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Common neural choice signals can emerge 
artefactually amid multiple distinct  
value signals

Romy Frömer    1,2,3,4 , Matthew R. Nassar    2,5, Benedikt V. Ehinger    6 & 
Amitai Shenhav    1,2,7,8

Previous work has identified characteristic neural signatures of value-based 
decision-making, including neural dynamics that closely resemble the 
ramping evidence accumulation process believed to underpin choice. 
Here we test whether these signatures of the choice process can be 
temporally dissociated from additional, choice-‘independent’ value 
signals. Indeed, EEG activity during value-based choice revealed distinct 
spatiotemporal clusters, with a stimulus-locked cluster reflecting affective 
reactions to choice sets and a response-locked cluster reflecting choice 
difficulty. Surprisingly, ‘neither’ of these clusters met the criteria for an 
evidence accumulation signal. Instead, we found that stimulus-locked 
activity can ‘mimic’ an evidence accumulation process when aligned 
to the response. Re-analysing four previous studies, including three 
perceptual decision-making studies, we show that response-locked 
signatures of evidence accumulation disappear when stimulus-locked and 
response-locked activity are modelled jointly. Collectively, our findings 
show that neural signatures of value can reflect choice-independent 
processes and look deceptively like evidence accumulation.

Over the past few decades, research has made major advances toward  
understanding how people make value-based choices between  
competing options (for example, items on a restaurant menu or in 
a store catalogue). This research has identified consistent neural  
correlates of the values of the options under consideration1,2 and  
characterized the process that gives rise to decisions among them, both 
neurally and computationally3–7. However, drawing clear links between 
neural and computational investigations of value-based choice has 
been complicated by the fact that neural correlates of value can reflect 
processes outside of the ongoing decision (for a review see ref. 8).  
For instance, engaging with a choice set can trigger evaluations of  
one’s options that are relatively automatic (for example, Pavlovian)  

and potentially independent of the decision process itself2,9–16. Distin-
guishing such choice-independent neural value signals from those that 
play a mechanistic role in the choice process requires disentangling  
the two types of signal within a measure of neural activity that provides 
the temporal resolution to uncover their unfolding dynamics. Here we 
use electroencephalography (EEG) to explicitly tease apart value-based 
neural dynamics attributable to decision making from those that are 
not, and reveal, surprisingly, that ‘only’ the latter, choice-independent 
value signals were to be found.

Prevailing computational models show that decision making can 
be described as a process of noisy evidence accumulating to a decision 
threshold, providing an account of choice behaviour (choices and 
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activity previously observed, for instance, in the CPP (Fig. 1a, top). 
The alternative hypothesis, motivated by our recent fMRI findings, is 
that we would observe appraisal-related patterns of activity that are 
selectively locked to stimulus presentation (reflecting their potentially 
more reflexive nature), independently of choice-related value sig-
nals. These choice-related value signals may take the form of CPP-like 

response times (RTs)) across a variety of different choice settings17,18. 
In the context of value-based decision-making, putative correlates of 
this evidence accumulation process have been identified throughout 
the brain4–6,19, often reflecting variability in the strength of evidence 
in favour of a particular option or attribute, and a subset of studies 
has used temporally resolved estimates of neural activity to capture 
the dynamics of this evidence accumulation process. From this work, 
a putative EEG signature of evidence accumulation has emerged 
in the centroparietal positivity (CPP), both for perceptual20–22 and 
value-based4 choice. Researchers have shown that the CPP demon-
strates three characteristic elements of evidence accumulation (cf. 
Fig. 1a): (1) following stimulus presentation, activity is greater and peaks 
earlier when decision-related evidence is stronger (consistent with a 
more rapid rise of evidence accumulation when choices are easier), 
(2) activity peaks around the time of the response (consistent with a 
common response threshold) and (3) in the period leading up to the 
response, due to the slower accumulation and thus shallower slope, 
activity is greater when evidence is weaker and/or responses are slower. 
The latter effect is sometimes part of a cross-over pattern and comple-
mented by an opposite effect at the time of response, reflecting perhaps 
a decrease in decision threshold for longer RTs through an urgency 
signal or a modulation of the overlapping readiness potential20,23,24, 
specifically in paradigms where there is a clear onset and offset of the 
physical evidence25,26. The CPP is thus a potential index of value-based 
processing that is integral to decision making per se.

However, recent studies have shown that neural correlates  
of choice value can reflect appraisals of the choice set as a whole,  
that take place irrespective of whether the participant is comparing 
their options9,13. For instance, using functional magnetic resonance 
imaging (fMRI), dissociable components of the brain’s valuation  
network1 were found to track how much participants liked a set of  
choice options overall versus elements of the choice process itself, 
for example, whether they were engaged in choice versus appraisal 
and how demanding the choice was11–13. These studies suggest that 
value-related activity may emerge soon after the stimuli are pre-
sented that is tied to choice-independent, appraisal-like processes. 
They further predict that signatures of this appraisal process should  
be distinguishable from the evidence accumulation signatures 
described above, both in terms of the specific correlates of value that 
each of these tracks and, critically, in terms of their temporal dynamics  
(Fig. 1a): whereas appraisal-related processes should index the  
overall value of a choice set, and occur transiently and locked to the 
presentation of the choice options, choice-related processes should 
index comparisons between one’s options (for example, the rela-
tive value of the chosen vs unchosen option). The latter may reflect 
evidence accumulation, in which case such activity should ramp up 
between stimulus presentation and response selection (cf. refs. 3,4), 
or other choice-related processes (for example, monitoring one’s con-
fidence). Past work has been unable to test these predictions because  
it lacked the temporal resolution needed to demonstrate these  
distinct temporal profiles and to formally tease apart signals that 
meet the criteria of evidence accumulation from those that do not. As 
a result, it is unknown whether these value-related signals are indeed 
distinct or merely two components of a unitary choice process (Fig. 1a; 
cf. refs. 5,27).

To fill this critical gap, we had participants make value-based 
decisions while undergoing EEG, and explicitly disentangled putative 
correlates of choice-independent appraisal processes (for example, 
overall value and set liking) from correlates of the process of choice 
comparison (for example, relative value and choice confidence). This 
allowed us to test two alternative hypotheses (Fig. 1a). One hypothesis 
is that value-related EEG activity would only emerge in the form of 
an evidence accumulation process, in which case we would expect 
any value-related variables (including overall value) to demonstrate 
characteristic patterns of stimulus-locked and response-locked  
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Fig. 1 | Dissociating appraisal- and choice-related processes. a, A set of options 
can elicit distinct evaluations, such as appraisal of the options and choice among 
them. Different frameworks make different predictions for whether and how 
these should affect neural activity locked to the response versus the stimulus. 
Top: one account predicts that appraisal and choice reflect different temporal 
stages of a unitary evidence accumulation process, such that relevant variables 
(for example, value similarity, blue) would be reflected first in stimulus-locked 
activity and culminate at the time of the response. Middle/bottom: alternative 
accounts predict that appraisal reflects an independent process that emerges 
during stimulus presentation. Under these accounts, neural activity correlated 
with choice-related variables may emerge as a parallel process of evidence 
accumulation (that is, both stimulus-locked and response-locked, middle) or in 
some other form as a non-accumulation-related signal (shown response-locked 
only as a stylized example, the shape and directionality of the signals may differ; 
bottom). b, To dissect the temporal dynamics of appraisal- and choice-related 
neural activity, we regress single-trial EEG activity onto appraisal-related 
and choice-related variables (see Fig. 2c) separately for stimulus- and 
response-locked activity. b0, b1 and b2 are weights for intercept, appraisal PC and 
choice PC, respectively.
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evidence accumulation signals (Fig. 1a, middle), or some other form 
(Fig. 1a, bottom).

We were able to rule out the first hypothesis, instead find-
ing appraisal-related EEG activity that was both stimulus-locked 
and independent of choice comparison-related activity. Putatively 
choice-related EEG activity, by contrast, occurred in a distinct tem-
poral window (response-locked) and with a different spatial profile 
(fronto-posterior) than the spatiotemporal cluster we identified for 
appraisal (stimulus-locked and parietal). Remarkably, these puta-
tive choice value signals ‘also’ did not meet key criteria for an evi-
dence accumulation signal. Instead, and even more striking, we 
found that such apparent evidence accumulation signals can emerge  
from ‘choice-independent’ stimulus-locked activity, as an artefact  
of standard approaches to investigating evidence accumulation  
processes, due to bleed-over between stimulus-locked and response- 
locked activity (particularly for rapid choices). Confirming this, when 
we apply a novel analysis approach that deconvolves stimulus and 
response-related activity to four previous decision-making studies,  
we eliminate response-locked signatures of evidence accumulation  
previously observed in those data. As a result, our findings collectively, 

and unexpectedly, support a third hypothesis (Fig. 1a, bottom): 
that value signals separately correlated with appraisal-related and 
choice-related processes emerge during value-based decision-making, 
but neither of these reflect evidence accumulation.

Results
We recorded EEG while participants made incentive-compatible choices 
between pairs of options (consumer goods). Choice sets varied in the 
overall and relative value of the two options, as determined by ratings 
of individual items given earlier in the session (Fig. 2a,b). Participants’ 
choice behaviour was consistent with that observed in previous stud-
ies and predicted by prevailing models of evidence accumulation3,4,17: 
participants chose faster (linear mixed models (LMM) fixed effect: 
b = −348.7, t = −6.00, P < 0.001, two-sided, 95% confidence interval 
(CI) = [−462.72 to −234.72]) and in a manner more accurate/consistent 
with their initial item ratings (generalized linear mixed model (GLMM) 
fixed effect: b = 4.54, z = 12.40, P < 0.001, two-sided, 95% CI = [3.83 to 
5.26]) as value difference increased, and also chose faster as overall 
value increased (LMM fixed effect: b = 357.14, t = 6.70, two-sided, 
P < 0.001, 95% CI = [−461.62 to −252.65]; Fig. 2b and Supplementary 
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Fig. 2 | Integrating multiple measures of appraisal and choice. a, Participants 
performed the experiment in three phases, rating consumer goods individually 
(Phase 1) before choosing between pairs of those items (Phase 2, ITI denotes 
intertrial interval) and finally rating their subjective experiences of those choices 
(Phase 3: set liking (appraisal), confidence and anxiety). b, Responses across 
these phases provided different measures of appraisal and choice. Top: option 
sets for Phase 2 were generated on the basis of participants’ initial item ratings  
to vary in their overall (average) value and the absolute difference between the  
values of the two options. Middle: choices varied with the relative value of the 
chosen vs unchosen option, and RTs varied with both overall value and value 
difference. Shown are linear mixed effects model predictions. Error bars indicate 
95% CIs. Bottom: overall value (OV; dashed) and value difference (VD; solid) 

differentially influenced experiences of choice anxiety, confidence and set liking. 
Shown are linear mixed effects model predictions. Error bars indicate  
95% CIs. P(right chosen) denotes the probability of choosing the item on the 
right. V(right) denotes the value of the item on the right, and V(left) denotes the 
value of the item on the left. c, We used principal component analysis to reduce 
the dimensionality of our measures, identifying two principal components in our 
variable set, clustering naturally into variables associated with appraisal (PC1) 
versus choice (PC2). Component loadings for each measure are represented 
by their distance from the origin. Anxiety is self-reported anxiety/stress while 
making the decision. Liking is self-reported attractiveness of the item set. 
Confidence is the self-reported confidence in the ultimate choice.
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Table 1). After making all of their choices, participants provided sub-
jective ratings of the choice sets (how much they liked the sets as a 
whole) and of the choices themselves (how much choice anxiety they 
had experienced while making the choice, and how confident they 
were in their final decision).

Distinct spatiotemporal clusters for appraisal vs choice
We predicted that we would find a temporal dissociation between 
neural activity associated with appraisal versus choice, whereby 
appraisal-related activity would be temporally coupled with the onset 
of the stimuli, whereas choice-related activity would be temporally 
coupled with the response. To test this prediction, we analysed the 
effects of appraisal- and choice-related variables on the same EEG data 
locked to the onset of the stimuli versus locked to the response. Given 
that a number of different variables captured our two constructs of 
interest (for instance, appraisal was captured by the overall (average) 
value of the choice set and subjective ratings of set liking, and choice 
was captured by the difference between the option values and subjec-
tive ratings of confidence (cf. Fig. 2b)), we used principal component 
analysis (PCA) to reduce the dimensionality of these single-trial meas-
ures and improve the robustness of our estimates of each construct.

This PCA identified two reliable principal components (Fig. 2c and 
Supplementary Table 2), one associated with how positively the option 
set had been assessed overall (for example, positively loading on over-
all value and on ratings of choice set liking) and the other associated 
with how difficult the choice comparison was (for example, negatively 
loading on value difference and on ratings of choice confidence).  
We termed these the Appraisal PC and Choice PC, respectively.

We regressed stimulus and response-locked single-trial EEG  
activity for each participant at each sensor and each time point onto 
these appraisal- and choice-related PCs (cf. Fig. 1b), and identified  
significant stimulus- and response-related clusters associated with  
each PC using cluster-based permutation tests on the resulting 
t-statistics at the group level. We found that the PCs mapped onto 
distinct spatiotemporal patterns (Fig. 3 and Supplementary Fig. 1). In 
line with our predictions, we found that our Appraisal PC explained EEG 
activity locked to (and following) stimulus onset (Fig. 3a; P = 0.040, 
two-sided cluster permutation test; see Methods), but not locked 
to the response (neither preceding nor following). The largest 
stimulus-locked cluster had a parietal distribution, peaking around 
710 ms at CP2. Further in line with our hypothesis, we observed signifi-
cant Choice PC-related activity locked to (and preceding) the response 
(Fig. 3b; P = 0.002 for a positive cluster and P < 0.001 for the negative 
cluster based on two-sided cluster permutation tests), but not locked 
to and following the stimulus. The response-locked Choice PC activity  
included a frontocentral positive cluster, peaking around −566 ms 
at FC4, and a posterior negative cluster, peaking around −818 ms at 
P5. Similar clusters emerged when performing separate analyses on 
variables that constituted each of the PCs (Supplementary Table 3).

Neither cluster is consistent with evidence accumulation
Our analyses suggest that two value-related EEG patterns emerge  
during value-based choice. The first of these was stimulus-locked, 
tracked appraisal-related measures (that is, assessments of how 
much the participant liked the set overall), and had a timing and spa-
tial distribution similar to that of the late positive potential (LPP), an 
event related potential (ERP) commonly found to index the affective 
salience of stimuli28–30, suggesting that this stimulus-locked cluster 
may index processes unrelated to the choice itself. By contrast, the 
response-locked value clusters we observed tracked measures of choice 
comparison (for example, how much more valuable one option was than 
the other and how certain the participant was in their choice) and had a 
spatiotemporal profile consistent with frontoparietal EEG patterns that 
have been previously implicated in value-based decision-making3,31. 
The posterior cluster overlapped topographically with the CPP4,20–22. 

We therefore reasoned that this response-locked cluster was a good 
candidate for providing an index of the evidence accumulation process 
leading up to the choice, and performed follow-up analyses to test 
whether activity in this or the more anterior cluster met the criteria 
for such a process.

Typically, evidence accumulation signals are also evident in 
stimulus-locked activity because responses fully overlap with the 
stimulus time-window, leading to the characteristic greater and 
earlier peaks for faster evidence accumulation. Since in our study 
response times are longer, the absence of this pattern is expected. 
Surprisingly, however, neither of our response-locked clusters met the  
two response-locked criteria for signatures of evidence accumula-
tion. First, rather than ramping towards a temporally common peak 
(marking the response threshold) immediately before a response, we 
found that activity peaked more than 500 ms before the response. 
Second, rather than seeing greater activity leading up to a response 
on harder choice trials, reflecting the slower rate of evidence accu-
mulation expected for those trials (compare light and dark lines in 
Fig. 3b), we instead found the opposite. Both frontal and posterior 
clusters showed greater amplitudes for easier as opposed to more 
difficult trials.

The fact that our data failed to meet either of these criteria was 
particularly notable for our posterior cluster, given its apparent overlap 
with the centroparietal positivity, the event-related potential most 
strongly associated with evidence accumulation. To better understand 
this discrepancy from previous work, we performed follow-up analyses 
focused directly on the CPP proper. Specifically, we tested for a key 
marker of evidence accumulation traditionally observed in the CPP: 
that slower trials (which require more evidence accumulation and 
exhibit a shallower slope) should show larger amplitudes leading up 
to the response than faster trials3,4. In our study, CPP amplitudes in 
the pre-response time window (700 to −200 ms as in previous work4) 
instead showed the opposite pattern: significantly larger for shorter 
relative to longer RTs (LMM fixed effect: b = −0.47, t = −3.10, P = 0.002, 
95% CI = [−0.77 to −0.17]). Similar findings emerge when using value 
difference as a proxy for choice difficulty (as in the analyses above): 
CPP amplitude was larger for easier than harder choice trials (LMM 
fixed effect: b = 0.62, t = 1.77, P = 0.077, 95% CI = [−0.07 to 1.31]) rather 
than the reverse.

One possible explanation for this apparent contradiction has to  
do with differences in the timing of choices in our study relative  
to previous studies. Our participants were given up to 4 s to make 
their choice, in contrast to shorter response windows in earlier work 
(for example, 1.25 s; ref. 4). The evidence accumulation signal may 
therefore have been more spread out in time within our data, leading 
to the expected greater activity for slower/more difficult trials to occur 
earlier. To investigate this possibility, we examined the average ERP 
curves on trials above and below the median RT (Fig. 4a).

Moving far enough back in time, to ~1 s before response onset, we 
do see that the relative magnitudes of slow and fast trials reverse such 
that slow trials elicit greater activity than fast trials, as predicted by an 
evidence accumulation account. However, at odds with this account, 
we also see that slower trials elicit much ‘earlier’ peaks than faster 
trials. To understand why these peaks were systematically shifting in 
time, we plotted the single-trial amplitudes underlying the median RT 
averages and sorted them by RT (Fig. 4a, top). This revealed a marked 
positive amplitude response in all trials (red line) ~350 ms following 
stimulus onset (black line), and the rise and peak of the ERP curves 
approximately followed the respective temporal distributions of this 
response (compare Fig. 4a top and bottom).

We therefore considered that the discrepancy between our find-
ings and those previously observed (cf. Fig. 4b, top) may have been 
caused by overlap with this choice-unrelated response (stimulus ERP 
jitter, Fig. 4b, middle) which may have masked the expected evidence 
accumulation signal. We therefore performed a separate analysis, 
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analogous to standard event-related analyses for fMRI, which explicitly 
modelled stimulus-locked and response-locked activity, allowing them 
to be formally deconvolved from one another32–34. Similar to our previ-
ous analyses, this approach again identified a positive stimulus-locked 
appraisal cluster with a centroparietal distribution (peak ~810 ms 
at electrode Pz, P = 0.004, two-sided cluster permutation test) and 
response-locked choice clusters over frontal (positive, peak around 
−722 ms at electrode AFz, P = 0.010, two-sided cluster permutation test) 
and parietal (negative, peak around −616 ms at electrode P8, P = 0.010, 
two-sided cluster permutation test) sites, respectively (Supplemen-
tary Figs. 1 and 2). This approach also showed no stimulus-locked 
choice effects, or response-locked appraisal effects. Thus, despite 
successfully disentangling the stimulus- and response-locked activity, 
it did not change our overall pattern of results; even after controlling  
for component overlap, our response-locked pattern remained incon-
sistent with evidence accumulation.

Component overlap can look like evidence accumulation
These findings led us to question whether rather than ‘masking’ evi-
dence accumulation signals in our findings, stimulus-locked activity 
may have spuriously ‘caused’ signatures of evidence accumulation 
in previous work. As we indicated earlier, most studies investigating 
evidence accumulation signals in EEG involved much faster decisions 
of ~750 ms on average in ref. 4 (cf. Fig. 5a), ~800 ms on average in ref. 20 
and ~1 s on average in ref. 21 (except for a perturbation condition with 
additional stimulus dynamics). One possibility is therefore that the 
characteristic response-locked evidence accumulation pattern in previ-
ous studies was driven by overlap between ‘stimulus-related’ activity 
(for example, related to the salience of the stimuli) and response-locked 
activity34. This ‘component overlap’ account can explain basic features 
of CPP data (Fig. 5a, bottom) and makes a distinct prediction: rather 
than activity remaining locked to the response (as predicted by an evi-
dence accumulation account), a component overlap account predicts 
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that the peak of the CPP should move back in time as RTs increase 
(Fig. 5b, bottom). Consequently, for short RTs, variability in the extent 
of overlap between stimulus-related and response-related activity with 
RT would produce an artefactual ramping signal in average ERPs that 
appears steeper for faster and shallower for slower responses. To test 
this possibility, we produced the same ERP plots as above for the subset 
of trials that had RTs shorter than 1.25 s, as in previous studies (Fig. 5b, 
top). Compared with the entire dataset, the peaks for this subset of 
short RTs moved closer to the response and, crucially, a pattern remi-
niscent of the CPP emerged, with slower RT trials in this range displaying 
a larger parietal positivity of up to 500 ms before the response. Our 
collective pattern of results across both short and long RTs therefore 
exactly matches the predictions of the component overlap account 
(Fig. 5a,b, bottom).

To test whether these findings replicate in an independent sample,  
we examined the CPP in a separate value-based decision-making data-
set (Study 2; N = 39) and found the same pattern: at odds with typical 
findings, CPP amplitudes in the pre-response time window (700 to 
−200 ms; ref. 4) were again significantly larger for shorter relative to 
longer RTs (LMM fixed effect: b = −1.01, t = −6.58, P < 0.001, two-sided, 
95% CI = [−1.30 to −0.71]), and for easier than for harder choice trials 
(LMM fixed effect: b = 0.87, t = 2.32, P = 0.027, two-sided, 95% CI = [0.13–
1.60]). When plotting fast and slow RT trials in a fast subset of the data 
(RT < 1.25 s) and across all trials as in Fig. 5, we reproduce the moving 
peaks that follow the distribution of stimulus onsets (see Supplemen-
tary Fig. 3).

However, it is still difficult to generalize from these results because 
in both studies, our average RTs were longer than those in previous 

studies, even when only focusing on our subset of short-RT trials (those 
below 1.25 s). As a result, rather than peaking exactly at the time of 
response (as is characteristic of past CPP results), EEG activity during 
that subset of trials peaks slightly before the response. To provide a 
more direct test of our hypothesis that the evidence accumulation 
effects in the CPP could originate from a component overlap artefact, 
we re-analysed EEG findings from four previous datasets in which 
response times were more tightly constrained: one collected during 
value-based decision-making (Study 3; ref. 4) and the other three col-
lected during perceptual decision-making25,35,36. In the value-based 
decision-making study, participants (N = 21) chose among pairs of 
snack items while their EEG was recorded and had to respond within 
1.25 s from stimulus onset. The authors found that behaviour was 
well-captured with a drift diffusion model (DDM) and reported the 
typical response-locked CPP evidence accumulation signal (cf. Fig. 4a, 
top). In the first perceptual decision-making study (Study 4; ref. 36), 
EEG was recorded while participants (N = 40) decided whether a deviant 
object in a circular array of objects was on the left or right side of the 
display (Fig. 6). Objects in the array were chosen to be visually similar 
and presented either intact or blurred, which serves as an index of 
evidence strength and modulated performance accordingly (lower 
accuracy and slower RTs for blurred compared with intact stimuli). 
Stimuli were presented for 200 ms and participants had up to 2 s from 
stimulus onset to respond. In the second perceptual decision-making 
study (Study 5; ref. 25), EEG was recorded while participants (N = 17) 
determined which of two overlaid gratings had a higher contrast. Unlike 
the other studies, stimuli were not suddenly presented but faded in 
at equal contrast and switched to the target contrasts after a random 
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time interval simultaneously with a tone signalling the change. The evi-
dence was then presented for 2,400 ms within which participants had 
to respond. In the third perceptual decision-making dataset (Study 6; 
ref. 35), EEG was recorded while participants (N = 17) judged the overall 
blueness versus redness of compound stimuli that varied in the blue, 
red and purple hue of their components. Stimuli were presented for 
160 ms and participants had 1,200 ms to decide.

When we separately re-analyse stimulus-locked and response- 
locked activity using mass-univariate analyses analogous to standard 
ERP analyses, we find the characteristic CPP indices of evidence accu-
mulation over centroparietal sites in all four studies. Response-locked 
analyses revealed that activity peaked at the time of the response and 
rose with a steeper slope for fast relative to slow trials in value-based 
decision-making (Fig. 6a, top), and for intact relative to blurred stimuli  
(Fig. 6b, top) and fast relative to slow trials (Fig. 6c,d, top) in percep-
tual decision-making, resulting in more positive CPP amplitudes 
for trials that putatively required more evidence accumulation  
(cf. Fig. 1a). The centroparietal positivity in all studies therefore meets 
response-locked criteria for signatures of evidence accumulation. 
However, because these analyses do not explicitly account for the 
overlap between stimulus-related and response-related components, 
they cannot distinguish whether the response-locked patterns reflect 
evidence accumulation or stimulus-related activity. To formally disen-
tangle these, we again applied the deconvolution approach introduced 
earlier32, including stimulus and response events in a single model of 
neural responses. After deconvolution, we no longer find significant 
response-locked signatures of evidence accumulation in any of the 

datasets (Fig. 6a–d, bottom), suggesting that in our previous analysis, 
this characteristic pattern of evidence accumulation was predomi-
nantly an artefact of component overlap (see Supplementary Fig. 4 
for corresponding stimulus-locked activity).

So far, we assumed that signatures of evidence accumulation 
should be closely tied to the response. This is the typical prediction in 
the literature and plausible if non-decision time (comprising stimulus 
and motor processes at both ends of the evidence accumulation pro-
cess) is constant, and the time required for motor processes is short. 
However, both stimulus and motor processes can vary from trial to 
trial, leading to an evidence accumulation process that is not closely 
tied to either stimulus or response. The only model that explicitly and 
independently accounts for these variance components is the neurally 
informed DDM26. To test whether unfold’s deconvolution approach 
would be robust to detecting evidence accumulation signals, either 
response- or stimulus-locked, when accounting for these different 
forms of variability, we simulated the neurally informed DDM (simula-
tion code adapted from ref. 20) for strong and weak signals with varying 
ratios of stimulus and response variability. The simulations confirm 
that signatures of evidence accumulation need not be response locked. 
The simulations also show that, as response variability increases, unfold 
will increasingly assign activity to the stimulus event rather than the 
response event (Supplementary Fig. 5). Importantly, these simulations 
show that ‘any’ signatures of evidence accumulation are recoverable, 
either at the stimulus, the response or both. The simulations also 
provide us with qualitative alternative predictions for signatures of 
evidence accumulation under different ratios of stimulus and motor 
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Fig. 5 | Evidence accumulation signals emerge as an artefact of component 
overlap. a, A representative CPP finding (data from ref. 4) shows faster 
ramping for ERP curves from fast compared with slow trials. Histograms show 
distributions of stimulus onsets relative to the response for each average ERP 
curve. Simulation: component overlap can generate an evidence accumulation-
like pattern under plausible assumptions about RT distributions. Note that 
these simulations assume the same response-related component for all trials 
(black line), omitting any evidence accumulation. For fast response times 
(<900 ms on average), overlapping stimulus- and response-related components 
are predicted to resemble a single ramp-like component. The peak time and 

shape of the underlying component will depend on the mean and width of the 
RT distribution of trials in each ERP average. b, Data from our decision-making 
study are consistent with component overlap predictions. Shown are average 
ERPs for median split fast and slow RTs below 1.25 s (left) RT across all trials 
(right), respectively. Histograms show distributions of stimulus onsets relative 
to the response. Stimulus-evoked peaks move further away from the response as 
response times increase (top). Peak times and widths of the observed ERP curves 
vary with the mean and width of the RT distribution of the underlying trials. This 
pattern of results is consistent with a component overlap account (bottom).
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variability. Specifically, under the model of ref. 26, we would expect 
that as motor variability increases, evidence accumulation signals 
would be evident in a greater ‘stimulus’-locked amplitude for easy/fast 
compared with hard/slow trials.

Of the four datasets we analysed, the only one in which we observed 
a pattern in principle consistent with such stimulus-locked evidence 
accumulation signatures, but also with non-integration accounts, 
was the visual search dataset36 (see Supplementary Fig. 4b). To test 
whether signatures of evidence accumulation may have been moved 
towards the stimulus in the remaining datasets and thus missed in our 
previous analyses, we re-analysed these data again, this time allowing 
stimulus-locked data to vary with response time in addition to allowing 
response-locked data to vary. The resulting patterns in the remaining 
datasets showed neither significant response-locked signatures of 
evidence accumulation, nor the predicted stimulus-locked amplitude 
modulations, and were thus inconsistent with any of the simulated 
patterns (Supplementary Fig. 6). For Study 5, the results are somewhat 
ambiguous due to a significant baseline difference, which if taken into 
account may produce a stimulus-locked peak difference in the expected 
direction. However, these findings are complemented by results show-
ing that signatures of evidence accumulation can no longer be found 
using mass-univariate analysis following RT-agnostic overlap correc-
tion of the data (Supplementary Fig. 7).

Discussion
Previous work has identified reliable neural correlates of choice value 
and interpreted them as elements of a uniform choice process in which 
option values are compared through an accumulation-to-bound 
process. These interpretations have been reinforced by evidence of 
such neural correlates ramping up towards the response, as would be 
expected of activity associated with evidence accumulation4. However, 

recent work suggests that certain neural correlates of choice value 
are unrelated to goal-directed processes such as evidence accumu-
lation and instead reflect the appraisal of one’s options9,11,13. Here 
we tested whether we could use EEG to temporally dissociate such 
choice-independent value signals from choice-related value signals. 
We anticipated that choice-independent value signals would follow 
shortly after stimulus onset, whereas choice-related activity should 
be coupled to and lead up to the response. We found this expected 
temporal dissociation. Remarkably, however, we found that the identi-
fied choice-related activity was inconsistent with evidence accumula-
tion and that instead, putative signatures of evidence accumulation 
can emerge artefactually in standard response-locked analyses from 
overlapping stimulus-related activity. Across three value-based 
decision-making studies and three perceptual decision-making  
studies, we show that signatures of evidence accumulation are  
absent when stimulus-locked and response-locked activity are suf-
ficiently separated in time and disappear when overlapping activity 
is formally deconvolved.

It is important to note that our observation that correlates of 
appraisal (for example, overall value) occur earlier in time than cor-
relates of choice (for example, value difference) does not in and of 
itself suggest that these signals arose from independent processes. 
Indeed, this same temporal pattern (overall value signals preced-
ing value difference signals) is predicted to emerge from certain 
forms of unitary evidence accumulation processes, such as those of  
refs. 5,27,37,38. However, models such as these ‘also’ predict that 
all these value signals should emerge locked to the response (Sup-
plementary Fig. 8). At odds with such an account, we only found 
stimulus-locked correlates of appraisal (unlike response-locked choice 
correlates). Our findings are thus better explained by ‘separate’ mecha-
nisms related to appraisal and choice.
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correcting for component overlap. a, Regression ERPs (rERPs) from a mass-
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dataset (ref. 4, cf. Fig. 5a) exhibit a CPP with characteristic signatures of evidence 
accumulation. Decisions based on weaker evidence (slow compared with fast) are 
associated with a slower response-locked ramping of CPP amplitude, resulting 
in larger CPP amplitudes before the response. When re-analysing these data with 
a deconvolution approach that models both stimulus-related and response-
related activity (bottom), we find that response-locked rERPs no longer show the 
characteristic evidence accumulation pattern. b–d, rERPs from a mass-univariate 

analysis (top) of three independent perceptual decision-making datasets exhibit 
a CPP with characteristic signatures of evidence accumulation. Decisions based 
on weaker evidence (blurred stimuli/slower responses) are associated with slower 
response-locked ramping of CPP amplitude, resulting in larger CPP amplitudes 
before the response. When re-analysing these data with a deconvolution approach 
that models both stimulus-related and response-related activity (bottom), we 
find that response-locked rERPs no longer show the characteristic evidence 
accumulation pattern. Data are shown with average reference. b, Data from ref. 36. 
c, Data from ref. 25. d, Data from ref. 35. a–d, Grey bars indicate temporal clusters 
significant at P < 0.05, cluster permutation corrected for multiple comparisons.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 8 | November 2024 | 2194–2208 2202

Article https://doi.org/10.1038/s41562-024-01971-z

The distinctiveness of these two sets of value signals is further 
supported by the fact that they were linked to distinct topographies. 
As predicted, we found appraisal-related activity temporally locked 
to stimulus onset, as reflected in a parietal positivity consistent with 
an LPP ERP component28–30. The distribution and timing of this com-
ponent parallel previous ERP findings on single-item valuation39,40 and 
therefore may be interpreted as reflecting an initial valuation stage 
before the onset of an independent choice comparison process41–43. 
Notably, the LPP is sensitive to affective information even when that 
information is not task relevant29,44 and its putative sources45 overlap 
with the pregenual anterior cingulate cortex and posterior cingulate 
cortex regions in which we previously found choice-independent set 
appraisals13. Collectively, these findings suggest that rather than an 
initial choice-related valuation step, these appraisal-related signals 
reflect an automatic valuation signal46, or enhanced attention to such 
motivationally relevant events47,48. Accordingly, we found that the vari-
able that best predicted activity in our appraisal cluster was a partici-
pant’s affective appraisal of the set (that is, set liking; Supplementary 
Table 2). Thus, appraisal-related activity may reflect initial (and perhaps 
reflexive) affective reactions to the stimuli (cf. refs. 11,13) and possibly 
serve to inform control decisions45,49 and/or future choices50.

In contrast, choice-related activity was temporally locked to the 
response and was characterized by a prominent frontocentral nega-
tivity and concomitant posterior positivity, consistent with previous 
findings demonstrating increased time–frequency coupling between 
frontoparietal regions and stronger frontocentral beta power during 
value-based compared with perceptual decision-making3,31. However, 
across two independent studies, follow-up analyses showed that this 
pattern of activity was inconsistent with it reflecting the ‘evidence 
accumulation’ process leading up to the choice3,4,20,21 in that ampli-
tudes were larger for easier (or faster) rather than for more difficult 
(or slower) trials. Thus, rather than merely constituting a negative 
result (that is, lacking support for evidence accumulation reflected in 
the CPP), our results consistently ‘positively’ contradict such predic-
tions in favour of a different explanation. Our findings also rule out 
alternative versions of this evidence accumulation account whereby 
the decision threshold (or urgency signal) varies between decision 
types with known differences in difficulty35 or over the course of the 
decision26. These varying-threshold accounts would still predict that 
activity would be locked to one’s response and are thus ruled out by 
the backward-shifting peaks we observed.

If these choice value correlates do not in fact reflect elements of 
the evidence accumulation process, what might they reflect? A promi-
nent alternative account of such correlates would propose that signals 
associated with choice difficulty (for example, value difference) that 
we observe in our choice clusters might instead reflect monitoring (for 
example, conflict or confidence), which could inform higher-order 
decisions about further information sampling and potential infor-
mation gain51–63. Recent work in value-based decision-making is con-
verging on the idea that value-based choice as studied here requires 
higher-order decisions on gaze/attention allocation in the service of 
information sampling that fundamentally rely on representations of 
both value and uncertainty54–56,58,64–67. This functional interpretation is 
consistent with proposed loci of CPP activity in dorsal anterior cingu-
late cortex4 and decrements in choice consistency when frontocentral 
coupling is disrupted during value-based choice31. While intriguing, this 
interpretation requires additional work to test specific predictions of 
a monitoring or active information search account.

Whatever the nature of these signals, our results call for cau-
tion when interpreting response-locked neural patterns as evidence 
accumulation. Across six datasets, we found that evidence accumula-
tion signatures in the response-locked CPP may artificially arise from 
response time-dependent overlap with stimulus-related processing. 
This was true across both value-based and perceptual decision-making 
tasks. Considering the value-based decision-making studies only,  

one may have hypothesized that there is no CPP signature of 
value-based evidence accumulation, because the CPP is specific to 
perceptual evidence accumulation that precedes and is a necessary 
precursor to value-based evidence accumulation (cf. ref. 8), perhaps 
implemented through subcortical circuits. Yet, the collective findings 
of our re-analysis of three perceptual decision-making datasets speak 
against this hypothesis.

This is particularly notable since in their original analyses, ref. 25 
had used a different algorithm, RIDE68, to subtract stimulus-locked 
activity associated with the auditory evidence onset cue and 
found the typical CPP patterns intact. This method separates early 
stimulus-locked components that are tightly temporally coupled from 
later activity that is not closely temporally coupled to the response, a 
central component. However, merely subtracting the stimulus-locked 
component determined this way neither offers information as to 
whether this central component is more aligned with the stimulus or the 
response, nor does it account for this component in response-locked 
analyses of the remaining data. If this central component occurred 
somewhat aligned to the stimulus, albeit more loosely than the early 
stimulus-locked activity, as a transient ERP, analysing it locked to the 
response would still result in the same component overlap effect iden-
tified in this paper, and under certain conditions give the appearance 
of a ramp. Our findings suggest that the central component preserved 
in ref. 25 is indeed locked to the stimulus as a canonical P3 ERP. This 
component is commonly observed for most behaviourally relevant 
visual stimuli, including feedback, regardless of response times, and 
is thought to potentially reflect a form of monitoring69.

A crucial signature of evidence accumulation is that the corres-
ponding signal peaks close to the time of the response, with that peak 
occurring earlier for faster compared with slower decisions. This is 
frequently observed for the CPP in perceptual decision-making when 
the onset of the relevant stimulus is purposefully obscured, thus when 
the ‘subjective’ onset of the stimulus can vary relative to the ‘objec-
tive’ onset20,26,70,71. However, other decision-making studies that have 
identified the CPP as a signature of evidence accumulation only show 
response-locked activity4,35; in some cases where stimulus-locked activ-
ity was examined, including our present results, the expected latency 
effect was not found45. Our work highlights the importance of testing 
multiple predictions.

Doing so, several studies have shown that evidence accumulation 
signals simulated from diffusion model fits to behaviour reproduce 
the CPP in detail, including its stimulus- and response-aligned wave-
forms, the relationship between its pre-response amplitude and choice 
RT, and accuracy and modulations of its pre-response amplitude by 
experimental manipulations of time pressure and previous knowledge 
(for example, refs. 21,22,26). Here we highlight several cases in which 
some of the relevant characteristics could emerge artefactually from 
component overlap by virtue of evidence accumulation and compo-
nent overlap sharing a common link to response time. Thus, in addition 
to testing multiple predictions of evidence accumulation accounts, 
future research can avoid misinterpretations of neural activity by 
inspecting ERP image plots for temporal patterns in single-trial data 
and deconvolving stimulus and response-locked signals32 to show that 
the putative evidence accumulation pattern cannot be produced by 
component overlap alone.

Perhaps more importantly, our results reveal that the very nature 
of the evidence accumulation signal expected in the study at hand may 
vary drastically as a function of decision parameters, such as stimulus 
or motor variability, the shape of the decision bound/urgency para-
meters and so on. Rather than testing out-of-the-box predictions, we 
therefore recommend that future research into signatures of evidence 
accumulation apply the analysis approaches outlined above to the 
empirical data as well as simulations from a best-fitting model informed 
by independent measures of stimulus and motor variability, as well as 
bound/urgency parameters26.
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While we have provided evidence for the pervasive risk that 
these artefacts pose for inferring evidence accumulation from 
response-locked signals, we cannot claim to have definitively ruled 
out that the CPP can in certain cases carry the signature of an evi-
dence accumulation signal. For instance, one finding that is not easily 
accounted for by component overlap is the observation of ref. 21 that 
perturbations in the stimulus lead to expected patterns in the CPP 
(see also ref. 72). In a continuous detection task, where participants 
needed to indicate when a stimulus was disappearing, O’Connell and 
colleagues21 showed that briefly increasing stimulus contrast led to an 
attenuation of the average stimulus-locked CPP that ramped up again 
as stimulus contrast continued to reduce. Such a pattern is difficult to 
explain with component overlap alone but may still be accounted for 
by other non-integration accounts. Novel approaches are therefore 
needed to test the evidence accumulation hypothesis against alterna-
tive non-integration models73,74. Along these lines, some studies have 
employed repeated stimulus presentations to better characterize 
how signatures of evidence accumulation evolve with each piece of 
evidence75,76.

Our findings build on recent work in non-human animals, which 
has demonstrated that signatures of evidence accumulation can  
be necessary but not sufficient to conclude that a given neural  
population underpins the evidence accumulation process that drives 
choice. Using deactivation approaches, such studies have called into 
question the role of candidate regions of decision making in parietal 
and prefrontal cortex that showed patterns expected for evidence 
accumulation using standard approaches59,77–79 (but see also ref. 80). 
Similar to these findings, our work shows that evidence of accumula-
tion is not sufficient to argue for an evidence accumulation account, 
and that to better understand the array of signals that appear over the 
course of a decision, we need to incorporate insights from affective 
science, metacognition and cognitive control8.

Methods
Participants
For the main study, 48 participants were recruited from Brown  
University and the general community. Of these, 9 had to be excluded 
due to technical problems during data acquisition. The final sample 
consisted of 39 participants (27 female), with a mean age of 20.84 years 
(s.d. = 3.90). Participants gave informed consent and received US$10 
per hour for their participation (US$30 for the entire experiment). 
In addition to the compensation, participants could win one of 
their choices at the end of the experiment. The study was approved  
by Brown University’s Institutional Review Board (IRB) (Approval  
number: 1606001529).

The sample in study 2 comprised 39 participants recruited from 
Brown University and the general community. Participants (26 female, 
mean age 23.92, s.d. = 5.14) gave informed consent and received US$10 
or US$15 per hour for their participation (the hourly rate as per IRB 
approval was increased after the study commenced and participants’ 
payments were adjusted accordingly moving forward). This study was 
approved by Brown University’s IRB (Approval number: 1606001529) 
and not incentivized.

Please see the original publications for detailed participant 
information in Study 3 (N = 21; ref. 4), Study 4 (N = 40; ref. 36), Study 5 
(N = 17; ref. 25) and Study 6 (N = 17 after exclusion of 3 participants with 
non-matching behavioural and EEG data35).

Task and procedure
The main experiment consisted of 3 parts: value rating, choice and 
subjective experience rating (Fig. 1a). The experimental procedure 
is an adapted version of that used in previous studies11,13 to meet the 
requirements of EEG, specifically in the choice part.

In the first part, participants were presented with consumer goods, 
one at a time, and asked to rate how much they would like to have each 

of them on a continuous scale from 0 to 10 with zero being ‘not at all’ 
and 10 being ‘a great deal’. Labels presented below each item sup-
ported their identification. Participants were encouraged to use the 
entire scale. On the basis of individual ratings, choice sets were created 
automatically, varying value difference and set value such that in half 
of the choices, variance in value difference was maximized, while in 
the other half, value difference was minimal and variance in set value 
was maximized12.

In the second part, participants had to choose between two items 
presented left and right of a fixation cross by pressing the ‘A’ or ‘L’ key 
on a keyboard with their left or right index finger, respectively. At 
the beginning of the choice part, participants were placed at 90 cm 
distance to the screen with the keyboard in their lap and their fingers 
placed on the response keys. Images were presented with a size of 2 ° 
visual angle (115 pixels) each, centred at 1.3 ° visual angle (77 pixels) 
from a centrally presented fixation cross. Thus, the entire choice set 
extended to maximally 2.3 ° visual angle in each hemifield. This small 
stimulus size was chosen as to reduce eye movements by presenting 
the major portion of the stimuli foveally within a radius of ~2 ° visual 
angle81. At the time of the response or after a maximum duration of 
4 s, the stimuli vanished from the screen and a fixation cross was pre-
sented for a constant 1.5 s intertrial interval. Before the beginning of the 
choice part, participants were informed that one of the choices would 
be randomly selected for a final gamble at the end of the experiment 
that would give them the opportunity to win the item they chose on 
that trial (N = 20 who won and received an item).

In the third part, participants were presented with all choices 
again to sequentially rate (1) their anxiety while making each particular 
choice, (2) their confidence in each choice and (3) how much they liked 
each choice set, respectively. For all subjective evaluations, the scales 
ranged from 1 to 5, mapped onto the corresponding number keys on 
the keyboard.

In the beginning and at the end of the experimental session, demo-
graphic and debrief data were collected, respectively, using Qualtrics. 
All subsequent parts were programmed in Psychophysics Toolbox82,83 
for MATLAB (v.2016b, MathWorks) and presented at 60 Hz on a 23 inch 
screen with a 1,920 × 1,080 resolution. Before the main experiment, 
participants filled in computerized personality questionnaires  
(Behavioural Inhibition/Activation Scales (BIS/BAS), Neuroticism 
subscale of the NEO Five Factor Inventory, Intolerance for Uncertainty 
Scale, and Need for Cognition). These data were not analysed for the 
present study.

Study 2 differed in the following respects (cf. ref. 84): before the 
value ratings, participants viewed all items twice, once with labels and 
once without. During the second viewing, they were asked to indicate 
whether they could recognize each item without seeing the label.  
During value ratings, participants for each item additionally evalu-
ated their confidence in the value rating on a scale from 1 (not at all 
confident) to 5 (very confident). During the choice phase, rather than 
all at once, items were presented by alternating individually at the 
centre of the screen until a decision was made, or 5 s elapsed while the 
duration of each item presentation was varied. One item was always 
presented longer on average than the other. Specific presentation 
durations on each turn were drawn from different distributions for long 
(mean = 500 ms, s.d. = 100 ms) and short presentations (mean = 200, 
s.d. = 50); these distributions were informed by previous work85. 
Response buttons corresponding to each item were coded via blue 
and red coloured frames around the options and manipulated inde-
pendently of the order and duration of item presentation.

In Study 3 (ref. 4), participants chose among pairs of previously 
rated snack items and had to respond within 1.25 s from stimulus onset. 
The difficulty of trials was manipulated by varying the value difference 
between options across 4 levels (1 through 4).

In Study 4 (ref. 36), participants decided whether a deviant object 
in a circular array of objects was on the left or right side of the display. 
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Objects in the array were chosen to be visually similar and presented 
either intact or blurred, which serves as an index of evidence strength 
and modulated performance accordingly (lower accuracy and slower 
RTs for blurred compared with intact stimuli). Stimuli were pre-
sented for 200 ms and participants had up to 2 s from stimulus onset  
to respond.

In Study 5 (ref. 25), participants performed a contrast discrimina-
tion task in which they decided which of two overlaid grating patterns 
had a higher contrast. Participants were cued to either emphasize 
accuracy or speed and were rewarded when their responses met the 
current condition and punished when they did not. A trial began with 
a regimen cue, followed by neutral stimuli with equal contrast, which 
changed to the target stimulus alongside a tone to signal evidence onset 
and stayed on screen for 2,400 ms. Participants received feedback 
following their response.

In Study 6 (ref. 35), participants judged whether stimuli, each 
consisting of a circular array of 8 red, blue and purple circles, were 
more blue or more red on average. Across trials, the coloured circles 
varied in their colour strength (for example, how clearly the stimulus 
was blue or red rather than purple) and in their variance (for example, 
how variable the hues of the circles were). Stimuli were presented for 
160 ms and participants had 1,200 ms to respond. Participants were 
cued to one of four conditions (high mean, low variance; low mean, 
low variance; high mean, high variance; low mean, high variance). They 
also provided prospective and retrospective confidence judgments.

Psychophysiological recording and processing
EEG data were recorded from 64 active electrodes (ActiCap, Brain  
Products) referenced against Cz with a sampling rate of 500 Hz using 
Brain Vision Recorder (Brain Products). Eye movements were recorded 
from electrodes placed at the outer canti (LO1, LO2) and below both 
eyes (IO1, IO2). Impedances were kept below 5 kΩ. EEG analyses were 
performed using customized MATLAB (v.2022b; MathWorks) scripts 
and EEGLab (v.13_6_5b; ref. 86) functions (cf. ref. 36 for an earlier version 
of the pipeline). Offline data were re-referenced to average reference 
and corrected for ocular artefacts using brain electric source analy-
ses (BESA87) based on individual eye movements recorded after the 
experiment. The continuous EEG was low-pass filtered at 40 Hz (eeglab 
FIR-filter, default filter coefficients). For mass-univariate analyses 
(see below), choice data were segmented into epochs of 4.2 s locked 
to stimulus onset and 2.8 s relative to the response, with 2 s pre and 
800 ms post response. Epochs were baseline corrected to the 200 ms 
pre-stimulus interval for both segmentations. Trials containing arte-
facts (exceeding amplitude thresholds of ±150 µV or a gradient of 
50 µV) were excluded from further analyses. Unfold analyses were 
performed on unsegmented, preprocessed data as described below.

EEG data acquisition and processing for study 2 was identical 
except that passive Ag/Cl electrodes were used, and that segments 
were restricted to 2 s post stimulus and pre response, with 200 ms pre 
stimulus and post response, respectively.

Please see the original publications for detailed information on 
EEG data acquisition in Study 3 (ref. 4), Study 4 (ref. 36), Study 5 (ref. 25) 
and Study 6 (ref. 35). We obtained preprocessed data for Studies 3 and 
4. Raw data for Study 5 were concatenated across blocks, re-referenced 
and low-pass filtered at 40 Hz. A subset of blocks (18 total from 298 
blocks across all participants) could not be matched with the behav-
ioural data and were excluded from further analyses. We obtained data 
for Study 6 with ocular artefact reduction, downsampled to 250 Hz and 
removed horizontal and vertical EEG channels as well as M2. Data were 
then matched with behavioural data and low-pass filtered at 40 Hz.

Analyses
Behavioural data were analysed using linear mixed effects models  
as implemented in the lme4 package (v.1.1–31)88 for R (4.2.2 (2022– 
10–31)89) in RStudio (v.2022.12.0 + 353). P values were computed  

using the sjplot package (v.2.8.12)90. We modelled main effects for value 
variables (both fixed and random effects) in line with previous work5,9. 
Random effects components were removed if they explained no vari-
ance91. Predictors in all analyses were mean centred, values were scaled 
to maximum equals 1 for ease of reporting. Choices were analysed using 
generalized linear mixed effects models using a binomial link function, 
with the dependent variable being the probability of choosing the 
right item. In these cases, reported fixed effects are conditional on the 
random effects because marginal fixed effects are difficult to estimate 
using generalized linear mixed models.

Appraisal and Choice principal components were derived from 
principal component analysis of all participants data on all trials on 
which a choice was made in time (4,637/4,680 trials), with the following 
variables normalized to 0–1 ranges: chosen value (value of the item that 
was ultimately chosen), unchosen value (value of the item that was ulti-
mately not chosen), value difference (maximum value minus minimum 
value), overall value (average of both values), set salience (absolute 
mean-centred overall value), anxiety, liking and confidence. Thus, the 
dimensions of the input matrix were 4,637 × 8. An initial exploratory 
PCA with permutation testing identified 2 principal components with 
eigenvalues greater than the 95th percentile of the distribution from 
shuffled data. We thus derived 2 principal components using MATLAB’s 
pca function, rotated the factors (normalized varimax) and derived 
trial-wise scores by multiplying the trial indicators with the factor load-
ings. We thus reduced the variables above to one score for Appraisal 
and one for Choice for each trial.

EEG data were analysed using a mass-univariate approach employ-
ing custom MATLAB scripts adapted from refs. 92,93: for each par-
ticipant, voltages at each electrode and time point (downsampled 
to 250 Hz) as dependent variables were regressed (using MATLAB’s 
regress function which implements least squares regression) against 
trial parameters and an intercept term as independent variables to 
obtain regression weights for each predictor, similar to difference 
wave ERPs for each condition in traditional approaches (cf. ref. 33). 
These regression weights were weighted by transforming them into 
t-values (dividing them by their standard error), effectively biasing 
unreliable estimates towards zero, and then submitted to group-level 
cluster-based permutation tests, employing a cluster-forming thresh-
old of P = 0.005. Clusters with masses (summed absolute t-values) larger 
than 2.5% of the maximum cluster masses obtained from 1,000 random 
permutation samples were considered significant. Observed cluster 
mass was compared to a permutation distribution to get a percentile 
rank, which was inverted (such that lower numbers corresponded to 
more unlikely events), divided by 100 (to convert the percentile to a 
decimal) and multiplied by 2 (to obtain a P value for a two-sided test). 
We separately analysed stimulus-locked and response-locked EEG data 
in the 1,000 ms time interval following the stimulus and preceding the 
response, respectively. These time intervals were chosen to include 
sufficient trials at all time points. Data points outside the current trial 
range (following the response in stimulus-locked data and preceding 
the stimulus onset in response-locked data) were set to ‘nan’ to avoid 
spill-over from other trials or intertrial intervals. In the main analyses, 
the PC loadings for Appraisal and Choice PCs were included as inde-
pendent variables with the intercept term. In three control analyses with 
the sets of variables underlying the PCs, we entered as independent vari-
ables either overall value and value difference, chosen and unchosen 
value, or liking, confidence and anxiety alongside the intercept term.

For the deconvolution analyses, we conducted first-level  
analyses on preprocessed data using the unfold toolbox32. This  
MATLAB/Julia toolbox implements multiple regression with com-
bined linear deconvolution for multivariate time-series similar to  
FIR-GLM analyses in fMRI. That is, by providing event-timings and 
per-event regression formulas, it allows us to disentangle temporally 
overlapping ERP responses (for detailed introduction to the method, 
see ref. 32 or ref. 34). Stimulus onsets and responses were modelled 
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simultaneously with the same regressors as in the main analyses. 
Deconvolution was implemented using FIR/stick basis functions, 
with time expanded to ±2 s around the respective events. Artefacts 
(amplitudes exceeding ±250 µV) were detected and removed using the 
built-in threshold functions. No baseline corrections were applied. The 
obtained betas were submitted to the same cluster-based permutation 
analyses for second-level analyses as described above.

Study 4 perceptual decision-making data36 were analysed using 
the same procedures as just described, except that we used ±1 s time 
windows due to the faster pace of the task and additionally computed 
mass-univariate betas without overlap correction for comparison. 
The value-based decision-making data in Study 3 (ref. 4), as well as 
perceptual decision-making data in Studies 5 (ref. 25) and 6 (ref. 35) 
were re-analysed analogously using the Julia implementation of the 
unfold toolbox94. Regressors for ref. 36 were visual field and stim-
ulus quality, and both stimulus and response-locked activity were  
modelled with both regressors. Regressors for the three other studies  
were median split RT for response-locked activity, whereas we ini-
tially only modelled intercepts for stimulus-locked activity. In a set 
of control analyses, we re-analysed the data of the latter three studies 
to test whether stimulus- and response-locked activity varied in ways 
predicted by unfold analyses of simulated data under different stimulus 
and response variability regimes.

Simulations. We simulated the neurally informed DDM on the basis 
of code shared by Simon Kelly and Redmond O’Connell. In this model, 
stimulus processing as well as motor processes vary, so that the timing of 
the evidence accumulation process in between both is jittered. Both jitters 
were modelled using the simplifying assumption of uniform distributions 
with duration ‘stim_jitter’ and ‘motor_jitter’, respectively. Further, we 
report the ratio stim_jitter/motor_jitter, indicating whether the evidence 
accumulation process is more closely associated with the stimulus or the 
motor. We simulated 3 scenarios: (1) 2/1 ratio, whereby stim_jitter was set 
to 0.2 s and motor_jitter to 0.1 s, (2) 1/1 ratio, where both were set to 0.2 s 
and (3) 1/2 ratio, where stim_jitter was set to 0.1 s and motor_jitter to 0.2 s.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data for Studies 1, 2 (only data used here), 3 and 4 are available on different  
platforms with links provided in GitHub at https://github.com/ 
froemero/Common_Neural_Choice_Signals_emerge_artifactually (ref. 95).

Code availability
All code can be accessed at https://github.com/froemero/Common_
Neural_Choice_Signals_emerge_artifactually (ref. 95).
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