ,x, µ, νq P C2pRn
`ˆRn

`ˆP2pR`ˆAqˆP2pR`qq is bounded

on KˆRn
`ˆP2pR`ˆAqˆP2pR`q for each compact K Ă Rn

`. Especially, we note that the

difference from the previous chapters is that here upt,x, µ, νq continuously L-differentiable

at µ and ν; BvBµupt,x, µ, νqpvq P Rnˆn, is locally bounded and is jointly continuous for

any pt,x, µ, ν, vq in R` ˆ Rn
` ˆ P2pR` ˆ Aq ˆ P2pR`q ˆ Rn

`.

87



Mean field relative arbitrage problem Chapter 5

By Feynman-Kac formula with flows of measure and (5.22), we get

Bũ`pt,x, µ, νq

Bt
gpx, νq

“Lpũ`pt,x, µ, νqgpx, νqq ` Lνpũ`pt,x, µ, νqgpx, νqq ` Lµpũ`pt,x, µ, νqgpx, νqq

´ pkpx, νq ` k̃px, νqqũ`pt,x, µ, νqgpx, νq,

where

kpx, νq “ ´
n
ÿ

i“1

n
ÿ

j“1

aijpx, νq

2
rD2

ijHpx, νq ` 3DiHpx, νqDjHpx, νqs,

k̃px, νq :“´
n
ÿ

p“1

n
ÿ

q“1

ψpqpx, νq

2
rD2

pqHpx, νq ` 3DpHpx, νqDqHpx, νqs

`

n
ÿ

i“1

n
ÿ

p“1

psτT qipDiHpx, νqDpHpx, νq.

We can also adapt the mean-field Cauchy problem (5.12) and mean field equilibrium

with the above modifications about probability measure flows µ and ν. Following from

Definition 5.3.1, when searching for mean field equilibrium, we start from each arbitrary

strategy π and solve the McKean-Vlasov system with measured-valued stochastic process

ν “ pνtq0ďtďT on R` ˆA, adapted to the filtration generated by the random measure B.

We search for the mean field equilibrium through the fixed point problem on the control

space.
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5.3 Connecting N-player game and mean field game

of relative arbitrage optimization

5.3.1 The limit of dynamical systems

In this section we attempt to show that in the limit N Ñ 8, stock capitalization

vector X ptq :“ pX1ptq, . . . , Xnptqq and the wealth of a representative player will satisfy

Mckean-Vlasov SDEs. The paper [52] provides weak and strong uniqueness results of

McKean-Vlasov equation under relaxed regularity conditions. Differentiating from the

usual Mckean-Vlasov SDEs of the form that the coefficients of the diffusion depend on

the distribution of the solution itself, we here consider the joint distribution of the state

process V p¨q and the control π P A, and show the propagation of chaos holds.

Definition 5.3.1. Let pXtq0ďtďT be a solution of (5.24) on the tuple pΩ,F ,F,Pq. The

random variable LpV̂ ptq, π̂ptqq provides a conditional law of pV̂ ptq, π̂ptqq given FB. νi “

tνitu “ tLawpV̂ ptq, π̂ptqq|FBqu0ďtďT : Ω P ω Ñ LpV̂ pω, ¨q, π̂pω, ¨qq be the flow of marginal

conditional distributions of X given the common source of noise.

We consider the market under the Markovian model as in Assumption 7. The goal is

to study the McKean-Vlasov system

dX ptq “ X ptqβpX ptq, νtqdt` X ptqσpX ptq, νtqdBt, X0 “ x; (5.24)

dV ptq “ πptqβpX ptq, νtqdt` πptqσpX ptq, νtqdBt, V p0q “ v0, (5.25)

where Bp¨q “ pB1p¨q, . . . , Bnp¨qq is n-dimensional Brownian motion. ν :“ LawpV, π|FBt q.

Remark 9. Same as the finite dynamical system in Chapter 2, we analyze a McKean-

Vlasov system with initial states given, v0 is with the same law as v`. v0 is supported on

89



Mean field relative arbitrage problem Chapter 5

pΩ,F ,F,Pq.

However, when solving relative arbitrage problems in mean field games, the initial

value is obtained using the objective ũpT q, that is, v0 “ ũpT qVp0q.

The following proposition shows that νN has a weak limit ν P P2pCpr0, T s;R` ˆAqq

with W2 distance. We denote CA “ Cpr0, T s;R` ˆ Aq as the path space equipped with

the supremum norm ||x|| “ suptPr0,T s |xt|. We assume the boundedness of coefficients as

in the finite system.

Assumption 16. Consider the control process πp¨q in open loop or closed loop Markovian

form as (4.4) or (4.5), respectively.

In particular, we can generalize the strategy in closed loop Markovian form as πt “

φpVt, νtq. We assume π is Lipschitz in v, i.e., there exists a mapping φ : Cpr0, T s,RN
` q ˆ

P2pCpr0, T s,RN
` ˆ Aqq Ñ A such that .

|φpv, νq ´ φprv, rνq| ď Lrn|v ´ rv| `W2pν, rνqs

for every v, rv P RN
` , ν, rν P P2pCpr0, T s,RN

` ˆ Aqq.

Proposition 5.3.1. Under Assumption 3, 12, and 16, there exists a unique strong solu-

tion of the Mckean-Vlasov system (5.24)-(5.25).

Proof. Define the truncated supremum norm ||x||t and the truncated Wasserstein distance

on P2pCAq as in [46]. ||x||2t :“ sup0ďsďt |xs|,

d2
t pµ, νq “ inf

πPΠpµ,νq

ż

CnˆCn
||x´ y||2tπpdx, dyq.

Define Φ : P2pCAq Ñ P2pCAq so that

Φpνq “ LawpV ν , πν |FBq. (5.26)
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We need to show (5.24) and (5.25) uniquely solve the fixed point problem (5.26).

We take two arbitrary measures νa, νb P P2pCAq, and denote the wealth involving

measure ν as V ν , and stock capitalization vector involving ν as X ν . By Cauchy-Schwarz,

Jensen’s inequality and Lipschitz conditions in Assumption 3 and 16, it follows

E
“

||pV νa ,X νa
q ´ pV νb ,X νb

q||
2
t |FBt

‰

ď4tE
„
ż t

0

|V νa
prqπν

a

prqβpx, νaq ´ V νb
prqπν

b

prqβpx, νbq|2 ` |bpx, νaq ´ bpx, νaq|2dr

ˇ

ˇ

ˇ

ˇ

FBt


` 4E
„

sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

V νa
prqπν

a

prqσpx, νaq ´ V νb
prqπν

b

prqσpx, νbqdBr

ˇ

ˇ

ˇ

2

` sup
0ďsďt

ˇ

ˇ

ˇ

ż s

0

X νa

r σpx, νaq ´ X νb

r σpx, ν
b
qdBr

ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

FBt


ď4pt` 4qL2E
„
ż t

0

p|V νa

r ´ V νb

r |
2
` |X νa

r ´ X νb

r |
2
`W2

2 pν
a
r , ν

b
rqqdr

ˇ

ˇ

ˇ

ˇ

FBt


By Gronwall’s inequality,

Er||V νa
´ V νb

||
2
t |FBt s ď Er||pV νa ,X νa

q ´ pV νb ,X νb
q||

2
t |FBt s ď CTEr

ż t

0

W2
2 pν

a
r , ν

b
rqdrs,

(5.27)

where CT “ 4pT ` 4qL2 expp4pT ` 4qL2q.

Define a mapping L : R` Ñ P2pCpr0, T s,R` ˆ Aqq,

LpVtq “ LawpVt, φpVtqq “ νt,

then it follows that for pv, uq P R` ˆ R`,

W2
2 pLpvq, Lpuqq ď np2L2

` 1q|v ´ u|2 ` 2L2W2
2 pLpvq, Lpuqq,

and hence

W2
2 pν

a
t , ν

b
t q ď CnEr||V νa

´ V νb
||

2
t s.
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where Cn “
np1`2L2q

1´2L2 .

If πp¨q is an open loop control, i.e., πptq “ φpv0, νt, Br0,T sq,

Er||πνa ´ πνb ||2t |FBt s ď L2ErW2
2 pν

a, νbq|FBt s ď L2ErW2
2 pν

a
t , ν

b
t qs. (5.28)

If πp¨q is in the closed loop Markovian form, i.e., πptq “ φpt, V ptq, νtq,

Er||πνa ´ πνb ||2t |FBt s ď 2L2Er||V νa
´ V νb

||
2
t `W2

2 pν
a
t , ν

b
t qs

ď 8pT ` 4qL4 expp4pT ` 4qL2
qEr

ż t

0

W2
2 pν

a
r , ν

b
rqdrs ` 2L2ErW2

2 pν
a
t , ν

b
t qs.

(5.29)

Then the coupling of Φpν1q,Φpν2q gives

Erd2
T pΦpν

a
T q,Φpν

b
T qqs ď Er||pV νa , πν

a

q ´ pV νb , πν
b

q||
2
T |FBT s

ď CFEr
ż T

0

d2
rpν

a
r , ν

b
rqdrs,

(5.30)

where CF “ p3` 2L2CnqCT for closed loop Markovian controls, and CF “ p1`L
2CnqCT

for open loop controls. After induction, we get

Erd2
T pΦ

k
pνaT q,Φ

k
pνbT qqs ď

pCFT q
k

k!
Erd2

T pν
a
T , ν

b
T qs.

Following Banach’s fixed point theorem we conclude that Φ has a unique fixed point.

Subsequently, we show in the following proposition that MFE strategies coincide with

the limit of optimal empirical measure in the weak sense.

Proposition 5.3.2. Under Assumption 3, 12, and 16, the limits νt “ limNÑ8 ν
N
t ,

µt “ limNÑ8 µ
N
t exist in the weak sense for t P r0, T s with respect to the 2-Wasserstein

distance, where νN P P2pCAq, µN P P2pCpr0, T s;R`qq.
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Proof. Let wealth process pU `q be the solution of (5.25) with πp¨q as closed loop Marko-

vian dynamics φ` : r0, T s ˆ R` Ñ A,

dU `
ptq “ U `

ptqφ`pt, U `
ptqqβpXt, νtqdt` U `

ptqφ`pt, U `
ptqqσpXt, νtqdBt, U `

p0q “ v`,

(5.31)

or of open loop dynamics

dU `
ptq “ U `

ptqφ`pv`, Br0,T sqβpXt, νtqdt` U
`
ptqφ`pv`, Br0,T sqσpXt, νtqdBt, U `

p0q “ v`.

(5.32)

for ` “ 1, . . . , N . The initial states v` are i.i.d copies of v. The initial value of U `p0q is of

the same law with V `p0q by Assumption 12.

Er||pV `, φ`pV `
qq ´ pU `, φ`pU `

qq||
2
t s ď CFE

“

ż t

0

W2
2 pν

N
r , νrqdr

‰

ď CFE
“

ż t

0

d2
rpν

n, νqdr
‰

(5.33)

for t P r0, T s, CF is defined in Proposition 5.3.1. For simplicity, let us discuss in the case

of closed loop dynamics, the result of which can be generalized to open loop dynamics.

We follow the coupling arguments in [15], the empirical measure of pV `, U `q is a

coupling of the N -player empirical measure νN defined in Definition 2.3.1 and ν̃N , where

ν̃N are the empirical measure of N i.i.d samples U ` in (5.31) or (5.32). Thus

d2
t pν

N , ν̃Nq ď
1

N

N
ÿ

`“1

||pV `, φ`pV `
qq ´ pU `, φ`pU `

qq||
2
t , a.s.. (5.34)

By the triangle inequality and (5.33), (5.34),

Erd2
t pν

N , νqdrs ď 2Erd2
t pν̃

N , νqs ` 2CFEr
ż t

0

d2
rpν

N , νqdrs,

93



Mean field relative arbitrage problem Chapter 5

and then by Gronwall’s inequality and set t “ T , it follows

ErW2
2 pν

N , νqs ď 2e2CFTErW2
2 pν̃

N , νqs. (5.35)

Since pU `, π`q, ` “ 1, . . . , N is independent given the noise B, use conditional law of

large numbers (See Theorem 3.5 in [51]),

P
`

lim
nÑ8

N
ÿ

`“1

fpU `, π`q ´ ErfpU `, π`q|FBsq “ 1, for everyf P CbpRn
˘

We then apply Theorem 6.6 in [57], which gives that on a separable metric space, νN Ñ ν

weakly,

lim
NÑ8

ż

RN
dpx, x0q

2νNpdxq “

ż

RN
dpx, x0q

2νpdxq a.s.,

which lead us to

ErW2
2 pν̃

N , νqs Ñ 0.

Therefore by using triangle inequality, it leads to ErW2
2 pν

N , νqs Ñ 0. We can use

similar methods to derive ErW2
2 pµ

N , µqs Ñ 0.

Next we show the convergence of n-dimensional continuous stochastic process XNptq.

Assumption 17. On the probability space pΩ,F,Pq, there exists positive constants δ such

that the following conditions on β and σ:

ż t

s

|xβipr, x, νq|dr ď ηpx, νq|t´ s|
1`δ
2 ,

ż t

s

|xσ2
ijpr, x, νq|dr ď ξpx, νq|t´ s|

1`δ
2 ,

where t, s P r0, T s, and η, ξ being F-measurable functions with values in p0,8qˆP2pCAq
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such that Erηpx, νq2s ă 8, Erξpx, νq2s ă 8.

Proposition 5.3.3. If Assumption 12 and 17 holds, then there exists n dimensional

continuous process X defined on the probability space pΩ,F ,Pq, such that tPXN
u converges

weakly to tPX u as N Ñ 8, X ptq “ limNÑ8XNptq exists a.s. for all t P r0, T s. XNptq is

defined in (2.10).

Proof. First we show that tPXN
u is tight. A sequence of measures µN on P2pCpr0, T s;R`qq

is tight if and only if

(i) there exist positive constants Mx and γ such that Et|xN |γu ď Mx for every N “

1, 2, . . .,

(ii) there exist positive constants Mk and δ1, δ2 such that Et|XNptq ´ XNpsq|δ1u ď

Mk|t´ s|
1`δ2 for every N , t, s P r0, ks, k “ 1, 2, . . ..

The proof of this can be found in [43].

With x P L2pΩ,F0,P;Rn
`q in Assumption 12, condition (i) in the above statement

holds.

To check condition (ii), by Cauchy–Schwarz inequality,

|XN
ptq ´ XN

psq|2 “|XN
1 ptq ´X

N
1 psq|

2
` . . .` |XN

n ptq ´X
N
n psq|

2

“

n
ÿ

i“1

ˇ

ˇ

ˇ

ż t

s

XN
i prqβiprqdr `

n
ÿ

k“1

ż t

s

XN
i prqσikprqdWkprq

ˇ

ˇ

ˇ

2

ď

n
ÿ

i“1

ˆ

ηpω, νq2|t´ s|1`δ `
n
ÿ

k“1

ˇ

ˇ

ˇ

ż t

s

σikprqdWkprq
ˇ

ˇ

ˇ

2
˙

.

Then for any constant δ in Assumption 17, by Itô’s isometry,

Er|XN
ptq ´ XN

psq|2s ď pn` 1q
n
ÿ

i“1

ˆ

Erηpω, νq2s|t´ s|1`δ ` E
“

ż t

s

|σikprq|
2dWkprq

‰

˙

ď npn` 1q
`

Erηpω, νq2s ` Erξpω, νq2s
˘

|t´ s|1`δ,
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where Erηpω, νq2s ` Erξpω, νq2s ă 8. Thus condition (ii) follows.

By Prokhorov theorem [8], tightness implies relative compactness, which means here

that each subsequence of tXNu contains a further subsequence converging weakly on the

space Cpr0, T s;Rn
`q. As a result, a subsequence exists such that X ptq “ limNÑ8XNptq

a.s.. Then if every finite dimensional distribution of tPXN
u converges, then the limit of

tPXN
u is unique and hence tPXN

u converges weakly to tPX u as N Ñ 8.

Proposition 5.3.4. Under Assumption 3, 12, 16 and 17, The solution of Mckean-Vlasov

system (5.24)-(5.25) is the weak limit of the solution of N-particle system (2.10)-(2.11).

Proof. For (5.24) and (2.10), it is equivalent to show that the drift and volatility of Xt

matches the weak limit of that of XNptq, i.e.,

ż t

0

βps,X psq, νsqds “ lim
NÑ8

ż t

0

βps,XN
psq, νNpsqqds, (5.36)

ż t

0

σps,X psq, νsqds “ lim
NÑ8

ż t

0

σps,XN
psq, νNpsqqds. (5.37)

in the weak sense.

By Assumption 3, with the Lipschitz constant L,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

`

βps,XN
s , ν

N
s q ´ βps,Xs, νsq

˘

ds
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2

ď

ż t

0

||βps,XN
s , ν

N
s q ´ βps,Xs, νsq||2L2ds

ďL2
´

ż t

0

Er|XN
s ´ Xs|2sds`

ż t

0

ErW2pν
N
s , νsq

2
sds

¯

.
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By Itô’s isometry, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

σps,XN
s , ν

N
s qdWs ´

ż t

0

σps,Xs, νsqdBs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

σpXN
s , ν

N
s qdWs ´

ż t

0

σpXs, νsqdWs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

σpXs, νsqdWs ´

ż t

0

σpXs, νsqdBs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2

“E
”

ż t

0

|σps,XN
s , ν

N
s q ´ σps,Xs, νsq|2ds

ı

ďL2E
”

ż t

0

`

|XN
s ´ Xs|2 `W2

2 pν
N
s , νsq

˘

ds
ı

.

From the results in Proposition 5.3.2 and 5.3.3, by Lebesgue dominated convergence

theorem,

lim
NÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

`

βps,XN
s , ν

N
s q ´ βps,Xs, νsq

˘

ds
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2
“ 0,

lim
NÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0

`

σps,XN
s , ν

N
s q ´ σps,Xs, νsq

˘

ds
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2
“ 0.

We conclude (5.36)-(5.37).

Hence we conclude that the limit of the finite particle system exists in the weak sense,

and matches the solution of the Mckean-Vlasov SDEs system.

When N Ñ 8, the limiting system is driven by Xt and νt :“ LawpV ptq, πptq|FBt q.

The stock market follows

dXt “ XtβpXt, νtqqdt` XtσpXt, νtqdBt, X0 “ x,

and a generic player’s wealth is

dV ptq “ πptqβpXt, νtqqdt` πptqσpXt, νtqdBt, V p0q “ v0. (5.38)

π is fixed in (5.25) and (2.11).

Remark 10. It also follows that Zptq is the weak limit of Yptq in Proposition 5.3.4.
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With the notations in Definition 2.1.1 (3), if we consider the mean Zptq of the measure

LawpV ptq, πptq|FBt q, we can get Zptq “ limNÑ8 Yptq exists in the weak sense, and the

limit Zptq match the solution of the Mckean-Vlasov SDE

dZptq “ γpXt,Zptqqdt` τpXt,ZptqqdBt. (5.39)

5.3.2 Approximate N-player Nash equilibrium and mean field

equilibrium

In this section we justify if mean field game is an appropriate generalization of N -

player relative arbitrage problem.

From the optimal strategy (5.15) derived in MFE and Definition 2.3.2. In mean field

games with mean field interactions as the distributions µt and νt, for i “ 1, . . . , n, the

players adopt

π‹i ptq “ φ‹pXt, µt, νtq. (5.40)

Assumption 18. Let the function of strategy π`p¨q be φ`p¨q : Cpr0, T s,RN
` qˆP2pCpr0, T s,RN

`ˆ

Aqq Ñ A. We assume φ` is Lipschitz , i.e.,

|φ`px, µ, νq ´ φ`prx, rµ, rνq| ď Lr|x´ rx| ` nW2pµ, rµq `W2pν, rνqs

for every v, rv P RN
` , ν, rν P P2pCpr0, T s,RN

` ˆ Aqq

We conclude in the following proposition that the MFE we obtain agrees with the

limit of the finite equilibrium, and that the optimal arbitrage in the sense of (3.10)

strongly converges to optimal arbitrage in the mean field game setting (5.8).

Proposition 5.3.5. Under Assumption 3, 7, 12, 17, 18, and suppose the first exit time

from the random intervals Kt and K̃t satisfies mintτK , τ̃Ku ą T in (4.15) and (5.16).
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Then upT q “ limNÑ8 u
`pT q a.s, for every `, ` “ 1, . . . , N , and T P p0,8q.

Proof.

We want to show that as N Ñ 8, the Nash equilibrium of the N -player game in the

system (2.10)-(2.11) converges to the mean field equilibrium in the system (5.24)-(5.25).

The optimal strategy π`‹p¨q as functions φ‹pXt, µt, νtq and φ‹pXN
t , µ

N
t , ν

N
t q are used in

Nash equilibrium of N -player game and mean field game, respectively. Thus, we look at

the limit of the optimal cost in N -player game and the mean field optimal cost.

We get P ˝ pXN ,V, νNq is tight on the space Cpr0, T s;Rn
`q ˆ Cpr0, T s;RN

` q ˆ P2pCAq

and the weak limit of P ˝ pXN ,V, νNq exists, following from Proposition 5.3.1 - 5.3.3.

Note that the results in Proposition 5.3.1 - 5.3.3 under Assumption 16 can be generalized

with Assumption 18 instead.

By using the Markovian property of πp¨q, and Assumption 7 on βp¨q and σp¨q, we have

u`pT ´ tq “
EPXN “

ec`VNpT qLpT q|FWt
‰

VNptqLptq
,

upT ´ tq “
EP

“

ecVpT qLpT q|FBt
‰

VptqLptq
,

where FXN ,Y “ FW , FX ,Z “ FB, and

VNptq “ δ
n
ÿ

i“1

XN
i ptq ` p1´ δq

n
ÿ

i“1

Yiptq,

Vptq “ δ
n
ÿ

i“1

Xiptq ` p1´ δq
n
ÿ

i“1

Ziptq.

Given the current states of XNptq, Yptq, X ptq and Zptq, then by the uniform inte-

grability of Xp¨q and V p¨q, and Lebesgue dominated convergence theorem, we get the

deflator LpX ptq,Zptqq “ limNÑ8 LpXNptq,Yptqq a.s., and VpT ´ tq “ limNÑ8 VNpT ´ tq
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in the weak sense for t P r0, T s. c` is i.i.d samples from Lawpcq by Assumption 5.

Therefore as N Ñ 8,

u`pT q :“ inf
πPA

J `pπ`‹q Ñ inf
πPA

Jµ,νpπ‹q “ upT q

in the weak sense, and upT ´ tq is the weak limit of u`pT ´ tq when the trajectories of

the current values are fixed.

Next, we show here that MFE can be used to construct an approximate Nash equi-

librium for the N -player game. Since we derive strong equilibrium in both N -player and

mean field game, µN and µ are measurable with respect to the information generated by

W and B, respectively.

Definition 5.3.2. For εN ě 0, an open-loop εN -equilibrium is a tuple of admissible

controls

φN :“ pφN,1ptq, . . . , φN,Nptqq0ďtďT , φN,`ptq P A Ă ∆n,

for every `, such that

J `pφNq ď inf
pPA

J `pp, φN,´`q ` εN ,

where p P A is an open loop control, and φ is of the form in (5.40).

An closed-loop εN -equilibrium is a tuple φN such that

J `pφNq ď inf
pPA

J `ppNq ` εN ,

where each component in φN is defined in (5.40); pN :“ pppUr0,tsq, φ
N,´`pUr0,tsqq, in

which Ut is the N-vector of wealth processes generated by this strategy, p : r0, T s ˆ

Cpr0, T s;RN
` q Ñ A is of the form pppt, Ur0,tsqq0ďtďT , φN,´` is defined in (5.40). For any

` “ 1, . . . , N , φN,` and p are F-progressively measurable functions.
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To check if the strategies in mean field equilibrium can form an approximate open

loop N -player Nash equilibrium, we consider N strategies that use the same φ‹ in the

mean field case. A simplified situation is when µt, νt fixed from mean field equilibrium,

then the corresponding strategies φ` for ` “ 1, . . . , N in N -player game is

φ` “ φ‹pXt, µt, νtq. (5.41)

A more realistic construction is to use µNt or νNt instead, that is,

φ` “ φ‹pXt, µNt , νNt q. (5.42)

Although closed loop controls (5.40) are distributed, when considering players in

the N -player game adopt the optimal strategy from the associated mean field game,

the strategies in the form (5.41) or (5.42) are not distributed closed feedback form,

i “ 1, . . . , n. In fact (5.41) yields an open loop Nash equilibrium. Both (5.41) and (5.42)

may depend on the past trajectory of common noises.

Therefore besides approximate open loop Nash equilibrium, to check if an approxi-

mate closed loop Nash equilibrium can be constructed from (5.40), we prove approximate

Nash equilibrium result in “semi-closed loop form” introduced in [15].

We show the details of approximate Nash equilibrium in Proposition 5.3.6.

Proposition 5.3.6. Under Assumption 3, and 18, there exists a sequence of positive real

numbers pεNqNě1 converging to 0, such that any admissible strategy π` “ pπ`tqtPr0,T s for

the first player

JN,`pp1, π2‹, . . . , πN,‹q ě J ´ εN , ` “ 1, . . . , N.

Proof. This proposition is proved for both open and closed loop problems in the N -player

game, adapted from the methods in [15] and [47]. Strategies in the form of (5.41) are
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easier to deal with than (5.42), and it only gives rise to the approximate open loop

equilibrium. Therefore in this proof we focus on strategies (5.42).

• Use MFE to approximate open loop Nash equilibrium.

Without loss of generality, by the symmetry of the game, we only need to focus on

player 1. For a fixed number of players N , each player utilizes the optimal strategy

π‹ from (5.40) in the associated mean field game. Thus the actual strategy π` for

player ` is (5.41) or (5.42), ` “ 1, . . . , N .

Let π
pNq
t :“ pπ1ptq, . . . , πNptqq P AN . We want to show the cost functional of MFE

is the limit of N -player game cost with πpNq and player 1 cannot be too better off

in the approximate equilibrium sense when he/she deviates from πpNq, in a fixed

number N -player game, namely, JNpπpNqq is indeed an ε-Nash equilibrium with

εN Ñ 0 as N Ñ 8, i.e.,

lim
NÑ8

JNpπpNqq “ J8pπ‹q and JNpπpNqq ě JN‹ ´ εN with lim
NÑ8

εN “ 0,

where JN‹ is the optimal cost in N -player game, for a fixed N .

Under πpNq, the corresponding wealth follows

dV `‹
ptq “ V `‹

ptqπ‹t
`

βpXt, ν
N‹
t qdt` σpXt, ν

N‹
t qdWt

˘

, ` “ 1, . . . , N,

and the joint empirical measure of the wealth processes and MFE control functions

is

νN‹ “
1

N

N
ÿ

`“1

δpV `‹ptq,π‹q.
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If πpNq deviates to pp, π´1q, the state processes are

dV 1
ptq “ V 1

ptqptpβpXt, ν
N
t qdt` σpXt, ν

N
t qdWtq,

dV `
ptq “ V `

ptqπ‹t pβpXt, ν
N
t qdt` σpXt, ν

N
t qdWtq, ` ‰ 1,

and the empirical measures are

µNt “
1

N

ˆ

δV 1ptq `

N
ÿ

`“2

δV ‹`ptq

˙

, νNt “
1

N

ˆ

δpV 1ptq,pq `

N
ÿ

`“2

δpV `‹ptq,π‹q

˙

.

Let

µN´1
t “

1

N ´ 1

N
ÿ

`“2

δV ‹`ptq, νN´1
t “

1

N ´ 1

N
ÿ

`“2

δpV `‹ptq,π‹q.

We can see that for ` ą 1, the difference of V `‹ptq and V `ptq is solely on the measure

νNt and νN‹t .

By the definition of Nash equilibrium, with an arbitrary p P A, we trivially have

εN :“ JN1 pπ
pNq
q ´ inf JN1 pp, π

´1
q ě 0,

for some fixed εN . J8pπ‹q ě J8ppq by the definition of Mean Field Equilibrium. It

suffices to show that as N Ñ 8

JN1 pp, π
´1
q Ñ J8ppq (5.43)

uniformly in p, where J8ppq is subject to

dV p
t “ V p

t ptpβpXt, νtqdt` σpXt, νtqdBtq.

From the expression of cost functional J in (4.3), we only need to show pµNt , ν
N
t q Ñ

103



Mean field relative arbitrage problem Chapter 5

pµt, νtq. Since νN‹t Ñ ν‹t as N Ñ 8 in the weak sense with respect toW2
2 as proved

in Proposition 5.3.2. By (5.35),

Er sup
sPr0,T s

W2
2 pν

N‹
s , νN´1‹

s qs ď ErW2
2 pν

N‹, νN´1‹
qs ď

C

N
, (5.44)

where µt is the time-t marginal of µ P P2pCAq. C is a constant depend on CF , T

and ν.

Use (5.27),

Er sup
sPr0,T s

W2
2 pν

N,´1‹
s , νNs qs

ďEr sup
sPr0,T s

1

n´ 1

N
ÿ

`“2

`

|V ‹`s ´ V `
s |

2
` |π`‹s pXs, µN,‹s , νN,‹s q ´ π`‹s pXs, µNs , νNs q|2

˘

s

ď
C

N
`

C

N ´ 1

N
ÿ

`“2

E
„
ż t

0

sup
rPr0,ss

W2
2 pν

N,´1‹
r , νNr qds



,

The constant C is different from the above value of C, but it does not depend on

N . By Gronwall’s inequality and (5.44), it follows

Er sup
sPr0,T s

W2
2 pν

N‹
s , νNs qs ď

C

N
.

We showed in Proposition 5.3.2, νN‹t weakly converges to νt. Therefore we get

νNt Ñ νt weakly, as N Ñ 8. Thus pµNt , ν
N
t q Ñ pµt, νtq follows.

The objective we use here is a stochastic function of stochastic processes. We have

µN0
d
“µ0, xN0

d
“x. We can find a subsequence tNpkqu such that

lim
NÑ8

ż T

0

σipX
N
t , ν

N
t qdWt “

ż T

0

σipXt, νtqdBt
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weakly through Itô’s isometry and L2 convergence. As a result, by (4.3) and (5.7),

lim
NÑ8

JNpp, π
´1
q

“
VpT q
Vp0q

exp

"

´

ż T

0

pptq1pβpXt, νtq ´
1

2
αpXt, νtqpptqqdt´

ż T

0

pptq1σipXt, νtqdBt

*

“Jµ,νppq.

• Use MFE to approximate semi-closed loop Nash equilibrium:

From the expression of cost functional J in (4.3), we need to show pU1
t , µ

N
t , ν

N
t q Ñ

pV p
t , µt, νtq.

The distinctive characteristic for a closed loop control is that it depends on the

wealth and the deviation of the strategy in turn influence all the investors’ wealth.

Hence when π
pNq
t deviate to ppt, π

´1
t q :“ pppU1

t q, π
‹pU2

t q, . . . , π
‹pUN

t qq, and the state

processes become

dU1
t “ U1

t ppU
1
t qpbpXt, ν

N
t qdt` spXt, ν

N
t qdWtq,

dU `
t “ U `

t π
‹
pU `

t qpbpXt, ν
N
t qdt` spXt, ν

N
t qdWtq, ` ‰ 1.

and the empirical measure is

νNt “
1

N

ˆ

δpU1
t ,ptq

`

N
ÿ

`“2

δpU`t ,π‹t q

˙

,

while the state process with pt in mean field game is

dV p
t “ V p

t ptpβpXt, νtqdt` σpXt, νtqdBtq.
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By (5.29), (5.30),

Er sup
sPr0,T s

W2
2 pν

N,´1‹
s , νNs qs ď E

„

sup
sPr0,T s

1

N ´ 1

N
ÿ

`“2

´

|V ‹`s ´ U `
s |

2

` |π‹`s pV
‹`
s , µ

N‹
s , νN‹s q ´ π`‹s pU

`
s , µ

N
s , ν

N
s q|

2
s

¯



ď
C

N ´ 1

N
ÿ

`“2

E
„
ż t

0

sup
rPr0,ss

W2
2 pν

N‹
r , νNr qds



ď
C

N
` CE

„
ż t

0

sup
rPr0,ss

W2
2 pν

N,´1‹
r , νNr qds



,

it follows

Er sup
sPr0,T s

W2
2 pν

N,´1‹
s , νNs qs ď

C

N
.

The constant C does not depend on N .

Next we want to show U1
t Ñ V p

t , since p P A is bounded,

|XU
s ´X

V
s |

2
` |U1

t ´ V
p
t |

2

ďp

ż t

0

|XU
s bps, ν

N
s q ´X

V
s bps, νsq|dsq

2
` p

ż t

0

|U1
s psbps, ν

N
s q ´ V

p
s psbps, νsq|dsq

2

` p

ż t

0

|U1
s psσps, ν

N
s q ´ V

p
s psσps, νsq|dWtq

2
` p

ż t

0

|XU
s σps, ν

N
s q ´X

V
s σps, νsq|dWtq

2

ď

ż t

0

||XU
s bps, ν

N
s q ´X

V
s bps, νsq||

2
` ||XU

s σps, ν
N
s q ´X

V
s σps, νsq||

2

` ||U1
s psbps,X

U
t , ν

N
s q ´ V

p
s psbps,X

V
t , νsq||

2
` ||U1

s psσps, ν
N
t q ´ V

p
s psσps, νtq||

2ds

ďC0L
2

ż t

0

ˆ

|XU
s ´X

V
s |

2
` |U1

t ´ V
p
t |

2
`W 2

2 pν
N
s , νsq

˙

ds.

C0 is a constant depending on the Lipschitz constant of coefficients, CF and C above.

By Gronwall’s inequality,

|U1
t ´ V

p
t |

2
ď |XU

s ´X
V
s |

2
` |U1

t ´ V
p
t |

2
ď W 2

2 pν
N
s , νsq
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Therefore we conclude pU1
t , µ

N
t , ν

N
t q Ñ pV p

t , µt, νtq. Then ppU1
t , µ

N
t , ν

N
t q Ñ ppV p

t , µt, νtq.

lim
NÑ8

JNpp, π
´1
q “ Jµ,νppq

Thus we have the propagation of chaos for N -player games of relative arbitrage prob-

lems, and the corresponding mean field games can be used to approximate finite-player

games. The last section justifies that the influence of each single player on the whole

system is diminishing as N gets larger. Asymptotically we can consider a representative

player and solve a single optimization problem instead.
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Chapter 6

Functionally Generated Portfolios

(FGP)

A versatile tool introduced in Stochastic portfolio theory is portfolio generating functions.

This class of functions is usually smooth functions of market weights, which allows us

to create portfolios with well-defined return characteristics and obtain probability-one

constraints on the return relative to the market portfolio. In this chapter, we extend the

current characterization of FGP to FGP in market models influenced by investors.

We start from a review of the original formulation of FGP. Portfolio generating func-

tions can create well-performing portfolios that have little requirement on the estimation

of the drifts or volatilities of the stocks.

log
´ V πpT q

V mpT q

¯

“ log
´GpmpT qq

Gpmp0qq

¯

`

ż T

0

gptqdt, T P r0,8q,

with

gptq :“ ´
1

2Gpmptqq

m
ÿ

i“1

m
ÿ

j“1

D2
ijGpmptqq ¨miptqmjptqψ

m
ij ptq,
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where ψmp¨q is defined by τmp¨q in the dynamics (1.1),

ψm
ij ptq “

K
ÿ

k“1

τmik ptqτ
m
jk ptq.

This formulation if based on the fact that with a strategy π, log V πptq depends solely on

mp0q, mptq and a finite variation process related to time-aggregated market volatility.

Using this almost sure pathwise decomposition formula, it was able to formulate condi-

tions under which the portfolio outperforms the market portfolio with probability 1 for

all sufficiently long horizons. With appropriate generating functions, this allows us to

obtain probability-one constraints on the relative return.

[25] proved the characterization of the portfolios that are functionally generated. [56],

[71] shows essentially that no other portfolio functions, other than those that are func-

tionally generated, can beat the market in the long run without additional assumptions

in discrete time.

6.1 FGP in N-player market

In this section, we construct portfolio generating functions to create portfolios with

relative arbitrage. The idea is that deterministic functions defined on ∆n can be used to

generate portfolios, and in this way, we will be able to get information on the behavior

of portfolios.

Since we use the benchmark Vptq, we first define the relative return of a stock versus

the weighted average of market portfolio and sum of investors’ portfolio.

Definition 6.1.1. (Relative return) For portfolios π, the relative return process of π
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versus a benchmark η(t) is defined by

log
V πptq

ηptq

A benchmark that is commonly used is the market portfolio. Based on definition 3.1.1,

with the weighted average of market portfolio and average portfolio as a benchmark, we

develop the following definitions which use certain real-valued functions of the market

weights and functions of the strategies of investors to generate portfolios. The goal is to

find conditions so that the wealth process of investors ` dominates a big proportion of

the weighted average of the market and the investors.

Therefore, by the similar notation in definition 6.1.1, we look for a decomposition of

the relative return of π` versus ec`Vptq as the sum of generating functions of µ and π,

and a drift process.

Recall that the market portfolio follows the dynamic (1.1), we rewrite it as follows

and define τmptq and γmi ptq for future use.

dmiptq “ miptq

„

γmi dt`
n
ÿ

k“1

τmik ptqdWkptq



, i “ 1, . . . , n. (6.1)

Here τmptq is the matrix with entries τmik ptq :“ σikptq´
řn
j“1 mjptqσjkptq, ei is the ith unit

vector in Rn and the vector γmptq is with the entries γmi ptq :“ pei´mptqq1pβptq´αptqmptqq.

Let I be the identity matrix of size n, and 1 be the n-dimension column of ones.

Theorem 6.1.1. Let G`
1, G`

2 : U Ñ p0,8q be positive C2 functions defined on a neigh-

borhood U of A such that for all i, xiDi log G`
1pxq, xiDi log G`

2pxq are bounded on A. For

t P r0, T s, G`
1, G`

2 generate the portfolio

π`ptq “ rG`
1ptq `

rG`
2ptq `Rptq (6.2)
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where

rG`
1ptq “ pDi log G`

1pmptqqmiptqqnpI ´ 1mptqq; rG`
2ptq “ D log G`

2pYptqqτptqσ´1
ptq;

Rptq “ δXNptq ` p1´ δqYptq
VNptq

.

The process

d log
V `ptq

ec`VNptq
“ d log G2pYptqq ` d log G1pmptqq ` dΞt, t P r0, T s, a.s. (6.3)

is with a drift process Ξp¨q such that a.s., for t P r0, T s,

dΞ`ptq

dt
“ rG`

1ptqαptqmptq ` rG`
2ptqαptqπ

`
ptq ´

1

2

ˆ

|| rG`
1ptqσ||

2
` || rG`

2ptqσ||
2
´ ||π`1σ||2

˙

`
1

2G`
1pmptqq

n
ÿ

i,j“1

DijG
`
1pmptqqmiptqmjptqp

n
ÿ

k“1

τmik ptqτ
m
jkptqq

`
1

2G`
2pYptqq

n
ÿ

i,j“1

DijG
`
2pYptqqψijptq.

(6.4)

We denote D log G`
2pYptqq as the row vector pDi log G`

2pYptqqqn.

Proof. By Ito’s lemma,

d log
V `ptq

ec`VNptq
“

˜

π`1ptq

ˆ

βptq ´
αptq

2
π`ptq

˙

´R1ptqβptq ` 1

2
||R1ptqσptq||2

¸

dt

`
`

π`1ptq ´R1ptq
˘

σptqdW ptq.

(6.5)

Since G1 and G2 are twice continuously differentiable function, it follows

Dij log G`
1pmptqq “

DijG
`
1pmptqq

G`
1pmptqq

´Di log G`
1pmptqqDj log G`

1pmptqq,

Dij log G`
2pYptqq “

DijG
`
2pYptqq

G`
2pYptqq

´Di log G`
2pYptqqDj log G`

2pYptqq
(6.6)
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Then using (6.6) and Ito’s lemma,

d log G`
1pmptqq ` d log G`

2pYptqq

“

n
ÿ

i“1

Di log G`
1pmptqqdmiptq

`
1

2G`
1pmptqq

n
ÿ

i,j“1

DijG
`
1pmptqqmiptqmjptqp

n
ÿ

k“1

τmik ptqτ
m
jkptqqdt

´
1

2

n
ÿ

i,j“1

Di log G`
1pmptqqDj log G`

1pmptqqmiptqmjptqp
n
ÿ

k“1

τmik ptqτ
m
jkptqqdt

`

n
ÿ

i“1

Di log G`
2pYptqqdYiptq

`
1

2G`
2pYptqq

n
ÿ

i,j“1

DijG
`
2pYptqqψijptqdt

´
1

2

n
ÿ

i,j“1

Di log G`
2pYptqqDj log G`

2pYptqqψijptqdt,

(6.7)

The local martingale part of (6.5) and (6.7) are the same, and this leads to

π`1ptq “
“

pDi log G`
1pmptqqmiptqq

1
npI ´ 1m1

ptqq `D log G`
2pYptqqτptqσ´1

ptq
‰

`Rptq,

for t P r0, T s, and for each `. Substitute this result into (6.5),

d log
V `

ec`Vptq
“d log G`

2pYptqq ` d log G`
1pmptqq

´

!

rG`
1ptqp´αptqmptqq ` rG`

2ptqp´αptqπ
`
ptqq

`
1

2

`

|| rG`
1ptqσ||

2
` || rG`

2ptqσ||
2
´ ||π`

1

σ||2
˘

´
1

2G`
1pmptqq

n
ÿ

i,j“1

DijG
`
1pmptqqmiptqmjptqp

n
ÿ

k“1

τmik ptqτ
m
jkptqq

´
1

2G`
2pYptqq

n
ÿ

i,j“1

DijG
`
2pYptqqψijptq

)

dt.
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Thus we conclude (6.2) and (6.3).

6.2 Optimal arbitrage strategies and equilibrium us-

ing FGP

We characterize the strategies (4.14) achieved in Nash equilibrium using functionally

generated portfolios. FGP methodology could be easier to use than the dynamics of the

portfolios since there is randomness in the model, which is difficult for analysis.

In (4.14), the strategy is generated by a function of market portfolio and average

trading volume,

π`1ptq “
“

p
B

Bmi

log u`pm,yqmiq
1
npI ´ 1m1

ptqq `
B

By
log u`pm,yqτptqσ´1

ptq
‰

`Rptq. (6.8)

More importantly, the notion of optimal strategies (4.14) can be treated through The-

orem 6.1.1. Let G`
1, G`

2 : U Ñ p0,8q be positive C2 functions defined on a neighborhood

U of A such that for all i, xiDi log G`
1pxq, xiDi log G`

2pxq are bounded on A. We write

ũ`pt,x,yq “ u`pt,m,Yq, then by taking the derivatives of XNptq, Yptq, it follows

XN
i ptqDi log ũ`pT´t,XN

ptq,Yptqq “
„

Di log G`
1pmptqq´

n
ÿ

i“1

Di log G`
1pmptqqqmiptq



miptq;

n
ÿ

j“1

pτσ´1
qjipx

N ,yqDyj log ũ`pT ´ t,XN
ptq,Yptqq “ pDj log G`

2pYptqqqnτptqσ´1
ptqe1i.

When we express τp¨q explicitly using the methodology in Section 3.3.2, we can sim-

plify the above to a functional characterization without the coefficients τp¨q and σp¨q. For

example, if open loop strategies (4.4) is used, then by the dynamics of Y in (3.25), we
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have

n
ÿ

j“1

pτσ´1
qjipx

N ,yqDyj log ũ`pT´t,XN
ptq,Yptqq “ 1

N
pDj log G`

2pYptqqqn
N
ÿ

`“1

π`i ptqV
`
ptqπ`1ptq.

Furthermore, we can use portfolio generating functions to find conditions on invest-

ment strategies by
řn
i“1 πiptq “ 1, t P r0, T s. We get

1´ δ

NδXNptq

N
ÿ

`“1

V `
t w

`
t “ w`t ,

where w`t :“ XiptqDi log ũ`ptq ` τiptqσ
´1ptqDpi log ũ`ptq. Hence

řN
`“1 V

`ptqw`ptq “ 0 or

δXNptq “ p1 ´ δq 1
N

řN
`“1 V

`ptq. The latter indicates that the market consists of the N

investors we considered. If w`ptq “ 0, then every investor is the same, and their strategy

follows the market portfolio. If w`ptq ‰ 0, then 11 rG2ptq “ 0, and

n
ÿ

j“1

n
ÿ

i“1

Di log G2ptqpτptqσ
´1
ptqqji “ 0. (6.9)

Remark 11. (6.9) comes from the fact that 11 rF ptq “ 0 and 11 rRptq “ 1.

In general, the function Gp¨q is chosen so that

11 rGptq “ ´n ¨ dc`ptq.

We will show later that c` has to be a constant or a stochastic process. (6.2) and (6.4)

only depends on the volatility structure of Xiptq and Πiptq.

Remark 12. [26] discuss the case when the benchmark is the market portfolio. It con-

structs generating functions that allow us to obtain portfolios with well defined relative

returns with respect to the market. Following the same conditions as above theorem, F
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generates the portfolio π with weights

πptq “ pDi log Fpmptqqmiptqq
1
n ´ rpD log Fpmptqqq1mptq ` 11smptq (6.10)

From this functionally generated aspect, we can use the portfolio representation (6.8)

to analyze relative arbitrage in a more specific problem with relaxed constraint: An

investor expects to reach the goal of relative arbitrage by a specific terminal time, as

opposed to every fixed T P p0,8q in previous chapters.

6.3 Applications

Portfolio generating functions can create portfolios with desirable well-defined return

characteristics.

We showed in Section 6.2 the arbitrage opportunities in terms of portfolio generated

functions over time horizon r0, T s for any T ą 0. In this section we use an example

to demonstrate another type of relative arbitrage - long term relative arbitrage. This

type of goal provides more flexibility when setting up a model and relaxes some of the

assumptions on stock dynamics. For example, certain forms of drifts and volatilities are

required for the Fichera drift argument in Section 3.4.

Now we want to show M contains strong arbitrage opportunities relative to the

performance benchmark, at least for sufficiently large real numbers T ą 0. We illustrate

this path by example 6.3.1. We employ the idea of functionally generated portfolios [26]

to seek optimal strategies. By doing so, we may reduce the intractability of the N -player

game problem.

If the model M of (2.1), (2.2) is weakly diverse over the time-horizon r0, T s, and if

strong non-degeneracy condition holds, then M contains strong arbitrage opportunities
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relative to the market portfolio, at least for sufficiently large real numbers T ą 0. Denote

ei the ith unit vector in Rn.

Example 6.3.1. Suppose that M is nondegenerate, weakly diverse in r0, T s, and has

bounded variance, see Definition 1.1.1-1.1.2. We assume for t P r0, T s, there exists

constants c0, Nc,Mπ ą 0 such that

pV `
ptq{pV `

p0q ě c0X
N
ptqLptq;

Yiptq{miptq ď Nc, i “ 1, . . . , n;

|

n
ÿ

i“1

γiptq| ďMπ.

Consider the function G1 and G2 are defined by

G1pxq “
n
ź

i“1

xi, G2pxq “ 1´
1

2

n
ÿ

i“1

x2
i .

G1 and G2 generate the portfolio

π`i ptq “ 1´
´

n`
δXNptq

VNptq

¯

miptq`
p1´ δqYiptq
VNptq

`

ˆ

´Yptq
G2pYptqq

˙1

τptqσ´1
ptqei, i “ 1, . . . , n.

(6.11)

Then π` strictly dominates VNptq in (3.3) if

T ě
nN2 ´ 2n2 ´ 2

´2εn` 2Mπn2 ´ 2n2M0

1´N2

2n

`Mn2
´

npn´ 1q ` N2

1´N2

2

λ2maxpτq

λ2minpσ
´1q

¯ .

The notations of constants and details of the proof can be found in Appendix 6.1.

Lemma 6.3.1. A matrix A is semi-definite if and only if pxAy1q2 ď pxAx1qpyAy1q for all

x, y in Rn. The equality holds if and only if xA and yA are linearly dependent.
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Lemma 6.3.2. If A “ paijq is a positive semi-definite matrix, then there is an index k

such that akk ě aij, for any i and j. In other words, the largest entry of the matrix A

appears on the diagonal.

We show here the derivation in Example 6.3.1.

Proof of Example 6.3.1. Let M be a market without dividends. Suppose that M is

nondegerate and has bounded variance. Suppose M is weakly diverse in [0,T]. Consider

the function G1 and G2 are defined as in example 6.3.1.
a

śn
i“1 mi ď

řn
i“1 mi

n
ď

b

řn
i“1 m

2
i

n
implies that

0 ď G1pmq ď
1

n2
, 1´

N2

2
ď G2pYptqq ď 1´

N2

2n

then

1´
N2

2
ď log G1pmq ` log G2pYptqq ď

1

n2
` 1´

N2

2n
.

The portfolio (6.11) generated by G1 and G2 implies

π`i ą maxt0, 1´ pn` δXN
ptq{VNptqqp1´ ηq `

ˆ

´Yptq
G2pYptqq

˙1

τptqσ´1
ptqeiu; (6.12)

π`i ă mint1`
1´ δ

N
pV `
ptqq1Npπ

`
i ptqqN{VNptq `

ˆ

´Yptq
G2pYptqq

˙1

τptqσ´1
ptqei, 1u. (6.13)

Denote maxi“1,...,n mi “ mp1q, mini“1,...,n mi “ mpnq, maxi“1,...,n πi “ πp1q, mini“1,...,n πi “

πpnq, and the eigenvalues of αptq: maxi“1,...,n λi “ λp1q, mini“1,...,n λi “ λpnq. mmax :“

pmp1q,mp1q, . . . ,mp1qq.

We’ll use the following results to simplify ΞpT q:

(i) M is nondegenerate, weakly diverse and has bounded variation;

(ii) 1
n
ď
řn
i“1 m2

i ď 1 implies that 0 ď ||p1´ nmq|| ď
a

npn´ 1q;
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řn
i“1pπ

`
i q

2 ď 1 implies ||
řN
`“1 π

`1ptqτσ´1||2 ď ||
řN
`“1 π

`1ptq||2 ¨ ||τ ||2 ¨ ||σ
´1||2 ď

N
b

λmaxpψq
λminpαq

, where the norm for τ and σ´1 is matrix induced norm. For a ma-

trix A P Rmˆn,
a

TracepAA1q “ ||A||F ď
?
n||A||2, where || ¨ ||2 is the matrix

induced norm. Tracepττπ1q “
řn
i“1

řN
`“1 τ

`
ii ě nε

řN
`“1p1 ´ π`

p1qq
2, then ||τ ||2 ě

ε
řN
`“1p1´ π

`
p1qq

2;

(iii) |βi| and |αij| for any i and j is bounded by lemma 6.3.2, thus we could easily get

Yptqτptqσ´1ptqβptq ąM0; By lemma 6.3.1, e1iαptqmptq ď pe
1
iαptqeiqpm

1ptqαptqmptqq ď

MM 1||mptq||2 ďMM 1, where e1iαptqei ďM ||ei||
2, m1ptqαptqmptq ďM 1||mptq||2.

ΞpT q “

ż T

0

#

pei ´mptqq1αptqmptq `
´Yptq

G2pYptqq
`

γπptq ´ τσ´1
ptqβptq

˘

` d`ptq
αptq

2
d`1ptq

+

dt

(i)
ď

ż T

0

#

e1iαptqmp1qptq1´ ε||m||
2
`

1

G2pYptqq

N
ÿ

`“1

πm1ptq
`

γπptq ´ τσ´1
ptqβptq

˘

`
M

2

”

||1´ nm||2 `
1

G2pYptqq
||

N
ÿ

`“1

π`1ptqτ `σ´1
||

2
ı

´
ε

2
||π`||2

+

dt

(ii,iii)
ď T

”

MM 1
´
ε

n
`

Mπ

1´ N2

2

´
M0

1´ N2

2n

`
M

2

´

npn´ 1q `
N2

p1´ N2

2
q2

λ2
p1qpτq

λ2
pnqpσ

´1q

¯ı

´
ε

2

ż T

0

max
i
|π`i |

2dt

where

d`ptq :“ 1´ nm´ π`ptq `
´Yptq

G2pYptqq
τσ´1,

max
i
|π`i |

2
ą
“

maxt0, 1´ pn` c`δ
XNptq

Vptq
qp1´ ηq ´

Yiptq
G2pYptqq

τptqσ´1
ptqeiu

‰2
.
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Hence, for t P r0, T s,

log
V `

ec`VNptq
“ log G2pYptqq ` log G1pmptqq ` Ξt

ď 1`
1

n2
´
N2

2n
` T

”

MM 1
´
ε

n
`

Mπ

1´ N2

2

´
M0

1´ N2

2n

`
M

2

´

npn´ 1q `
N2

1´ N2

2

λ2
maxpτq

λ2
minpσ

´1q

¯ı

.

Then π strictly dominates the weighted average VNptq if

T ě
nN2 ´ 2n2 ´ 2

´2εn` 2Mπn2 ´ 2n2M0

1´N2

2n

`Mn2
´

npn´ 1q ` N2

1´N2

2

λ2maxpτq

λ2minpσ
´1q

¯ .

Thus to solve an optimization problem for relative arbitrage opportunities, alterna-

tively, we can study the optimization of generating functions. The researches in [41],

[73], [20] bridge connections between functionally generated portfolios and Cover’s uni-

versal portfolios [19]. Universal portfolio is the average of all constant-weighted portfolios

weighted by their performances.

Note that the wealth qV ptq defined in Theorem 2.2.1 is the average of every investor’s

portfolio weighted by their performances when N Ñ 8. The relationship rV ptq ď qV ptq

satisfies Cover’s celebrated result when π is constant portfolios.
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Chapter 7

Volatility-stabilized model (VSM)

and its numerical methods

This chapter starts to look at the tractability of a single-player relative arbitrage model

- the problem studied in [22]. In Section 7.1, we summarize some important properties

in stock capitalization and market portfolio dynamics, which are closely related to Bessel

processes. In Section 7.2, we give a numerical solution for optimal arbitrage in the

volatility-stabilized market by simulating stocks from Bessel bridges and using the tool

of finite differences and interpolations. With the support of the first two sections, we

derive in Section 7.3 a numerical scheme for multi-player optimal arbitrage problems.

7.1 Volatility-stabilized market model

The volatility stabilized model is introduced in [27], it possesses similar characteristics

in real markets such as the leverage effect, where rates of return and volatility have a

negative correlation with the stock capitalization relative to the market tmiptqui“1,...,n.

In a market described in Section 1.1.1 where investors have no influence on the stock
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price processes nor other investors. A general form of the capitalizations in volatility

stabilized model is

dXiptq “ κXptqdt`
a

XiptqXptqdWiptq, i “ 1, . . . , n, (7.1)

where n ě 2, κ P r1
2
, 1s.

7.1.1 Bessel process

We study the Bessel process and some of its properties as the Bessel process is closely

related to the stock capitalizations.

Definition 7.1.1. For every m ě 0 and x ě 0, the unique strong solution of the equation

dQt “ mdt` 2
a

|Qs|dWt, Q0 “ x

is called the square of m-dimensional Bessel process started at x. Wt is a linear BM,

xW,W yt “ t.

Based on process Qt, the m-dimensional Bessel process follows

Rt :“ sgnpQtq
a

|Qt|, R0 “ sgnpxq
a

|x|.

Let T ą 0, denote the process X :“ tXs, s P r0, T su as the m-dimensional Bessel

bridge with X0 “ x and XT “ c P R. Loosely speaking, X is the process R conditioned

to take the value c at time T . When m ě 2, the Bessel bridge between 0 and 0 over r0, 1s

is the unique solution to

dXt “

ˆ

m´ 1

2Xt

´
Xt

T ´ t

˙

dt` dWt, X0 “ x ą 0.
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The squared Bessel bridge of dimension m is the unique solution to

Xt “ 2

ż t

0

a

XsdWs `

ż t

0

ˆ

m´
2Xt

1´ s

˙

ds.

See [63] for more details. Generally we may use a change of measure approach to get

diffusion of Bessel bridge.

7.1.2 Bessel and Jacobi processes in volatility-stabilized models

The stock capitalization X ptq as the unique-in-distribution solution of (7.1), can be

written as a time changed squared Bessel process. In [34], Bessel process and volatility-

stabilized processes with time change are studied in detail. The total market capitaliza-

tion is

Xptq “ xe
p1`ζqn´1

2
t`Bptq,

where ζ “ 2κ´ 1, Bp¨q is a Brownian motion

Bptq “
n
ÿ

i“1

ż t

0

a

mipsqdWipsq,

its quadratic variation xByt “ t, andW1p¨q, . . . ,Wnp¨q are independent standard Brownian

motions.

We define a continuous, strictly increasing time change

Λptq :“
1

4

ż t

0

Xpsqds.

For each process Riptq “
a

XipΛ´1ptqq, i “ 1, . . . , n, Λ´1ptq serves as the clock.
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Λ´1ptq “ 4
şu

0
ds

R2psq
. We write out the independent Bessel processes R1p¨q, . . . , Rnp¨q

dRipuq “
m´ 1

2Ripuq
du` dŴipuq,

where m “ 4κ “ 2p1` ζq, tŴip¨qui“1,...,n are independent Brownian motions,

Ŵipuq :“

ż Λ´1puq

0

a

Λ1pξqdWipξq, 0 ď u ă 8,

and xŴi, Ŵjypuq “ uδij. It follows that Qip¨q “ R2
i p¨q for i “ 1, . . . , n are independent

squared Bessel processes with order m. Qp¨q “ Q1p¨q ` . . . ` Qnp¨q is a Bessel process

with order mn.

The market weights tmiui“1,...,n in the volatility-stabilized market models is the Jacobi

diffusion process, or Wright-Fisher diffusion in general.

dmiptq “ p1´ ζqp1´ nmiptqqdt`
a

miptqp1´miptqqdW̃iptq.

with
řn
i“1 mi “ 1, W̃iptq is negatively correlated with

covpW̃iptq, W̃jptqq “

$

’

’

&

’

’

%

´ 1
p1´miqp1´mjq

, if i ‰ j

1, i “ j

The joint density of market weights, at fixed times and suitable stopping times is derived

by [55].
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7.2 Grid-based numerical solution of optimal arbi-

trage in VSM

We start from a one-player relative arbitrage problem over r0, T s, which is studied in

[22]: Consider the process

dXiptq “ Xptqdt`
a

XiptqXptqdWiptq, (7.2)

or equivalently

dplogXiptqq “
1

2µiptq
dt`

d

1

µiptq
dWiptq.

Let X ptq :“ pX1ptq, . . . , Xnptqq. Recall that under Assumption 6, we defined the local

martingale Lptq in Definiton 3.2.1.

The best investment opportunity for arbitrage relative to the market portfolio is

characterized as

upT q :“ inf
 

w ą 0
ˇ

ˇDπp¨q P A s.t. V wXp0q,π
pT q ě XpT q, a.s.

(

, (7.3)

where XpT q “ X1pT q ` . . .`XnpT q.

It has shown in [22] that with Markovian market coefficients, (7.3) can be expressed

as

upT ´ t,X ptqq “ ErLpT qXpT q|Fts
LptqXptq

. (7.4)

If the market follows (7.2), the resulting solution up¨q is

upT ´ t,X ptqq “ ErLpT qXpT q|Fts
LptqXptq

“
X1ptq . . . Xnptq

X1ptq ` . . .`Xnptq
E
„

X1pT q ` . . .`XnpT q

X1pT q . . . XnpT q

ˇ

ˇ

ˇ

ˇ

Ft


.

(7.5)
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7.2.1 Challenges of the estimation through finite differences

The optimal quantity u in (7.3) is the minimal non-negative continuous solution

u P C1,2pr0, T s ˆ Rnq of the semi-linear parabolic Cauchy problem,

BU

Bτ
pτ,xq “

1

2

n
ÿ

i“1

n
ÿ

j“1

aijpxqD
2
ijUpτ,xq `

n
ÿ

i“1

n
ÿ

j“1

aijpxqDiUpτ,xq

x1 ` . . .` xn
. (7.6)

up0q “ 1. (7.7)

In the case of (7.2), aij “
a

XiptqXptqδij, where δij “ 1 if i “ j, and δij “ 0 otherwise. To

tackle (7.6) - (7.7) with finite difference methods yield several challenges. First, Upτ,xq

is on an unbounded domain of pτ,xq P R` ˆ Rn
`. Some artificial boundary conditions

of Upτ,xq are required for the implementation. Second, The solutions of (7.6) - (7.7)

are not unique. It is a delicate issue to select the correct minimal nonnegative solution,

especially with a constant initial condition (7.7) and extra boundary conditions. Last

but not least, the grid based numerical schemes are notoriously expensive in terms of its

computational costs, known as “curse of dimensionality”.

One way to reduce these obstacles under grid-based schemes is to consider the prob-

abilistic representation (7.5), where only first order derivative are required to discretize

the processes Xip¨q, i “ 1, . . . , n.

The solution of (7.2) takes values in p0,8qn as noted in [27], thus X ptq and should not

explode or goes to zero. However simulating X ptq by discretizing (7.2) with, for example,

Euler scheme, produces X ptq values that are very close to zero inevitably. This cause

numerical overflow when approximating upT ´ t,X ptqq by (7.5), especially the product

terms X1p¨q . . . Xnp¨q. In numerical experiments we found the approximated solution

explode or goes to zero quite frequently even when the dimension of stocks is as small as

n “ 2.
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Fortunately thanks to special properties of VSM, we can simulate tX ptqutPr0,T s, by

time-changed Bessel processes.

7.2.2 Simulation Algorithm

The m dimensional Bessel process is generated from the Euclidean norm | ¨ | of m-

dimensional Brownian motion W̃ .

Rtpωq “ |W̃ pt, ωq| “ pW̃1pt, ωq
2
` . . .` W̃npt, ωq

2
q
1
2 .

In between of the interpolation points, we model it by the Bessel bridge X of dimen-

sion 2 starting at Xθk such that it finishes at Xθk`1
at time T “ tk`1. We simulate Bessel

bridges Rb
t based on Brownian bridges,

Rb
t “ |Yt| “

“

m
ÿ

i“1

pyitq
2
‰

1
2 ,

where Yt :“ pYtq is the Brownian bridge from a P Rn to b P Rn over r0, T q,

dYt “
b´ Yt
T ´ t

dt` dBt, Y0 “ a.

Hence Rb
0 “ |a|, and by Itô’s formula

dRb
t “

ˆ

m´ 1

2Rb
t

´
Rb
t

T ´ t
`
z
řm
i“1 Y

piq
t

Rb
tpT ´ tq

˙

dt`
m
ÿ

i“1

Y
piq
t

Rb
t

dW
piq
t

“

ˆ

m´ 1

2Rb
t

´
Rb
t

T ´ t
`
z
řm
i“1 Y

piq
t

Rb
tpT ´ tq

˙

dt` dZt,

(7.8)

where z “ |b|. For i “ 1, . . . , n, tW
piq
t u is a sequence of independent Brownian motions.

Zt is a standard Brownian motion since the Levy’s theorem follows that the volatility
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term Zt “
řn
i“1

ş Y
piq
t

Rbt
dW

piq
t is a standard Brownian motion. As a simple example, assume

R0 “ 0, m “ 1, the 1 dimensional Bessel bridge can be generated from the Brownian

bridge Y0 “ a and

dYt “
x´ Yt
T ´ t

dt` dBt, x “ b or ´ b, for t P p0, T q.

Apart from these methods, in [50], the author looks for the exact simulation by

sampling from the probability distribution of squared Bessel bridges and Bessel processes

by randomized gamma distribution. The PDF of the squared Bessel bridge pXtq0ďtďT

conditional on X0 “ a and XT “ c,

pp0, T, t;x, z, yq “
T

2tpT ´ tq
exp

ˆ

´
x̄` ȳ

2t
´
z̄t

2

˙

Iνp
?
xy{tqIνp

?
yz{pT ´ tqq

Iνp
?
x̄z̄{T q

,

where x̄ “ xpT´tq
T

, ȳ “ yT
T´t

, z̄ “ z
T pT´tq

, 0 ă t ă T .

Details of the algorithm

The goal is to estimate u through

upT ´ t,X ptqq “ ErLpT qXpT q|Fptqs
XptqLptq

We develop an algorithm to use X ptq as input and simulate tX psqutďsďT so that LpT q

and thus upT ´ tq can be obtained.

Given the starting time s P r0, T s, the time changed stock capitalization processes

follow squared Bessel processes in m dimension,

Yiptkq “ R2
i ptkq “ XipΛ

´1
ptkqq “ XipΛ

´1
pt0qq `

`

k
ÿ

`“1

∆W pt`q
˘2
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with uniform mesh tk :“ s` k∆t, i “ 1, . . . , n. The time-changed total capitalization of

the stocks is Y ptkq :“
řn
i“1 Yiptkq. Here, denote the clock as θ. The mapping of θk to tk

is

θk :“ Λ´1
ptkq “

k
ÿ

`“1

4

Y pt`q
∆t.

With this, we can find the required range of uniform mesh so that θN´1 ď T ď θN for an

appropriate N .

Next we refine the last segment rθN´1, θN s by the Bessel bridge process (7.8) between

pθN´1, XpθN´1qq and pθN , XpθNqq.

Xs
T “ Rb

XpθN´1q,XpθN q
pT q.

Thus the desiredXpT q is solved by interpolatingRb
XpθN´1q,XpθN q

pθN´1q andRb
XpθN´1q,XpθN q

pθNq.

For example, a linear interpolating result is

Xpθq “
θN ´ θ

θN ´ θN´1

Rb
XpθN´1q,XpθN q

pθN´1q `
θ ´ θN´1

θN ´ θN´1

Rb
XpθN´1q,XpθN q

pθNq,

and let θ “ T , we get the estimation of XipT q and XpT q.

Now we can calculate the optimal arbitrage which is a conditional expectation in

(7.5). As an example, (7.2) corresponds to squared Bessel processes of dimension m “ 4.

Then the optimal arbitrage objective at terminal time is

upT k, xq “
x1 . . . xn

x1 ` . . .` xn
E
„

XpT jq

X1pT jq . . . XnpT jq



.

To solve uT´s,Xs in general, we have

uT´s “
X1psq . . . Xnpsq

Xpsq
E
„

XpT q

X1pT q . . . XnpT q



.
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We demonstrate the steps of the algorithm in Algorithm 1.

Algorithm 1 Solve u by simulating bessel processes in VSM

Input: n “ # of estimating stock processes, NT “ # of uniform meshes on r0, T s, m “

dimension of the time changed Bessel processes to model Xiptq for i “ 1, . . . , n.

1: for sÐ 0 to NT do

2: Initialize the states X psq :“ px1, . . . , xnq, θ0 “ s.

3: k Ð 0

4: while θk ď T do

5: k Ð k ` 1, tk :“ s` k∆t.

6: Generate np samples of m-dimensional independent Brownian Motion W ptkq

7: Simulate np independent, m-dimensional squared Bessel processes Yiptkq “

xi `
`
řk
`“1W pt`q

˘2
q and mn-dimensional squared Bessel processes Y ptkq “

řn
i“1 Yiptkq.

8: θk`1 “ θk `
4

Y ptkq
∆t, where ∆t :“ T {NT .

9: end while

10: Collect tθ0, . . . , θk`1u; Simulate the squared Bessel bridge Rb
Xpθkq,Xpθk`1q

pT q. Eval-

uate XipT q by interpolation techniques between non-uniform mesh points pθk, θk`1q.

11: Compute deflator Lp¨q, and apply it to obtain upT ´ s,Xsq.

12: end for

13: return The optimal arbitrage path upT ´ t,X ptqq for t :“ s∆t, s “ 0, 1, . . . , NT .

The implementation of Algorithm 1 and numerical examples are carried out in Python.

For the sake of consistency with previous sections and simplicity, the numerical examples

are based on (7.2), but we can implement Algorithm 1 under other VSM as well.

Figure 7.1 shows the evolution of upT ´ t,xq with respect to stock values respectively

in one simulation. We generate Bessel processes of m “ 4 dimension and illustrate the
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Figure 7.1: Approximated upT,xq along mesh grids of x. The comparison of computing
without (left) or with (right) Bessel bridges. T “ 1 with n “ 2 stocks.

performance improvements of simulating Bessel bridges for interpolation in both figures.

We approximate upT ´ t,X ptqq conditional on fixed X ptq by one Monte Carlo simu-

lation uvpT ´ t,X ptqq. The given X ptq is sampled from a Gamma distribution. The left

subfigure shows the simulated results from a time changed squared Bessel process. In the

right subfigure, we refine the simulation in the last time grid rθN ´ 1, θN s by using the

Bessel bridge as Algorithm 1 does. By comparing the two figures, we can see the need

for further refinement of the last time grid: We can achieve a more accurate simulated

result especially when x takes values close to zero without increasing the computing time

too much.

In Figure 7.1, the grid size ∆t “ 0.01, and the refinement by Bessel bridges is using

time increment ∆b
t “ 0.001. The number of sample paths m “ 200 of Brownian motions

is used to generate Bessel processes.

We then repeat the simulations multiple times and take the average of the results to

improve accuracy. We present the result in the plots below.

We compute the statstics of uvsmpT,xq across xi P p2, 100q, for i “ 1, 2. In 60 times of

simulations, the mean of uvsmpT,xq is 0.539 and the standard deviation is 0.203. In 100
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Figure 7.2: Approximated upT, xq with px1, x2q generated from a Gamma distribution.
The comparison of computing with (left) or without (right) the initial condition up0,xq “
1 when t “ T . ∆t “ 0.01, interpolation with Bessel bridges is using time increment
∆b
t “ 0.001; number of sample paths m “ 200 of Brownian motions to generate Bessel

processes. T “ 1 with n “ 2 stocks.

times of simulations, the mean of uvsmpT,xq is 0.532 and the standard deviation is 0.126.

In 250 times of simulations, the mean of uvsmpT,xq is 0.531 and the standard deviation

is 0.122.

Next, we summarize the result from the statistics of the output in 100 times of Monte

Carlo simulations. Figure 7.2 and Figure 7.3 show the evaluated quantity of uvsmpT´t,xq

along x and time t axis respectively.

We recognize in Figure 7.2 that when stock capitalization tend to a very small positive

values, the optimal arbitrage quantity u also decreases significantly.

When study the evolution along the time axis as demonstrated from Figure 7.3, the

optimal arbitrage quantity upT ´ tq stays near zero before terminal time T and sees

a immediate surge to 1 since when time to maturity equals zero, or t “ T , the given

condition is up0,xq “ 1. Therefore, boundary conditions might can be added to (7.6)-

(7.7) in numerical computations,

upτ,xq “ 0, pτ,xq P p0, T s ˆOn{t0u, (7.9)
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Figure 7.3: Approximated upT ´ t, xq with px1, x2q randomly generated from a Gamma
distribution. The comparison of computing with (left) or without (right) the close-to-
zero initial values. ∆t “ 0.01, interpolation with Bessel bridges is using time increment
∆b
t “ 0.001; number of sample paths m “ 200 of Brownian motions to generate Bessel

processes. T “ 1 with n “ 2 stocks.

where On is the boundary of the domain r0,8qn.

7.3 A mean field relative arbitrage result

Next, we encompass a class of market models for mean field regimes, where the models

exhibit selected characteristics of real equity markets and provide a tractable mean field

equilibrium.

The smaller stocks tend to have greater volatility than the larger stocks. We construct

the stock capitalization coefficients using this similar idea in VSM. Meanwhile, the trading

volume and the volatility of a stock tends to be negatively correlated. The parameters

β, σ, γ, τ in M are set to the following specific forms which agree with these market

behaviors. For 1 ď i, j ď n, with infinite number of investors,

βiptq “ p1` ζq
1

2miptqZiptq
, aij “

Xiptq

Ziptq
δij;
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γiptq “ Ziptq; ψijptq “ Ziptqδij.

From (5.12),

Bũpτ,x, zq

Bτ
ě Aũpτ,x, zq, ũp0,x, zq “ ec,

where Aũpτ,x, zq “ 1

2

n
ÿ

i“1

xi
zi

ˆ

D2
iiũpτ,x, zq `

2δDiũpτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1

˙

`
1

2

n
ÿ

p“1

zp

ˆ

D2
ppũpτ,x, zq `

2p1´ δqDiũpτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1

˙

`

n
ÿ

i“p“1

?
xi
δDpũpτ,x, zq ` p1´ δqDiũ

`pτ,x, zq

δx ¨ 1` p1´ δqz ¨ 1

`

n
ÿ

i“p“1

?
xiD

2
ipũpτ,x, zq,

for τ P p0,8q, px, zq P p0,8qn ˆ p0,8qn.

We can check that the Fichera drift fip¨q ă 0. Similiarly to Proposition 3.4.1, we can

get ũp¨q ă 1. When ζ “ 1,

DxHipx,yq :“
bipx,yq

aiipx,yq
“
Xiptqβipx,yq

aiipx,yq
“

1

xi
,

DyHipx,yq :“
γipx,yq

ψiipx,yq
“ 1

The benchmark in this case is Vptq “ δXptq ` p1´ δqmt.

Lptq “
x1 . . . xn

X1ptq . . . Xnptq
;

m‹
t “ ErV ‹ptq|Bs “

ecδruT´t
1´ p1´ δqecErruT´t|Bs

.
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Thus by (5.22),

upT ´ tq “
X1ptq . . . Xnptq

Vptq
Er

VpT q
X1pT q . . . XnpT q

ˇ

ˇFBt s

“
1´ p1´ δqecEruT´t|Bs

1´ p1´ δqec
X1ptq . . . Xnptq

Xptq
Er

XpT q

X1pT q . . . XnpT q

ˇ

ˇFBt s.

After taking the conditional expectation of upT ´ tq given FBt in the above equation, we

obtain the result

upT ´ tq “
ruXT´t

1´ p1´ δqecp1´ ruXT´tq
, (7.10)

where

ruXT´t “
X1ptq . . . Xnptq

Xptq
Er

XpT q

X1pT q . . . XnpT q

ˇ

ˇFBt s.

By Theorem 5.1.1, the optimal strategy π`‹i of investor ` in a mean field game is

π‹i ptq “ m‹
i ptq `

1

δ
m‹

i ptqV‹ptqDxi log ũpT ´ tq `
V‹ptq

δXptq
a

Xiptq
Dzi log ũpT ´ tq.

We denote pt as the conditional density of V ptq given Bt, which follows

dpt “
“

´ BvpV ptqπptqβptqptq `
1

2
pV ptqπptqσptqq2Bxxpt

‰

dt´ V ptqπptqσptqpBxptqdWt

“

!

´ Bv
“

V ptq
n
ÿ

i“1

πiptq
1

miptqZiptq
pt
‰

`
1

2
V 2
t

n
ÿ

i“1

π2
i ptq

1

XiptqZiptq
Bvvpt

)

dt

´ V ptq
n
ÿ

i“1

πiptq

d

1

XiptqZiptq
BvptdBt.

Next, plug π‹i ptq into the equation of pt, and let mt “
ş

vptpvqdv, i.e., the consistency

condition, we can obtain a closed form solution of π‹ptq in terms of X ptq, Zptq, ũT´t.

Remark 13. We show here the approach to compute the explicit dynamics of mt when

the function of γp¨q and τp¨q are given. This same approach can be used when γp¨q and

τp¨q need to be solved using (3.23).
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Grid-based numerical schemes in the mean-field case are similar to Algorithm 1, but

without the same coefficient structure in VSM, we should generate processes pX p¨q,Zp¨qq

and the objective (7.10) differently. It is worth mentioning that the dimension of stocks,

the number of time discretization and the number of sample paths all add the complexity

in the algorithm and cause the increase of computation time significantly. When it

comes to a multi-investor problem we discussed in Chapter 4-5, more dimensions of

complexities is included besides the finite difference issue we addressed in Section 7.2:

N -player problem requires all estimations of optimal function u`, ` “ 1, . . . , N ; while

mean field problem needs estimations of mean field measures. The boundary conditions

for z is harder to be understood intuitively or to be characterized.
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Numerical approaches to

High-dimensional PDEs

This chapter starts another important topic of the thesis. We study deep learning schemes

to deal with multiple solutions of high-dimensional PDEs. We carry out experiments on

solving the non-negative minimal solution of relative arbitrage Cauchy problems as an

example.

8.1 Introduction on learning high dimensional PDE

and stochastic games

Traditional ways to solve PDEs usually rely on evolution of operators along spatio-

temporal grids. This poses expensive computational costs especially for high-dimensional

PDEs or the so-called “curse of dimensionality”: the memory requirements and complex-

ity grow exponentially with the dimension.

The following works give mesh-free methods on the probabilistic approximation meth-

ods for PDEs based on suitable deep learning approximations for BSDEs. The deep
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BSDE approach introduced in [37] tackles a class of high-dimensional semilinear PDEs

by reformulating the PDEs using backward stochastic differential equations. Independent

realizations of a standard Brownian motion will act as training data, and the gradient

of the unknown solution is approximated by neural networks. There is a related ap-

proach for FBSDEs in [62], where the parameters of the neural network are learned by

minimizing the loss function over the full time horizon.

To adapt the deep BSDE method for nonlinear PDEs, [40] proposes deep backward

schemes to solve high dimensional nonlinear PDEs. At each time step, the solution and

its gradient are estimated simultaneously by the minimization of sequential loss functions

through backward induction. [7] explains the connection between fully nonlinear second-

order PDEs and 2BSDEs, and introduces the deep 2BSDE scheme.

The deep learning algorithm, or “Deep Galerkin Method” (DGM) first studied in

[67], uses a deep neural network to combine least squares of differential operators and

conditions. By randomly sampling spatial points and time points, it is free of the need

of a global mesh. See [61] and [32] for the papers that use this spirit . Their algorithm

estimates simultaneously by backward time induction the solution and its gradient by

multi-layer neural networks, while the Hessian is approximated by automatic differenti-

ation of the gradient at the previous step.

The second topic of primary interest is numerical methods to solve large population

stochastic differential games. A lot of the learning algorithms in high-dimensional PDEs

we just introduced can be applied to numerical computation of stochastic differential

games.

To solve mean field games problems numerically, one possible way is to solve the

discretized system of forward-backward PDEs. The finite-difference scheme is first intro-

duced by [1], focusing on stationary and evolutive versions of MFG models. Existence

and uniqueness properties and the bounds for the solutions of the discrete schemes are
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also proved. The paper [2] extends the aforementioned finite difference scheme to ex-

tended mean field games where the players interact through both the states and controls.

Similar to Section 8.1, to avoid computational difficulties grid-based characterization of

the Nash equilibrium to two coupled equations: a Hamilton-Jacobi-Bellman equation

and a Fokker-Planck equation. It discusses in [18] about deep neural networks for solv-

ing MFGs, with a particular Deep Galerkin Method architecture, to approximate the

density and the value function by NNs separately.

A different way is to simulate the learning and decision-making process in mean field

games. Following the similarity of the process of reinforcement learning and stochas-

tic games, there is literature using Markov decision process (MDP) and reinforcement

learning algorithms to solve MFG problems in a model-free way - no knowledge of an

exact mathematical model of the MDP is required. In [36] proposes a simulator based

Q-learning algorithm with Boltzmann policy (GMF-Q). [70] proposes a policy-gradient

based algorithm for MFC and a two-timescale approach to solve MFG with finite state

and action spaces. A unified two-timescale Mean Field Q-learning for MFG and MFC

is studied in [4]. The paper [11] connects the theories of MFGs and GANs, where two

neural networks for HJB equation and FP equation are trained in an adversarial direction

of time.

A different aspect to solve stochastic games is through the nature of the evolution

of optimal strategy through a learning process with iterative interaction among players,

called fictitious play. It is first introduced by [9] and is adapted to learning mean field

games in [14]. Literature utilizing this idea with deep neural networks can be found in

[38] for N -player stochastic differential games and [60] for MFG in continuous time.
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8.2 Solving optimal arbitrage by deep learning based

methods

From previous chapters we deal with Cauchy problems with non-unique solutions.

Motivated by that, we discuss deep learning schemes to solve high dimension PDEs with

non-unique solutions.

We recall briefly about some concepts in neural networks and notations. Mathemat-

ically, a neural network can be defined as a directed graph with vertices representing

neurons and edges representing links. The dimension of each layer depends on the num-

ber of neurons of that layer. One basic form of neural networks is the feedforward neural

network. It is composed of each layer’s affine transformation A` and nonlinear transfor-

mations φ, where

A`pxq “W`x` β`, (8.1)

whereW` and β` are the weight and bias term of the layer `, ` “ 1, . . . , L. These param-

eters in neural networks are usually trained using gradient based optimizers iteratively.

8.2.1 Learning Algorithms

We first use a mesh-free method similar to the idea in [67], in order to deal with

higher dimension problems. We randomly sample time and spatial pairs and use deep

learning to solve the PDE problems.

We use the system (8.2)-(8.3), which admits multiple solutions, as an example.

Bupτ,xq

Bτ
´Aupτ,xq “ 0; up0,xq “ 1 (8.2)
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where

Aupτ,xq “ 1

2

n
ÿ

i“1

n
ÿ

j“1

aijpxqD
2
ijupτ,xq `

n
ÿ

i“1

n
ÿ

j“1

aijpxqDiupτ,xq

x1 ` . . .` xn
(8.3)

Inputs and Network Structure

The training data for the designed neural network consists of random samples from the

internal region on which the PDE is defined; and the random sample from the terminal

condition.

Since the input X p¨q follows the stock capitalization processes, we can include this

information in the sampling distribution. For VSM models, we sample tXiptqui“1,...,n

following a Bessel process. Various approaches to get samples from Bessel processes

are discussed in Section 7.2. This guarantees the sampling region is general enough

to represent the true values of stock capitalization. This also reduces the problem of

over-fitting since the samples used for training can be generated many times from Bessel

processes to satisfy the requirement of generalization.

The hidden layers use the similiar idea of LSTM layers. Each layer produces weights

based on the last layer, determining how much of the information gets passed to the next

layer.

Loss function

With samples pti, xiq, the goal is to approximate u with an approximating function

fpt, x; Θq given by a deep neural network with parameter set Θ in every layer from (8.1)

Θ “ tW`, β`uL`“1.

The parameter set Θ is optimized with respect to the loss function with regularization

terms.
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We can write a general differential equation as

F pt, upt, xq, Btu, Bxu, Bxxuq “ 0. (8.4)

The first loss term L1pΘnq is for the distance of the actual (zero) value of the operator

F in (8.4) and the value of F pt, û, Btû, Bxû, Bxxûq with estimated û. Let

||f ||2r0,T sˆRn` “
ÿ

ptn,xnq

|fptn, xnq|
2.

Therefore for (8.2),

L1pΘnq “ ||
BûpT ´ tn,xn; Θnqq

Bt
´AûpT ´ tn,xn; Θnq||, (8.5)

where the operatorA is defined in (8.3). BûpT´tn,xn;Θnqq
Bt

and the counterparts of derivatives

with respect to x is computed by automatic differentiation.

The second term is for the initial condition so that the output at τ “ 0 satisfies

upτ,xq “ 1.

L2pΘnq “ ||ûp0,xN ; Θnqq ´ 1||Rn` , (8.6)

xN P Rn
` is the space sample at time 0. Note that we sometimes need to imposes more

penalty to the deviations from the initial conditions, and this can be done by scaling the

loss terms.

Multiple solution

Another tricky part in algorithm design here is that the algorithm needs to distinguish

multiple solutions and search for the non-negative minimal solution. Most of the works
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on solving high-dimensional differential equations focus on equations that admit a unique

solution. However it is of a great practical need to tackle an ODE or PDE problem that

might have multiple solutions, or to model problems as differential inequalities. One of

the applications in ODE is the Bratu equation also mentioned in [33], which has been

used to model combustion phenomena as well as temperatures in the sun’s core.

One general goal is to find all possible solutions of an equation that permits non-

unique solutions. The paper [33] deals with this goal for one dimensional ODE. Since

the N different solutions of an equation can be trained by a neural network with the

same architecture, the same number of layers and units, but with different weights, an

additional loss function term that characterizes the pairwise distances of solutions can

be added.

We demonstrate outcomes that correspond to multiple solutions of the Cauchy prob-

lems and corresponding relative error for different number of iterations in Figure 8.1. In

particular the relative error is constantly zero when the trivial solution ûp0,xq ” 1 is

achieved. We did not distinguish the correspondence of solution curves and relative error

curves here since that does not give us more information about solutions.

We can see that to learn a solution from a PDE system with nonunique solutions,

more information and knowledge about the PDE itself is needed.

If we take the observed boundary condition of volatility stabilized model into account,

we learn the PDEs with the artificial boundary condition (7.9) and loss L3pΘnq,

L3pΘnq “ ||ûpT ´ t,x0; Θnqq||p0,T sˆOn{t0u (8.7)

i.e., the new loss function is

LpΘnq “ L1pΘnq ` L2pΘnq ` L3pΘnq.
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(a) Training output ûpT,xq curve with respect to dif-
ferent values of px1, x2q.

(b) Relative error regarding number of iterations for
all epochs.

Figure 8.1: Training results of (7.6)-(7.7) on time horizon r0, T s where T “ 1. It uses
uniform meshes of xi P p0, 200s, i “ 1, 2. The size of sample pairs pt,xq in the internal
area and the initial time area is 500 and 100, respectively.

We summarize this method in Algorithm 2. The approach is similar to Deep Galerkin

Method, but we improve some details in the method in order to solve the nonuniqueness

of PDEs.
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Algorithm 2 Learning Cauchy problem based on deep Galerkin (CDG)

1: Generate random samples pairs ptn,xnq P r0, T s ˆ Rn
`. For initial conditions, draw

random samples x P Rn
` when t “ 0.

2: Compute the loss function Lp¨q by

LpΘnq “ L1pΘnq ` L2pΘnq ` L3pΘnq, (8.8)

where L1, L2 is defined in (8.5)-(8.6), L3pΘnq in (8.7).

3: Take stochastic gradient descent at a point psn, xnq,

Θn`1 “ Θn ´ αn∇ΘLpΘ, snq.

Repeat stage 1-3 until convergence criterion is satisfied.

8.2.2 Numerical Experiment

We carry out the experiment using Pytorch in Python. We explain the details in the

algorithm implementation below.

The choice of distributions and functions that we draw the samples pt, xq from is

important to the performance of learning. The performance of the deep learning model in

Algorithm 2 can be boosted by incorporating some special characteristics in the associated

differential equations. For example in VSM, we know x behave like Bessel process, so for

a pair of interior sample ptn, xnq, we first sample tn from a uniform distribution

tn “ t0 ` p1´ t0qU , (8.9)

t0 “ 1e´ 10, U is a random number sampled from standard uniform distribution. Then
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use tn we get the corresponding

xn “ x0 ` p500´ x0q ¨ tn ¨N 2, (8.10)

where x0 “ 1e´ 10, N is a random number sampled from standard normal distribution.

We name Algorithm 2 with input in the form (8.9) - (8.10) as CDG-BE. We will justify

this choice of input by comparing it with xn sampled from other distributions that do

not depend on time or different dependence with time variables. One example we use is

a normal distribution independent of tn, named as CDG-RN.

Specifically, the loss function that we use is LpΘnq “ L1pΘnq ` 10 ˚L2pΘnq `L3pΘnq.

To avoid the cliff region of gradients in parameter updates, especially because of the

initial condition up0q “ 1 in our algorithm, we clip the gradient of loss functions with

the threshold value 100.

The layer parameters (weight and bias) are defined and initialized using Xavier ini-

tialization. The network was trained for a number of iterations (epochs), with random

re-sampling of points for the interior and terminal conditions every 1000 iterations. Pa-

rameter optimization is updated by Adam optimizer, with a learning rate αn “ 1e ´ 03

and MultiplicativeLR learning rate scheduler. In terms of hyperparameters, we use the

number of layers L “ 3, the number of nodes in each layer M “ 50. We use the sigmoid

function as the activation function in every layer.

We run the algorithm with epoch “ 50 (sampling stages), and the number of iterations

in each epoch is 100. Each time the sample size of the internal domain n1 “ 500, and

the sample size of the initial domain n2 “ 100.

We first present a preliminary training result with a uniform mesh in Figure 8.2.

We show an example of how training with prior information improves the efficiency

and accuracy of learning the solutions. It contains the output curves from multiple times
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Figure 8.2: A trained curve of upτ,xq on τ P r0, 1s with n “ 10 stocks. The space
variables xi P r1, 200s, for i “ 1, . . . , n

of training in Figure 8.3. The following Figure 8.3a is a curve trained with sample of x

generated from normal distribution.

In general when a PDE has no analytical result and grid-based method is also hard

to compute in high dimensions. We have seen in Chapter 7 that there is a class of models

with probabilistic representation that is implementable by finite difference method, that

is, volatility-stabilized model, We compare our machine learning result with the result in

Chapter 7 uvsmpt,xq as a metric through uniform grids of time and space. In Table 8.1

we record the error for all sample pairs ptn,xnq between uminptn,xnq and uvsmptn,xnq to

evaluate the performance. uminptn,xnq is evaluated differently with prior information as

(8.9)-(8.10) or without (sampling x from a normal distribution). This comparison is done

by repeatedly running the algorithm for 20, 80, and 500 times.

We omit the output curve of all zero values in the plot in order to have a closer

observation on the plausible minimal solutions, since the output curve of all zero values

is not a solution of (7.6)-(7.7). However, we can solve this issue easily by using the
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(a) Training output ûpT,xq curve repeated 80
times of training with CDG-RN.

(b) Training output ûpT,xq curve repeated 20
times of training with CDG-BE.

(c) Training output ûpT,xq curve repeated 80
times of training CDG-BE.

(d) Training output ûpT,xq curve repeated 500
times of training CDG-BE.

Figure 8.3: The comparison of trained curves ûpT,xq with the boundary condition on
xi P r1, 200s, i “ 1, 2. The training is repeated 20, 80, 500 times. Time horizon r0, T s
where T “ 1.

relative error.

The non-zero curves have higher MAE/MSE and achieve all-one values more often

than using prior information about capitalization processes.

We see that when the training times increased from 20 times to 500 times as in

Figure 8.3b-8.3d, the minimal solution curve comes closer to the baseline result uvsm.

Meanwhile, we do not see a significant improvement from running 500 times to running

1000 times.
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Table 8.1: Accuracy metric of minimal curve ûmin from training with multiple number
of times, using (8.10) input (CDG-BE) or normal input (CDG-RN), comparing with the
baseline solution uvsm

Training times (M) for CDG-BE Training times (N) for CDG-RN
M=20 M=80 M=500 N=20 N=80 N=500

MAE 0.13304 0.12170 0.09092 0.39900 0.40116 0.38187
MSE 0.01965 0.01713 0.01000 0.16000 0.16187 0.14668

Remark 14. To better distinguish different solution outputs, we can define a metric

´
ÿ

n

`puiptn, xnq, ujptn, xnqq.

to compare the value of two outputs uip¨q, ujp¨q from learning algorithms, where `p¨, ¨q is

a given distance metric.

Note that another way to distinguish training outcomes is to compare the correspond-

ing parameters except the single bias term that represents the constant in a solution. A

major drawback of this technique is that training is inefficient, since different set of model

parameters return the same set of solutions.

8.3 Minimal solution of high-dimensional PDEs

The challenges in the aforementioned method to solve PDEs with multiple solutions

is obvious: There are several sources of the uncertainties and inaccuracies while learning

the objective upT ´ t,xq.

Each time we carry out the entire training with given number of epochs, we obtain

an optimal outcome up¨q,

ûpT ´ t,x; Θq “ f pLqpf pL´1q
p. . . f p2qpf p1qpxqqqq, (8.11)
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which can be perceived as either a global optimum or a local optimum in the minimization

problem (8.8). f p1qp¨q, . . . , f pLq are the functions of L layers.

We run the entire training repeatedly for 15 times and illustrate the 15 outputs in

Figure 8.1. The learned (8.11) and the consisting parameters might be approximations of

different solutions of (8.2)-(8.3). However, it is hard to distinguish outputs as the same

or different solution of the PDE by the parameters, because even for the same output u,

it could be induced by a different set of parameters. Under the unsupervised nature, it

is hard to find a standard to indicate whether it learned a correct solution of (8.2)-(8.3).

In certain model set-ups, for instance, in the class of volatility-stabilized models,

we can compare the deep learning outputs with the Monte-Carlo type of solution in

Chapter 7. However generally, there is a lack of analytical results or good approximations

to compare the performance of our algorithm to.

The system (8.2)-(8.3) admits multiple solutions and its continuous minimal non-

negative solution is the unique outcome we intend to solve. So in this section we focus on

the minimal solution of a PDE system, and there is no longer a need to distinguish the

multiple solutions as in Section 8.2. We propose a method based on reflected BSDEs to

solve the minimal solution of PDEs. This method can be applied to a class of differential

equations of which the solution is forced to stay above a given stochastic process, called

the obstacle. Hence we can try to seek a lower bound of (8.2)-(8.3).

8.3.1 BSDEs characterization

We first review some related concepts of BSDEs. For simplicity of notations, we adopt

the specific dimensions of processes as previous relative arbitrage problems.

Recall that a solution pair tpYt, Ztq; 0 ď t ď T u of adapted processes with values in
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Rˆ Rn such that

E
„

sup
tPr0,T s

|Yt|
2
`

ż T

0

|Zt|
2dt



ă 8, (8.12)

solves almost surely the BSDE

Yt “ ξ `

ż T

t

fpYs, Zsqds´

ż T

t

ZsdWs, t ď s ď T. (8.13)

fpy, z, ωq : Rˆ Rn ˆ Ω Ñ R, ξ P L2pΩ,F ,P;Rq.

The assumption below ensures the existence and uniqueness of the solution of BSDE

(8.13). But note that the major goal of this chapter is to deal with PDEs and BSDEs

that admit the nonuniqueness of the solutions.

Assumption 19. The driver f is Lipschitz in py, zq uniformly in pt, ωq P r0, T sˆΩ, i.e.,

@y1, y2 P Rm, @z1, z2 P Rmˆn, |fpt, ω, y1, z1q ´ fpt, ω, y2, z2q| ď Cf p|y1 ´ y2| ` |z1 ´ z2|q

for every pt, ωq P r0, T s ˆ Ω. tfpt, 0, 0qu0ďtďT is progressively measurable on r0, T s ˆ Ω

and

E
ż T

0

|fpt, 0, 0q|2ds ă 8.

We also recall the comparison principle in [58].

Proposition 8.3.1. Let Assumption 19 hold. We suppose also g0 ´ g1 is bounded and

nonnegative, f0 ´ f1 is bounded and nonnegative. Let pY1p¨q, Z1p¨qq P pRm,Rmˆnq solves

Y1ptq “ g1 `

ż T

t

rfps, Y1psq, Z1psqqsds´

ż T

t

Z1psqdW psq,
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and pY0p¨q, Z0p¨qq solves

Y0ptq “ g0 `

ż T

t

rfpY0psq, Z0psq, sq ` f0psqsds´

ż T

t

Z0psqdW psq.

Then

Y1ptq ď Y0ptq, 0 ď t ď T a.s.

Definition 8.3.1. The BSDE (8.13) has a minimal solution pXt, Yt, Ztq if for any other

solution pX 1
t, Y

1
t , Z

1
tq of (8.13), we have Yt ď Y 1t a.s., for all t ď T .

Minimal solutions of Cauchy problem

Next we connect the minimal solution of parabolic differential equations with the

minimal solution of its BSDE formulation. We use the Cauchy problem in the rela-

tive arbitrage model here to explain, but it can extend to other parabolic differential

equations.

We start from a simplified relative arbitrage problem over r0, T s as we did in Chap-

ter 7. The optimal arbitrage u is the minimal non-negative continuous solution u P

C1,2pr0, T s ˆ Rnq of the semi-linear parabolic Cauchy problem (7.6)-(7.7),

Bu

Bτ
pτ,xq “

1

2

n
ÿ

i“1

n
ÿ

j“1

aijpxqD
2
ijupτ,xq `

n
ÿ

i“1

n
ÿ

j“1

aijpxqDiupτ,xq

x1 ` . . .` xn
,

up0,xq “ 1.

We derive here the connection of the nonnegative minimal solution upτ,xq of Cauchy

problem under Markovian assumption where τ is the time to maturity, to the nonnegative

minimal solution of an uncoupled FBSDE. We follow a similiar route of the nonlinear

Feynman-Kac theorem proved in [54], where it connects the unique solution of BSDE
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and quasilinear parabolic PDEs.

Proposition 8.3.2. Suppose u P C1,2pr0, T sˆRnq is a solution of (7.6). Define X ptq :“

pX1ptq, . . . , Xnptqq, for each Xiptq, i “ 1, . . . , n,

dXiptq “ biptqdt`
n
ÿ

k“1

sikptqdWkptq.

Then tFtutPr0,T s-adapted processes tX t,x
r , Y t,x

r , Zt,x
r u :“ tX t,x

r , upT ´ r,X t,x
r q, ps∇uqpT ´

r,X t,x
r qu solves

upT ´ t,X t,x
t q “ up0q ´

ż T

t

fpX t,x
r , Y t,x

r , Zt,x
r qdr ´

ż T

t

pZt,x
r q

TdW prq, (8.14)

where

fpt,Xt, Yt, Ztq “bpxqpsT pt,Xtqq´1sT pt,XtqpDxupτ,xqq
T

´
1

x1 ` . . .` xn
s ¨ sT pt,XtqpDxupτ,xqq

T

“bpxqpsT pt,Xtqq´1Zt ´
1

x1 ` . . .` xn
11spt,XtqZt.

(8.15)

Equivalently, we can rewrite (8.14) as

upT ´ tq “ upT q `

ż t

0

fpX psq, u,Duqds`
ż t

0

ZsdW psq.

Proof. Use Ito’s formula on upτ,xq

dupT ´ t,X ptqq “ pLu´ Bu
Bτ
qpT ´ t,X ptqqdt`

n
ÿ

k“1

RkpT ´ t,X ptqqdWkptq,

where Rpτ,xq is n-dimensional vector with elements Rkpτ,xq “
řn
i“1 xisikpxqDiupτ,xq.

Plug the Cauchy problem (7.6) in, we get the minimal non-negative continuous solu-
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tion of the above equation satisfies Up0q “ 1,

dupT ´ t,X ptqq “ fpX ptq, u,Duqdt`
n
ÿ

k“1

RkpT ´ t,X ptqqdWkptq,

where fpx, U,DUq “
řn
i“1 bipxqDiupτ,xq ´

řn
i“1

řn
j“1

aijpxqDiupτ,xq

x1`...`xn
. Zr :“ RpT ´ r,xq.

For @t ď T , integrate dupT ´ r,X prqq with respect to time r, r P rt, T s,

upT ´ tq “ up0q ´

ż T

t

fpX prq, u,Duqdr ´
ż T

t

ZT
r dW prq.

Therefore tX t,x
r , upr,X t,x

r q, ps∇uqpr,X t,x
r qu where u P C1,2pr0, T s ˆ Rnq solves (8.13).

Consider any continuous function u : r0,8q ˆ p0,8qn Ñ r0,8q solves (7.6)-(7.7).

u‹pτ,xq ď upτ,xq, for every pτ,xq. Thus by Definition 8.3.1, for any triple

tX t,x
r , upr,X t,x

r q, p∇usqpr,X t,x
r qu,

we have u‹pτ,xq ď upτ,xq. Therefore tX t,x
r , u‹pr,X t,x

r q, p∇u‹sqpr,X t,x
r qu is the minimal

solution among non-negative continuous solutions.

Proposition 8.3.3. As the previous set-up, under probability space pΩ,F ,Pq, a solution

triple tpXt, Yt, Ztq; 0 ď t ď T u of tFtutPr0,T s-adapted processes with values in RnˆRˆRn

of

Y t,x
s “ gpX t,x

T q ´

ż T

s

fpX t,x
r , Y t,x

r , Zt,x
r qdr ´

ż T

s

Zt,x
r dWr, t ď s ď T. (8.16)

tX t,x
s utďsďT the unique solution of the forward SDE

Xt “ x`

ż t

0

bprqdr `

ż t

0

sprqdW prq (8.17)
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such that

E
„

sup
tPr0,T s

|Yt|
2
`

ż T

0

|Zt|
2dt



ă 8, (8.18)

where fpx, y, z, ωq : Rn ˆ Rˆ Rn ˆ Ω Ñ R satisfies (8.15), gpωq : Ω Ñ Rn.

Then upT ´ t,Xtq “ Yt solves (7.6) and u P C1,2pr0, T s ˆ Rnq.

Proof. upT ´ t,xq “ Y t,x
t , up0,xq “ gpxq where pX , Y, Zq is a solution of BSDE (8.13).

From [54], for some deterministic u P C0,2pr0, T s ˆ Rnq.

upT ´ t,Xtq ´ upT ´ s,Xsq “ ´
ż t

s

fpXr, Yr, Zrqdr ´
ż t

s

ZrdWr,

thus

upT ´ pt` hq,X t,x
t`hq ´ upT ´ t,xq “ ´

ż t`h

t

fpXr, Yr, Zrqdr ´
ż t`h

t

ZrdWr

As a result

gpxq ´ upT ´ t,xq “
m´1
ÿ

j“0

`

upT ´ tj`1,xq ´ upT ´ tj`1,X
tj ,x
tj`1
q

` upT ´ tj`1,X
tj ,x
tj`1
q ´ upT ´ t, xq

˘

“

m´1
ÿ

j“0

ż tj`1

tj

rLupT ´ tj`1,X tj
r q ` fpX tj

r , Y
tj
r , Z

tj
r qsdr

`

m´1
ÿ

j“0

ż tj`1

tj

rZtj
r ´ p∇uσqptj`1,X tj

r qs,

where t “ t0 ă t1 ă . . . ă tm “ T . Use a sequence of time such that limmÑ8 supjďm´1ptj`1´

tjq “ 0, and we get

upT ´ t,xq “ gpxq ´

ż T

t

rLupT ´ r,xq ` fpx, upT ´ r,xq, p∇usqpr,xqqsdr,
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where gpxq “ up0q. Thus we see u P C1,2pr0, T s ˆ Rnq solves (7.6).

Thus if we have minimal solution of BSDE (8.16), Y ‹t ď Yt then correspondingly it

holds u‹T´t ď uT´t.

In the following part, we explain a possible way to approach the minimal solution of

BSDEs.

Reflected BSDE Implementation

Consider the reflected BSDE, i.e., constraint of lower bound uptq “ Yt ě St, 0 ď t ď

T . St is a continuous obstacle process.

Yt “ gpXT q `
ż T

t

fpXs, Ys, Zsqds´
ż T

t

ZsdWs `KT ´Kt, t ď s ď T. (8.19)

tKtu is continuous nondecreasing predictable process, such that K0 “ 0,

ż T

0

pYt ´ StqdKt “ 0. (8.20)

(8.20) acts as a minimal push since the push happens only when the constraint is attained

Yt “ St.

The minimal solution of (8.19) pY, Z,Kq is in the sense that for any other solution

pỸ , Z̃, K̃q, Y ď Ỹ .

Regarding the Cauchy problem of our interest, its corresponding reflected BSDE

solution tpYt, Zt, Ktq, 0 ď t ď T u of Ft-progressive measurable processes take values in

pR,Rn,R`q.

Recall that we can use the penalization method in [21] to approximate the minimal

solution with pY N , ZN , KNq. Let pxptqq´ “ maxp´xptq, 0q, for continuous and increasing
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process Kt, it follows

Kt “ sup
0ďsďt

ˆ

gpXtq `
ż t

s

fpXr, Yr, Zrqdr ´
ż t

s

ZrdWr

˙´

,

KT ´Kt “ sup
tďsďT

ˆ

gpX t,x
T q `

ż T

s

fpX t,x
r , Y t,x

r , Zt,x
r qdr ´

ż T

s

Zt,x
r dWr

˙´

.

An open question here is to rigorously investigate the relationship between minimal

non-negative continuous solution u‹ of Cauchy problem (7.6) and reflected BSDE (8.19)

with constraint rYt ě 0, for all t P r0, T s. By Proposition 8.3.2 - 8.3.3, the former solution

of (7.6) can be written as tYt, 0 ď t ď T u, a solution of the forward SDE from (8.16),

Yt “ Y0 `

ż t

0

fpXr, Yr, Zrqdr `
ż t

0

ZrdWr, Yt ě 0, 0 ď t ď T. (8.21)

We compare the above with the solution of (8.19), which can be written as

rYt “ rY0 `

ż t

0

fpXr, rYr, rZrqdr `
ż t

0

rZrdWr ´Kt, s.t. rYt ě 0, 0 ď t ď T. (8.22)

However the solutions of (8.21) and (8.22) are not unique, the comparison principles

cannot be applied.

Remark 15. To learn the solution of (8.14), we should avoid modeling the evolution

of X using the finite difference approximations X ptkq, where 0 “ t0 ă . . . ă tK “ T ,

k “ 0, . . . , K. For example, recall the dynamics (7.2). As mentioned in Chapter 7, al-

though we could ensure positive values of discretized X ptkq, k “ 0, . . . , K through logarith-

mic characterization of the dynamics, it can happen quite frequently that the discretized

dynamics evolve to be a small quantity that goes near zero which causes overflow and

loss of precision problem. In volatility stabilized models, we can model X p¨q using Bessel

processes to solve this issue.
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If we consider (8.19)-(8.20) with Yt ě 0, 0 ď t ď T , we can implement the BSDE and

use penalization method in [21] to approximate the minimal solution with pY N , ZN , KNq.

For example, with n-dimensional Brownian motion W on a mesh of r0, T s, i.e., 0 “ t0 ă

. . . , tN “ T , a Euler scheme yields

Y N
tn`1 ´ Y

N
tn “ fpY N

n qptn`1 ´ tnq ´ xZ
N
ptnq,Wtn`1 ´Wtny ´ pK

N
tn`1 ´K

N
tnq,

The initial value upt “ 0, x “ x0q is given. Thus

KN
tn`1

´KN
tn “ N

ż tn`1

tn

pY N
s ´ Ssq

´ds

“ N
“

pY N
tn`1

´ Stn`1q
´
´ pY N

tn ´ Stnq
´
‰

∆t.

8.3.2 Learning minimal solutions of Cauchy problem

To learn the solutions and especially the minimal solutions of PDEs, we analyze the

PDE and its related obstacle problem instead of dealing with BSDE and reflected BSDE

directly.

Obstacle problems

An obstacle tSt, 0 ď t ď T u is a continuous progressively measurable real-valued

process satisfying that ST is bounded almost surely, and

Er sup
0ďtďT

S2
t s ă 8.

Given the obstacle process St, the viscosity solution of obstacle problem (8.23) is shown

in [21] to be equivalent to the associate reflected BSDE (8.19).

As is explained in Chapter 3, the solution Yt of (8.13) is constrained to stay above
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Yt ě St. Thus, we can instead study the probabilistic representation of solutions of some

obstacle problems for PDEs. St “ hpτ,Xtq, τ “ T ´ t.

minrupτ,xq ´ hpτ,xq, Bτu´Aupτ,xqs “ 0, pτ,xq P p0, T q ˆ Rn.

up0,xq “ gpxq, x P Rn

Or equivalently

0 “ Bτu´Aupτ,xq, tpτ, xq : upτ,xq ą hpt,xqu,

upτ,xq ě hpτ,xq, pτ, xq : p0, T q ˆ Rn,

upτ,xq P C1,2
pr0, T s ˆ Rn

q, tpτ, xq : upτ,xq “ hpτ,xqu,

up0,xq “ gpxq, x P Rn.

(8.23)

While the non-negative solution of a parabolic PDE of our interest is

0 “ Bτu´Aupτ,xq, pτ, xq : p0, T q ˆ Rn,

upτ,xq ě hpτ,xq, pτ, xq : p0, T q ˆ Rn,

upτ,xq P C1,2
pr0, T s ˆ Rn

q, pτ, xq : p0, T q ˆ Rn,

up0,xq “ gpxq, x P Rn.

(8.24)

Since we are looking for the minimal solutions satisfying the above (8.23) and (8.24)

correspondingly, we have optimization problems

minupτ,xq

subject to (8.23).

(8.25)
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and

minupτ,xq

subject to (8.24).

(8.26)

As we can see, the domainD1 of (8.25) is a subset of the domainD2 of (8.26), D1 Ă D2.

In other words, (8.23) relaxes the constraints (8.24). Denote ur‹pτ,xq :“ minurpτ,xq as

the optimal value of (8.25) and u‹pτ,xq : minupτ,xq as the optimal value of (8.26). If

both problems are feasible, then ur‹pτ,xq ď u‹pτ,xq.

We earlier proved that the optimal arbitrage opportunity exists because of the Fichera

drift. Therefore in order to search u‹ we put a constraint that u‹ ą 0. Hence hpτ,xq ” 0

here. Further investigation can be carried out for u‹ ď 1.

Algorithm for searching minimal solution of parabolic PDEs

We investigate the deep learning based solutions of the obstacle problem (8.23) and

the Cauchy problem with the non-negativity constraint of solutions (8.24). This is equiv-

alent to learning BSDE (8.14) and reflected BSDE (8.19)-(8.20) and more implementable.

Here (8.20) is

Yt ě 0, 0 ď t ď T. (8.27)

We use the same network structure and similiar implementation details about input,

hyperparameters and loss functions in Section 8.2. Then we add different loss functions

in order to implement (8.23) and (8.24).

Next, we use a smooth penalty function to restrict the trained terminal value ûpT,xn; Θnq P

p0, 1q. In Figure 8.4, we show a sketch of the penalty function

ppxq “ pa´ xqsigmoidph1pa´ xqq ¨ h2 ` px´ bqsigmoidph3px´ bqq ¨ h4, (8.28)

Here let a “ 0, b “ 1, h1 “ h3 “ 10, h2 “ h4 “ 20 in (8.28) and the loss term follows

159



Numerical approaches to High-dimensional PDEs Chapter 8

Figure 8.4: The penalty function ppx; a, bq between ra, bs “ r0, 1s, h1 “ h2 “ h3 “ h4 “

10.

and

L4pΘnq “ ppûptn,xn; Θnqq, (8.29)

to guarantee that it does not create extra local minimums. Local minimums increase

the time of searching for the goal significantly, especially in this problem where we have

multiple solutions of the PDE system.

The loss function used for optimizing parameters here is then consisted of L1p¨q in

(8.5), L2p¨q in (8.6), L3p¨q in (8.7), L4p¨q in (8.29),

LpΘnq “ L1pΘnq ` L2pΘnq ` L3pΘnq ` L4pΘnq. (8.30)

We carry out the deep learning scheme in Algorithm 2 for 80 times of training and

compare with or without the loss term L4pΘnq. In the following graphs, Figure 8.5a and

Figure 8.6a correspond to multiple solutions uobspΘnq of the obstacle problem ((8.19) with

obstacle inequality (8.27)). While the obstacle inequality is not presented in Figure 8.5b
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and Figure 8.6b, i.e., these two plots correspond to multiple solutions of (7.6)-(7.7). We

can see that learning the associated obstacle problem tends to give smaller solutions than

the original PDEs. In addition, the smallest solution curve of (8.19) and (8.27) is lower

than the smallest curve of (7.6)-(7.7). More importantly, as we will see more clearly

in the end of this section, modelling the associated obstacle problem/ reflected BSDE

pushes the trained solution significantly closer to the benchmark minimal solution from

Monte-Carlo methods.

(a) Training output ûobspT,xq curve of (8.23). (b) Training output ûpT,xq curve of (8.24).

Figure 8.5: The comparison of trained curves ûpT,xq with and without an inequality
constraint on xi P r1, 200s, i “ 1, 2. The training is repeated 15 times.

(a) Training output ûpT,xq curve of (8.23). (b) Training output ûpT,xq curve of (8.24).

Figure 8.6: The comparison of trained curves ûpT,xq with and without an inequality
constraint on xi P r1, 200s, i “ 1, 2. The training is repeated 80 times.
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We summarize the process of learning the minimal solution of Cauchy problems by

obstacle problem in Algorithm 3. As in Algorithm 2, tn is sampled from uniform distribu-

Algorithm 3 Obstacle Cauchy deep Galerkin (O-CDG)

1: Generate random samples pairs ptn,xnq P r0, T s ˆ Rn
`, and sample pairs pτn,x

0
nq P

r0, T s ˆOn{t0u. For initial conditions, draw random samples x P Rn
` when t “ 0.

2: Compute the loss function Lp¨q by

LpΘnq “

4
ÿ

i“1

LipΘnq, (8.31)

where L1, L2 is defined in (8.5)-(8.6), L3p¨q is in (8.7) and L4p¨q in (8.29).
3: Take stochastic gradient descent at a point sn,

Θn`1 “ Θn ´ αn∇ΘLpΘ, snq.

4: Repeat stage 1-3 until convergence criterion is satisfied.
5: Repeat stage 1-4 for sufficient amount of times and take the smallest training output.

tions, and xn is sampled from another distribution that is a function of the corresponding

time sample point tn. The sufficient amount of repetitions in Algorithm 2 is in the sense

that no more significantly smaller output curves can be learned from more repetitions of

training.

The training is on the time horizon r0, T s where T “ 1. The size of sample pairs pt, xq

in internal area and initial time area is 500 and 100, respectively.

We lay out the accuracy metrics of the current obstacle method O-CDG with previous

methods (CDG-BE and CDG-RN) in Table 8.1 in order to present the performance

improvements.

We can extend this chapter’s result to the mean field problem in Chapter 5. More

specifically, (5.8) and the non-negative minimal continuous solution of (5.12).
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(a) Training output ûpT,xq curve repeated 80
times of training.

(b) Training output ûpT,xq curve repeated 500
times of training.

Figure 8.7: The comparison of trained curves ûpT,xq of (8.23) with the boundary con-
dition on xi P r1, 200s, i “ 1, 2. The training is repeated 80 and 500 times.

Table 8.2: Accuracy comparison of minimal curve u with the current state of the art
uvsm. We show the performance metrics for O-CDG, CDG-BE and CDG-RN in 80 and
500 times of training.

Training times
O-CDG CDG - BE CDG - RN

M = 80 M = 500 M = 80 M = 500 N = 80 N = 500
MAE 0.11115 0.09199 0.12170 0.09092 0.40116 0.38187
MSE 0.01371 0.00898 0.01713 0.01000 0.16187 0.14668

Conclusion

High-dimensional PDEs are very widely used in science and engineering models. In

the beginning of this chapter, we introduced the current literature on solving high-

dimensional PDEs which focuses on the PDEs with unique solution.

Generally PDEs we deal with may admit to multiple solutions. The uniqueness of the

solution usually requires specific conditions on the operators of PDEs and their initial

and boundary conditions. However PDEs with multiple solutions is a challenging topic

both theoretically in that it is hard to have a comparison principle alike result, and

numerically, in that it adds more complexity onto high-dimensional problems. We can
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train multiple times to get approximations to different solutions of the PDEs. But how

to efficiently determine and distinguish different solutions from a large number of outputs

remains a challenge.

We propose several remedies for learning PDEs with non-unique solutions.

Firstly, since the nonuniqueness of PDEs is often caused by insufficient boundary and

initial conditions, adding artificial conditions that can be justified for specific problems

can help. For example, in the relative arbitrage problem of volatility stabilized market, we

add artificial boundary conditions to the PDE. A suitable artificial boundary condition

is also helpful in grid-based methods when solving PDEs numerically.

Secondly, when using deep learning methods, applying prior information of specific

problems to the learning would improve the training performance in a large scale. In deep

Galerkin method we used, the inputs rely on sampling from time and space variables.

Specify a suitable distribution of samples follow is a substantial factor to the training

performance in this case.

Thirdly, we propose to use the associated reflected BSDE or obstacle problem of the

PDE to clarify the range of multiple solutions. O-CDG method is helpful for finding the

minimal solution as well as narrow the range of true solutions in PDEs with non-unique

solutions.

The approach we propose in this chapter unfold more general forms of PDE prob-

lems one can approximate the solutions by deep learning. In particular, we provide an

application of this deep learning approach, that is, the minimal non-negative solution of

a Cauchy PDE in relative arbitrage problems.
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We list some interesting topics that can be studied in the future.

Open questions

• There can be various ways to model the interaction of markets and investors. First,

let us consider the same market model we provide in this thesis, with information of

a group of investors coming into the market dynamics. Then a different information,

or investors compete with others in a more general way - a general benchmark.

Second, we can consider mean field control problems with cooperative players or a

different game model similar to the one in [23], where the market opposed to an

investor is constructed as a zero-sum 2-player game.

• From the numerical aspect, we have seen that the volatility-stabilized market model

provides us with a computationally easy way to simulate the solution of Cauchy

problems of our interest. However in general a deep learning scheme for PDEs

might not have a plausible baseline solution and thus it is difficult to check the

performance of deep learning results. How do we solve this issue? What metrics

are we able to use in a more general case?

• We discussed relative arbitrage problems when given some terminal time T ě 0,

i.e., the goal of the investors we consider is to realize relative arbitrage over a fixed

horizon r0, T s. We can relax this by taking terminal time T `, an investor-wise input.

Another concept short term relative arbitrage has been discussed in several refer-

ences to show relative arbitrage opportunities over arbitrarily short time horizons.

Short term relative arbitrages in certain volatility-stabilized market models are dis-

cussed in [5] using functionally generated portfolios. We can think about the short

term relative arbitrage opportunities in our model.

Moreover, based on the current results from Nash equilibrium and functionally
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generated portfolio, can we relieve the requirements on coefficient estimation for

practical use?
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Appendix

A.1 Market dynamics and conditions

Proof of Propositions 3.1.1. Since everyone follows V `pT q ě ec`VNpT q, we sum up this

expression for ` “ 1, . . . , N to get an inequality of
řN
`“1 V

`ptq{N , and (3.5) follows

immediately in Proposition 3.1.1. Next, (3.6) in Proposition 3.1.1 can be easily derived

from Definition 3.1.1 that if

c` ď log

ˆ

V `pT q

VNpT q

˙

“ log

ˆ

V `pT q

δXNptq ` p1´ δq 1
N

řN
`“1 V

`pT q

˙

, ` “ 1, . . . , N,

then the relative arbitrage exists in the sense of (3.4).

A.2 Relative arbitrage and Cauchy problem

Proof of Proposition 3.2.1. From Ito’s formula, discounted process pV `p¨q admits

dpV `
ptq “ pV `

ptq
`

π`1ptqσptq ´ θ1ptq
˘

dW ptq; pV `
p0q “ pv`,
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and pV `p¨q is a supermartingale. For this reason, we get from (3.10) that for an arbitrary

ω`,

ω`VNp0q ě E
“

pV `
‰

ě E
„

pXpT qδec` ` LpT qp1´ δqec`
1

N

N
ÿ

`“1

V `
pT q



:“ p`.

Hence, u`pT q ě p`.

To prove the opposite direction u`pT q ď p`, we use martingale representation theorem

(Theorem 4.3.4, [53]) to find

U `
ptq :“ E

“

ec`VNpT qLpT q|Ft
‰

“

ż t

0

p̃1psqdWs ` p
`, 0 ď t ď T, (A.1)

where p̃ : r0, T s ˆ Ω Ñ Rk is F-progressively measurable and almost surely square in-

tegrable. Next, construct a wealth process V˚p¨q “ U `p¨q{Lp¨q, it satisfies V˚p0q “ p`,

V˚pT q “ ec`VNpT q. If we plug a trading strategy

h˚p¨q “
1

Lp¨qV `p¨q
α´1

p¨qσp¨qrp̃p¨q ` U `
p¨qΘp¨qs,

into (3.8), further calculations imply V˚p¨q ” V p,h˚p¨q ě 0 a.s. V p,h˚p¨q is the wealth

process from h˚p¨q. Therefore, h˚p¨q P A with exact replication property V p,h˚pT q “

ec`VNpT q a.s. Consequently, p` ě u`pT q for

p`

VNp0q
P
 

ω ą 0|Dπ` P A, given π´`p¨q P AN´1, s.t.V ωVN p0q,π`
ě ec`VNpT q

(

.

Thus, we proved u`pT q “ E
“

ec`VNpT qLpT q
‰

{VNp0q.

Proof of Theorem 3.3.1. Suppose a solution of (3.22) and (3.14) is w̃` : C2pp0,8q ˆ

p0,8qnˆp0,8qnq Ñ p0,8q. Define Ñptq :“ w̃`pT´t,XN
r0,ts,Yr0,tsqec`VNptqLptq, 0 ď t ď T .

By calculating dÑptq{Ñptq and using the inequality (3.22), we get that the dt terms

in dÑptq{Ñptq is always no greater than 0. Ñptq is a local supermartingale. And since
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Ñptq “ w̃`pT ´ t,Xr0,ts,Yr0,tsqec`VNptqLptq ě 0, Ñptq is a supermartingale.

Hence Ñp0q “ w̃`pT,x,yqVNp0q ě EPrÑptqs “ EPrec`VNpT qLpT qs holds for every

pT,x,yq P p0,8q ˆ p0,8qn ˆ p0,8qn. Then w̃`pT,x,yq ě EP
“

ec`VNpT qLpT q
‰

{VNp0q “

ũ`pT,x,yq.
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