
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
From Cooperation to Competition: Prediction and Planning in Constrained Multi-Agent
Settings using Data-Driven and Model-Based Optimal Control Methods

Permalink
https://escholarship.org/uc/item/3cs5z8db

Author
Zhu, Edward Liu

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3cs5z8db
https://escholarship.org
http://www.cdlib.org/

From Cooperation to Competition: Prediction and Planning in Constrained Multi-Agent
Settings using Data-Driven and Model-Based Optimal Control Methods

By

Edward Liu Zhu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Francesco Borrelli, Chair
Professor Claire J. Tomlin

Assistant Professor Negar Mehr

Summer 2024

From Cooperation to Competition: Prediction and Planning in Constrained Multi-Agent
Settings using Data-Driven and Model-Based Optimal Control Methods

Copyright 2024
by

Edward Liu Zhu

1

Abstract

From Cooperation to Competition: Prediction and Planning in Constrained Multi-Agent
Settings using Data-Driven and Model-Based Optimal Control Methods

by

Edward Liu Zhu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

As robotic systems become more advanced and their applications more complex, it is in-
sufficient to consider a robot’s behavior in isolation. Robots are increasingly expected to
operate in environments populated with other intelligent agents. In order to perform their
tasks well while obeying constraints, these robotic systems must be endowed with the ability
to predict the behavior of the other agents in the environment in addition to planning their
own actions over a time horizon. This is especially important in scenarios where agents do
not communicate with each other and may behave in an adversarial manner. In this thesis,
we investigate methods for prediction and planning for multi-agent systems over a variety of
reward structures and information structures. Namely, we examine approaches which tackle
the problem in cooperative, non-cooperative, and competitive scenarios where agents engage
in partial or no communication about their intentions and future plans. These approaches are
formulated through a combination of model-based optimal control and data-driven learning
techniques, where we use data in a principled manner to construct or augment the objective
and constraint functions of optimal control problems. This allows us to incorporate the rich
and expressive behavior stemming from learned models in a transparent manner. We place
a particular emphasis on the problem of autonomous racing, which is highly illustrative of
competitive multi-agent settings with no agent communication and where both prediction
and planning are paramount to achieving good performance while maintaining safety in the
presence of adversarial agents. The presented approaches are evaluated in simulation and
hardware experiments of vehicle navigation and racing tasks.

i

To my mom Sharon 刘晓雯, my dad John 祝峥嵘, and my sister Emmeline 祝君怡.

ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Thesis Outline and Contributions . 5
1.3 List of Publications . 7

2 Decentralized Learning Model Predictive Control for Multi-Agent Non-
linear Systems 9
2.1 Introduction . 9
2.2 Preliminaries . 11
2.3 Problem Formulation . 13
2.4 Properties of the Decentralized LMPC . 18
2.5 Multi-Vehicle Collision Avoidance . 21
2.6 Chapter Summary . 25

3 Distributed Learning Model Predictive Control for Multi-Agent Linear
Systems 27
3.1 Introduction . 27
3.2 Problem Formulation . 29
3.3 Background on LMPC . 31
3.4 DLMPC . 33
3.5 Distributed Synthesis for DLMPC . 35
3.6 Numerical Experiments . 40
3.7 Chapter Summary . 42

4 Hierarchical Predictive Control for Multi-Agent Systems 44
4.1 Introduction . 44
4.2 Problem Formulation: Strategy-Guided Collision Avoidance 46

iii

4.3 Offline Learning of the Strategy Predictor 49
4.4 Online Strategy Prediction and Control . 50
4.5 Simulation and Experimental Results . 54
4.6 Chapter Summary . 56

5 A Gaussian Process Model for Opponent Prediction in Autonomous Rac-
ing 58
5.1 Introduction . 58
5.2 Problem Formulation . 60
5.3 Learning TV Behavior via Gaussian Processes 62
5.4 Design of MPCC Racing Policy . 65
5.5 Results and Discussion . 67
5.6 Chapter Summary . 73

6 On the Solution of Game-Theoretic Equilibria for Autonomous Racing 74
6.1 Introduction . 74
6.2 Related Work . 76
6.3 Problem Formulation . 77
6.4 An SQP Approach to Dynamic Games . 79
6.5 Numerical Robustness of Dynamic Game SQP 84
6.6 The Dynamic Game SQP Algorithm . 87
6.7 Frenet-Frame Games for Autonomous Racing 88
6.8 Numerical Study . 93
6.9 Chapter Summary . 105

7 Strategy Learning for Autonomous Racing using Game-Theoretic Equi-
libria 107
7.1 Introduction . 107
7.2 Problem Formulation . 108
7.3 Learning a Game-Theoretic Value Function 111
7.4 Closed-Loop Head-to-Head Racing Policy . 112
7.5 Results . 113
7.6 Chapter Summary . 119

8 A Discussion on Game-Theoretic Methods for Prediction and Planning 120
8.1 Introduction . 120
8.2 Advantanges of a GNE Solver for Prediction and Planning 122
8.3 Limitations of GNE Solvers for Prediction and Planning 123
8.4 Going Beyond Stationary Open-Loop Dynamic Games via Learning 126
8.5 Chapter Summary . 128

9 Conclusions 130

iv

9.1 Future Work . 131

Bibliography 134

A Vehicle Dynamics Models 146

v

List of Figures

1.1 A bottleneck traversal scenario with two agents. (Top) The initial condition of
the two agents. (Middle and Bottom) Two different outcomes of the scenario and
the associated agent performance metrics J1 and J2, which in this case measure
the amount of progress made by each agent along the road. 3

1.2 Illustration of reward structures from the scenario in Figure 1.1. 3
1.3 Illustration of information structures in multi-agent environments. 5

2.1 Snapshots of the decentralized LMPC trajectory at convergence. Circles represent
the collision buffers centered at the position of agent 1 (blue), 2 (orange), and 3
(red). 22

2.2 Initial (light) vs. steady state (dark) position trajectory (top). The starting and
goal states are denoted as the square and circle markers respectively. 23

2.3 Velocity profile and input sequence (bottom) for agent 1 (blue), 2 (orange), and
3 (red) at the first and last iterations. The black dashed lines correspond to the
input box constraints. 23

2.4 Minimum distance between agents at each iteration. 24
2.5 Initial feasible trajectories for the 10-agent example. 25
2.6 Trajectories at convergence for the 10-agent example. 26

3.1 Domain enlargement for desired initial states xdes,1i,0 , xdes,2i,0 : CSqi of subystems
i = 1 (solid red —–), i = 2 (dashed green - - -), i = 3 (dotted blue) over
iterations q = 1, 2 (◦), q = 3, 4 (∗), starting with CS0

i = [0, 0]⊤. 41
3.2 Iterative regulation task for 3 dynamically coupled subsystems. Trajectores of

subystems i = 1 (solid red —–), i = 2 (dashed green - - -), i = 3 (dotted
blue) shown for iterations q = 0 (□), q = 1 (◦), q = 10 (∗). 42

4.1 The EV tracks a reference (dashed blue) in the local region P while the TV
executes a parking maneuver (solid green). The lane boundaries are marked in red. 46

4.2 Available strategies in S for the EV navigation task 46
4.3 The proposed strategy-guided control scheme 48
4.4 Data Collection in CARLA . 49

vi

4.5 Illustration of the strategy-guided constraint generation procedure with N = 3
and strategy “Pass Left". a) The position reference of the EV at timestep k + 3
falls within the critical region CRk+3. The reference point is projected to the
boundary of the critical region in the positive body lateral direction and the
tangent plane is found. b) The tangent plane is translated to be coincident with
the TV boundary. c) Result of the constraint generation procedure at timestep
k + 1. 51

4.6 Experimental Setup . 54
4.7 a), c) Trajectories of the EV (blue) and TV (green) under the strategy-guided

control scheme. Frame numbers are marked with circles; b), d) (From top to
bottom) Speed and input profile of the EV under SG (solid orange) and BL
(dashed purple). Confidence of strategy prediction and policy selection for the
strategy-guided controller. 55

5.1 Overview of the EV obstacle avoidance constraints with uncertainty-expanded
ellipses pictured in red and vehicle extent ellipses pictured in blue. The EV is
represented by 4 discs of radius rd. 65

5.2 Distribution of lateral (top) and longitudinal (bottom) prediction errors [m] at
the second (left) and last (right) prediction step for the GP (), CV (), and
NL () predictors. 68

5.3 Monte Carlo closed-loop performance comparison between the studied prediction
models. The x axis corresponds to the values of q(2)y , the weight on the TV
blocking cost. Higher values correspond to more aggressive blocking behavior by
the TV during a race. The subscripts denote the values used for the safety bound
parameters. For GP, it corresponds to the number of standard deviations γ. For
CV and NL, it corresponds to the radius of the circular safety bound in meters.
The grey line (GT) indicates the best performance achieved by using the ground
truth open-loop solutions in lieu of predictions. 69

5.4 EV (blue) overtaking attempts against the TV (green) with predictions in red
at six time instances during the hardware experiment. The first two rows show
successful and failed attempts with GP and the third row shows a failed attempt
with NL. The red ellipses and circles correspond to the uncertainty-expanded
or artificial safety bounds around the nominal prediction at each step in the
MPC horizon. The solid green line indicates the closed-loop trajectory of TV.
Video recordings of all hardware experiments can be found at https://youtu.
be/KMSs4ofDfIs. 71

5.5 Longitudinal velocity profiles for the successful (top) and failed (bottom) overtak-
ing attempts using GP. The black vertical lines correspond to the time instances
of the frames in Fig. 5.4. 72

6.1 (a) Illustration of the contouring and lag errors ec and el. (b) An example of a
poor approximation s̄′ where el(p, s̄) = el(p, s̄

′) = 0, but s̄′ ̸= s(p). 89

https://youtu.be/KMSs4ofDfIs
https://youtu.be/KMSs4ofDfIs

vii

6.2 Example head-to-head racing open-loop GNE solutions with N = 25 for the L-
shaped track and 1/10th scale RC car (left) and the first hairpin turn of the Austin
F1 track and a full scale race car (right). The red trajectories show pre-computed
race lines which are used to warm start Scenarios 2 and 3 of our numerical study.
In both plots, the cars are traveling in the counter-clockwise direction. 94

6.3 DG-SQP success rates (left) and average solve times (right) for Γ̂kin with N = 15
over different regularization weight (x-axis) and decay rate (y-axis) settings. “nan”
indicates that no data was available for that setting. 97

6.4 DG-SQP success rates for Γ̂kin with N = 25. 97
6.5 Results of the solver comparison study on the L-shaped track with the kinematic

bicycle model from Scenario 1. Each point corresponds to the average of the
sampled initial x-y positions for the two agents. A green ◦, and red × denote
successful and failed trials respectively. The number in the top right of each plot
shows the number of successful GNE solves out of the 500 sampled inital conditions. 99

6.6 Results of the solver comparison study on the L-shaped track with the dynamic
bicycle model from Scenario 2. 100

6.7 Results of the solver comparison study on the Austin F1 track from Scenario 3.
The number in the bottom right of each plot shows the number of successful GNE
solves out of the 100 sampled inital conditions. 101

6.8 Distribution of the normalized mean squared error (MSE) between the GNEs
from the three approaches. The dashed black line corresponds to the mean. . . . 102

6.9 Comparison of GNEs of the exact dynamic game from the DG-SQP and PATH
solvers. The blue and green traces represent the GNE trajectories of agents 1 and
2 respectively. The three plots in each column correspond to the top three cases
in that category. 103

6.10 Comparison of GNEs of the approximate and exact dynamic games from the
DG-SQP solver. 104

6.11 Results of tracking the GNE computed using a dynamic (left) and kinematic
(right) bicycle model with an MPC policy. In the top plots, darker rectangles
correspond to the vehicle’s pose later in time. In all plots, the dashed lines
represents the GNE reference and the solid lines represent the actual tracking
performance of the vehicle. 105

7.1 Time-lapse of head-to-head races on a 1/10th scale RC car platform where a) The
green car uses MPC with a game-theoretic value function to successfully defend
against the blue car. b) The blue car uses the same to successfully overtake the
green car. The numbers indicate the order of the video frames, which are equally
spaced in time. 108

7.2 Illustration of the head-to-head racing problem. 109
7.3 Evaluation of the learned game-theoretic value function VGT (x, x̂) for different

values of lateral position ey (illustrated by the red dot in each plot) and longitu-
dinal velocity difference ∆v. 114

viii

7.4 Histogram of the lead (in number of car lengths) of the faster agent over the
slower agent at the end of the simulation races. Green bars indicate races where
the faster agent wins, red bars indicate losses. The black dashed line indicates
the average lead over all trials. 115

7.5 In a simulation experiment, the faster (blue) car with MP is unable to overtake
the slower (green) car with GT (Top). The faster car with GT is able to overtake
the slower car with GT (Bottom). The heatmaps and black level curves visualize
the value functions used in this scenario by the faster (blue) car. 116

7.6 Lateral position traces from two racing scenarios. The vertical black lines corre-
spond to the time stamps in Figure 7.5. 116

7.7 In a simulation experiment, the slower (green) car with MP is unable to defend
its position against the faster (blue) car with GT (Top). The slower car with
GT is able to defend its position against the faster car with GT (Bottom). The
heatmaps and black level curves visualize the value functions used in this scenario
by the slower (green) car. 117

7.8 Speed traces from two racing scenarios. The vertical black lines correspond to
the time stamps in Figure 7.7. 117

7.9 In a hardware experiment, the slower (green) car with MP is unable to defend
its position against the faster (blue) car with GT (Top). The slower car with
GT is able to defend its position against the faster car with GT (Bottom). The
heatmaps and black level curves visualize the value functions used in this scenario
by the slower (green) car. 118

7.10 Rear tire g traces. The horizontal dashed line indicates the limit of friction with
µ = 0.9. The vertical black lines correspond to the time stamps in Figure 7.9. . 118

8.1 Illustration of the car racing running example. 121
8.2 Solutions of the joint prediction and planning problem as a GNE of a dynamic

game (left) and as the optimal solution of a centralized optimal control problem
(right). The blue and green trajectories illustrate the position traces correspond-
ing to the input sequences u1,⋆ and u2,⋆ respectively. 123

8.3 Solution GNEs of Agent 1 (left) and Agent 2 (middle) for scenario 1 and the
corresponding outcome of each agent applying their open-loop plans, which is
collision-free (right). The trajectories progress CCW from the bottom left. . . . 125

8.4 Solution GNEs of Agent 1 (left) and Agent 2 (middle) for scenario 2 and the
corresponding outcome of each agent applying their open-loop plans, where a
collision would occur (right). The trajectories progress CCW from the bottom left.125

ix

List of Tables

2.1 Parameter Values . 22
2.2 Optimal Cost of the Decentralized LMPC at each Iteration 24
2.3 FTOCP Solve Time . 24

3.1 Iteration costs ∗converged to global optimal solution (computed for the centralized
system with N = 200). 42

4.1 Failure Rate and Iterations to Task Completion 54

5.1 Prediction errors [m] . 67
5.2 Race outcomes . 72

6.1 Summary of Exact and Approximate Dynamic Games 93
6.2 Ablation study convergence results . 96

7.1 Outcomes of the hardware experiments . 119

x

Acknowledgments

I would like to begin by thanking my advisor Professor Francesco Borrelli for his incredible
guidance in all things academic and beyond. It has been such a pleasure to work with you
and your mentorship has been crucial towards my growth both in terms of technical skills
as well as my own philosophy towards mentorship. During my time here, I have observed
how you build a research group based on respect, integrity, and the pursuit of excellence,
while still developing deep and rewarding personal connections with your students. I hope
to emulate your care and dedication as I continue with my career. I would like to thank
Professor Alice Agogino, Professor Mark Mueller, Professor Somayeh Sojoudi, and Professor
Koushil Sreenath for serving on my qualifying exam committee and to Professor Negar Mehr
and Professor Claire Tomlin for serving on my dissertation committee.

I would like to thank my fellow lab mates at the Model Predictive Control Lab who have
been amazing sources of inspiration and sounding boards for both good and bad ideas. I am
proud to be a part of this group of excellent people and I will miss you all.

To my friends at Berkeley and beyond, thank you so much for your support and love over
the years. You can’t know how important your presence has been to my time here when
navigating both the highs and lows. In particular, I’d like thank Alex Cain for his S-tier
tier-lists, jam sessions, and always welcoming me into his home with an amazing americano.
To Matt Arnold for being my adventure buddy who was always (and hopefully will continue
to be) game for backpacking and snowboarding trips. This is the year for the Jets, I know it.
To Mitch Thomas, for teaching me everything I know about WWII aircraft. I promise that
our next hike will really only be 6 miles. To Brian Cera for being my first friend at Berkeley
and my lucky charm when it comes to free drinks and below market rate housing. To Tony
Zheng for his wizardry in the kitchen and for being a great friend. Your progression with
macarons has been truly inspirational. I promise I’ll go to a rave with you at some point
(maybe). To Charlott Vallon for our daily walks to move cars and for your endless support
even during some tough times. George is the best cat in the whole world. To Kate Schweidel
for nerding out with me over theater and musicals and for the days at Stinson Beach. To my
housemates Michael Abbott, Cyndia Cao, and Sebastian Lee, living with you guys has been
just an absolute treat. I hope we’ll have more 4 hour Spirit Island and Spikeball sessions in
the future. To my climbing buddies Tim Brüdigam and Markus Fossdal, I loved how guys
pushed me to be better both as a climber and as a person. Last but certainly not least,
to Aimee Goncalves, Matt Kryder, Mallory Nation, and Ryan O’Sullivan. I got so lucky
meeting you guys during my first stint at Berkeley, excited to spend 30 minutes on each turn
for our future Civ sessions.

Finally, I’d like to thank my family: my mom Sharon 刘晓雯, my dad John 祝峥嵘,
my sister Emmeline 祝君怡, and my brother-in-law Jonathan Bean. You guys have been
immutable constants in my life and I am so blessed to be able to count on your support and
love. I don’t think I’m exaggerating when saying that the work contained in this dissertation
would have been impossible without you all. I love you guys.

1

Chapter 1

Introduction

1.1 Background
As robotic systems are introduced to the real-world, they become one of many intelligent
agents co-inhabiting a multi-agent environment which can include other robots as well as
humans. Such multi-agent systems are becoming ubiquitous through a broad spectrum of
rapidly maturing applications in autonomous driving [153], entertainment [155], warehouse
logistics [57], and last-mile delivery [62] to name a few. Due to the increasing need for
robots to coexist and operate in these complex environments, the modeling and control
of multi-agent systems remains an exciting and active field of research, with recent work
exploring applications in collaborative object manipulation [26, 150, 99], tightly constrained
robot navigation [124, 125], game theoretic prediction and planning methods [90, 95, 51],
and competitive autonomous racing [149, 69, 17]. No matter the embodiment, be it on
wheeled ground vehicles, legged robots, or quadrotors, etc., the intelligence of a robotic
system operating in a multi-agent environment must invariably have the ability to reason
about and predict the behavior of the other agents in the environment (how will the other
agents react to my actions?) and determine a course of action towards completing its task
(how should I react to the other agents’ behavior?). This is due to the complex interactions
which arise from the sharing of a common resource, e.g. workspace, energy, bandwidth,
etc., which must be taken into account in order for an agent to successfully complete their
assigned task in a performant manner while also satisfying constraints which can govern
actuation limits and safety. Failures in solving the prediction and planning problem can lead
to poor performance, commonly in the form of the freezing robot problem [136], or constraint
violations, which can be catastrophic in safety critical scenarios. Of course, prediction and
planning are only part of the autonomy stack for robotic systems operating in multi-agent
environments and ultimate success also critically depends on effective sensing and perception
for state estimation of the robot as well as the other agents in the environment, which are
complex research problems in of themselves. In this thesis, we focus specifically on the
prediction and planning problem and make the blanket assumption that at any time instant

CHAPTER 1. INTRODUCTION 2

t, we have access to the state of each of the i ∈ {1, . . . ,M} agents xit.
Solution approaches to the prediction and planning problem for multi-agent systems can

be broadly categorized into data-driven learning-based methods and model-based optimal
control methods, which have both achieved impressive results. In particular, data-driven
approaches have seen much recent success in reaching super-human performance in a variety
of games. These include classic board games such as go, chess, and shogi [119], as well as video
games such as car racing in Gran Turismo [149] and real-time strategy in StarCraft [140].
Such data-driven approaches have also seen some limited realizations on physical systems in
the context of pursuit-evasion games with quadrupedal robots [12] and competitive drone
racing against human pilots [69]. Data-driven learning-based approaches can lead to highly
sophisticated models which solve the prediction and planning problem implicitly and in a
fully coupled manner to produce rich and interactive behaviors which would otherwise be
difficult to obtain using explicitly designed models. However, this typically comes at the cost
of high data requirements and a loss of transparency in the learned model, which may be
prohibitive to implementation on real-world systems with safety critical constraints. Because
of these reasons, optimal control techniques which leverage explicit models for prediction and
planning appear to still be the preferred approach for real-world applications such as car
racing [18, 67], formation control [93, 6], and autonomous driving [128, 130, 80]. In general
such approaches pose the following finite-horizon discrete time optimal control problem with
horizon length N for the i-th agent at some time step t:

min
xi,ui

N−1∑
k=0

Jk(x
i
k, u

i
k, x̂

¬i
k , û

¬i
k) + JN(x

i
N , x̂

¬i
N) (1.1a)

subject to xi0 = xit, (1.1b)
xik+1 = f(xik, u

i
k, x̂

¬i
k , û

¬i
k), k = 0, . . . , N − 1, (1.1c)

gk(x
i
k, u

i
k, x̂

¬i
k , û

¬i
k) ≤ 0, k = 0, . . . , N − 1, (1.1d)

gN(x
i
N , x̂

¬i
N) ≤ 0, (1.1e)

x̂¬i, û¬i = h(xi,ui), (1.1f)

where xi = {xi0, xi1, . . . , xiN} and ui = {ui0, ui1, . . . , uiN−1} are the state and input sequences
for agent i, which are the decision variables for the optimal control problem in (1.1). Jk and
JN are the stage and terminal cost functions in (1.1a), which can importantly be a function
of both the trajectory of agent i as well as the predicted state and input trajectories of
the other agents in the environment, which are denoted as x̂¬i = {x̂¬i0 , x̂¬i1 , . . . , x̂¬iN } and
û¬i = {û¬i0 , û¬i1 , . . . , û¬iN−1} respectively. (1.1b) specifies the initial condition for agent i and
its system dynamics are described in (1.1c), where we note the dependence on x̂¬ik and û¬ik ,
which can describe dynamic coupling between agents. The stage and terminal constraint
functions in (1.1d) and (1.1e) are again a function of the trajectories of all the agents in
the environment and can describe both private constraints such as actuation limits as well
as coupling constraints such as collision avoidance. Finally, (1.1f) describes the prediction
subproblem, which itself can involve a separate but coupled optimal control problem or be

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A bottleneck traversal scenario with two agents. (Top) The initial condition of the two agents.
(Middle and Bottom) Two different outcomes of the scenario and the associated agent performance metrics
J1 and J2, which in this case measure the amount of progress made by each agent along the road.

Figure 1.2: Illustration of reward structures from the scenario in Figure 1.1.

learned from data depending on the characteristics of the multi-agent environment which
we will discuss momentarily. As in standard model predictive control (MPC) techniques, we
may then apply the first element of solution input sequence to agent i and resolve at the
next time step for online prediction and planning. So far, we have described the multi-agent
prediction and planning problem at a high level and in general terms. Now, let us present the
specific realizations of this problem which will be investigated in this thesis. In particular,
we will view them through a combination of cooperative, non-cooperative, and competitive
reward structures and full, partial, and no communication information structures.

Reward Structures

To understand how different reward structures impact both the optimal control problem
in (1.1) as well as the behavior of the agents in the multi-agent system, let us consider
the example scenario illustrated in Figure 1.1 where two cars are attempting to traverse a

CHAPTER 1. INTRODUCTION 4

bottleneck which is only wide enough for one car to pass through at a time. We denote the
blue and green cars as agent 1 and 2 respectively and initialize their states such that agent 2
starts behind agent 1 but with a higher velocity. For this initial condition, consider the two
outcomes labeled as A and B in Figure 1.1. In outcome A, agent 1 speeds up and merges in
front of agent 2, thereby forcing it to slow down and match the speed of agent 1. In outcome
B, agent 1 slows down and merges behind agent 2. This allows agent 2 to preserve its speed
through the bottleneck. Individual agent performance in this scenario is measured by the
amount of progress made by each of the cars along the road and is visualized by the blue and
green bars labeled J1 and J2. The aforementioned reward structures then correspond with
different ways of describing the overall objective of the scenario from the perspective of each
agent, i.e. how the objective functions J are constructed in (1.1a). In the case of cooperative
agents, it is common to measure the performance of the scenario as a whole by summing
together the objectives of the individual agents, i.e. J = −(J1 + J2) (note the negative
sign here is to conform to the minimization performed in (1.1)). Doing so, we observe a
clear advantage for outcome B as shown in the first column of Figure 1.2. If we view the
scenario from the perspective of agent 1, this means that in cooperative settings, it may be
beneficial to sacrifice ones own performance as long as it benefits the performance of the
group as a whole. In the competitive case, we can describe the performance of the scenario
via the difference between the agent objectives, i.e. J = J2 − J1, which directly captures
the conflicting goals of the two agents. Now if we were to again view the scenario from the
perspective of agent 1, the scenario objective would indicate a preference for outcome A as
shown in the second column of Figure 1.2. In this case, agent 1 is driven to behavior which
not only maximizes their own performance, but minimizes or obstructs the performance of
their opponent, i.e. agent 2. Finally, when agents are non-cooperative, it is straightforward
to equate the agent objective with the scenario objective, i.e. J = −J1 in the case of agent 1.
In such scenarios, individual agents are disinterested in the performance of the other agents
in the environment, yet their behavior can still be coupled via shared constraints, which
necessitates planning over agent interactions.

Information Structures

Whereas the reward structure primarily impacts the construction of the objective function
in (1.1a), the information structure governs the realization and complexity of the prediction
module h in (1.1f). The three classes of information structure that we consider are illustrated
in Figure 1.3 which show example communication graphs for a multi-agent system of three
agents with a base station. In the case of full communication, each agent is connected to
all other agents in the environment via bidirectional edges, thereby allowing for two-way
communication between any pair of agents. Such information structures are rare in practice
as the networking infrastructure and bandwidth required to maintain such a communication
network scales poorly as the number of agents grows. However, they can lead to fairly trivial
realizations of (1.1f) where each agent communicates their future plan of xi and ui in full to
the other agents. The second case is that of partial communication, where the communication

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Illustration of information structures in multi-agent environments.

graph is directed and sparse. As an example, this can represent multi-agent systems with
local coupling or a hub and spoke network where the agents are all connected to a central
base station but do not directly communicate with each other. In these cases, prediction of
the other agents typically requires joint solution of the planning problem over neighboring or
coupled agents and the imposition of consensus constraints in h between coupled agents such
that the plans obtained via solution of (1.1) by agent i align with those by agent j and vice
versa. The last case is that of no communication, where no information is shared between
agents. This case is commonly found in competitive scenarios where agents carefully guard
information about their intentions and future plans to maintain a competitive advantage. In
such cases, the prediction subproblem can be approached from a variety of directions such
as machine learning and game theory, both of which will be explored in this thesis.

1.2 Thesis Outline and Contributions
This thesis is divided into two parts. The first part, which consists of Chapters 2, 3, and 4
consider the cooperative and non-cooperative settings where there are no adversarial intents
between agents. The second part, which consists of Chapters 5, 8, 6, and 7 deal with com-
petitive scenarios in which agents may behave in an adversarial manner towards each other
and we focus on the specific application of car racing. The contributions of the individual
chapters are highlighted below.

In Chapter 2, we consider the cooperative reward setting where agents are tasked with
completing a task in an episodic or iterative manner. In particular, we propose a decentral-
ized learning model predictive control scheme for nonlinear dynamically decoupled multi-
agent systems where no communication is required during online execution of the task and
only partial communication is required between each agent and a central coordinator be-
tween iterations of the task. Assuming that an initial feasible trajectory is provided, we
guarantee that all agents will remain feasible and stable and that the performance of each
agent is non-decreasing over iterations. This is accomplished by careful construction of a

CHAPTER 1. INTRODUCTION 6

terminal set and cost-to-go function for the MPC problem as well as decomposing the shared
workspace over agents using trajectory data from the previous iterations of task execution.
As synthesis of all terminal components and constraints are performed between iterations,
online execution of the task can then be done in a completely decentralized manner with no
communication between agents.

In Chapter 3, we consider the same cooperative and iterative multi-agent setting, but
specify the learning-based approach for systems with linear but possibly coupled dynamics
in addition to coupling through constraints. By leveraging an ADMM based method for
distributed optimization, the control scheme requires only partial communication between
coupled agents in order to establish consensus over shared decision variables. We show
that the global system is feasible and stable over iterations of task execution and that the
performance of the system as a whole is non-decreasing and converges to the globally optimal
trajectory of the centralized system.

In Chapter 4, we consider a non-cooperative multi-agent setting in a tightly constrained
environment where there is no communication between agents. An example of such a scenario
is a parking lot where simple but approximate geometric representations of a vehicle, such as
circular collision buffers, can lead to deadlock or highly conservative stop-and-wait behavior
in the presence of other moving vehicles. To reduce conservativeness in vehicle navigation,
we propose a hierarchical planning framework which leverages learned high-level strategies
to construct time-varying constraints which predict a reachable set to the goal at each time
step of the navigation task. We incorporate these constraints in an MPC policy which also
uses an exact representation of vehicle geometry to improve navigation performance in tight
spaces.

In Chapter 5, we begin investigating competitive multi-agent scenarios with no inter-
agent communication. A particularly illustrative instance of this class of multi-agent scenario
is that of racing where each agent is not only trying to maximize their progress along a
race track, but may also engage in adversarial behavior aimed at impeding the progress
of their opponents, as was illustrated in outcome A of Figure 1.1. In such scenarios, the
prediction subproblem becomes especially challenging, especially when using explicit model-
based approaches, as knowledge of the objective, constraint, and dynamics functions of
one’s opponents is unlikely to be shared. We therefore propose a learning-based approach
for solving the prediction subproblem which leverages trajectory data from prior races to
train a Gaussian process regression model of an opponent’s one-step closed-loop behavior.
Importantly this model is conditioned on the behavior of an ego vehicle which allows for it
to capture interactions between the agents. We leverage the predictions of this model as well
as its associated uncertainties to construct a racing MPC policy which enabled an ego agent
to win races against an adversarial opponent in hardware races.

Though explicit models of ones opponent are difficult to obtain in competitive scenarios,
if available, they may be leveraged in a game-theoretic setting to obtain highly interactive
solutions to the prediction and planning problem through the finding of game equilibrium.
In Chapter 6, we present a novel iterative method for finding generalized Nash equilibria
(GNE) of open-loop dynamic games with non-linear system dynamics, and non-convex con-

CHAPTER 1. INTRODUCTION 7

straint and objective functions. The approach, called DG-SQP, is based on the sequential
quadratic programming method for non-linear programming and exhibits guaranteed local
linear convergence to GNE. The novelty of our approach lies in an emphasis on globalization
techniques which improve the numerical robustness of the solver as well as a dynamic game
formulation which is tailored to racing tasks. We show that our approach out-performs the
state-of-the-art in terms of success rate in convergence to GNE for various racing scenarios.

Though we are able to achieve high success rates when solving for GNE using DG-SQP
from Chapter 6, one significant limitation which prevents its use for real-time prediction and
planning is the low computational efficiency, which in part is caused by requiring the solution
of a constrained quadratic program at each iteration of the solver. In order to incorporate
game-theoretic equilibria in real-time racing, in Chapter 7, we propose a strategic learning
approach which leverages the reward outcomes associated with a set of equilibria to learn a
game-theoretic value function which is conditioned on opponent behavior. We incorporate
this value function in a racing MPC policy as the terminal cost function in order to guide
interaction and competition against an opponent in head-to-head hardware races. We show
significant improvement in win-rate against the same MPC policy with a non-game-theoretic
terminal cost function.

In Chapter 8, we present a discussion using simple but illustrative examples on the
benefits and drawbacks of approaching the competitive racing problem using tools from game
theory. In particular, we show that in the context of model-based methods, a game-theoretic
formulation provides important advantages over a centralized optimal control approach in
capturing the competitive nature of racing tasks which are commonly described via zero-
sum objectives. However, we also show that by requiring assumptions about the opponent’s
models, the solutions to the prediction and planning problem can be fragile and sensitive
to model mismatch. We conclude our discussion with a survey of approaches which seek
to address this limitation and address how the work presented in Chapters 6 and 7 are
complementary towards the larger effort of broadening the impact of game-theoretic methods
in multi-agent robotic systems.

1.3 List of Publications
The results presented in this thesis have appeared in a number of publications by the author.
In particular:

• Chapter 2 is based on:

– E. Zhu, Y. Stürz, U. Rosolia, and F. Borrelli, "Trajectory optimization for non-
linear multi-agent systems using decentralized learning model predictive control".
In: 2020 59th IEEE Conference on Decision and Control (CDC). 2020, pp. 6198-
6203.

• Chapter 3 is based on:

CHAPTER 1. INTRODUCTION 8

– Y. Stürz, E. Zhu, U. Rosolia, K. Johannson, and F. Borrelli, "Distributed learning
model predictive control for linear systems". In: 2020 59th IEEE Conference on
Decision and Control (CDC). 2020, pp. 4366-4373.

• Chapter 4 is based on:

– X. Shen, E. Zhu, Y. Stürz, U. Rosolia, and F. Borrelli, "Collision avoidance
in tightly-constrained environments without coordination: a hierarchical control
approach". In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). 2021, pp. 2674-2680.

• Chapter 5 is based on:

– E. Zhu, F. Busch, J. Johnson, and F. Borrelli, "A gaussian process model for
opponent prediction in autonomous racing". In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2023, pp. 8186–8191.

• Chapter 6 is based on:

– E. Zhu and F. Borrelli, "A sequential quadratic programming approach to the
solution of open-loop generalized nash equilibria". In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). 2023, pp. 3211-3217.

9

Chapter 2

Decentralized Learning Model Predictive
Control for Multi-Agent Non-linear
Systems

2.1 Introduction
In this chapter, we study the problem of decentralized Model Predictive Control (MPC)
for dynamically decoupled multi-agent systems under the minimum-time cost and coupled
state constraints. Multi-agent systems typically exhibit inter-agent coupling, which can be
expressed as constraints on the global system. MPC is a well-studied approach to the control
of such constrained systems and can be applied in a global manner for centralized control
of multi-agent systems with a small number of agents. However, as the number of agents
increases, centralized approaches typically become intractable in practice due to limitations
in computational power and communication capacities [100]. This gives rise to decentralized
and distributed MPC schemes, which leverage the inherent parallelizable structure of multi-
agent systems to reduce the required computational effort. Feasibility and stability of MPC
are typically obtained using a terminal cost function and terminal constraints in the MPC
design [94], which we refer to as terminal components. However, synthesis of these terminal
components for the control of nonlinear multi-agent systems is in general challenging.

The primary advantage of decentralized MPC over its distributed counterpart is the lower
communication demand. While only local information is used in the control of each agent
in decentralized schemes, additional communication between agents is required to obtain a
control action in distributed methods [15, 101, 43, 48, 35, 93, 89, 131].

In decentralized MPC, local controllers are synthesized for each agent, where feasibility
and stability properties are attained via robustness of the controller against coupling to
other agents. In prior work, conditions for the stability of decentralized MPC for nonlinear
systems are investigated. In [4, 3], this is attained via terminal cost synthesis and an online
supervisory scheme for modifying the decoupling structure to meet these conditions without

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 10

destabilizing the system. The work in [71] achieves this by bounding the prediction error of
neighboring agents’ states. However, this method assumes the singleton terminal set of the
origin, which limits the controller’s domain of attraction. In addtion, neither method can
deal with coupling state constraints between the agents.

Iterative approaches to the control of multi-agent systems have also been proposed. Of
such methods, Sequential Convex Programming (SCP) [27] is similar to the approach pro-
posed in this paper. SCP solves a non-convex optimization problem by successively forming
convex approximations about previous solutions. In [10], SCP was used to generate collision-
free trajectories for multiple quadcopters in a centralized manner. This was extended into a
decentralized formulation in [33], which showed improvements in computational tractability.
However, in these works, SCP is a heuristic method and may fail to find a feasible solution.
In addition, SCP optimizes over the entire trajectory, which contrasts with the receding
horizon approach taken in this work, and may be computationally challenging for long time
horizons or fine time discretizations.

In this chapter, we propose a decentralized approach to trajectory optimization for non-
linear multi-agent systems. By performing the same task over iterations, we collect data on
the agents’ closed-loop behavior to successively improve the construction of terminal com-
ponents for the local controllers. In particular, as we improve an estimate of the terminal
cost (an approximate value function) and expand the terminal constraint set (the domain
of this function), we iteratively improve closed-loop performance of the multi-agent system,
while maintaining feasibility and finite-time convergence guarantees.

The contribution of this chapter is twofold.

• We extend the method of Learning Model Predictive Control (LMPC) from [113] to the
multi-agent case for dynamically decoupled agents under the minimum-time cost and
coupled state constraints. In particular, we first propose a procedure for synthesizing
the MPC terminal components using data from previous iterations of task execution.
We then show that the resulting decentralized LMPC has the properties of persistent
feasibility, finite-time closed-loop convergence to the goal state, and non-decreasing
performance over iterations.

• We demonstrate the effectiveness of the decentralized method with a numerical exam-
ple in the context of multi-vehicle collision avoidance, where we observe a significant
reduction of computational effort compared to a centralized approach.

The results presented in this chapter have also appeared in:

• E. Zhu, Y. Stürz, U. Rosolia, and F. Borrelli, "Trajectory optimization for nonlinear
multi-agent systems using decentralized learning model predictive control". In: 2020
59th IEEE Conference on Decision and Control (CDC). 2020, pp. 6198-6203.

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 11

2.2 Preliminaries

System Description

For a system of M agents, the set of indices {1, . . . ,M} is denoted as M. ‘⪯’ denotes an
element-wise inequality. Consider the global nonlinear time-invariant discrete-time system
composed of M agents

xt+1 = f(xt, ut), (2.1)

where the global state and input vectors at sampling time t ≥ 0 are formed by stacking
those from each agent into a single column, i.e. xt = coli∈M(xi,t) = [x⊤1,t, . . . , x

⊤
M,t]

⊤ ∈ Rn

and ut = coli∈M(ui,t) ∈ Rm, where xi,t ∈ Rni and ui,t ∈ Rmi . Each agent in the global system
is subject to local state and input constraints,

xi,t ∈ Xi ⊆ Rni , ui,t ∈ Ui ⊆ Rmi , ∀t ≥ 0. (2.2)

These local constraint sets are assumed to be closed, compact, and include the goal states xi,F
in their relative interiors. The global system is additionally subject to coupling constraints
on the system state,

g(xt) ⪯ 0, ∀t ≥ 0. (2.3)

We assume that the agents are dynamically decoupled with continuous dynamics and
locally stabilizable, which means that we can write (interchangeably with (2.1)), for all
agents i ∈M, the local dynamics as

xi,t+1 = fi(xi,t, ui,t). (2.4)

Control Objective

The objective is to design a controller which drives the system state to a goal state xF by
solving the following optimal control problem for the global system

min
uT

T∑
t=0

h(xt, ut) (2.5a)

s.t. xt+1 = f(xt, ut), ∀t ∈ {0, . . . , T − 1} (2.5b)
x0 = xS, xT = xF (2.5c)
xt ∈ X , ut ∈ U ∀t ∈ {0, . . . , T} (2.5d)
g(xt) ⪯ 0, ∀t ∈ {0, . . . , T}, (2.5e)

where the goal state xF = coli∈M(xi,F) is assumed to be a feasible equilibrium state of (2.1).
xS = coli∈M(xi,S) is the initial condition of the system, and the state and input constraint

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 12

sets in (2.5d) are the Cartesian products of the local constraint sets in (2.2). In this work,
we are specifically interested in the minimum-time cost, which is defined as follows

h(xt, ut) = 1(x;xF) =

{
0 if x = xF

1 otherwise.

Learning Model Predictive Control

In this section, we briefly introduce and review the key concepts of LMPC [113, 114], which
are extended upon in this work. LMPC was proposed as an iterative trajectory optimization
method for single-agent nonlinear dynamical systems performing iterative tasks. In partic-
ular, the method provides a data-driven approach to terminal set and cost synthesis. We
assume that an initial feasible input sequence u0 = {u00, u01, . . . , u0T 0−1} and closed-loop state
trajectory x0 = {x00, x01, . . . , x0T 0} exists for (2.1) and is available at iteration q = 0. T q

denotes the time at which the closed-loop system reaches the terminal state, i.e. xqT q = xF .
We note that for iterative tasks, the initial condition of the system is assumed to be the
same over iterations, i.e. xq0 = xS, ∀q ≥ 0.

LMPC solves a Finite Horizon Optimal Control Problem (FHOCP), which approximates
(2.5), in a receding horizon fashion. Given the initial condition x at time t of iteration q,
the FHOCP is defined as

min
uq
t,N

N−1∑
k=0

1(xqk|t;xF) + V q−1(xqN |t) (2.6a)

s.t. xqk+1|t = f(xqk|t, u
q
k|t), ∀k ∈ NN−1 (2.6b)

xq0|t = x (2.6c)

xqk|t ∈ X , u
q
k|t ∈ U , ∀k ∈ NN−1 (2.6d)

g(xqk|t) ⪯ 0, ∀k ∈ NN−1 (2.6e)

xqN |t ∈ SS
q−1, (2.6f)

where xqk|t and uqk|t denote the decision variables of the predicted state and input at the
sampling time t+ k of iteration q. The first input uq0|t is then applied to the system (2.1).

The terminal set at iteration q − 1 in (2.6f), called a sampled safe set, is defined as

SSq−1 =

 ⋃
p∈Qq−1

T p⋃
t=0

xpt

 , (2.7)

whereQq−1 = {p ∈ {0, . . . , q−1} : xpT p = xF} is the set of iteration indices up to iteration q−1
where the goal state xF was successfully reached. The sampled safe set collects the closed-
loop state trajectories from previous successful iterations, which implies that at iteration q,

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 13

∀x ∈ SSq, there exists a known and feasible sequence of inputs, with x0 = x, such that
f(xt, ut) ∈ SSq, ∀t ≥ 0. We note that by construction, SSq is a control invariant set.

For the terminal cost function in (2.6a), an approximate value function is constructed
which returns the minimum cost-to-go (over iterations 0 to q − 1) from each state in the
safe set. The cost-to-go from the state at time t along the closed-loop trajectory xq with
corresponding input sequence uq is defined as JqT q(x

q
t , t) =

∑T q

k=t 1(x
q
k;xF).

The approximate value function at iteration q − 1 is then

V q−1(x) =

{
min(p,t)∈Fq−1(x) J

p
T q(x, t) if x ∈ SSq−1

+∞ otherwise
(2.8)

where F q−1(x) = {(p, t) : xpt = x and xpt ∈ SSq−1} returns the set of iteration and time index
pairs for the states in previous trajectories which are equal to x.

Using the properties of the constructed terminal components, the resulting scheme guar-
antees persistent feasibility of the FHOCP and finite-time closed-loop convergence of the
closed-loop system. Non-decreasing performance can also be shown over iterations of task
execution.

2.3 Problem Formulation
In this section, we extend the idea of LMPC from Sec. 2.2 to the multi-agent case. Specifi-
cally, our formulation leverages data from previous iterations of task execution to synthesize
local controllers for each agent via decoupled FHOCPs. This allows for an entirely decen-
tralized control scheme for the multi-agent system at each iteration. In the following, we
describe the synthesis of the local terminal components, namely the time-varying sampled
safe sets and approximate value function. We then present the resulting decoupled FHOCPs,
which are solved in a receding horizon manner. Combining these elements, we arrive at a
decentralized LMPC procedure for trajectory optimization of multi-agent systems.

Time-Varying Sampled Safe Sets and Global Constraint
Decomposition

In this part, we address two challenges posed by a decentralized receding horizon approach.
Namely 1) how global constraint satisfaction can be enforced through decentralized local
constraint satisfaction, and 2) how feasibility over the entire task horizon can be maintained
in a receding horizon implementation of (2.5), particularly when time-varying constraints
are introduced.

To address 1), we introduce the following assumption. Notice that the original global
time-invariant constraints are transformed into local time-varying constraints.

Assumption 1. At iteration q, there exists a time-varying local decomposition of the global
constraints: gqi,t(·), ∀t ≥ 0, ∀i ∈ M, which can be constructed from feasible trajectories of

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 14

the global system, At each time t, joint local constraint satisfaction is sufficient for global
constraint satisfaction, i.e. gqi,t(xi,t) ⪯ 0, ∀i ∈M =⇒ g(xt) ⪯ 0.

Remark 1. Given a feasible trajectory xqi , we may always obtain the decomposition gqi,t(xi) =
∥xi − xqi,t∥ for each trajectory point in xqi , which satisfies the condition in Assumption 1. In
Sec. 2.5, we present a technique for constructing gqi,t(·) in a less conservative manner.

To address 2), constraint satisfaction of the FHOCPs over the entire task horizon is
obtained by using control invariant sets. This was done in [113] via (2.7), which, recall, are
control invariant sets by definition. We would like to achieve the same goal of using data
to construct sets which grant the same properties to the decentralized scheme. However, in
(2.5) (and due to the constraint decomposition in Assumption 1), we include time-varying
constraints for which the classical definition of set invariance does not apply. For this reason,
we do not collect all recorded states of the global system, which converge to xF , into a single
invariant set as in (2.7). Instead, we interpret the states of agent i at time t of previous
successful iterations as a sampled subset of the (T̂ q−1 − t)-step reachable set to xi,F , where
T̂ q = maxp∈{0,...,q}(T

p
i). As such, for each agent i ∈M at iteration q, we propose to construct

time-varying sampled safe sets SSqi,t using data from previous iterations of task execution,
which are one-step reachable to SSqi,t+1 (and therefore K-step reachable to xi,F for some
K ∈ {1, . . . , T̂ q−1 − t}). Moreover, we require that the global coupling constraints are
satisfied for all combinations of states in the constructed safe sets, i.e. ∀t ≥ 0 and x̄i ∈ SSqi,t,
g(x̄) ⪯ 0, where x̄ = coli∈M(x̄i). The following assumption allows us to start with non-empty
safe sets at the first iteration.

Assumption 2. At iteration q = 0, an initial feasible input and state sequence, which
converges to the goal state in T 0

i steps, exists for each agent (2.4). Denote this input
sequence and state trajectory for agent i ∈M as u0

i and x0
i .

Remark 2. This assumption is reasonable as one may provide initial feasible trajectories
through demonstration or by employing a conservative controller.

Let (Dx,Du) be the dataset which collects the state trajectories x0
i . . . ,x

q
i and input

sequences u0
i , . . . ,u

q
i , and let gqi,t(·) be a constraint decomposition which satisfies Assump-

tion 1. Then, initializing the recursive relationship with SSq
i,T̂ q−1

= {xi,F}, we construct the
time-varying sampled safe sets for each agent i at time t of iteration q as

SSqi,t =
{
xpi,k ∈ x : gqi,t(x

p
i,k) ⪯ 0 andfi(xpi,k, u

p
i,k) ∈ SS

q
i,t+1

}
. (2.9)

The time-varying sampled safe sets SSqi,t collect the state trajectory points from previous
successful iterations for which there exists a trajectory to the goal state that satisfies the
global constraints. We show in Sec. 2.4 that the sampled safe sets are a non-empty family
of reachable sets to xi,F .

Remark 3. For successful iterations, i.e. where xq
i,T q

i
= xi,F , it is straightforward to accommo-

date task iterations of different lengths when constructing SSqi,t for t ∈ {0, . . . ,maxp∈I(T
p
i)}.

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 15

Since xi,F is an equilibrium point of system i, we may trivially apply the zero input to obtain
SSqi,t = {xi,F} for all t > T qi .

Remark 4. How the constraint decomposition is constructed depends on the specific problem
at hand. In the multi-vehicle collision avoidance example shown in Sec. 2.5, we propose a
procedure to construct hyperplanes which separate the position states of the sampled safe
sets for pairs of agents.

Value Function Approximation

For an input sequence uqi and closed-loop state trajectory xqi of agent i at iteration q with
length T qi , we define the cost-to-go from the state xqi,t at time t along the closed-loop trajectory
to be

Jq
i,T q

i
(xqi,t, t) =

T q
i∑

k=t

1(xqi,k, xi,F) = T qi − t. (2.10)

The iteration cost for agent i at iteration q can then be written as Jq
i,T q

i
(xi,S, 0), recalling

that the system is initialized at the same state xS for each iteration q. This leads to the
definition of the approximate value function V q

i (·, t) at time t over the sampled safe set SSqi,t
as

V q
i (xi, t) =

{
min(p,k)∈Fq

i,t(xi)
Jp
i,T p

i
(xi, k), if xi ∈ SSqi,t

+∞, otherwise,
(2.11)

where F qi,t(xi) is defined in the same way as in (2.8). Thus, for a state xi whose value is equal
to some state in SSqi,t, V

q
i (xi, t) returns the minimum cost-to-go over trajectories which pass

through xi in SSqi,k for k ≥ t. Note that V q
i is discontinuous as its domain is a finite set of

points.

The Finite Horizon Optimal Control Problem

Synthesis of the terminal components is achieved using the function synthesizeFHOCP as
summarized in Alg. 1, which acts as a global coordinator between iterations of task execution
in our decentralized framework. In this algorithm, we introduce the design parameters t̄, t ≥ 0
and q ∈ {0, . . . , q} to reduce the computational burden of safe set construction and to make
satisfaction of one-step reachability from SSqi,t to SSqi,t+1 trivial. In particular, we construct
the set I which contains the iteration indices of the q most recent successful iterations and
the sliding time range Tt = {max(t − t, 0), . . . , t, . . . , t + t̄} and obtain the candidate safe
sets for time t (line 6). After a constraint decomposition is constructed (line 8, see Rem. 4
and Sec. 2.5), the candidate safe sets are checked for constraint satisfaction (line 10). In the
case where any constraint is violated, the design parameters are updated (lines 11-15) and
new candidate safe sets are constructed (line 16). This procedure is repeated until safe sets
satisfying (2.9) are found. We will show in Sec. 2.4 that the procedure described in Alg. 1

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 16

results in non-empty safe sets which satisfy the coupled constraints and are reachable to xi,F .
As such, after performing the task at iteration q−1, we obtain for agent i the decomposition
of the global constraint gq−1

i,t (·), the sampled safe sets SSq−1
i,t , and the approximate value

function V q−1
i (·, t), which are constructed using data from iterations 0 to q − 1.

To obtain the control action for agent i at sampling time t of iteration q, we solve the
following decoupled FHOCP with horizon length N and initial condition xi.

Pqi,N(xi, t) = min
uq
i,t

N−1∑
k=0

1(xqi,k|t;xi,F)+V
q−1
i (xqi,N |t, t+N)

s.t. xqi,k+1|t = fi(x
q
i,k|t, u

q
i,k|t), (2.12a)

xqi,0|t = xi (2.12b)

xqi,k|t ∈ Xi, u
q
i,k|t ∈ Ui, (2.12c)

gq−1
i,t+k(x

q
i,k|t) ⪯ 0, (2.12d)

xqi,N |t ∈ SS
q−1
i,t+N (2.12e)

∀k ∈ {0, . . . , N − 1}

where (2.12a) and (2.12b) represent the system dynamics and initial condition, respectively.
The local state and input constraints are given in (2.12c). (2.12d) enforces satisfaction of the
decomposed constraint for each agent, which is sufficient for global constraint satisfaction.
Finally, (2.12e) ensures that the terminal state is a member of the time-varying sampled safe
set SSq−1

i,t+N . We denote the locally optimal value of the FHOCP cost in (2.12) as J∗,q
i,N(xi, t).

Let u∗,q
i,t (xi) = {u∗,qi,0|t(xi), . . . , u

∗,q
i,N−1|t(xi)} denote the input sequence which minimizes

(2.12) for initial state xi at sampling time t, and x∗,q
i,t = {x∗,qi,0|t, . . . , x

∗,q
i,N |t} be the corresponding

state trajectory beginning at x∗,qi,0|t = xi. In typical receding horizon fashion, for each agent
i ∈M, the first element of u∗,q

i,t (xi) is applied to system (2.4), which defines the state feedback
policy

uqi,t = κqi (xi, t)
.
= u∗,qi,0|t(xi), (2.13)

with xi = xqi,t. This results in the closed-loop state trajectory xqi = {x
q
i,0, x

q
i,1, . . . , x

q
i,t, . . . }

and input sequence uqi = {u
q
i,0, u

q
i,1, . . . , u

q
i,t, . . . } for agent i at iteration q. We will show that

the closed-loop state trajectory under (2.13) converges to the goal state xi,F in finite-time.

Remark 5. Due to the construction of the sampled safe sets as collections of discrete trajec-
tory points, Pqi,N(xi, t) is a mixed integer nonlinear program, which can be computationally
intensive to solve. However, the minimum-time formulation can be exploited for computa-
tional efficiency, e.g. by parallelization and branch and bound methods. Certain nonlinear
systems may also admit a convex relaxation of the sampled safe set and approximate value
function while maintaining performance guarantees [114].

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 17

Algorithm 1: synthesizeFHOCP
Input: Dx, Du, t, θ = {q, t, t̄}

1 q̌ ← q;
2 I ← {max(q − q), . . . , q};
3 for t ∈ {0, . . . ,maxp∈I(T

p
i)} do

4 for i ∈M do
5 Tt ← {max(t− t, 0), . . . , t, . . . , t+ t̄};
6 SSqi,t ←

⋃
p∈I
{
xpi,k ∈ Dx : k ∈ Tt

}
;

7 end
8 {gqi,t(·)}i∈M ← obtain decomposition according to Assumption 1;
9 end

10 while any constraint in gqi,t(x) is violated for any
x ∈ SSqi,t, i ∈M, t ∈ {0, . . . ,maxp∈I(T

p
i)} do

11 q ← q − 1;
12 if q = 0 then
13 t̄← max(t̄− 1, 0), t← max(t− 1, 0);
14 q ← q̌;
15 end
16 Repeat lines 2-9 with updated t, t̄ and q;
17 end
18 V q

i (·, t)← compute as in (2.10) and (2.11) ∀xqi ∈ SS
q
i,t;

Output: {SSqi,t, V
q
i (·, t), g

q
i,t(·)}

Decentralized Learning Model Predictive Control

The resulting iterative LMPC scheme for the multi-agent system is described in Alg. 2, where
the for loop beginning at line 3 corresponds to the iterations of the decentralized LMPC, the
for loop over agents from lines 4 to 14 may be executed in an entirely decentralized manner
with no communication between agents, and the while loop from lines 6 to 11 iterates over
time steps. Note that we assume that there is no mismatch between the model used in
(2.12a) and the system on which the policy is applied (line 8). The inputs to Alg. 2 are
Z ≥ 1: the number of LMPC iterations, x0 and u0: the initial feasible state and input
sequences, {T 0

i }i∈M: the lengths of the initial trajectories, and θ which contains the design
parameters for synthesizeFHOCP. It is implicitly assumed that each iteration is successful.
We will show that this is true in Sec. 2.4.

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 18

Algorithm 2: Decentralized Learning Model Predictive Control
Input: Z, x0, u0, {T 0

i }i∈M, θ
1 Dx ← {x0}, Du ← {u0}, t← {T 0

i }i∈M;
2 {SS0

i,t, V
0
i (·, t), g0i,t(·)} ← synthesizeFHOCP(Dx,Du, t, θ);

3 for q ∈ {1, . . . , Z} do
4 for i ∈M in parallel do
5 t← 0, xqi,0 ← xi,S, xqi ← {xi,S}, u

q
i ← ∅;

6 while xqi,t ̸= xi,F do
7 κqi (·, t)← solve Pqi,N(x

q
i,t, t);

8 xqi,t+1 ← apply uqi,t = κqi (x
q
i,t, t) and measure state;

9 xqi ← xqi ∪ {x
q
i,t+1}, u

q
i ← uqi ∪ {u

q
i,t};

10 t← t+ 1;
11 end
12 Dx ← Dx ∪ {xqi}, Du ← Du ∪ {u

q
i};

13 T qi ← t

14 end
15 t← t ∪ {T qi }i∈M;
16 {SSqi,t, V

q
i (·, t), g

q
i,t(·)} ← synthesizeFHOCP(x,u, t, θ);

17 end

2.4 Properties of the Decentralized LMPC
In this section, we show that for each iteration q, the sampled safe sets as constructed in
(2.9) have the property of reachability to xi,F , which is sufficient for persistent feasibility of
the decentralized LMPC over the entire task horizon for all iterations q. Furthermore, we
show that the closed-loop system converges to the goal state in finite time, and that task
performance is non-decreasing over iterations.

Proposition 1. Let Assumption 2 hold, then for agent i at iteration q, the sampled safe sets
as constructed in (2.9) using Alg. 1 and the dataset (x,u) are reachable to xi,F and satisfy
the decomposed constraints gqi,t(x) ⪰ 0, ∀x ∈ SSqi,t.

Proof. We first assume that t, t̄, and I are chosen according to Alg. 1 such that the
constructed sampled safe sets satisfy the decomposed constraints for all sample times t.
Now, at time t and t + 1, we obtain the time ranges Tt = {max(t − t, 0), . . . , t, . . . , t + t̄}
and Tt+1 = {max(t − t + 1, 0), . . . , t + 1, . . . , t + t̄ + 1}, respectively. For the case when
0 ≤ t ≤ t − 1, i.e. both lower limits evaluate to zero, the sampled safe sets at time t and
t+ 1 contain {xpi,0, . . . , x

p
i,t+t̄} and {xpi,0, . . . , x

p
i,t+t̄+1}, respectively, for all p ∈ I. Recall that

I contains indices corresponding to successful iterations, i.e. xp
i,T p

i
= xi,F , ∀p ∈ I. More-

over, by Assumption 2, I must be non-empty. By the fact that the feasible input sequence
{upi,0, . . . , u

p
i,t+t̄} exists in the dataset u, such that xpi,k+1 = fi(x

p
i,k, u

p
i,k), ∀k ∈ {0, . . . , t + t̄},

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 19

we see that the property of reachability to xi,F holds. For the case when t ≥ t, the sampled
safe sets at time t and t + 1 contain {xpi,t−t, . . . , x

p
i,t+t̄} and {xpi,t−t+1, . . . , x

p
i,t+t̄+1}. By the

same argument as before, we see that reachability holds. We conclude that the sampled safe
sets for agent i at iteration q are reachable to xi,F and satisfy the decomposed constraints
for all t ≥ 0.

Proposition 2. Let Assumption 2 hold and assume that Pqi,N(x
q
i,t, t) defined in (2.12) is

feasible for agent i at time t and iteration q for some xqi,t ∈ Xi. If xi,F ∈ SSq−1
i,t+N , then the

system (2.4) in closed-loop with (2.12) and (2.13) converges in at most t + T̄ steps to xi,F ,
where T̄ = N + T p

∗

i − k∗ and (k∗, p∗) = argmink,p T
p
i subject to the constraint x∗,qi,N |t = xpi,k.

Proof. By assumption, Pqi,N(x
q
i,t, t) is feasible at time t, which implies that there exists a

sequence of feasible inputs ū = {u∗,q
i,t (x

q
i,t), u

p∗

i,k∗ , . . . , u
p∗

i,T p∗
i −1
}, which drives agent i to the

goal state xi,F in T̄ steps. Therefore,

J∗,q
i,N(x

q
i,t, t) = T̄ − 1. (2.14)

Since SSq−1
i,t+N ∋ xi,F , it follows from standard MPC arguments and Prop. 1 that Pqi,N(·, k)

is feasible for time steps k > t and

J∗,q
i,N(x

q
i,t, t) ≥

k∑
l=t

1(xqi,l;xi,F) + J∗,q
i,N(x

q
i,k+1, k + 1), (2.15)

where xqi,k+1 = fi(x
q
i,k, ūk−t). Assume that xqi,k ̸= xi,F for k = {t, . . . , t + T̄ − 1}. Then at

time step k = t+ T̄ − 1, using (2.14) and (2.15) we have

J∗,q
i,N(x

q
i,k+1, k + 1) ≤ J∗,q

i,N(x
q
i,t, t)−

k∑
l=t

1(xqi,l;xi,F)

= (T̄ − 1)− (T̄ − 1) = 0

which implies that xqi,k+1 = xq
i,t+T̄

= xi,F .

Theorem 1. Consider the system in (2.1) in closed loop with the decentralized LMPC (2.12)
and (2.13). Let Assumption 1 and 2 hold. Then at each iteration q for every agent i ∈M:

1. The decentralized LMPC (2.12) is feasible for all time steps t ≥ 0.

2. The system (2.4) in closed-loop with (2.12) and (2.13) converges to the equilibrium
point xi,F in finite time.

3. The sampled safe sets SSqi,t are non-empty for all sample times t.

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 20

Proof. At iteration q = 1, by Assumption 1 and 2, the sampled safe sets SS0
i,t are non-empty

for all t ∈ N and (2.12) is feasible at t = 0.
From Proposition 1, we have that at iteration q, for each agent i, the terminal con-

straint sets SSq−1
i,t are reachable to xi,F and satisfy the decomposed constraints for all

t ∈ {0, . . . ,maxp∈I(T
p
i)}. Additionally at time t = 0, (2.12) is feasible and therefore the

proof for 1) follows from standard MPC arguments [25].
Again, leveraging the reachability property of SSq−1

i,t , ∃k ∈ {0, . . . ,maxp∈I(T
p
i)} such

that xi,F ∈ SSq−1
i,k . Since from 1) we have that (2.12) is feasible for all t ≥ 0, 2) follows

immediately after applying Proposition 2.
From 1) and 2), task execution at iteration q is successful, i.e. xq

i,T q
i
= xi,F . Therefore,

by Asssumption 1, we may construct SSqi,t ∋ x
q
i,t using Alg. 1, which shows 3). Repeating

the argument for each iteration q concludes the proof.

Corollary 1. Consider the system (2.1) in closed loop with the decentralized LMPC (2.12)
and (2.13). Let Assumption 2 hold. Then for every agent i ∈ M, the task completion time
does not increase with the iteration index q, i.e. T qi ≤ T q−1

i .

Proof. Let xqi,t and uqi,t be the elements from the closed-loop state trajectory and correspond-
ing input sequence at iteration q. From (2.10), we have that the iteration cost at iteration
q − 1 can be written as

Jq−1

i,T q−1
i

(xi,S, 0) =
N−1∑
t=0

1(xq−1
i,t ;xi,F) +

T q−1
i∑
t=N

1(xq−1
i,t ;xi,F)

≥
N−1∑
t=0

1(xq−1
i,t ;xi,F) + V q−1

i (xq−1
i,N , N)

≥ J∗,q
i,N(xi,S, 0). (2.16)

Next, using (2.15), we have that at t = 0

J∗,q
i,N(x

q
i,0, 0) ≥

T q
i∑

l=0

1(xqi,l;xi,F) = Jq
i,T q

i
(xi,S, 0). (2.17)

From (2.16) and (2.17), and using the fact that for agent i, xqi,0 = xi,S, we arrive at the final
bounds

Jq
i,T q

i
(xi,S, 0) ≤ J∗,q

i,N(xi,S, 0) ≤ Jq−1

i,T q−1
i

(xi,S, 0),

which implies that T qi ≤ T q−1
i .

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 21

2.5 Multi-Vehicle Collision Avoidance
In this section, we present a numerical example of decentralized LMPC in the context of
multi-vehicle collision avoidance. We compare the results from the decentralized LMPC
with those from a centralized approach. The control objective is for M = 3 vehicles to reach
the goal equilibrium points ζ iF from their respective initial states ζ iS in minimum time (the
code is available online1,2).

Agent Model

We model the vehicles using the kinematic bicycle model, which is discretized using forward
Euler integration with a time step of dt = 0.1s as in [73].

ζi,t+1 = ζi,t + dt

vi,t cos(ψi,t + βi,t)
vi,t sin(ψi,t + βi,t)
vi,t sin(βi,t)/lr

ai,t

 = fi(ζi,t, ui,t),

where βi,t = arctan(lr tan(δi,t)/(lf + lr)).
The state and input variables are ζi,t = [xi,t, yi,t, ψi,t, vi,t]

⊤ ∈ R4 (with units m, m, rad,
m/s) and ui,t = [δi,t, ai,t]

⊤ ∈ R2 (with units rad, m/s2) respectively. The vehicles are cou-
pled via collision avoidance constraints where we define a circular collision buffer about the
geometric center of the vehicle with radius ri and require that for all sample times,

∥ζi,t(1:2)− ζj,t(1:2)∥2 ≥ ri + rj, ∀i, j ∈M, i ̸= j, (2.18)

Decoupled FHOCP Formulation

The decoupled FHOCP for agent i at time t and iteration q given initial condition ζi is
formulated as in (2.12). For the local state and input constraints in (2.12c), in addition
to the box constraints |ζqi,k|t| ⪯ [10, 10,∞, 10]⊤ and |uqi,k|t| ⪯ [0.5, 3]⊤, ∀k ∈ NN−1, we also
impose constraints on the control rate via |uqi,0|t−u

q
i,t−1| ⪯ dt · [0.7, 7]⊤ and |uqi,k+1|t−u

q
i,k|t| ⪯

dt · [0.7, 7]⊤, ∀k ∈ NN−2. Here, | · | represents the element-wise absolute value.
In (2.12d), we decompose the global constraints into time-varying hyperplane constraints

on the position states of each vehicle, i.e. gq−1
i,t+k(ζ

q
i,k|t) = Hq−1

i,t+kζ
q
i,k|t + hq−1

i,t+k ⪯ 0, with
Hq−1
i,t+k ∈ RM−1×4 and hq−1

i,t+k ∈ RM−1 for all k ∈ NN−1. This implementation of line 8 of Alg. 1
is achieved by solving a hard margin support vector machine (SVM) for all agent pairs
(i, j) ∈M, i ̸= j, where maximum margin separating hyperplanes can be found for time t if
the position states in the candidate sampled safe sets SSq−1

i,t and SSq−1
j,t are linearly separable.

If all
(
M
2

)
pairwise SVM problems are feasible for all time t and the distance between the

1https://github.com/zhu-edward/multi-agent-LMPC
2A video of the results may be found at https://youtu.be/cB9zckRm5j8

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 22

Figure 2.1: Snapshots of the decentralized LMPC trajectory at convergence. Circles represent the collision
buffers centered at the position of agent 1 (blue), 2 (orange), and 3 (red).

Table 2.1: Parameter Values

ζ1,S (0, 5,−π/2, 0) ζ1,F (0,−5,−π/2, 0)
ζ2,S (−5,−5, π/4, 0) ζ2,F (5, 5, π/4, 0)

ζ3,S (5,−5, 3π/4, 0) ζ3,F (−5, 5, 3π/4, 0)
lf , lr 0.5m r 0.75m
N 20 Z 20
ϵ 1e-4 q 2
t̄ 175 t 0

hyperplanes is no less than 2r in all cases, then we construct the constraint decomposition
for agent i at time t by stacking the solution Hij and hi from all SVM problems involving
agent i into the matrix Hq−1

i,t and vector hq−1
i,t respectively. Otherwise, following Alg. 1, we

shrink the sets Tt and I and retry the SVM problem.
We compute the initial feasible state trajectory and input sequence (ζ0

i ,u
0
i) using a linear

time-varying MPC controller. At each time step, the decoupled FHOCPs are solved using
IPOPT [141] by constructing a set of |SSq−1

i,t+N | problems where (2.12e) is formulated as
equality constraints for each element in the safe set. Corollary 1 is useful here as it allows us
to prune the safe sets using an upper bound on the iteration cost, which can be computed
for each point in the safe sets without solving the FHOCP. Specifically, at each time t, we
have the cost-to-come for the current state xi,t, we know that the sum of the stage costs over
the optimization horizon is upper bounded by the horizon length N , and the cost-to-go from
each point in the safe set is known. If for any safe set point, the sum of these three quantities
is greater than T q−1

i , we may discard that point. This helps to manage the computational
burden induced by the discrete safe sets. The parameters used for this experiment are shown
in Table 2.1.

Results and Discussion

As seen in Table 2.2, the decentralized LMPC converges to a steady state solution where the
optimal cost of each iteration is non-increasing. We additionally implemented a centralized
LMPC, with the same parameters and solver, for the global system subject to the original

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 23

Figure 2.2: Initial (light) vs. steady state (dark) position trajectory (top). The starting and goal states are
denoted as the square and circle markers respectively.

Figure 2.3: Velocity profile and input sequence (bottom) for agent 1 (blue), 2 (orange), and 3 (red) at the
first and last iterations. The black dashed lines correspond to the input box constraints.

constraint (2.18). This approach achieved a steady state cost of 48, which is only about a 4%
difference in cost with respect to the decentralized case. We also compare the computation
time for solving a single FTOCP in the decentralized and centralized cases. This is summa-

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 24

Figure 2.4: Minimum distance between agents at each iteration.

Table 2.2: Optimal Cost of the Decentralized LMPC at each Iteration

Iteration Iteration Cost Iteration Iteration Cost

q = 0 296 q = 5 51
q = 1 122 q = 6 50
q = 2 79 q = 7 50
q = 3 55 q = 8 50
q = 4 51

Table 2.3: FTOCP Solve Time

Max Time [s] Min Time [s] Avg. Time [s]
Decentralized 10.2 1.97 3.35
Centralized 48.3 15.8 20.5

rized in Table 2.3. For the former, we record the maximum solve time over agents at each
sampling time. For the latter, we record the solve time of the centralized FHOCP at each
sampling time. We obtain that over all iterations, computation time of the decentralized
case is lower by a factor of 4.6x to 24x.

In Figures 2.2 and 2.3, we compare the initial feasible trajectory to the steady state
trajectory at convergence. In the initial feasible trajectory, the agents’ movements are inten-
tionally staggered in time to guarantee safety. This can be clearly seen in the velocity profile
at iteration 0 in Figure 2.3. At convergence, all three agents begin moving simultaneously
and steer to avoid collisions around the intersection point at the origin. We notice that in the
steady state input sequence, the acceleration input either saturates or is close to saturating
the imposed constraint and resembles a bang-bang controller [86] which switches between
acceleration and deceleration at the midpoint of the trajectory.

In Figure 2.1, we look closely at the steady state trajectory about the intersection point

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 25

Figure 2.5: Initial feasible trajectories for the 10-agent example.

and see that the collision avoidance constraints are satisfied and are almost active for agents
1 and 3 at 2.4s and agents 2 and 3 at 2.8s. This is clearly reflected in Figure 2.4 which plots
the minimum pairwise distance between the three agents over iterations of decentralized
LMPC.

Finally, in Figures 2.5 and 2.6, we show the approach applied to a system with ten agents
and see that we were able to achieve an over 50% reduction in task completion time for the
overall system, going from 15.5 seconds for the initial feasible trajectories shown in Figure 2.5
to 7 seconds for the converged trajectories in Figure 2.6.

2.6 Chapter Summary
In this chapter, we presented a decentralized LMPC framework for dynamically decoupled
multi-agent systems performing iterative tasks. In particular, we proposed a procedure for
decomposing global constraints and synthesizing terminal sets and terminal cost functions
for the FHOCP using data from previous iterations of task execution. We showed that
the resulting decentralized LMPC has the properties of persistent feasibility, finite-time
convergence to the goal state, and non-decreasing performance over iterations.

In the multi-vehicle collision avoidance example, due to the parallelization opportunities
afforded by the decentralized implementation, we observe a significant improvement in com-
putation time compared to a centralized approach with only a 4% increase in cost. In fact,

CHAPTER 2. DECENTRALIZED LEARNING MODEL PREDICTIVE CONTROL
FOR MULTI-AGENT NON-LINEAR SYSTEMS 26

Figure 2.6: Trajectories at convergence for the 10-agent example.

the steady state solution from the decentralized approach saw saturation of the coupling
collision avoidance constraint.

Moving forward, we would like to relax the assumption of perfect model knowledge and
investigate approaches which leverage techniques in robust and stochastic optimal control
to guarantee performance in the presence of model mismatch. In particular, an interesting
direction is to extend the the work from [9, 8] to the multi-agent case, which uses tools
from statistical identification to learn rich models of the system from data while maintaining
guarantees on system safety and robustness.

We will next look at how a similar method can be developed for the case when the agents
exhibit coupling through their dynamics functions in addition to their constraints. This will
require communication during the iterations of the task, but we will show how this can be
limited to only local communication between agents where this coupling exists.

27

Chapter 3

Distributed Learning Model Predictive
Control for Multi-Agent Linear Systems

3.1 Introduction
Complex systems composed of multiple subsystems are present in many control applications.
The large scale and spatial distribution of these systems often make the control by a cen-
tralized unit intractable due to limitations in computation and communication. Research
has therefore focused on proposing design schemes for local controllers which compute con-
trol actions for the individual subsystems based on only local information in decentralized
schemes, and on communicated information from neighboring subsystems in distributed con-
trol schemes. One line of research has focused on exploiting the interconnection structure
of the system in order to design interconnected controllers based on a convex reformula-
tion involving linear matrix inequalities in a scalable way [133]. If constraints need to be
accounted for, distributed model predictive control (DMPC) techniques can be employed.
They can mainly be categorized into non-cooperative, such as tube-based [109], and coopera-
tive schemes [31, 55, 35, 37, 1]. The latter often involve distributed optimization techniques
[16] where the subsystems communicate local information and agree on a solution, thus
solving the optimization problem cooperatively.

The main challenge in DMPC schemes is to enable distributed computation by decom-
posing the optimization problem into subproblems for the individual subsystems. Most of
the DMPC approaches in the literature therefore impose the distributed structure of the
system on the terminal set and cost function of the MPC problem [109, 55, 35, 46, 137, 92].
In particular, they first design a structured terminal controller and cost based on Lyapunov
stability and then design structured positive invariant sets under this terminal controller,
satisfying the constraints. Two aspects in these schemes can lead to conservatism: (1) Im-
posing structure on the terminal controllers and terminal sets, and (2) computing positive
invariant sets for one specific choice of terminal controller which is fixed in the design phase,
lead to a possibly small inner approximation of the maximal control invariant set. In order to

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 28

mitigate the conservatism introduced by the imposed structure, some works have proposed
to adapt the terminal sets based on the states of the subsystems in operation [137, 92, 35].
In [37, 1], terminal sets also computed online within the MPC problem.

Recent research has focused on learning-based and data-driven DMPC schemes, [5, 162,
98, 63, 59]. In [112], a data-driven MPC scheme, Learning MPC (LMPC), was introduced,
where previously seen data are exploited in order to construct the terminal components of
the MPC problem. In [115] this framework was extended to uncertain systems, and it was
shown how the LMPC scheme can be used to iteratively enlarge the domain of the policy.

In this chapter, we propose a distributed LMPC (DLMPC) scheme. The contributions
of this chapter are the following:

• We present a novel DLMPC scheme for linear systems able to handle coupled dy-
namics, coupled state constraints and coupled cost functions. The main improvement
w.r.t. existing DMPC approaches is fully distributed computations without imposing
any structure on the terminal cost function or constraint set. This is achieved by ex-
ploiting previously seen local data by the individual subsystems in order to build local
data driven terminal sets and terminal cost functions. A consensus on specific param-
eters in the construction of the local costs and constraints is achieved by distributed
optimization which guarantees that the local terminal sets are a control invariant set
and the sum of the local terminal cost functions is a Lyapunov function for the global
system. This can considerably reduce conservatism w.r.t. DMPC schemes that rely on
finding a positive invariant terminal set under a fixed structured stabilizing terminal
controller.

• For iterative control tasks, given a first feasible trajectory, the proposed scheme pro-
vides recursive feasibility and asymptotic stability. Furthermore, we prove that the
proposed DLMPC has a non-increasing control performance over iterations and, under
mild conditions, converges to the global centralized optimal solution.

• For non-iterative control tasks, or if an initial feasible trajectory is difficult to obtain,
we further present an algorithm that by iteratively performing the proposed DLMPC
scheme with changing starting conditions leads to an enlargement of the domain of the
DLMPC policy. This can be used to safely explore the state space and to generate the
required data in a sample efficient and distributed way.

The results presented in this chapter have also appeared in:

• Y. Stürz, E. Zhu, U. Rosolia, K. Johannson, and F. Borrelli, "Distributed learning
model predictive control for linear systems". In: 2020 59th IEEE Conference on Deci-
sion and Control (CDC). 2020, pp. 4366-4373.

Notation: Let R denote the set of real numbers. N and N+ denote the set of non-
negative and positive natural numbers. We denote the transpose of a vector v ∈ Rn as v⊤,
and its Euclidean norm as ∥v∥. The matrix M = diag(M1, ...,Mm) is the block-diagonal

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 29

matrix with submatrices Mi on its diagonal. The symbol ≽ is used to indicate elementwise
inequality. The identitiy matrix of dimension n is denoted as In and the vector of all ones is
denoted as 1.

3.2 Problem Formulation
In this section, we present the model of the distributed systems considered in this paper,
and then state the control problem formulation.

Dynamically Coupled Constrained Linear Systems

We consider the discrete-time linear time-invariant system with dynamics given by

xt+1 = Axt +But, (3.1)

where xt ∈ Rn and ut ∈ Rm are the system state and input at time t ∈ N. The system
matrices A and B are assumed to be known. The system states and inputs are subject to
linear constraints

xt ∈ X , ut ∈ U , (3.2)

which are formulated as
Gxt ≤ g, Lut ≤ l, (3.3)

with G, L, g, and l given matrices and vectors, respectively.
We consider systems in (3.1) which have a structure that admits a decomposition into

subsystems N = {1, ...,M} which may be coupled in their state dynamics. The state of the
ith subsystem is xi,t ∈ Rni , and we assume that the ith input ui,t ∈ Rmi affects only the i-th
state. Thus, the system states and inputs are partitioned as

xt =
[
x⊤1,t . . . x

⊤
M,t

]⊤
, ut =

[
u⊤1,t . . . u

⊤
M,t

]⊤
. (3.4)

For each subsystem i ∈ N , we define the set of neighboring subsystems Ni ⊆ N which
contains all those subsystems that are coupled to subsystem i over the dynamics, constraints
or cost. We define the state vector xNi,t ∈ RnNi containing the local states of subsystem i and
its neighboring subsystems in Ni, which can be expressed as xNi,t = XNi

xt, with XNi
being a

projection matrix, i.e., a binary matrix XNi
∈ {0, 1}nNi

×n. Similarly, the projection matrices
Xi ∈ {0, 1}ni×n and Ui ∈ {0, 1}mi×m, are defined such that xi,t = Xixt and ui,t = Uiut. The
dynamics of subsystem i is then reformulated as

xi,t+1 = ANi
xNi,t +Biui,t, ∀i ∈ N, (3.5)

with
ANi

= XiAX
⊤
Ni
, Bi = XiBU

⊤
i . (3.6)

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 30

The local state and input constraints are defined as

xNi,t ∈ XNi
= {xNi,t ∈ RnNi : GNi

xNi
≤ gNi

},
ui,t ∈ Ui = {ui,t ∈ Rmi : Liui ≤ li},

(3.7)

with Li = UiLU
⊤
i and li = Uil, and GNi

= XNi
GX⊤

Ni
and gNi

= XNi
g.

Control Problem Formulation

Let us consider system (3.1). We are given an iterative task, where the trajectories of the
subsystems start at the same initial states at each iteration. We will discuss the case of
non-iterative tasks in Section 12. In the following, we denote the iteration by a superscript
q and the initial state at iteration q by

xqi,0 = xi,S, ∀i ∈ N , (3.8)

where the overall initial state xq0 = xS is defined as a stacked vector similar to (3.4).
The goal is to solve the following infinite horizon optimal control problem (IHOCP) at

each iteration

J∗
0→∞(xS) = min

u0,u1,...

∞∑
t=0

h(xt, ut)

s.t. xt+1 = Axt +But, ∀t ≥ 0

xt ∈ X , ∀t ≥ 0

ut ∈ U , ∀t ≥ 0

x0 = xS.

(3.9)

In the following, we consider problems that involve decomposable stage costs in (3.9),
i.e., where h(xt, ut) is given as a sum of local stage costs hi(xNi,t, ui,t) as

h(xt, ut) =
M∑
i=1

hi(xNi,t, ui,t). (3.10)

We assume that the local stage costs hi(·, ·) are continuous, jointly convex and satisfy{
hi(xNi,F , 0) = 0,

hi(x
q
Ni,t

, uqi,t) ≥ 0, ∀ xqNi,t
∈ RnNi\{xNi,F}, ∀ u

q
i,t ∈ Rmi\{0},

(3.11)

where the final state xF is a feasible equilibrium for system (3.1) under no input, i.e., AxF =
xF .

Remark 1. While the local stage costs hi(xNi,t, ui,t) can account for coupling between the
subsystems, this formulation includes the special case of completely separable cost functions
with local stage costs given as hi(xi,t, ui,t).

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 31

Remark 2. A specific choice of the stage cost h(xt, ut) can be the quadratic function

h(xt, ut) = x⊤t Qxt + u⊤t Rut,

with positive semi-definite and positive definite weighting matricesQ ∈ Rn×n and R ∈ Rm×m,
respectively. In this case, the local stage costs are given by

hi(xNi,t, ui,t) = x⊤Ni,t
QNi

xNi,t + u⊤i,tRiui,t,

with QNi
and Ri such that the global weighting matrices Q and R are given by Q =∑

i∈N X⊤
Ni
QNi

XNi
and R =

∑
i∈N U⊤

i RiUi. A completely separable quadratic stage cost
is then defined as

hi(xi,t, ui,t) = x⊤i,tQixi,t + u⊤i,tRiui,t, (3.12)

with Qi such that Q =
∑

i∈N X⊤
i QiXi and Ri as before.

3.3 Background on LMPC
We review the LMPC problem formulation for the global system in (3.1) from [113]. For
this, we define the vectors that collect all inputs applied to system (3.1) and its resulting
states for all time steps t of iteration q as

uq = [uq⊤0 , uq⊤1 , ..., uq⊤t , ...]⊤,

xq = [xq⊤0 , xq⊤1 , ..., xq⊤t , ...]⊤.
(3.13)

Convex Safe Set

In order to guarantee stability of MPC laws, an N -step controllable set to a control invariant
set can be used. Computing such a set is usually numerically challenging or even intractable
for nonlinear systems or large scale distributed systems. To alleviate this problem, we will
as [112] exploit previously seen trajectories that successfully completed the iterative task.
Since they represent a subset of the maximal stabilizable set, the sampled safe set SSq is
defined over the realized trajectories of the system from previous iterations

SSq =

{⋃
l∈T q

∞⋃
t=0

xlt,

}
, (3.14)

where T q collects all iteration indices from previous successful iterations, i.e., which were
feasible and converged to xF , defined as

T q =
{
l ∈ [0, q] : lim

t→∞
xlt = xF

}
. (3.15)

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 32

Because of the convexity of the constraints X and U , any convex combination of the
elements in the safe set SSq is again a control invariant set for system (3.1), i.e., for any
element in the convex safe set

CSq = conv(SSq) =

{∑
l∈T q

∞∑
t=0

αltx
l
t : α

l
t ≥ 0,

∑
l∈T q

∞∑
t=0

αlt = 1, xlt ∈ SSq
}
, (3.16)

there exists a sequence of control inputs that steers the system (3.1) to xF [24]. If all previous
successful trajectories are taken into account, then it holds that the sets are growing over
the iterations, i.e., T q−1 ⊆ T q and therefore

CSq−1 ⊆ CSq. (3.17)

Terminal Cost

For the qth realized trajectory xq and associated input sequence uq in (3.13), the cost-to-go
from time t onwards is given by

Jqt→∞(xqt) =
∞∑
k=t

h(xqk, u
q
k). (3.18)

The performance of the qth trajectory is defined as the cost from time t = 0, i.e.,

Jq0→∞(xq0) =
∞∑
t=0

h(xqt , u
q
t). (3.19)

The barycentric function [66] is used as the terminal cost in the LMPC for linear systems
in [112]. It is defined as

V q,∗(x) = min
αq

q∑
l=0

∞∑
t=0

αltJ
l
t→∞(xlt)

s. t.

q∑
l=0

∞∑
t=0

αlt = 1

q∑
l=0

∞∑
t=0

αltx
l
t = x,

αlt ≥ 0, ∀t ∈ N,

(3.20)

with xlt being the realized state at time t of the lth iteration, and where αq comprises all
αlt,∀l ∈ {0, ..., q},∀t ∈ N. The function V q,∗ thus assigns to every point in the convex
safe set the corresponding convex combination of minimum costs-to-go along the previous
trajectories in the safe set.

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 33

Remark 3. In practical applications, the iterations will have a finite time duration. For
simplicity, we adopt the infinite time formulation in this paper.

An LMPC [112] for a centralized linear system then solves at each time step t the following
finite horizon optimal control problem (FHOCP),

JLMPC,q
t→t+N (xqt) = min

xt,N ,ut,N−1,αq−1

[
t+N−1∑
k=t

h(xk|t, uk|t) + V q−1,∗(xk+N |t)

]
s.t. xk+1|t = Axk|t +Buk|t,

xk|t ∈ X ,
uk|t ∈ U , k = t, ..., t+N−1 (3.21)
xt|t = xqt ,

xt+N |t ∈ CSq−1,

with
xt,N = [x⊤t|t, ..., x

⊤
t+N |t]

⊤, ut,N−1 = [u⊤t|t, ..., u
⊤
t+N−1|t]

⊤. (3.22)

Let us denote the optimal solution to (3.21) by

x∗
t,N = [x∗⊤t|t , ..., x

∗⊤
t+N |t]

⊤, u∗
t,N−1 = [u∗⊤t|t , ..., u

∗⊤
t+N−1|t]

⊤. (3.23)

At time t, the first input is applied to the system, i.e., uqt = u∗qt|t, and the problem (3.21) is
solved again for the next time step in a receding horizon fashion.

Under the assumption that at iteration q = 1 the convex safe set is non-empty, i.e.,
CSq−1 = CS0 ̸= ∅, recursive and iterative feasibility, asymptotic stability and non-decreasing
performance over the iterations are proved in [113].

3.4 DLMPC
In the following, we present the problem formulation of DLMPC, which extends the LMPC
approach to distributed systems. Let us consider the coupled constrained linear distributed
system from (3.1). We define the vectors that collect all inputs applied to subsystem i in
(3.5) and its resulting states for all time steps t of iteration q as

uqi = [uq⊤i,0 , u
q⊤
i,1 , ..., u

q⊤
i,t , ...]

⊤, xqi = [xq⊤i,0 , x
q⊤
i,1 , ..., x

q⊤
i,t , ...]

⊤. (3.24)

We further define the local sampled safe sets for subsystems i ∈ N over the realized trajec-
tories of the subsystem from all successful previous iterations up to q as

SSqi =

{⋃
l∈T q

∞⋃
t=0

xli,t,

}
, (3.25)

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 34

with T q as defined before for (3.14). Moreover, we note that we can decompose the safe set
from (3.16) into the following local convex safe sets

CSqi =

{∑
l∈T q

∞∑
t=0

αli,tx
l
i,t : α

l
i,t ≥ 0,

∑
l∈T q

∞∑
t=0

αli,t = 1, xli,t ∈ SS
q
i

}
, (3.26)

where the coefficients αli,t,∀l ∈ {0, ..., q−1}, ∀t ≥ 0 will be optimized over in problems (3.28)
and (3.30).

We note the following relation of the convex safe set CSq in (3.16) and the local convex
safe sets CSqi in (3.26), which will be important for the decomposition of the problem in
(3.21):

x = [x⊤1 , ..., x
⊤
M]⊤ ∈ CSq ⇐⇒ xi ∈ CSqi , αq

i = αq
j ,∀i ̸= j, i, j ∈ N , (3.27)

with αq
i comprising αli,t,∀l ∈ {0, ..., q − 1},∀t ≥ 0 in (3.26).

Based on the assumption before that the global system is decomposable into M coupled
subsystems, the global LMPC problem in (3.21) can equivalently be decomposed into the
following subproblems

JLMPC,q
i,t→t+N(x

q
i,t) = min

xNi,t,N
,

ui,t,N−1,

αq−1
i

[
t+N−1∑
k=t

hi(xNi,k|t, ui,k|t) + V q−1,∗
i (xi,t+N |t)

]

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t,

xNi,k|t ∈ XNi
,

ui,k|t ∈ Ui, k = t, ..., t+N−1 (3.28)
xNi,t|t = xNi,t,

xi,t+N |t ∈ CSqi ,

with
xNi,t,N = [x⊤Ni,t|t, ..., x

⊤
Ni,t+N−1|t]

⊤, ui,t,N−1 = [u⊤i,t|t, ..., u
⊤
i,t+N−1|t]

⊤, (3.29)

with αq−1
i comprising αli,t,∀l ∈ {0, ..., q − 1},∀t ∈ N, and with V q−1,∗

i (xi,k+N |t) being defined
as in (3.20), but with J lt→∞(xlt) replaced by

J li,t→∞(xli,t) =
∞∑
k=t

hi(x
l
Ni,k

, uli,k).

In order to guarantee that the decomposed problem in (3.28) is an exact reformulation
of the global problem in (3.21), i.e., to guarantee that they have the same solutions, the
following consensus constraints need to be introduced

αq−1
i = αq−1

j , ∀i, j ∈ N , i ̸= j,

xNi,t,N = XNi
xt,N , ∀i ∈ N , t ≥ 0,

(3.30)

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 35

with xt,N the planned state trajectory of the global system as defined in (3.22). The consensus
constraint in the first line of (3.30) ensures the condition in (3.27), and the one in the second
line ensures that overlapping parts of state variables from neighboring subsystems in xNi,t,N ,
i.e., variables of different subsystems that have the same physical meaning, are the same.
The local FHOCPs in (3.28) are solved in a receding horizon fashion, i.e., the first local
inputs uqi,t = u∗qi,t|t are applied to the subsystems at time t. The next section presents a
distributed solution method to solve the subproblems (3.28).

3.5 Distributed Synthesis for DLMPC
In this section, we present a distributed solution method for the local decomposed sub-
problems in (3.28) coupled over the consensus constraints in (3.30). Various distributed
optimization algorithms can be employed [16]. We propose a distributed solution scheme
based on the alternating direction method of multipliers (ADMM) because of its fast conver-
gence in practice [46, 28]. A consensus algorithm involving a central coordinator [28] could
be implemented, which requires communication to every subsystem and therefore might not
be tractable in practice. We propose a scheme, where only nearest-neighbor communica-
tion and no global coordination is required. A similar scheme has been presented before for
distributed controller synthesis of large-scale systems in [132].

Distributed Synthesis for DLMPC

Let us define the local variable vector of subsystem i as

si = [x⊤
Ni,t,N

, αq−1⊤
i , u⊤

i,t,N−1]
⊤, (3.31)

and the projection matrices Eij, which project si onto those variables over which a consensus
needs to be achieved between subsystem i and its neighboring subsystems j ∈ Ni, i.e.,
Eijsi = Ejisj is the consensus constraint from (3.30) for subsystem i with j. The decomposed
problem in (3.28) and (3.30) can now be formulated as the following M subproblems for all
i ∈ N

min
si

Jqi,t→t+N(si) + gi(si)

s.t. Eijsi = Ejisj, ∀j ∈ Ni.
(3.32)

with Jqi,t→t+N(si) being the cost function in (3.28), and gi(si) being the indicator function
for the constraints in (3.28), i.e.,

gi(si) =

{
0 if si satisfies the constraints in (3.28),
+∞ otherwise.

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 36

Algorithm 3: Distributed computation of local input uqi,t = u∗qi,t|t for subsystem i
at time t of iteration q
Input: Iteration q, time t, ρ > 0, set of neighboring subsystems Ni, current

subsystems states xqi,t, initial values s(0)i , ∀i ∈ N
1 for i ∈ N do
2 Initialization: Set κ← 0, λ(0)i ← 0;
3 while not converged do
4 Communicate Eij s

(κ)
i to neighboring nodes j ∈ Ni;

5 λ
(κ+1)
i ← λ

(κ)
i + ρ

∑
j∈Ni

(Tij s
(κ)
i − Tji s

(κ)
j);

6 s
(κ+1)
i ←

argmin
si

{
Jqi,t→t+N(si) + gi(si) + s⊤i λ

(κ+1)
i + ρ

∑
j∈Ni
∥Tij si −

Tij s
(κ)
i +Tji s

(κ)
j

2
∥2
}

;

7 end
8 κ← κ+ 1;
9 Set s∗i = sκi ;

10 Return u∗qi,t|t from s∗i ;
11 end

Output: local inputs uqi,t, ∀i ∈ N

In order to derive the ADMM steps, we formulate the augmented Lagrangian, which
allows a decomposition into the following sum of local terms

Lρ =
∑
i∈N

Lρ,i, (3.33)

with

Lρ,i = Jqi,t→t+N(si) + gi(si) +
∑
j∈Ni

(
λ⊤ij (Eijsi − Ejisj) +

ρ

2
∥Eijsi − Ejisj∥22

)
. (3.34)

The modified ADMM update steps are summarized in Algorithm 3. The derivation can be
found in [132]. The update steps require communication only between neighboring subsys-
tems, i.e., subsystems that are coupled through their dynamics, constraints, or costs.

The DLMPC for iterative tasks, with distributed solution of the subproblems by Algo-
rithm 3, is given in Algorithm 4.

Properties of the DLMPC

Next, we present our main result on the properties of Algorithm 4. We make the following
assumptions.

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 37

Algorithm 4: DLMPC
Input: Initial states xi,S, target states xi,F , sets of neighboring subsystems Ni,

initial successful feasible trajectories x0
i,t, u

0
i,t with CS0

i and
J0
i,t→∞(xi,t),∀xi,t ∈ x0

i,t, ∀i ∈ N , qmax

1 for iteration q = 1 to qmax do
2 for i ∈ N do
3 while xi,t ̸= xi,F do
4 Solve local problem (3.32) via Algorithm 3;
5 Apply local input uqi,t = u∗qi,t|t;
6 Obtain local state xqi,t;
7 end
8 Update CSqi by adding x∗

i,t;
9 Compute and save Jqi,t→∞(xqi,t),∀x

q
i,t ∈ x∗

i,t;
10 end
11 q = q + 1;
12 end

Output: Closed-loop trajectories x∗
i,t, u

∗
i,t, ∀i ∈ N

Assumption 1. We have access to feasible trajectories xqi at iteration q = 0 converging to xi,F
for all subsystems i ∈ N , and therefore the convex safe sets at iteration q = 1, CSq−1

i = CS0
i ,

are non-empty.

Assumption 2. We assume that the local cost functions Jqi,t→t+N(·)+gi(·) in (3.32) are closed,
proper and convex for all subsystems i ∈ N , and that the unaugmented Lagrangian

Li = Jqi,t→t+N(si) + gi(si) +
∑
j∈Ni

λ⊤ij (Eijsi − Ejisj)

has a saddle point, and that the ADMM update steps in Algortihm 3 are feasible.

In addition to the classical MPC properties, namely, persistent feasibility in each iter-
ation, and asymptotic stability of the equilibria xi,F , the following properties hold for the
DLMPC in Algorithm 4.

Theorem 1. Consider system (3.1), with distributed structure (3.5) and (3.7). Let Assump-
tions 1 and 2 hold. Then, the DLMPC in Algorithm 4 has the following properties:

1. The DLMPC is feasible for all t ≥ 0 and at every iteration q ≥ 1. The equilibrium
points xi,F are asymptotically stable for the closed-loop coupled subsystems under the
DLMPC law.

2. The iteration cost Jq0→∞(xS) of the closed-loop system does not increase with the
iteration index q, i.e., Jq+1

0→∞ ≤ Jq0→∞.

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 38

3. If the closed-loop system under the DLMPC converges to the steady-state inputs
u∞
i = lim

q→∞
uqi and the related steady-state trajectories x∞

i = lim
q→∞

xqi , for all subsys-

tems i ∈ N , and the conditions from [112, Theorem 3] are satisfied, then, u∞
i and x∞

i

are global optimal solutions for the IHOCP (3.9).

Proof. The properties of Theorem 1 have been proven in [112] and [113] for a single system.
It therefore suffices to show that the proposed decomposed problem solved in Algorithm 4
is an exact reformulation of the global centralized problem and that the distributed solution
method in Algorithm 3 converges to the global optimal solution.

It can easily be seen that the local subproblems in (3.28) together with the consensus
constraints in (3.30), and their reformulation into the subproblems in (3.32) are exact re-
formulations of the global problem in (3.21). This follows from the decomposability of the
cost function in (3.10) and the structure of the system in (3.5) and (3.7), together with the
definitions of CSqi and V q,∗

i in (3.26) and (3.28) with the consensus constraints in (3.30). For
linear system dynamics and convex constraints, the problems (both the global and the local
ones) are convex and therefore admit a global optimal solution.

The proposed distributed solution method in Algorithm 3 is equivalent to the update steps
of consensus ADMM in [28]. This equivalence has been shown in the derivation of the steps
of Algorithm A.1 in [13]. Under Assumption 2, the residuals Eijsi−Ejisj, ∀j ∈ Ni, ∀i ∈ N
in Algorithm 3 asymptotically converge to zero and the cost

∑
i∈N (Jqi,t→t+N(·) + gi(·)) from

(3.32) asymptotically converges to the global optimal solution. This is true in each time step
and therefore Jq0→∞(xS) =

∑
i∈N Jqi,0→∞(xi,S) converges to the global optimal solution. With

the previous results, this is equivalent to the global optimal solution of the global centralized
problem (3.21).

Therefore, the proofs in [112] and [113] for a single system can be applied to the global
centralized problem and thus the properties in Theorem 1 hold. ■

Note that the properties in Theorem 1 hold for the global system in (3.1), i.e., for the
ensemble of all coupled subsystems. In particular, property 2) guarantees a decrease in the
iteration cost Jq0→∞(xS) =

∑
i∈N Jqi,0→∞(xi,S) of the sum of costs of all subsystems over itera-

tions, rather than a decrease in the iteration costs Jqi,0→∞(xi,S) of the individual subsystems.
Similarly, the optimal cost function JLMPC

t→t+N(·) =
∑

i∈N JLMPC
i,t→t+N(·), is a Lyapunov function

for the equilibrium point xF of the closed loop system (3.1) rather than the individual cost
functions JLMPC

i,t→t+N(·) for the individual subsystems. Furthermore, Algorithm 3 enables a dis-
tributed implementation of the global terminal constraint set CSq−1 on which no distributed
structure is imposed. The approach presented in this paper therefore captures the couplings
between the subsystems and thus reduces conservatism w.r.t. other approaches of distributed
MPC in the literature which impose structure on the terminal cost or terminal constraint
sets.

The size of the decomposed local FHOCPs in (3.28) are of the size of the individual
subsystems and are independent of the number of subsystems. Since only nearest-neighbor
communication is required in Algorithm 3, also the solution method scales well with the

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 39

number of subsystems. The number of data points for the construction of the convex safe
sets in (3.26) grows in each iteration with adding the most recent closed loop trajectories
to the safe sets in (3.25). In order to reduce the required computational effort, the set of
data points can be truncated, i.e., not all previously seen data points need to be included in
the safe sets in (3.25). For example only the most recent trajectories, or only the previous
trajectory can be chosen to be included.

Safe and Efficient Data Generation and Domain Enlargement of
the DLMPC Policy

In order to use Algorithm 4 for a (possibly iterative) task, data from at least one set of
successful feasible trajectories of the subsystems are required to construct the local terminal
sets and cost functions, which guarantee the properties in Theorem 1. While successful
feasible trajectories might be easy to obtain for distributed systems in some applications,
such as by locally or manually controlling multiple loosely coupled subsystems in a non-
optimal way, in other applications, such as for tightly coupled subsystems with safety-critical
constraints, these data might be difficult to generate. We therefore propose in the following
a distributed algorithm which allows the safe and efficient generation of the data required
for the computation of the terminal sets and costs in Algorithm 4. We present this data
generation method for a control task from given initial states xdesi,0 to the target states xi,F
of the subsystems. Let us define the following FHOCP, which is similar to the one in (3.28)
except for a different cost function, and with the initial states xi,0 being optimization variables

min
xNi,t,N

,
ui,t,N−1,

αq−1
i

∥xqi,0 − xdesi,0 ∥22

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t, k = 0, ..., N−1

xNi,k|t ∈ XNi
, k = t, ..., t+N−1

uik|t ∈ Ui, k = t, ..., t+N−1, (3.35)

xi,t+N |t ∈ CSq−1
i ,

with xNi,t,N , ui,t,N−1, αq−1
i as in (3.29), and where the consensus constraints in (3.30) have to

hold. Note that no initial successful feasible trajectories x0
i,t need to be available. Instead, we

use only the target states xi,F as initial feasible trajectories and therefore define CS0
i = xi,F .

Iteratively solving (3.35) and computing the DLMPC closed-loop trajectories by Algo-
rithm 4 enlarges the domain of the DLMPC policy and converges to feasible trajectories
starting at xi,0 = xdesi,0 and ending in xi,0 = xi,F , which can used as the input to Algorithm 4.
These steps are summarized in the following Algorithm 5

Remark 4. Algorithm 5 can also be used to compute a larger domain of the DLMPC policy.
If no specific initial states xdesi,0 are given, instead of the cost function ∥xqi,0− xdesi,0 ∥22 in (3.35),
a different cost function can be used, for example to compute the initial states xi,0 for all

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 40

Algorithm 5: Efficient and safe distributed data generation for the DLMPC policy
Input: Terminal states xi,F , sets of neighboring systems Ni, desired initial states

xdesi,0 , ∀i ∈ N , rmax

1 Initialize: Set CS0
i = xi,F ;

2 Set iteration count r = 1;
3 for i ∈ N do
4 while ∥xri,0 − xdesi,0 ∥22 ≤ ϵ and r ≤ rmax do
5 Solve (3.35) to obtain xri,0;
6 Compute x∗

i,t, u
∗
i,t via Algorithm 4 with inputs: xi,S = xri,0, CS0

i = CSr−1
i ,

J0
i,t→∞ = Jri,t→∞, qmax = 1, until line 7 of Algorithm 4, then break;

7 Update CSri by x∗
i,t;

8 Compute and save Jri,t→∞(xi,t),∀xi,t ∈ x∗
i,t;

9 r = r + 1;
10 end
11 Set CS i = CSri ;
12 end

Output: CS i containing successful feasible trajectories from xdesi,0 to xi,F , ∀i ∈ N

subsystems i ∈ N as the points furthest in the direction of interest at the borders of the
convex safe sets CSqi .

3.6 Numerical Experiments
In this section, we present numerical examples to demonstrate the methods of the DLMPC
scheme in Algorithm 4 and the data generation in Algorithm 5.

We consider a system of three dynamically coupled subsystems with coupled state con-
straints. The subsystems have two states each, i.e., xi = [xi1, xi2]

⊤, ∀i ∈ N . The overall sys-
tem state is given by x = [x⊤1 , x

⊤
2 , x

⊤
3]

⊤ ∈ R6, and the input vector by u = [u1, u2, u3]
⊤ ∈ R3.

The system matrices of the global system are given by

A =

A11 A12 0

0 A22 A23

A31 0 A33

 , B = diag(B11, B22, B33) , (3.36)

with

A11 =

[
1 0.5

0 1.1

]
, A22 =

[
1.05 0.6

0 1

]
, A33 =

[
1 0.55

0 1.05

]
,

A12=A23=A31=−
[
0.1 0.2

0 0.3

]
, B11=B22=B33=[0, 1]⊤,

(3.37)

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 41

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

x11,t, x21,t, x31,t

States xi1,t for subsystems i ∈ {1, 2, 3}

x
1
2
,t
,
x
2
2
,t
,
x
3
2
,t

St
at

es
x
i2
,t

fo
r

su
bs

ys
.i

Figure 3.1: Domain enlargement for desired initial states xdes,1
i,0 , xdes,2

i,0 : CSqi of subystems i = 1 (solid red
—–), i = 2 (dashed green - - -), i = 3 (dotted blue) over iterations q = 1, 2 (◦), q = 3, 4 (∗), starting
with CS0i = [0, 0]⊤.

−0.9 ≤ x11 − x21 ≤ 0.9,

−0.9 ≤ x21 − x31 ≤ 0.9,

−3 ≤ ui ≤ 3

−5 ≤ xik ≤ 5, ∀i ∈ N , k ∈ {1, 2}.

(3.38)

Data Generation

First, we generate the feasible trajectories required as inputs to Algorithm 4, by making use
of Algorithm 5. We choose the following desired initial states

xdes,11,0 = [−5, 0]⊤, xdes,21,0 = [4, 0]⊤,

xdes,12,0 = [−4.5, 0]⊤, xdes,22,0 = [4.5, 0]⊤,

xdes,13,0 = [−4, 0]⊤, xdes,23,0 = [5, 0]⊤.

(3.39)

We iteratively compute the inital states xi,0 as those states closest to xdes,1i,0 and xdes,2i,0 , in an
alternating way, thus enlarging the domain of the DLMPC policy in both the negative and
positive xi1 directions within the feasible region of the state space.

Remark 5. Note that if no specific initial states xdes,1i,0 and xdes,2i,0 are defined, a similar result
of domain enlargement is achieved by changing the cost function in (3.35) to xqi,0 and −xqi,0,
respectively.

Figure 3.1 shows the enlargement of the convex hulls of the safe sets, CSqi , of the three
subsystems over iterations q = 0 to 4 of Algorithm 5. At iteration 4, the given initial states
xdes,1i,0 and xdes,2i,0 have been reached, i.e., closed-loop trajectories from xdes,1i,0 to xi,F and from
xdes,2i,0 to xi,F under the DLMPC law have been generated.

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 42

−5 −4 −3 −2 −1 0

0

0.5

1

1.5

2

2.5

x11,t, x21,t, x31,t

States xi1,t for subsystems i ∈ {1, 2, 3}

x
1
2
,t
,
x
2
2
,t
,
x
3
2
,t

St
at

es
x
i2
,t

fo
r

su
bs

ys
.i

Figure 3.2: Iterative regulation task for 3 dynamically coupled subsystems. Trajectores of subystems i = 1
(solid red —–), i = 2 (dashed green - - -), i = 3 (dotted blue) shown for iterations q = 0 (□), q = 1
(◦), q = 10 (∗).

Table 3.1: Iteration costs ∗converged to global optimal solution (computed for the centralized system with
N = 200).

Iteration 0 1 2 3 4 5 6 7 8 9 10

Sys. 295.63 216.96 216.41 216.31 216.28 216.26 216.26 216.25 216.25 216.25 216.25∗

Subsys. 1 112.47 87.97 88.07 88.22 88.31 88.36 88.38 88.40 88.41 88.42 88.42
Subsys. 2 113.05 76.52 76.10 75.90 75.78 75.72 75.68 75.66 75.64 75.63 75.63
Subsys. 3 70.11 52.47 52.23 52.19 52.19 52.19 52.19 52.19 52.20 52.20 52.20

Iterative Control Task

We consider now the control task to steer the coupled subsystems in (3.36) from xdes,1i,0 as in
(3.39) to xi,F = [0, 0]⊤. The cost function is given as in (3.12) with Qi = Ini

and Ri = Imi
.

We generate the first feasible trajectory by a distributed MPC with time horizon N = 15,
without terminal sets and constraints, and with Qi = 0.1Ini

and Ri = Imi
. In real, possibly

safety-critical, applications a feasible trajectory could be obtained by manual control of
the subsystems, or with the data generation in Algorithm 5, as illustrated in Section 3.6.
Table 3.1 shows the performance improvement over iterations of Algorithm 4 with a time
horizon of N = 4. Figure 3.2 shows the resulting closed-loop trajectories. It is interesting to
note that while the iteration costs of subsystems 2 and 3 are decreasing over the iterations,
the one of subsystem 1 is increasing. As noted before, Theorem 1 guarantees that the sum,
i.e., the iteration cost of the overall system is guaranteed to be non-increasing.

3.7 Chapter Summary
In this chapter, we presented a distributed learning model predictive control scheme for
cooperative multi-agent settings, which exploits data in order to construct the terminal cost
and constraints of the DMPC problem without imposing the distributed structure of the
system. The required computation is done online in a distributed way. It was shown how
the scheme can be used to safely explore the state-space and generate the required data or

CHAPTER 3. DISTRIBUTED LEARNING MODEL PREDICTIVE CONTROL FOR
MULTI-AGENT LINEAR SYSTEMS 43

exploit data from iterative control tasks. In addition to recursive feasibility and asymptotic
stability, performance improvement over iterations and convergence to the global centralized
optimal solution under mild conditions are guaranteed.

44

Chapter 4

Hierarchical Predictive Control for
Multi-Agent Systems

4.1 Introduction
Whereas the previous chapters investigated cooperative multi-agent scenarios, we now turn
our attention to non-cooperative scenarios where the agents are coupled through constraints
but where their objective functions do not explicitly depend on the other agents in the
environment. This is especially relevant in mixed autonomy settings where both autonomous
vehicles (AVs) and human driven vehicles are present and must co-exist safely in a shared
workspace.

With the surge of machine learning and reinforcement learning (RL) over the last decade,
there has been a strong interest in applying data-driven approaches in control. Among them,
end-to-end planning [120, 151] constructs a direct map from perception to control but lacks
interpretability and safety guarantees. Deep RL-based collision avoidance [85, 134] usually
discretizes the action space or relaxes the vehicle dynamics constraints, which are highly
relevant in tightly-constrained environments.

In contrast, model-based approaches can provide safety guarantees, however they tend
to become highly computational demanding and sensitive to model accuracy. Conventional
search or sampling-based path planning methods, such as rapidly exploring random trees
(RRT), lattice planners, A∗ and their variants [103, 68, 40], quickly become intractable
in dynamic environments. Most of these approaches are based on heuristics and do not
guarantee collision avoidance or feasibility. Hierarchical approaches for autonomous driving
have therefore been proposed in the literature, relying on path planning at the top level,
maneuver choices at the strategic level, and trajectory planning and control at the lowest
level [120, 103, 68, 56, 142].

The problem of collision avoidance is nonconvex and NP-hard in general [32]. Several,
potentially conservative, approximations of the collision avoidance constraints have been
proposed in the literature to tackle the computational intractability. In tightly-constrained

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 45

dynamic environments, the main challenges arise from three aspects: 1) nonlinear and non-
holonomic vehicle dynamics, 2) non-convexity of environments, and 3) change in obstacle
configuration over time (motion of other human-driven or automated vehicles).

Recently, optimization-based algorithms such as Model Predictive Control (MPC) [25]
have received a significant amount of attention due to their ability to include the exact dy-
namics and safety constraints in the formulation of the control problem. In [156], a novel
optimization-based collision avoidance (OBCA) approach obtains a smooth reformulation of
the collision avoidance constraints with exact vehicle geometry. MPC also displays great flex-
ibility in leveraging data hierarchically, for example, for learning “strategies” at the strategic
higher level, which is demonstrated in [138].

In this work, we focus on the problem of maneuvering a vehicle in a tight space, which
is shared with other vehicles performing complex maneuvers, such as reverse parking. We
assume that the vehicles do not use any form of motion coordination such as in [72]. This
scenario is highly relevant, e.g., AV parking in a mixed autonomy setting. The ability to
avoid collisions and perform the task in minimum time is critical, and greatly depends on the
identification of a good high-level strategy to avoid collisions while maneuvering around other
vehicles. In fact, a simple “stop and wait” strategy can be highly inefficient and might never
complete the task in the crowded space. For the sake of simplicity, our presentation focuses
on two cars in a parking lot. The approach is however general and can be applied to other
AVs in other tight environments. We propose a hierarchical data-driven and strategy-guided
control scheme to tackle the complexity of the problem. Our contributions are twofold:

• We propose a data-driven framework to construct a mapping from a high-dimensional
environment encoding to a given set of high-level strategies. The latter is chosen
such that it encodes the prior knowledge of behavior in the corresponding scenario.
Specifically, a neural network is trained offline with optimal collision-free rollouts, which
are collected in a simulated environment. After training, the mapping can be utilized
as a strategy predictor while executing the control task online.

• A strategy-guided time-varying MPC policy is formulated with exact vehicle and ob-
stacle geometry to perform a navigation task in tightly-constrained dynamic environ-
ments. We refer to this as Strategy-Guided Optimization-Based Collision Avoidance
(SG-OBCA). In addition to SG-OBCA, we also design a set of control policies which
can be selected based on the predicted strategy to maintain safety. The effectiveness
of this control scheme design is demonstrated through extensive numerical simulations
and hardware experiments.

The results presented in this chapter have also appeared in:

• X. Shen, E. Zhu, Y. Stürz, U. Rosolia, and F. Borrelli, "Collision avoidance in tightly-
constrained environments without coordination: a hierarchical control approach". In:
2021 IEEE International Conference on Robotics and Automation (ICRA). 2021, pp.
2674-2680.

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 46

Figure 4.1: The EV tracks a reference (dashed blue) in the local region P while the TV executes a parking
maneuver (solid green). The lane boundaries are marked in red.

EV

TV

Pass Right

EV

TV

Pass Left

EV

TV

Yield
Figure 4.2: Available strategies in S for the EV navigation task

Notation: Bn(c, r) = {x ∈ Rn : ∥x − c∥2 ≤ r} denotes the n-D l2-norm ball centered
at c ∈ Rn with radius r > 0. The Minkowski sum of two sets A and B is denoted as
A ⊕ B = {a + b : a ∈ A, b ∈ B}. The minimum translation distance between two sets
A and B is defined as dist(A,B) = mint{∥t∥ : (A + t) ∩ B ̸= ∅} [44]. vec(·) denotes the
vectorization and vec(·, ·) the concatenating operation to flatten a sequence of matrices into
a single vector.

4.2 Problem Formulation: Strategy-Guided Collision
Avoidance

We consider the problem of two-vehicle collision avoidance in a parking lot between a human-
driven and autonomous vehicle, which we refer to as the target vehicle (TV) and ego vehicle
(EV) respectively. In particular, the scenario of interest occurs in a local region of the
vehicles’ position space P ⊂ R2 and involves the TV executing a parking maneuver, while
the EV seeks to navigate safely and efficiently through the narrow parking lot lane (Fig. 4.1).

In our scenario, the vehicles operate at low-speeds where tire slip and inertial effects can
be ignored. We therefore model the vehicle dynamics using the kinematic bicycle model [74]

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 47

given by

ż :=

ẋ

ẏ

ψ̇

v̇

 =

v cos(ψ + β)

v sin(ψ + β)
v
lr
sin(β)

a

 , u =

[
δf
a

]
, (4.1)

where β = tan−1 (lr tan(δf)/(lf + lr)) and the following nonlinear, time-invariant, discrete-
time system with state zk ∈ Z ⊆ R4 and input uk ∈ U ⊆ R2 is obtained by discretizing (4.1)
with the 4-th order Runge–Kutta method

zk+1 = f(zk, uk), (4.2)

The geometry of the EV is modelled as a rotated and translated rectangle with length L
and width W , given as B(zk) = R(ψk)B0 + [xk, yk]

⊤ with B0 := {p ∈ R2 : Gp ≤ g}, where
G = [I2,−I2]⊤, g = [L/2,W/2, L/2,W/2]⊤, p = (x, y) ∈ R2 denotes the position states, and
R(ψk) ∈ SE(2) is the rotation matrix corresponding to the heading angle ψk.

The TV and lane boundaries comprise the dynamic environment and are parameterized
by ηk ∈ Ro. Specifically, we consider M time-varying obstacles in the position space which
can be each described as compact polyhedrons, i.e.

O(m)
k := {p ∈ R2 : A

(m)
k p ≤ b

(m)
k }, m = 1, . . . ,M,

where A(m)
k ∈ Rqm×2 and b

(m)
k ∈ Rqm are known matrices at time k, and qm is the number

of faces of the m-th polyhedron. The environment encoding ηk can then be constructed as
ηk = vec

(
O(1:M)
k

)
= vec

(
A

(1:M)
k , b

(1:M)
k

)
. In the examples presented in this paper, we have

M = 3.
At every discrete time step k, we require that the EV remain collision-free with all M

obstacles. This is expressed as the constraint

dist
(
B(zk),O(m)

k

)
≥ dmin, ∀m = 1, . . . ,M, (4.3)

which enforces a minimum safety distance dmin > 0 between the EV and obstacles. We
assume that measurements and predictions of the time-varying obstacles are available over
an N -step time horizon, i.e., at time step k, we have access to ηk = {ηk, ηk+1, . . . , ηk+N},
and that there is no mismatch between the predictions and realized trajectories of the time-
varying obstacles. The navigation task is then defined as a constrained tracking problem for
the reference zref

k .
Our approach to maneuvering in tightly-constrained environments revolves around select-

ing a high-level strategy sk from a finite and discrete set S, which encode prior knowledge
of the behavioral modes available to the EV. In the case of our two-vehicle scenario, we use
the following high-level strategies, which are illustrated in Fig. 4.2.

(i) Pass Left: The EV passes the TV from the left side;

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 48

Offline Online

Learn Strategy
Predictor Parameters

Strategy Prediction

Rollouts of desired
behavior and
strategy labels

System State:
Environment:

Constraint Construction

Solve for Control

Policy Selection

Figure 4.3: The proposed strategy-guided control scheme

(ii) Pass Right: The EV passes the TV from the right side;

(iii) Yield: The EV yields to the TV for safety.

Remark 6. The strategy set S is provided by the designer and will require domain expertise
in its construction. The problem of identifying salient strategies given a task is outside the
scope of this work.

Summary of Approach
The constrained tracking task of interest is well-suited for MPC [25]. However, control

horizon lengths, for which real-time MPC is possible, may result in myopic behavior leading
to collision in tightly-constrained environments.

Our proposed strategy-guided control scheme for collision avoidance, shown in Fig. 4.3,
attempts to address this issue by leveraging the high-level strategy as a surrogate for describ-
ing long-term behavior in the presence of other vehicles. In particular, we design a strategy
predictor

sk = g(zk,ηk; θ), (4.4)

and train the parameters θ in (4.4) using a database of human-driven parking maneuvers in a
simulated environment, and locally optimal solutions to the EV navigation tasks correspond-
ing to each of the TV maneuvers. We leverage the expressiveness of data-driven methods
for strategy selection, as opposed to an end-to-end architecture directly for control as such
grey-box approaches typically exhibit poor sample efficiency and require copious amounts of
data.

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 49

(a) Parking Lot and Recorded Maneuver (b) Subject Driving

Figure 4.4: Data Collection in CARLA

For the lower-level online strategy-guided control scheme, we construct three policies:

ΠSG = {πSG−OBCA, πSC, πEB}, (4.5)

where πSG−OBCA is a nominal MPC controller based on OBCA [156, 157], which uses the
selected strategy to generate hyperplane constraints which help reduce myopic behavior and
improve the ability of the EV to complete its navigation task. πSC is a safety controller which
can be activated due to infeasibility of SG-OBCA or ambiguity in the behavior of the TV.
πEB is an emergency brake controller, to be triggered in the event of impending collision.
Conditions for switching between the three policies are discussed in Section 4.4.

4.3 Offline Learning of the Strategy Predictor

Data Collection

We begin with raw data in the form of a set of human-driven parking maneuvers (Fig. 4.4a).
These were collected using the CARLA simulator [42] in a custom parking lot [126], where
the subject (driver) controls the brake, throttle, and steering of the vehicle via a Logitech
G27 racing wheel and pedals (Fig. 4.4b). For each parking trial, the static vehicles in the
parking lot are randomly placed so that the subject can park into different spots either
forwardly or reversely.

Given K recorded TV parking maneuvers, for the i-th recording of length T [i], i =

1, . . . , K, the environment encoding is constructed as η
[i]

0:T [i] =
{
vec
(
O(1:M),[i]
k

)}T [i]

k=0
, which

contains the lane boundaries and the time-varying TV obstacles over the entire task. Af-
ter obtaining η

[i]

0:T [i] , solving for the locally optimal collision-free EV trajectory {z[i],∗,u[i],∗}
becomes a finite-time optimal control problem, which can be done using the OBCA [156]
algorithm.

Lastly, given the strategy set S ={“Pass Left”, “Pass Right”, “Yield”}, the strategy label
s[i] ∈ S for the i-th task can be generated automatically by looking at the relative configu-
rations of the EV and TV over the EV solution trajectory, as exemplified in Fig. 4.2.

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 50

Strategy Predictor Training

Using the method described in Sec. 4.3, we collect K locally optimal TV-EV rollouts and
their corresponding strategy labels offline. Now, given the horizon length N , the training
dataset is constructed as D = {(X [1]

0 , s
[1]), . . . , (X

[1]

T [1]−N , s
[1]), (X

[2]
0 , s

[2]), . . . , (X
[K]

T [K]−N , s
[K])}.

We note that the strategy labels remain constant within the i-th task since the behavioral
mode for each TV-EV rollout is fixed. Each data point X [i]

k consists of the current state of the
EV and the environment encoding along the N -step horizon, i.e., X [i]

k = vec
(
z
[i],∗
k ,η

[i]
k

)
, k ∈

{0, . . . , T [i] − N}. Using this dataset, we train a neural network (NN) for the predictor
g(·) in (4.4) to predict the strategy sk from zk and ηk at every time step. The network
architecture is composed of a fully connected hidden layer with the tanh activation function
and a softmax output layer. The objective function that we minimize is the cross-entropy
loss for classification tasks.

4.4 Online Strategy Prediction and Control
At time step k of the online task execution, the trained network with parameters θ∗ returns
a probability distribution over the strategy set S, i.e. Ŷk = NN(zk,ηk; θ

∗). We refer to
Ŷk ∈ R3 as the “confidence” of strategies in this work. The predicted strategy is chosen to be
the one with the highest confidence, i.e., ŝk = g(zk,ηk; θ

∗) = argmaxs∈S Ŷk. By leveraging
the predicted confidences Ŷk and selected strategy ŝk, we proceed to construct time-varying
hyperplanes and select the control policy πk from the set ΠSG.

Constructing Constraints from Strategies

Similar to [138], in this work, we view strategies as lower dimensional encodings of long term
relative behavior between the controlled system and the dynamic environment. As such, we
now describe how the chosen strategy at each timestep can be used to generate constraints
for online control which help guide the EV into regions of space where it is more likely to
successfully navigate around the TV.

For the TV occupying the region OTV
k at timestep k, we define the critical region as:

CRk = OTV
k ⊕ B2(0, rEV),

where rEV =
√
L2

EV +W 2
EV/2 is the radius of the smallest disk which covers the extents of

the EV as shown in Figure 4.5a. The critical region represents the area containing the TV
where the collision avoidance constraints are close to or have become active.

Recall that we are interested in the tracking problem where we are given the N -step
reference trajectory zref

k = {zref
k|k, . . . , z

ref
k+N |k} at time step k. In the scenario presented in

Section 4.2, this is simply a constant velocity trajectory which follows the centerline of the
lane. Denote the position states of the reference trajectory as pref

k .

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 51

(a)

(b)

(c)

Figure 4.5: Illustration of the strategy-guided constraint generation procedure with N = 3 and strategy
“Pass Left". a) The position reference of the EV at timestep k + 3 falls within the critical region CRk+3.
The reference point is projected to the boundary of the critical region in the positive body lateral direction
and the tangent plane is found. b) The tangent plane is translated to be coincident with the TV boundary.
c) Result of the constraint generation procedure at timestep k + 1.

The main idea behind our constraint generation procedure is to project positions along
the reference trajectory, which fall within the critical region (i.e., pref

k+t|k ∈ CRk+t for some
t ∈ {0, . . . , N}), to the boundary of the critical region ∂CRk+t. The direction of projec-
tion is determined by the chosen strategy ŝk of either “Pass Left" or “Pass Right". In

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 52

particular, the two aforementioned strategies correspond with the directions (− sinψ, cosψ)
and (sinψ,− cosψ) respectively, i.e., the positive and negative body lateral axis directions
in the inertial frame. Since the boundary of the critical region is smooth by definition,
we can find a unique tangent plane at the projection point with an outward facing nor-
mal vector wk+t|k(ηk+t, ŝk) as can be seen in Figure 4.5a. The final step involves trans-
lating the tangent plane such that it is coincident with the boundary of OTV

k as is shown
in Figure 4.5b. This procedure results in a sequence of additional hyperplane constraints
for time steps k + t where pref

k+t|k ∈ CRk+t, t ∈ {0, . . . , N}. Denote the hyperplane pa-
rameters as ϕ(ηk+t, ŝk) = −vec(wk+t|k(ηk+t, ŝk), bk+t|k(ηk+t, ŝk)) and the augmented state
z̄k+t|k = vec(zk+t|k, 1). The constraints can then be written as

ϕ(ηk+t, ŝk)
⊤z̄k+t|k ≤ 0. (4.6)

Remark 7. While we may also apply the constraint generation procedure to the “Yield"
strategy, we choose to instead deal with it directly by activating a safety controller, which
will be described in Sec. 4.4.

Strategy-Guided Optimization-Based Collision Avoidance

For the nominal MPC policy πSG−OBCA in ΠSG, we leverage the generated constraints to
extend the OBCA algorithm [156] which formulates the collision avoidance constraints using
exact vehicle geometry to enable tight maneuvers in narrow spaces. By introducing the dual
variables λ(m) ∈ Rqm , µ(m) ∈ R4 associated with the m-th obstacle, we obtain a smooth
reformulation of the collision avoidance constraint in (4.3). The resulting NLP is written as
follows:

min
z,u,λ,µ

N∑
t=0

c(zk+t|k, uk+t|k, z
ref
k+t|k)

s.t. zk+t+1|k = f(zk+t|k, uk+t|k), t = 0, . . . , N − 1 (4.7a)
zk|k = zk, (4.7b)(
A

(m)
k+t|kt(zk+t|k)− b

(m)
k+t|k

)⊤
λ
(m)
k+t|k − g⊤µ

(m)
k+t|k > dmin (4.7c)

G⊤µ
(m)
k+t|k +R(zk+t|k)

⊤A
(m)⊤
k+t|kλ

(m)
k+t|k = 0 (4.7d)∥∥∥A(m)⊤

k+t|kλ
(m)
k+t|k

∥∥∥ ≤ 1, (4.7e)

λ
(m)
k+t|k ≥ 0, µ

(m)
k+t|k ≥ 0, (4.7f)

ϕ(ηk+t, ŝk)
⊤z̄k+t|k ≤ 0, (4.7g)

∀t = 0, . . . , N, m = 1, . . . ,M,

where c(zk+t|k, uk+t|k, zref
k+t|k) = ∥zk+t|k − zref

k+t|k∥2Qz
+ ∥uk+t|k∥2Qu

+ ∥∆uk+t|k∥2Qd
penalizes the

deviation from the reference trajectory, input magnitude and rate, with positive semidefinite

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 53

matrices Qz, Qu, and Qd, respectively. (4.7a) are the dynamics constraints over the control
horizon, (4.7b) sets the initial condition, (4.7c)-(4.7f) are the smooth and exact reformu-
lations of (4.3) using Theorem 2 in [156], and (4.7g) are the strategy-guided hyperplane
constraints. We call the NLP in (4.7): SG-OBCA.

Remark 8. Problem (4.7) is non-convex, therefore providing a good initial guess to warm-
start the NLP solver is crucial to maintain feasibility. For z and u, it is straightforward to
use the solution from the previous iteration as the initial guess. The initial guess for the
dual variables λ, and µ are obtained with a similar method as described in [157].

Policy Selection

In our proposed strategy-guided control scheme we defined the set (4.5), which contains
three classes of policies1: SG-OBCA Control πSG−OBCA, Safety Control πSC, and Emergency
Brake πEB. The formulation of each policy and the selection criteria are as follows.
1) SG-OBCA Control: The SG-OBCA Control policy solves the problem (4.7) at every
time step k.
Selection Criteria:

(i) Problem (4.7) is solved successfully, AND

(ii) ŝk ∈ {“Pass Left”, “Pass Right”} with high confidence, i.e. maxs Ŷk ≥ ξ, where ξ is a
user-defined threshold.

2) Safety Control: The Safety Control policy regulates the relative states between the EV
and the TV into a safe control invariant set with respect to the two vehicles. In this work,
we define this set to be the states with zero relative speed, such that the distance between
EV and TV is preserved.
Selection Criteria:

(i) Problem (4.7) is infeasible, OR

(ii) ŝk = “Yield” with maxs Ŷk ≥ ξ, OR

(iii) maxs Ŷk < ξ

3) Emergency Brake: We define the Emergency Brake policy in the context of impending
system failure. When the Emergency Break policy is selected, it means that the autonomous
agents cannot resolve the situation by either πSG−OBCA or πSC and human intervention is
necessary.
Selection Criteria: A collision is anticipated and cannot be resolved by either πSG−OBCA or
πSC.

1Due to space limit, the policy classes present here are an abstraction of the actual implementation.

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 54

(a) BARC (b) Parking Lot Environment

Figure 4.6: Experimental Setup

Table 4.1: Failure Rate and Iterations to Task Completion

Control Method Failure Rate Avg. # Iter Median # Iter
Baseline 30% 213 220

Strategy-Guided 6% 270 227

4.5 Simulation and Experimental Results
In this section, we report results from simulations and experiments with the proposed
strategy-guided control approach (SG) as described in Sec. 4.4. We compare the outcomes
with a baseline control scheme (BL), where the πSG−OBCA in (4.5) is replaced with πBL−OBCA

which solves (4.7) without the additional constraints (4.7g). Moreover, for the baseline
control scheme, πSC is selected only when πBL−OBCA is infeasible. In both simulation and
hardware experiments, we chose a horizon length of N = 20 with a time step of dt = 0.1s.
The safety distance dmin in (4.7c) is set to 0.01m and we set the confidence threshold to
be 0.75. As described in Section 4.3, we recorded a total of 486 navigation tasks with TV
maneuvers from which we generate 103, 553 labeled examples for the training dataset D.
Details can be found at: bit.ly/data-sg-control.

All tasks are attempted by both SG and BL control schemes in a MATLAB simulation
environment. Table 4.1 reports the failure rate, where a collision occurs or the πEB policy
is selected, and the number of iterations required to complete the task. We can see that in
simulation, the SG control scheme reduces the failure rate significantly, without sacrificing
much in terms of task performance.

Both BL and SG approaches were implemented with the same cost matrices Qz =
diag([1, 1, 1, 10]), Qu = diag([1, 1]), and Qd = diag([50, 50]), on the 1/10 scale open source
Berkeley Autonomous Race Car (BARC) platform in a laboratory parking lot environment
(Fig. 4.6). The cars are equipped with an Intel RealSense T265 tracking camera for local-
ization and an NVIDIA Jetson Nano for onboard computation. We use FORCESPRO [154,
41] to compile the NLP solver, which achieves an average solution time of 30ms for problem

http://bit.ly/data-sg-control

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 55

(a)

-0.50
-0.25
0.00
0.25
0.50

Sp
ee

d
(m

/s
)

-0.50
-0.25
0.00
0.25
0.50

St
ee

ri
ng

(r
ad

)

-1.00
-0.50
0.00
0.50
1.00

A
cc

el
(m

/s
2)

0.0

0.5

1.0

C
on

fid
en

ce

Pass Left
Pass Right
Yield

0 2 4 6 8 10 12 14 16
Time (s)

SG/BL-
OBCA

SC

EB

Po
lic

y

(b)

(c)

-0.50
-0.25
0.00
0.25
0.50

Sp
ee

d
(m

/s
)

-0.50
-0.25
0.00
0.25
0.50

St
ee

ri
ng

(r
ad

)
-1.00
-0.50
0.00
0.50
1.00

A
cc

el
(m

/s
2)

0.0

0.5

1.0

C
on

fid
en

ce

Pass Left
Pass Right
Yield

0 5 10 15 20 25 30
Time (s)

SG/BL-
OBCA

SC

EB

Po
lic

y

(d)

Figure 4.7: a), c) Trajectories of the EV (blue) and TV (green) under the strategy-guided control scheme.
Frame numbers are marked with circles; b), d) (From top to bottom) Speed and input profile of the EV
under SG (solid orange) and BL (dashed purple). Confidence of strategy prediction and policy selection for
the strategy-guided controller.

(4.7). 99.8% of feasible solutions are returned in less than 100ms. The strategy and policy
selection, constraint generation, and NLP solver all run on a host laptop with an Intel i9
processor and 32 GB of RAM. Communication with the cars is done through the Robot Op-
erating System (ROS). The human driven TV was represented by another car which tracked
the recorded trajectories using nonlinear MPC. The MPC predictions at each time step are
used to construct OTV

k over the EV control horizon.
Results from the first navigation task are presented in Figs. 4.7a and 4.7b where the TV

parks into an empty spot in the top row. The predicted strategy and selected policy over
the task are visualized in Fig. 4.7b. It is clear that at the beginning of the task (before
t = 4s), the intention of the TV is ambiguous and the confidence in the “Pass Left” strategy
is slightly higher because the TV veers to the right hand side of the EV. However, once the
TV begins its parking maneuver, the “Pass Right” strategy is identified with high confidence.
Under SG, the EV is able to leverage the hyperplane constraints generated via the identified
strategy to preemptively begin its maneuver around the TV, thereby resulting in a smoother

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 56

speed and input profile compared to BL as can be seen in Fig. 4.7b. In contrast, BL performs
a more aggressive and dangerous maneuver as it is only constrained by the safety distance
dmin. This results in a fragile policy which can easily lead to constraint violation when the
EV is in the critical region. Indeed, in Fig. 4.7b, we observe that the BL triggers the Safety
Control policy for several time steps due to infeasibility caused by the aggressive behavior.

Results from a second navigation task are presented in Figs. 4.7c and 4.7d where the TV
parks in reverse into an empty spot in the bottom row and a gear change is needed. The
strategy and policy selections over the task are visualized in Fig. 4.7d, where the SG control
scheme selects Safety policy πSC at an early stage and continues to yield to the TV for a
considerable amount of time due to low confidence in the selected strategy. This is caused
by the time the TV spends idling during the gear change. In contrast, the short-sighted
baseline controller again exhibits overly-aggressive behavior by trying to pass the TV while
it is idle. This eventually leads to activation of the policy πEB and collision with the TV.
Finally, we again see in Fig. 4.7d that SG results in a smoother speed and input profile when
compared to BL.

4.6 Chapter Summary
In this chapter, we show that when compared to a baseline MPC approach, the proposed
hierarchical data-driven control scheme significantly improves the success rate of a navigation
task in a tightly-constrained multi-agent dynamic environment. The design of a data-driven
strategy predictor provides a structured and transparent approach to leveraging data in
control, which is crucial to expanding the adoption of learning techniques in the control of
safety critical systems.

The purpose of strategy-guided constraint generation and policy selection are to coerce
the system towards regions of space where successful completion (in terms of recursive fea-
sibility and stability) of the control problem is most likely.

One interpretation of the strategy-guided constraints is that they are surrogates of the
MPC terminal components, where given the selected strategy, we attempt to construct con-
straints which drive the state of the system (4.2) into a set which is contractive towards the
reference zref while satisfying all constraints. Despite not affording the rigorous guarantees
provided by an exact terminal cost function and terminal set, the value of our proposed
surrogates lies in the fact that they can be straightforward to construct even when the exact
formulations are intractable, which is typically the case for complex control tasks in dynamic
environments.

In terms of the policy selection, predicting the strategy allows the system to “prepare”
for an upcoming safety-critical encounter by selecting an appropriate control policy. In the
context of this work, when faced with ambiguous behavior from the TV, the strategy-guided
control approach can select the safety control policy, so that the system will only attempt
the risky passing maneuver when it is confident enough to do so. In contrast, the baseline
control scheme only reverts to the safety control when the nominal MPC becomes infeasible.

CHAPTER 4. HIERARCHICAL PREDICTIVE CONTROL FOR MULTI-AGENT
SYSTEMS 57

This is usually at a time when the situation is already very challenging for the system to
maintain safety.

In the next chapter, we will continue to explore this idea of using a data-driven learned
model for constraint generation in optimal control. In particular, we will begin focusing on
the application of autonomous racing, which is a competitive multi-agent scenario with no
inter-agent communication.

58

Chapter 5

A Gaussian Process Model for Opponent
Prediction in Autonomous Racing

5.1 Introduction
A major challenge in automated vehicles is the modeling of interactions between agents
in highly dynamic constrained environments. Knowledge of such interactions is crucial for
short-term decision making and can have a significant impact on the vehicle’s safety and
performance. This is especially relevant in situations where information is not shared be-
tween agents and inference must be performed to obtain a prediction of future plans of the
other agents in the environment. In this chapter, we are interested in the context of racing
where agents are each driven by competitive and possibly adversarial policies. Maximizing
performance in racing typically requires the agent to operate in highly dynamic regimes,
e.g. at the limits of tire friction, where good models are vital to maintaining stability of the
vehicle. At the same time, as it is unlikely that a perfect interaction model can be obtained,
it is crucial to reason about the uncertainty of the generated predictions, which can help
maintain the delicate balance between safety and performance.

Obtaining exact knowledge of an opponent’s dynamics and its racing policy is unlikely.
However, it is certainly possible that data about them is available from past races. Our
contributions are as follows:

• We propose a Gaussian process (GP) based prediction model which learns the one-
step closed-loop behavior of an opponent, or target (TV), vehicle from a database of
interactions and obtains trajectory predictions and the associated uncertainties via
sampling.

• In order to show the benefits of the proposed approach, we formulate a model predictive
control (MPC) policy for the ego vehicle (EV) which leverages the time-varying un-
certainties provided by the GP-based predictor by constructing uncertainty-expanded

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 59

collision avoidance constraints to balance performance and safety in a head-to-head
racing scenario.

• We demonstrate through a Monte Carlo simulation study that the GP-based predic-
tor achieves similar win rates while maintaining safety in up to 3x more races when
compared to predictors in literature which are based on optimal control and vehicle
dynamics.

• We finally demonstrate the prediction and control framework in real-time in an exper-
imental study on a 1/10th scale racecar platform operating at high speeds of around
2.8 m/s and show a significant level of improvement over a baseline predictor.

The results presented in this chapter have also appeared in:

• E. Zhu, F. Busch, J. Johnson, and F. Borrelli, "A gaussian process model for opponent
prediction in autonomous racing". In: 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2023, pp. 8186–8191.

Related Work

Recent research in the construction of driver prediction models has focused on utilizing
learning-based methods for short-term trajectory prediction. Notably, methods such as [61],
[39], and [158] infer high level human intent, predicting agent trajectories based on goal states
given a semantic map. With respect to prediction under uncertainty, [61] models uncertainty
in other road agents with a bivariate Gaussian over every future position, whilst considering
short-term agent history. Much of the above work takes a model-free approach to trajectory
forecasting by embedding interactions into a surrounding "scene context". Alternatively,
[118] proposes a graph-based prediction method that incorporates agent dynamic constraints
and [36] explicitly embeds kinematic feasibility into the last layer of the prediction model.
While these deep learning based methods can certainly be applied in the context of racing,
their use of semantic images as model inputs leads to the requirement of large motion datasets
for training. In contrast, our approach leverages closed-loop state trajectories and can achieve
good performance after training on a relatively small dataset of 5000 data points.

There also exists much work which incorporates learned prediction models in closed-loop
with optimal control. [139] maps features of the environment to strategy states through a GP,
which are then used to construct MPC terminal constraints. This approach is complementary
to our proposed method in the sense that it predicts the free space available to the EV under
a certain environment configuration instead of the space occupied by the TV. [81] and [152]
propose learning a mapping from vehicle state history to a finite set of behavioral parameters
with a hidden Markov model and GP respectively. In [81] these parameters are used to
modify an MPC reference whereas in [152] they are used to construct a measurement model
which allows for trajectory predictions of other agents using an extended Kalman filter.
Compared to these approaches, we not only condition the TV predictions on the current

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 60

state of all agents, but also on the future plan of the EV. [30] is the most similar to our
work, where a GP-based state transition model for the TV is learned and the distribution
over the predicted trajectory is used in the construction of tightened half-space collision
avoidance constraints for a stochastic MPC. The approach is demonstrated on straight track
segments for a linearized kinematic vehicle model. Additionally, a "one-move" rule is assumed
for the TV, which restricts its competitiveness. In contrast, we do not make the one-move
assumption and formulate the approach for a nonlinear dynamic vehicle model and ellipsoidal
collision avoidance constraints.

5.2 Problem Formulation

Vehicle Model

We model the racing agents using the dynamic bicycle model [74], where the vehicle state
and input vectors are defined as z = [px, py, ϕ, vx, vy, ω]

⊤ and u = [F r
x , δ]

⊤. px and py are the
Cartesian coordinates of the vehicle’s center of gravity (CoG), ϕ is the vehicle’s heading, vx
and vy are the longitudinal and lateral velocity of the CoG respectively, and ω is the yaw
rate. The control inputs to the vehicle are the rear longitudinal tire force F r

x and the steering
angle δ. We discretize the nonlinear dynamics using the 4th order Runge-Kutta method with
time step Ts to obtain:

zk+1 = f(zk, uk). (5.1)

We additionally make use of the vehicle pose in a curvilinear reference frame w.r.t. the
centerline of a track [96], which is represented via the twice continuously differentiable map-
ping τ : [0, L] 7→ R2, where L is the length of the track and τ(0) = τ(L). We denote the first
and second derivatives of τ w.r.t. the track progress s as τ ′, τ ′′ : [0, L] 7→ R2. The curvilinear
pose can be computed from the global position p = [px, py]

⊤ and heading angle ϕ, and con-
sists of the vehicle’s track progress s(p) = argmins ∥τ(s)− p∥2, its lateral deviation from the
centerline ey(p) = mins ∥τ(s) − p∥2, and its heading deviation from the centerline tangent
angle eϕ(p, ϕ) = ϕ− arctan(τ ′(s(p))). We can additionally define the signed curvature of the
track at some s ∈ [0, L] as |κ(s)| = ∥τ ′′(s)∥2, where the sign of κ depends on the sign of the
swept angle rate for the track at s. We distinguish between quantities for the EV and TV
by adding a superscript, e.g. z(1) and z(2) for the state of the EV and TV respectively.

Model Predictive Contouring Control (MPCC)

In a head-to-head competition, it would be incorrect to assume that knowledge of the op-
ponent’s plans or their racing control policy are freely available. We therefore require a
prediction model to generate a forecast of the opposing agent’s behavior before computing
our own control action. Design of such a prediction model is a key contribution of this work
and will be described in further detail soon. Let us define the prediction model P for some

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 61

horizon of length N as a function of the TV’s current state z(2)k , which we assume can be accu-
rately obtained through measurement, a sequence of EV states z(1)k = {z(1)k , . . . , z

(1)
k+N}, which

describes the EV’s planned trajectory over the next N time steps, and hyperparameters θ:

ẑ
(2)
k = P(z(2)k , z

(1)
k , θ). (5.2)

At time step k, given a prediction ẑ
(2)
k from (5.2), we define a baseline optimal control

problem for the EV adapted from MPCC [87]:

u(1),⋆(z
(1)
k , ẑ

(2)
k , u

(1)
k−1) =

argmin
u

N−1∑
t=0

q(1)c ec(pt, s̄t)
2 + u⊤t R

(1)ut

+∆u⊤t R
(1)
d ∆ut − q(1)s s̄N (5.3a)

s.t. z0 = z
(1)
k (5.3b)

zt+1 = f (1)(zt, ut), t = 0, . . . , N − 1 (5.3c)
s̄0 = s(p0) (5.3d)
s̄t+1 = s̄t + Tsvx,t, t = 0, . . . , N − 1 (5.3e)
zt ∈ Z, t = 0, . . . , N (5.3f)
ut ∈ U , t = 0, . . . , N − 1 (5.3g)

h(zt, ẑ
(2)
k+t) ≤ 0, t = 0, . . . , N, (5.3h)

where u = {u0, . . . , uN−1}, ∆ut = ut − ut−1, and u−1 = u
(1)
k−1. The objective (5.3a) is to

maximize progress while following the track. These goals are quantified by s̄N and ec, which
are approximations of track progress and the centerline deviation respectively [87], and are
weighted by parameters q(1)s , q(1)c > 0. We additionally wish to minimize control amplitude
and rate via R(1), R(1)

d ≻ 0. Vehicle state and approximate track progress evolution are
governed by the dynamics in (5.3b)-(5.3e). We impose track boundary and input constraints
via (5.3f) and (5.3g) as follows:

Z = {z | −W/2 ≤ ey(p) ≤ W/2} (5.4)
U = {u | ul ≤ u ≤ uu}. (5.5)

Where W is the width of the track and ul and uu are the lower and upper bounds on the input
values. Constraint (5.3h) describes coupling between the predicted EV and TV trajectories
which, for the purposes of this work, represent collision avoidance constraints and will be
expanded upon later. Using the optimal open-loop sequence from (5.3), we can define the
EV feedback policy:

π(1)(z
(1)
k ,ẑ

(2)
k , u

(1)
k−1) = u

(1),⋆
0 (z

(1)
k , ẑ

(2)
k , u

(1)
k−1), (5.6)

which can be applied in a receding horizon fashion. See [87] for more details on the formu-
lation of MPCC.

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 62

5.3 Learning TV Behavior via Gaussian Processes
In any competitive scenario, information about one’s capabilities and strategy are closely
guarded. We therefore make few assumptions about knowledge of the TV’s dynamics or
racing policy and simply define the evolution of the TV’s state as follows:

z
(2)
k+1 = f (2)(z

(2)
k , π

(2)
k (z

(2)
k , z

(1)
k)) = gk(z

(2)
k , z

(1)
k), (5.7)

where f (2) and π(2)
k are unknown, but are assumed to be smooth and gk denotes the closed-

loop dynamics of the TV given some EV state z(1)k .
We assume that a dataset D of head-to-head racing interactions, which are generated

by a stationary TV policy, i.e. π
(2)
k = π(2), is available. Our approach is to construct a

probabilistic one-step model of the TV, which approximates gk in (5.7) and captures the
associated prediction uncertainty. This would allow us to roll out a TV prediction trajectory
at time step k given a TV state z(2)k and EV plan z

(1)
k while maintaining a measure of the

uncertainty of our predictions. This is crucial to balancing safety and performance during
the highly dynamic and tightly constrained interactions which are commonplace in racing.
We note that in the case of non-stationary policies, which are selected from a finite set (e.g.
for overtaking, blocking, station keeping, etc.), prediction models can be constructed for each
policy option given that the dataset is indexed by policy.

Gaussian Processes

We use GP regression [147] to model the unknown one-step closed-loop dynamics of the
target vehicle (5.7). Consider the dataset constructed from D pairs of observations:

D = {(x[i], y[i])}Di=1, (5.8)

where x[i] ∈ Rn and y[i] ∈ Rm are generated by the unknown statistical process:

y[i] = g(x[i]) + w[i], (5.9)

with i.i.d. w[i] ∼ N (0, diag(σ1, . . . , σm)). Assuming independence between output dimen-
sions, GPs maintain a probability distribution over each of the functions gj, j = 1, . . . ,m,
and are completely specified by a mean function µj(x) and a scalar covariance function
kj(x, x

′) (also called the kernel). Without loss of generality, given a zero-mean GP prior on
gj, the posterior distribution of gj is given by the GP:

gj(x) ∼ N (µj(x),Varj(x)) (5.10a)
µj(x) = kj(x)

⊤(Kj + σ2
j ID)

−1Yj (5.10b)

Varj(x) = kj(x, x)− kj(x)
⊤(Kj + σ2

j ID)
−1kj(x) (5.10c)

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 63

where

Yj = [y
[1]
j . . . y

[D]
j]⊤,

[Kj]ab = k(x[a], x[b]), a, b = 1, . . . , D,

kj(x) = [kj(x, x
[1]) . . . kj(x, x

[D])]⊤.

In this work, we use the Matérn kernel with parameter ν = 1.5 [147]:

kj(x, x
′) =

(
1 +

√
3∥x− x′∥2

lj

)
exp

(
−
√
3∥x− x′∥2

lj

)
,

where lj is a length scale parameter which, together with the prior observation variances σj,
can be optimized by maximizing the marginal likelihood of the observations using gradient-
based methods.

Data Generation and Model Training

We construct the dataset D from simulation rollouts of EV and TV trajectories drawn from
head-to-head races. In each of these rollouts, the EV starts behind TV on a randomly
generated track. EV uses the policy defined by (5.3) and (5.6) and can win the race by
executing a successful overtaking maneuver. On the other hand, TV tries to remain ahead
of EV by blocking attempted overtakes. In order to encourage blocking behavior, the TV
policy is formulated obtained by switching the superscripts in (5.3) and (5.6), removing the
collision avoidance constraints (5.3h), and adding to (5.3a) the following term:

N∑
t=0

q(2)y

(ey(p
(2)
t)− ey(p(1)k))2

1 + (s(p
(2)
k)− s(p(1)k))2

(5.11)

with q
(2)
y > 0 which rewards the TV for maintaining the same lateral position on the track

as the EV especially when the two vehicles are close in terms of their track progress. Note
that q(2)y can be interpreted as an aggressiveness factor for the TV’s blocking attempts. In
addition, it is important to note that this cost term only depends on the state of the EV
at the current time step k and does not require a prediction of the EV’s trajectory over the
MPC horizon. As such the overall TV policy is only a function of the EV’s state at time step
k. During these data generation rollouts, the predictions ẑ(2)k are replaced with the open-loop
solution to (5.3) for the TV. In other words, the EV knows the true plan of its opponent.

The regression features are constructed using the resulting closed-loop trajectories as
follows

x[i] =[∆sk,∆ey,k, e
(2)
y,k, e

(2)
ϕ,k, v

(2)
x,k, ω

(2)
k , e

(1)
ϕ,k, v

(1)
x,k, κk]

⊤,

where ∆sk = s(p
(1)
k)−s(p(2)k), ∆ey,k = ey(p

(1)
k)−ey(p(2)k), and κk is a vector of track curvatures

at the look-ahead points s(p(2)k)+iδ, i = 1, . . . , V for some chosen V and δ > 0. The regression

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 64

Algorithm 6: TV trajectory prediction and uncertainty propagation

Input: N , M , z(2)k , z(1)k
1 z

2,[i]
k ← z

(2)
k , ∀i = 1, . . . ,M ;

2 for i = 1, . . . ,M do
3 for t = 0, . . . , N − 1 do
4 Sample ∆z

(2),[i]
k+t ∼ N (µ(z

(2),[i]
k+t , z

(1)
k+t),Var(z(2),[i]k+t , z

(1)
k+t));

5 z
(2),[i]
k+t+1 ← z

(2),[i]
k+t +∆z

(2),[i]
k+t ;

6 end
7 end
8 ẑ

(2)
k+t ← 1

M

∑M
i=1 z

(2),[i]
k+t ;

9 Σ̂
(2)
k+t ← 1

M−1

∑M
i=1(z

(2),[i]
k+t − ẑ

(2)
k+t)(z

(2),[i]
k+t − ẑ

(2)
k+t)

⊤;
Output: ẑ

(2)
k , Σ̂(2)

k , . . . , Σ̂(2)
k+N

targets are chosen as the one-step TV state difference, which are also transformed into the
curvilinear frame via y[i] = C(z(2)k+1) − C(z

(2)
k). Evaluation of the one-step predictor can be

done with:

ẑ
(2)
k+1 = C

−1(C(z(2)k) + µ(z
(2)
k , z

(1)
k)), (5.12)

where µ is the vector-valued function of posterior means.
Transforming vehicle poses to the curvilinear frame has the effect of reducing the amount

of data required to achieve good generalization on a wide variety of tracks. This is crucial for
GPs which have complexity O(D3) and which rely heavily on a distance metric in the kernel
function for training and inference. Consider the case of a GP where inference is performed
on a track identical to the one used for training data generation but is rotated arbitrarily. It
is easy to see that any vehicle pose on the original track which undergoes the same rotation
will have the same coordinate in the new curvilinear frame. However, that is obviously not
true for the global pose. Therefore, a model trained on data in the curvilinear frame can be
immediately applied to the same track with arbitrary orientation, whereas a global frame
alternative would be expected to perform poorly as the spatial relationships learned by the
model no longer hold on the rotated track.

The look-ahead curvatures κk were included in the feature vector to further improve
generalization to unseen track configurations and is motivated by look-ahead fixations of
human drivers when driving through curved roads [82].

Trajectory Prediction

After obtaining the GP prediction model, we can now construct a trajectory prediction for
the TV and the associated uncertainty over a finite horizon of length N , as conditioned on a
given EV plan. We propose a straight-forward sampling-based approach which estimates a
nominal TV state and approximately propagates the uncertainty as described by the one-step
GP model.

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 65

Figure 5.1: Overview of the EV obstacle avoidance constraints with uncertainty-expanded ellipses pictured
in red and vehicle extent ellipses pictured in blue. The EV is represented by 4 discs of radius rd.

The method is presented in Algorithm 6 and begins with the initialization of M sample
trajectories in line 1. Lines 4 and 5 proceed with evaluation of the one-step GP prediction
model for each of theM trajectories at time step k+t. Note that we omit the transformations
in (5.12) for brevity. The resulting distribution is then sampled for the TV state difference,
which is then added on to the current TV state to obtain the new state at time k + t + 1.
This procedure is repeated for N steps. In lines 8 and 9, sample means and covariances
are computed over the M trajectories at each time step and returned as the predicted TV
trajectory and associated uncertainty. As the trajectories as sampled independently, our
procedure is amenable to parallelization.

Implementation

We train a GP with independent output dimensions using GPyTorch [54] on simulation
rollouts where the TV policy’s aggressiveness factor is set to q(2)y = 200. To enable real-time
inference, this model is trained as a variational approximate GP as described in [58] through
an inducing point method. This reduces the overall sample complexity to O(DD̄2) with
D̄ ≪ D inducing points. Specifically, we use D̄ = 200 inducing points for a dataset of size
D = 5000. Executing Algorithm 6 with M = 10 sample trajectories yields an average total
run time of 45 ms for a horizon of length N = 10 on an NVIDIA GeForce RTX 3080.

5.4 Design of MPCC Racing Policy
In this section, we introduce modifications to (5.3) for the EV, which allow it to leverage
the uncertainties provided by Algorithm 6 to intelligently trade off between safety and per-
formance. We first define the original obstacle avoidance constraint introduced in [121],
which represents the EV at time step k as a set of four circles with radii rd and centers
c
(1),j
x,k = p

(1)
x,k + rj cos(ϕ

(1)
k) and c(1),jy,k = p

(1)
y,k + rj sin(ϕ

(1)
k) for user defined coverage constants rj

and j = 1, . . . , 4. The extents of the EV are assumed to be contained within the union of
these circles. The TV is represented as the minimum covering ellipse of the vehicle extents,

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 66

with semi-axis lengths a and b, transformed by its pose (p
(2)
k , ϕ

(2)
k). These are illustrated in

Fig. 5.1 by the green circles and blue ellipses respectively. The obstacle avoidance constraint
can be written for j = 1, . . . , 4 and t = k, . . . , k +N as

hj(z
(1)
t , ẑ

(2)
t) = 1 (5.13)

−
((c

(1),j
x,t − p̂

(2)
x,t) cos(ϕ̂

(2)
t)− (c

(1),j
y,t − p̂

(2)
y,t) sin(ϕ̂

(2)
t))2

a2

−
((c

(1),j
x,t − p̂

(2)
x,t) sin(ϕ̂

(2)
t) + (c

(1),j
y,t − p̂

(2)
y,t) cos(ϕ̂

(2)
t))2

b2

We propose an uncertainty-expanded safety bound whose area is proportional to the
position prediction variance from Algorithm 6. These are illustrated by the red ellipses in
Fig. 5.1. Let Var(s(2)t) and Var(e(2)y,t) be the prediction variances for track progress and lateral
deviation on the diagonal of Σ̂(2)

t . In order to derive the tightened constraint, we transform
these variances from the track-aligned curvilinear frame to the body-aligned frame of the
TV:

Var(at) = Var(cos(ê(2)ϕ,t)s
(2)
t + sin(ê

(2)
ϕ,t)e

(2)
y,t)

= cos2(ê
(2)
ϕ,t)Var(s(2)t) + sin2(ê

(2)
ϕ,t)Var(e(2)y,t)

Var(bt) = sin2(ê
(2)
ϕ,t)Var(s(2)t) + cos2(ê

(2)
ϕ,t)Var(e(2)y,t),

where Var(at) and Var(bt) correspond to the variance in the TV’s longitudinal and lateral
directions respectively. Note that we neglect off-diagonal terms in Σ̂

(2)
t and the uncertainty

in the heading. The semi-axis lengths of the expanded ellipsoidal safety bounds aσt and bσt
are then computed as [

aσt
bσt

]
= γ

[√
Var(at)√
Var(bt)

]
(1− ϵt) +

[
a

b

]
, (5.14)

where γ > 0 is chosen to be the number of standard deviations we would like to account
for in our safety bound, and the constraint function (5.3h) is defined by replacing a and b
in (5.13) with the semi-axis lengths computed in (5.14). We allow for a certain amount of
constraint violation through the slack variable ϵt ∈ [0, 1]. Note that when ϵt = 1, the original
constraint (5.13) is recovered. We add the following quadratic term to the cost function in
(5.3a):

1

2
ϵ⊤Qϵϵ+ q⊤ϵ ϵ, (5.15)

where Qϵ ⪰ 0 and qϵ ≥ 0. This disincentivizes the use of slack variables, i.e. violation of
the uncertainty-expanded safety bound, but will allow for a level of risk to be taken when
a significant improvement in performance can be achieved. As such, the policy defined by

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 67

Table 5.1: Prediction errors [m]

GP CV NL

Lateral 0.02± 0.077 0.064± 0.15 −0.057± 0.21

Longitudinal 0.026± 0.077 −0.037± 0.097 0.11± 0.16

(5.3) and (5.6) can trade off between safety and performance in a manner dictated by the
weights in (5.3a) and (5.15).

The nonlinear optimal control problem is formulated using CasADi [7] and solved using
sequential quadratic approximations with the QP solver hpipm [53]. Obtaining a solution
takes 30 ms on average on a laptop with a 2.6 GHz 9th-Gen Intel Core i7 CPU.

5.5 Results and Discussion
Our approach is evaluated in simulation and hardware races, which match the EV, using the
MPCC policy from Sec. 5.4, against a TV, using the blocking policy defined in Sec. 5.3. Both
policies use a horizon length of N = 10 and sample time of Ts = 0.1 s. In both simulation
and hardware races, the EV starts the race behind the TV and is responsible for avoiding
collisions. All crashes during an overtaking attempt are counted as the EV’s mistake and
consequently result in a loss for the EV. Additionally, leaving the track is also counted as a
loss for the EV. Hardware experiments were conducted on the 1/10th scale racecar platform,
which are each equipped with Raspberry Pi 4 for onboard computation. Measurement of the
vehicle state is done using an OptiTrack motion capture system. The EV and TV policies
and predictors run on a host machine and communication with the cars is handled using
ROS2. Code to reproduce the simulation results has been made available1.

To show the importance of predicting interactions between the two vehicles, we take an
approach similar to [152] and compare the performance of our GP-based approach against
a constant velocity (CV) and progress-maximizing nonlinear MPC (NL) predictor in closed-
loop with the EV MPCC policy from Sec. 5.4. CV propagates the TV’s measured state
under a constant linear and angular velocity assumption. NL returns the open-loop solution
of the optimal control problem defined by removing the collision avoidance constraint (5.3h)
from (5.3). The weights for NL are otherwise chosen to be identical to those used in the
TV’s blocking policy. It is important to note that NL does not include (5.11) in its cost
function. As CV and NL do not come with any measure of uncertainty, we add a constant
circular safety bound to encourage fair comparison with the uncertainty ellipses of the GP
predictions. The size of this safety bound can be interpreted as a hyperparameter controlling
the amount of risk the EV is willing to take in its overtaking attempts when using the CV
and NL predictors.

1https://github.com/MPC-Berkeley/gp-opponent-prediction-models

https://github.com/MPC-Berkeley/gp-opponent-prediction-models

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 68

−0.1 −5 · 10−2 0 5 · 10−2 0.1

La
te

ra
l

−1 −0.5 0 0.5 1

−0.1 −5 · 10−2 0 5 · 10−2 0.1

Lo
ng

it
ud

in
al

−1 −0.5 0 0.5 1
Prediction step 10Prediction step 2

Figure 5.2: Distribution of lateral (top) and longitudinal (bottom) prediction errors [m] at the second (left)
and last (right) prediction step for the GP (), CV (), and NL () predictors.

Simulation Study

In simulation, we perform a Monte Carlo study where 100 starting configurations are sampled
and races are run from those initial conditions using each of the aforementioned predictors
in close-loop with the EV’s policy. For the purposes of the studies below, we vary the value
of γ from (5.14) for GP, the radius of the safety bound for CV and NL, and the blocking
aggressiveness parameter q(2)y of the TV policy.

We first examine the longitudinal and lateral errors of the nominal open-loop predictions
with respect to the actual trajectory driven by the TV. The errors are defined in terms
of track progress s and lateral deviation from the centerline ey respectively. We restrict
our error analysis to predictions made during vehicle interactions, i.e. situations where the
two vehicles are within two car lengths of each other. As seen in Table 5.1, GP clearly
outperforms both CV and NL, particularly when predicting the blocking behavior of the TV
as evidenced by the lower lateral error. This is further illustrated in the prediction error
distributions in Fig. 5.2, where it can be seen that GP maintains a lower bias and variance
in both longitudinal and lateral prediction error even at the end of the prediction horizon.

Next, the closed-loop performance in the presence of TV model mismatch is evaluated.
To simulate model mismatch, we vary the blocking aggressiveness q(2)y of the TV policy
while keeping the predictors unchanged, i.e. no retraining or additional tuning is done. As
a performance baseline, we include race results where the open-loop solutions of the TV
policy are used in lieu of a prediction when computing the control action of the EV. This
corresponds to the case where exact knowledge of the TV’s future plans are known to the

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 69

0.2

0.4

0.6

w
in

ra
te GT

GP0.5

GP1

GP2

NL0

NL0.025

NL0.1

CV0
CV0.025
CV0.1

0.2

0.4

0.6

cr
as

h
ra

te

0 50 100 200 300
0

2

4

6

8

w
in

s-
pe

r-
cr

as
h

0 50 100 200 300
−1.5

−1

−0.5

m
in

.a
x

Figure 5.3: Monte Carlo closed-loop performance comparison between the studied prediction models. The
x axis corresponds to the values of q(2)y , the weight on the TV blocking cost. Higher values correspond to
more aggressive blocking behavior by the TV during a race. The subscripts denote the values used for the
safety bound parameters. For GP, it corresponds to the number of standard deviations γ. For CV and NL,
it corresponds to the radius of the circular safety bound in meters. The grey line (GT) indicates the best
performance achieved by using the ground truth open-loop solutions in lieu of predictions.

EV, we call this the ground truth (GT) case. For each class of predictor, we additionally vary
the size of the safety bound to investigate its effect on closed-loop race performance. For
the GP, we pick safety bounds with γ = 0.5, 1, 2. For the CAV and NL predictors, circular
safety bounds of radius 0.025, and 0.1 m are added. These are chosen such that the safety
bound size on average is similar to the safety bounds induced by the GP’s uncertainties in
the one and two standard deviation cases. The performance of the EV policy in closed-loop
with each of these predictors against the TV blocking policy with the various aggressiveness
factor settings are depicted in Fig. 5.3.

In terms of win rate, shown in the upper left, GP clearly outperforms the other predictors
for the TV policy that it was trained on, i.e. q(2)y = 200. For the other settings of q(2)y , while
GP does not impart a clear advantage in win rate, it remains competitive with the other
predictors, including the GT case when we use the TV open-loop solutions directly instead
of the output of a predictor. In addition, GP seems to be less sensitive against variations
in the size of the safety bound, likely because it provides consistently accurate predictions
and does not have to rely on large safety bounds to keep the vehicle safe. In general, all
predictors are able to exploit overly aggressive behavior by the target vehicle by overtaking
through the space which is made free from aggressive blocking attempts. This is clearly seen
in the results as the win rate of the ego vehicle increases with the aggressiveness of the target
vehicle.

As for the crash rate, shown in the upper right, GP is able to maintain a crash rate below

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 70

10% for all values of q(2)y , whereas the other predictors cannot keep the EV safe when the TV
exhibits more aggressive blocking behavior. In fact, it is clear from this plot that in terms of
safety, GP is essentially able to achieve identical performance to GT where the TV’s future
plans are known to the EV. Generally, we observe that GP outperforms the other predictors
in terms of safety as it is able to accurately anticipate the TV’s blocking attempts and react
accordingly by braking or steering out of the way, ultimately reducing the number of crashes.

While the ultimate objective of a race is to win, it is also worthwhile to look at the the
outcome of races where the EV loses to the TV. In particular, we are interested in whether
the EV was able to finish the race safely despite the loss or if the loss was caused by a
crash. The reason for this concerns the practical aspects of car racing where crashes can be
catastrophic and expensive. As such, consider two predictors A and B where Predictor A
has a win rate of 40% and a crash rate of 5% and Predictor B has a win rate of 50% and a
crash rate of 20%. Despite the lower win rate, it would be prudent to prefer Predictor A over
Predictor B due to its significantly lower crash rate. In order to quantify this preference, we
introduce the metric wins-per-crash, to normalize for the effect of crashing in the win rate
and to measure the trade-off between wins and safety. A high score for this metric requires
that the predictor not only lead to more wins but also few crashes. The results for this metric
are shown in the lower left, where it is clear that GP outperforms the other predictors across
all TV policies. We additionally see that GP closely tracks the results from using GT.

We finally examine the largest deceleration (averaged over all races) experienced by the
EV under each predictor, which is shown in the plot in the lower right. This acts as a proxy
to illustrate how well the predictors anticipate the TV’s behavior. If blocking attempts are
predicted accurately, we expect the EV to be able to react in such a way that minimizes
acceleration, which is encouraged by the input cost in (5.3a). On the other hand, if blocking
maneuvers by the TV are not predicted, we expect the EV to be more reactionary to the
current state of the TV, which would lead to larger throttle and braking commands. From
the plot, it can be clearly seen that under NL and CV, the EV generally experiences larger
decelerations, with more extreme values being observed for more aggressive TV behavior. On
the other hand, GP is less sensitive to the target vehicle’s aggressiveness and experiences less
extreme deceleration indicating that it is able to anticipate the incoming blocking attempts
by the TV and can begin to react earlier. We note that in this aspect, GP actually outper-
forms GT. We believe that this is due to the fact that GP was trained on closed-loop TV
behavior and is predicting the actual trajectory which will be driven by the TV. On the other
hand, the open-loop predictions from the TV policies, which are used in GT, can change
drastically between consecutive time steps due to local optimality of NLPs. This can lead
to significant mismatch between the open-loop predictions and the actual driven trajectory,
which ultimately results in larger braking commands to react to those mismatches.

Hardware Study

In our hardware experiments, we compare the performance of the EV MPCC policy in closed-
loop with the NL and GP predictors in ten races on the L-shaped track shown in Fig. 5.4.

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 71

Figure 5.4: EV (blue) overtaking attempts against the TV (green) with predictions in red at six time
instances during the hardware experiment. The first two rows show successful and failed attempts with GP
and the third row shows a failed attempt with NL. The red ellipses and circles correspond to the uncertainty-
expanded or artificial safety bounds around the nominal prediction at each step in the MPC horizon. The
solid green line indicates the closed-loop trajectory of TV. Video recordings of all hardware experiments can
be found at https://youtu.be/KMSs4ofDfIs.

We chose γ = 1 for GP and a radius of 0.14 m for NL such that the safety bound for NL is
similar in size to those produced by GP. Using each of the two predictors, we run ten races
with the EV starting at the same position. The races end after the EV has driven three laps
or after a major collision occurs. As for the TV, we chose different starting positions ahead
of the EV for each race. These starting positions are kept constant in the corresponding
race where GP and NL predictions are used. For all experiments, we impose a longitudinal
speed constraint of 2.8 and 2.0 m/s for the EV and TV respectively. This is done to ensure
that close interactions will occur between the vehicles during each race. As in the simulation
study, the TV uses the blocking policy described in Section 5.3 whereas the EV is encouraged
to overtake the TV through a higher weight on the progress maximization cost in (5.3a). We
note that both control policies use a horizon length of N = 15 and no additional controller
tuning was performed when switching between the GP and NL predictors. The outcomes of
the ten races with the GP and NL predictors is summarized in Table 5.2, where the EV was

https://youtu.be/KMSs4ofDfIs

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 72

Table 5.2: Race outcomes

GP NL

Overtake 4 3
Safe (no overtake) 5 0
Collision (minor) 1 2
Collision (major) 0 5

Figure 5.5: Longitudinal velocity profiles for the successful (top) and failed (bottom) overtaking attempts
using GP. The black vertical lines correspond to the time instances of the frames in Fig. 5.4.

able to perform safe overtaking maneuvers (all with longitudinal velocity greater than 2.7
m/s) and win in four races with GP and in three races with NL. For the remaining races, the
EV lost but was able to remain safe in five races with GP and saw only one minor collision
where the wheels of the two vehicles touched. On the other hand, the TV saw collisions in
all seven remaining races. Out of these collisions, two were minor wheel touches, but the
other five were major collisions which significantly altered the trajectory of both cars. We
note that these outcomes are in close agreement with the results from our simulation study.

To further understand the advantages that GP affords us when compared to NL, we
turn to a similar interaction which arose in multiple instances with both predictors, which
is illustrated in Fig. 5.4. The scenario begins with EV on the outside of TV and the two
cars approaching the first 180turn. The top frames show the case when GP is used where
a successful inside overtake is performed. In this interaction, it can be seen that the TV’s
closed-loop blocking maneuver is contained in the uncertainty-expanded safety bounds. By
accurately predicting the behavior of the TV and recognizing that it cannot successfully
block the EV, this allows the EV to exploit the free space on the inside of the TV to perform
a safe overtake. The middle frames show the case when GP is used, but the EV was not able
to successfully overtake the TV. However, it is able to remain safe and avoid collisions. In

CHAPTER 5. A GAUSSIAN PROCESS MODEL FOR OPPONENT PREDICTION IN
AUTONOMOUS RACING 73

this scenario, the EV begins by slowing down in anticipation of the TV’s outside blocking
maneuver as seen in Fig. 5.5. This lower speed then prevents the EV from finding a safe
solution for performing an inside overtake as it accurately predicts that the TV will be able
to block it even as it takes the inside line. The EV therefore slows down and remains behind
the TV. Finally, the bottom frames show the case when NL is used and the EV collides with
the TV during its overtaking attempt. This is primarily due to the inaccurate predictions
from NL, which do not take into account the blocking incentive of the TV, which, as seen
in (5.11), dominates the TV’s MPC cost especially when the two cars are in close proximity
with each other. The added safety bounds are of no use here either due to the significant
divergence of the NL predictions from the closed-loop trajectory of the TV.

5.6 Chapter Summary
In this chapter, we presented a learning-based method for predicting opponent behavior
in the context of head-to-head competitive autonomous racing. In particular, Gaussian
processes were trained on data from past races to generate trajectory predictions and their
corresponding uncertainties, which are then used in closed-loop with an MPCC policy. We
show through both simulation and hardware experiments that our approach outperforms
non-data-driven predictors in terms of safety while maintaining a high win rate.

It should be noted that the method proposed in this chapter follows a somewhat standard
sequential architecture where the prediction stage is upstream of the planning stage and
therefore the predictions are treated as constant when solving the planning sub-problem.
While this produces a conceptually simple framework, we note that the GP model can only
make predictions of interactive behavior to the extent that it exists in the dataset used
for training. Furthermore, due to the static nature of the opponent predictions during the
planning stage, the opponent is unable to “react” to the actions chosen by the racing policy
which can limit the interactivity of the solutions. In the following chapters, we will examine
a solution approach to the prediction and planning problem which is able to explicitly reason
over interactions between agents by leveraging ideas from game theory.

74

Chapter 6

On the Solution of Game-Theoretic
Equilibria for Autonomous Racing

6.1 Introduction
Autonomous racing has steadily gained attention as an area of research due to the unique
combination of challenges that it presents [17]. Like many widely studied autonomous naviga-
tion problems, racing scenarios typically involve multiple agents with no information sharing
who are subject to coupling through safety related constraints. However, what sets racing
apart is the aggressive and direct competition which necessitates performance at the limit
(of speed, tire friction, thrust, etc.) in order to achieve victory against one’s opponents.
As such, we are faced with the challenge in prediction and planning for autonomous racing
where, we need to solve for interactive multi-agent behavior arising from direct competition
under shared constraints, while subject to performance limiting factors such as friction limits
from non-linear tire models.

Approaches to tackling these challenges fall broadly into data-driven and model-based
approaches, which have both seen impressive successes. In [149], autonomous agents were
trained using deep reinforcement learning (DRL) in a video game environment and achieved
superior performance in head-to-head races against human players. While this approach was
certainly able to learn complex vehicle dynamics and highly expressive multi-agent interac-
tion models, it required days of training and, as with most RL-based methods, is dependent
on large quantities of data to reach super-human performance in a simulation environment.
In [69], DRL was used to achieve super-human performance in real-world drone racing. How-
ever, due to the sparsity of close-proximity interactions in drone races, no interaction models
were used in the solution. On the other hand, [18, 67] used model-based approaches in a
predict-then-plan architecture to achieve real-world racing of full scale race cars at speeds of
up to 270 km/h. In these works, an upstream prediction module provides behavior forecasts
of the opponents, which are then treated as constant during the downstream planning phase
when an action plan is formulated for the ego vehicle (EV) via optimal control techniques

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 75

which leverage explicit nonlinear vehicle models. These approaches have the benefit of being
highly transparent, which is crucial for deployment on expensive and safety critical hard-
ware, but can be limited in expressiveness in terms of interactivity between the opponent
predictions and ego plan. Our work seeks to address this limitation for model-based ap-
proaches by producing highly interactive solutions to the prediction and planning problem
for autonomous racing while maintaining transparency through the use of explicit vehicle
models.

Recent work has posed the prediction and planning problem as an equilibrium finding
problem for a dynamic game [160, 129, 123]. These approaches search for equilibria over
the joint trajectory space of the EV and its opponents, which allows for simultaneous pre-
diction and planning, as they are not conditioned on a static prior EV plan and can in fact
solve over the space of multi-agent interactions. Such methods are based on the theory of
non-cooperative dynamic games [14] and have been applied to a wide variety of trajectory
optimization tasks for multi-agent robotic systems [75, 78, 52, 90, 104, 70]. Two solution
or equilibrium concepts are common for dynamic games, namely the Stackelberg and Nash
equilibria, which make different assumptions about the information structure of the game.
A Stackelberg equilibrium can be found for a game with an explicit leader-follower hierarchy
[50], whereas a Nash equilibrium models the case when agents make their decisions simul-
taneously. Our work focuses on the selection of Nash equilibria, which we believe to be a
good fit for modeling the behavior of ego-centric agents in racing scenarios where no a priori
structure is imposed on the order of the interactions and where agents can have zero-sum
terms in their objective functions, which describe direct competition with their opponents.

Motivated by the considerations above, this chapter focuses on finding generalized Nash
equilibria (GNE) [45] for open-loop dynamic games with state and input constraints with a
numerically robust solver. We present three main contributions.

• The first is the DG-SQP solver, which is a novel iterative approach for finding GNE of
a discrete-time open-loop dynamic game based on sequential quadratic programming
(SQP). In particular, the method is able to account for nonlinear game dynamics and
constraints on both the game state and agent actions. The three key elements of the
method are a non-monotonic line search for solving the associated KKT equations, a
merit function to handle zero sum costs, and a decaying regularization scheme for the
SQP step selection.

• The second contribution is a novel application of model predictive contouring control
in the context of dynamic games which is used to approximate Frenet-frame kinematics
for improved numerical robustness.

• Finally, we perform an extensive simulation study comparing the performance of our
solver to the to the state-of-the-art PATH solver based on mixed complementary prob-
lems [38]. We show comparable performance to the PATH solver, in terms of success
rate, on dynamic games formulated using exact Frenet-frame kinematics and significant
improvements when the approximate formulation is used.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 76

The results presented in this chapter have also appeared in:

• E. Zhu and F. Borrelli, "A sequential quadratic programming approach to the solution
of open-loop generalized nash equilibria". In: 2023 IEEE International Conference on
Robotics and Automation (ICRA). 2023, pp. 3211-3217.

6.2 Related Work

Numerical Solvers for Nash Equilibria of Dynamic Games

For the solution of GNE for dynamic games, many numerical approaches have been pro-
posed. [52] takes a differential dynamic programming approach to obtain a linear quadratic
approximation of the dynamic game and its associated feedback Nash equilibrium. This is
built upon in [123] to address stochastic games over belief spaces, which takes into account
the effect of noisy measurements on state estimation in the game dynamics. However, these
approaches are unable to explicitly account for inequality constraints and instead must in-
clude them in the cost function via barrier functions. This can obfuscate the meaning of
the game as the cost measures both performance and constraint violation. [70, 21] propose
an approach for the subclass of potential dynamic games which was shown to be compu-
tationally efficient. However, by requiring that the dynamic game be described by a single
potential function over all agents, we note that direct competition, in the form of zero-sum
terms in the agents’ objective functions, cannot be captured in this approach. [129, 145,
143, 144] formulate a method akin to block coordinate descent called Sensitivity Enhanced
Iterative Best Response (SE-IBR) where the optimal control problems for each agent, which
are coupled in the dynamic game setting, are decoupled but augmented with a term in the
objective function which captures the sensitivity of the TV’s solution w.r.t. the EV’s solu-
tion. Agents then improve their solutions in a sequential manner while holding the behavior
of all other agents fixed. It was shown that fixed points of this algorithm correspond to
GNE. However, each iteration of the method requires the solution of the same number of
optimization problems as there are agents and can be slow to converge in practice. In con-
trast, our proposed solver only requires the solution of a single convex optimization problem
at each iteration. [78] proposes a solver based on the augmented Lagrangian method. The
solver, called ALGAMES, shows good performance when compared to [52]. However, we
show in prior work that ALGAMES appears to struggle with convergence in the context of
car racing where more complex dynamics and environments are introduced [160]. Our pro-
posed solver is perhaps most similar to [76] which also leverages SQP for the computation
of feedback Nash equilibria, but does not investigate its local behavior. Compared to [76],
we also introduce an approximation scheme which improves solver convergence in racing
scenarios. Finally, we note that the problem of finding GNE for open-loop dynamic games
can be formulated as a mixed complementarity problem for which the PATH solver is the
state-of-the-art [38]. This solver was used to great effect in multiple recent works to compute
GNE for multi-agent navigation tasks [90, 104]. As such, the PATH solver will be the main

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 77

target of our comparisons, where we show, through a numerical study, that our proposed
solver achieves greater success rate in the context of head-to-head racing scenarios.

Game-Theoretic Methods in Autonomous Racing

Due to its competitive nature, autonomous racing has been a popular test bed for game-
theoretic methods of prediction and planning and many of the previously mentioned methods
have been applied in this context. [123] formulates the racing problem as a stochastic dy-
namic game which can take into account state and measurement uncertainty when solving
for a Nash equilibrium. However, this approach is unable to explicitly incorporate safety-
critical track boundary and collision avoidance constraints, which are crucial in racing. [65]
poses the problem as a constrained potential game. This results in good computational
efficiency for game-theoretic prediction and planning in a real-time, model predictive game
play (MPGP) manner, but importantly precludes zero-sum components in the agents’ cost
functions by definition of the potential game. This makes it difficult to capture direct compe-
tition between the agents and instead the approach relies on heuristics and mode switching
in order to induce competitive behavior. [129, 144, 145, 143] leverage the aforementioned
SE-IBR algorithm to approximately solve a dynamic game in a MPGP manner and use the
approximate GNEs as high-level plans for a tracking policy in hardware races. However,
this work, like all of the ones discussed so far in this section, have only shown GNE solution
results for linear models such as the integrator model or simple nonlinear models such as the
kinematic bicycle model. The only exception to this is in [88] where a bimatrix game was
defined over the incurred costs of sampled trajectory rollouts for two vehicles each using the
dynamic bicycle model. The trajectory pair corresponding to the NE of this bimatrix game
was then chosen as the opponent prediction and EV plan. This approach can be considered
as a zeroth order method for the solution of GNEs as it only requires evaluations of the
components of the dynamic game. (This is in contrast to [78, 38] and our approach, which
leverage gradients of the game components). As such, it provides a simple framework for
leveraging high fidelity vehicle models. However, it is straightforward to see that the effec-
tiveness of this approach largely depends on the number of trajectory samples taken and it
is unclear if the trajectory pair corresponding to the NE of the bimatrix game is a GNE of
the dynamic game.

6.3 Problem Formulation
Consider an M -agent, finite-horizon, discrete-time, general-sum, open-loop, dynamic game
whose state is characterized by the joint dynamical system:

xk+1 = f(xk, uk), (6.1)

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 78

where xik ∈ X i and uik ∈ U i are the state and input of agent i at time step k and

xk =
[
x1k

⊤
, . . . , xMk

⊤
]⊤
∈ X 1 × · · · × XM = X ⊆ Rn

uk =
[
u1k

⊤
, . . . , uMk

⊤
]⊤
∈ U1 × · · · × UM = U ⊆ Rm,

are the concatenated states and inputs of all agents. In this work, we will use the notation
x¬ik and u¬ik to denote the collection of states and inputs for all but the i-th agent.

Each agent i attempts to minimize its own cost function, which is comprised of stage
costs lik and terminal cost liN , over a horizon of length N :

J̄ i(x,ui) =
N−1∑
k=0

lik(xk, u
i
k) + liN(xN) (6.2a)

= J i(u1, . . . ,uM , x0), (6.2b)

where x = {x0, . . . , xN} and ui = {ui0, . . . , uiN−1} denote state and input sequences over the
horizon. Note that the cost in (6.2a) for agent i depends on its own inputs and the joint
state, which can capture dependence on the behavior of the other agents. We arrive at (6.2b)
by recursively substituting in the dynamics (6.1) to the cost function, which are naturally a
function of the open-loop input sequences for all agents. The agents are additionally subject
to nc constraints

C(u1, . . . ,uM , x0) ≤ 0, (6.3)

which can be used to describe individual constraints as well as coupling between agents and
where we have once again made the dependence on the joint dynamics implicit. For the
sake of brevity, when focusing on agent i, we omit the initial state x0 and write the cost
and constraint functions as J i(ui,u¬i) and C(ui,u¬i). Let us now define the conditional
constraint set

U i(u¬i) ={ui | C(ui,u¬i) ≤ 0},

which can be interpreted as a restriction of the joint constraint set for agent i given some
u¬i. We make the following assumption about the functions and constraint sets.

Assumption 3. The sets X i and U i are compact and the functions f , J i, and C are three
times continuously differentiable on X and U for all i ∈ {1, . . . ,M}.

Generalized Nash Equilibrium

We define the constrained dynamic game as the tuple:

Γ = (N,X ,U , f, {J i}Mi=1, C). (6.4)

For such a game, a GNE [45] is attained at the set of feasible input sequences u = {ui}Mi=1

which minimize (6.2) for all agents i. Formally, we define this solution concept as follows:

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 79

Definition 1. A generalized Nash equilibrium (GNE) for the dynamic game Γ is the set of
open-loop solutions u⋆ = {ui,⋆}Mi=1 such that for each agent i:

J i(ui,⋆,u¬i,⋆) ≤ J i(ui,u¬i,⋆), ∀ui ∈ U i(u¬i,⋆).

If the condition holds only in some local neighborhood of ui,⋆, then u⋆ is denoted as a local
GNE.

In other words, at a local GNE, agents cannot improve their cost by unilaterally per-
turbing their open-loop solution in a locally feasible direction. Furthermore, it was shown
in [76, Theorem 2.2] that the local GNE for agent i can be obtained equivalently by solving
the following constrained finite horizon optimal control problems (FHOCP):

ui,⋆(u¬i,⋆) = argmin
ui

J i(ui,u¬i,⋆) (6.5)

subject to C(ui,u¬i,⋆) ≤ 0.

where u¬i,⋆ correspond to local GNE solutions for the other agents. Note that we are
assuming uniqueness of the local GNE of (6.4). This assumption will be made formal in
the next section. A distinct advantage of using (6.5) to model agent interactions is that a
dynamic game allows for a direct representation of agents with competing objectives as the
M objectives are considered separately instead of being summed together, which is typical
in cooperative multi-agent approaches [162].

6.4 An SQP Approach to Dynamic Games
In this section, we propose a method which iteratively solves for open-loop local GNE of
dynamic games using sequential quadratic approximations. In particular, we will derive the
algorithm and present guarantees on local convergence, which is based on established SQP
theory [23]. We begin by defining the Lagrangian functions for the M coupled FHOCPs in
(6.5):

Li(ui,u¬i,⋆, λi) = J i(ui,u¬i,⋆) + C(ui,u¬i,⋆)⊤λi,

where we have again omitted the dependence on the initial state x0 for brevity. As in [78], we
require that the Lagrange multipliers λi ≥ 0 are equal over all agents, i.e λi = λj = λ, ∀i, j ∈
{1, . . . ,M}. Since the multipliers reflect the sensitivity of the optimal cost w.r.t. constraint
violation, this can be interpreted as a requirement for parity in terms of constraint violation
for all agents. Under this condition, the GNE from (6.5) are also known as normalized Nash
equilibria [110].

A direct consequence of writing the constrained dynamic game in the coupled nonlinear
optimization form of (6.5) is that, subject to regularity conditions, solutions of (6.5) must

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 80

satisfy the KKT conditions below:

∇uiLi(ui,⋆,u¬i,⋆, λ⋆) = 0, ∀i = 1, . . . ,M, (6.6a)
C(u1,⋆, . . . ,uM,⋆) ≤ 0, (6.6b)

C(u1,⋆, . . . ,uM,⋆)⊤λ⋆ = 0, (6.6c)
λ⋆ ≥ 0. (6.6d)

We therefore propose to find a local GNE as a solution to the KKT system (6.6) in an
iterative fashion starting from an initial guess for the primal and dual solution, which we
denote as ui0 and λ0 ≥ 0 respectively, and taking steps piq and pλq , at iteration q, to obtain
the sequence of iterates:

uiq+1 = uiq + piq, λq+1 = λq + pλq . (6.7)

In particular, we form a quadratic approximation of (6.6a) and linearize the constraints in
(6.6b) about the primal and dual solution at iteration q in a SQP manner [148] as follows:

Lq =

∇2

u1L1
q ∇u2,u1L1

q . . . ∇uM ,u1L1
q

∇u1,u2L2
q ∇2

u2L2
q . . . ∇uM ,u2L2

q
...

...
∇u1,uMLMq ∇u2,uMLMq . . . ∇2

uMLMq

 ,
hq =

[
∇u1J1

q ∇u2J2
q . . . ∇uMJMq

]⊤
,

Gq =
[
∇u1Cq ∇u2Cq . . . ∇uMCq

]
,

Bq = proj⪰0((Lq + L⊤
q)/2) + ϵI, (6.8)

where the subscript q indicates that the corresponding quantity is evaluated at the primal
and dual iterate uq and λq. Here, ϵ ≥ 0 is a regularization coefficient, I is the identity matrix
of appropriate size, and

proj⪰0(X) = argmin
Y⪰0
∥X − Y ∥2F (6.9)

denotes the operation which projects the symmetric matrix X ∈ Sn onto the positive semi-
definite cone, where ∥·∥F denotes the Frobenius norm. We note that the semidefinite program
in (6.9) admits the closed-form solution proj⪰0(X) =

∑n
i=1max{0, si}viv⊤i , where si and vi

denote the i-th eigenvalue and eigenvector of X respectively. Using the approximation in
(6.8), we solve for the step in the primal variables via the following convex quadratic program
(QP):

puq = arg min
p1,...,pM

1

2
pu⊤Bqp

u + h⊤q p
u (6.10a)

subject to Cq +Gqp
u ≤ 0. (6.10b)

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 81

where we denote pu = [p1
⊤
, . . . , pM

⊤
]⊤. Denote the Lagrange multipliers corresponding to

the solution of (6.10) as dq. We then define the step in the dual variables as

pλq = dq − λq, (6.11)

which maintains nonnegativity of the dual iterates given λ0 ≥ 0. Finally, we note that
in contrast to the approach used in [129], which requires the solution of M optimization
problems, our SQP procedure requires the solution of only a single QP at each iteration.

Local Behavior of Dynamic Game SQP

We make the following assumptions about the primal and dual solutions of (6.5):

Assumption 4. Solutions {ui,⋆}Mi=1 and λ⋆ of (6.5) satisfy the following, for each i ∈
{1, . . . ,M}:

• λ⋆ ⊥ C(ui,⋆,u¬i,⋆) and λ⋆j = 0 ⇐⇒ Cj(u
i,⋆,u¬i,⋆) < 0 for j = 1, . . . , nc.

• The rows of the active constraint Jacobians at the local GNE, i.e. ∇uiC̄(ui,⋆,u¬i,⋆),
are linearly independent.

• d⊤∇2
uiLi(ui,⋆,u¬i,⋆, λ⋆)d > 0, ∀d ̸= 0 such that ∇uiC̄(ui,⋆,u¬i,⋆)⊤d = 0.

The first assumption is strict complementary slackness, the second is the linear inde-
pendence constraint qualification (LICQ), and the third states that the Hessian of the La-
grangian function is positive definite on the null space of the active constraint Jacobians
at the solution. It is straight forward to see that By standard optimization theory, (6.6)
and Assumption 4 together constitute necessary and sufficient conditions for a primal and
dual solution of (6.5) for agent i to be locally optimal and unique given u¬i,⋆. When these
conditions hold for the solutions over all agents, it was shown in [76] that satisfaction of
the requirements for a unique local GNE follow immediately. Note that, as in [23] and [76],
Assumption 4 is standard and can be verified a posteriori.

To analyze the local behavior of the iterative procedure as defined by (6.7), (6.8), and
(6.10), let us assume that u0 and λ0 are close to the optimal solution and the subset of
active constraints at the local GNE, which we denote as C̄, with Jacobian Ḡ, is known and
constant at each iteration q. Therefore, for the purposes of this section, we can replace the
inequality constraint in (6.10b) with the equality constraint:

C̄q + Ḡqp
u = 0. (6.12)

We refer to the QP constructed from (6.10a) and (6.12) as EQP.
In the traditional derivation of the SQP procedure [23, 148], it was shown that under

the aforementioned assumptions, the SQP step computed is identical to a Newton step for
the corresponding KKT system. The SQP step therefore inherits the quadratic convergence

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 82

rate of Newton’s method in a local neighborhood of the optimal solution [23, Theorem 3.1].
However, in the case of dynamic games, the equivalence between the SQP procedure and
Newton’s method is no longer exact since the matrix Lq is not symmetric in general. To see
this, let us first state the joint KKT system for the equality constrained version of (6.5):

F (u1,⋆, . . . ,uM,⋆, λ⋆) =

∇u1L1(u1,⋆, . . . ,uM,⋆, λ⋆)

...
∇uMLM(u1,⋆, . . . ,uM,⋆, λ⋆)

C̄(u1,⋆, . . . ,uM,⋆)

 = 0, (6.13)

For the system of equations (6.13), the Newton step at iteration q is the solution of the linear
system: [

Lq Ḡ⊤
q

Ḡq 0

] [
p̄uq
p̄λq

]
= −

[
hq + Ḡ⊤

q λq
C̄q

]
. (6.14)

On the other hand, by the first order optimality conditions for EQP, we have that the SQP
step must satisfy [

Bq Ḡ⊤
q

Ḡq 0

] [
puq
pλq

]
= −

[
hq + Ḡ⊤

q λq
C̄q

]
. (6.15)

When the matrix Lq is positive definite and ϵ = 0, (6.15) and (6.14) are equivalent. This
corresponds to the special case of potential games [163]. However, this is not true in general
for our SQP step, which implies that we cannot inherit the quadratic convergence of New-
ton’s method. Instead, the SQP step from (6.10a) and (6.12) can be seen as a symmetric
approximation to the Newton step. As such, we establish guaranteed local linear convergence
for our SQP procedure via established theory for SQP with approximate Hessians. Before
proving the main result of this section, let us first define the bounded deterioration property,
which essentially requires that the distance between a matrix and its approximations are
bounded.

Definition 2. A sequence of matrix approximations {Bq} to L⋆ for the SQP method is said
to have the property of bounded deterioration if there exist constants α1 and α2 independent
of q such that:

∥Bq+1 − L⋆∥ ≤ (1 + α1σq)∥Bq − L⋆∥+ α2σq,

where σq = max(∥uq+1−u⋆∥, ∥uq −u⋆∥, ∥λq+1− λ⋆∥, ∥λq − λ⋆∥), and L⋆ denotes the matrix
L in (6.8) evaluated at the solution u⋆, λ⋆.

Theorem 2. Consider the dynamic game defined by (6.4). Let Assumptions 3 and 4 hold.
Then there exist positive constants ϵ1 and ϵ2 such that if

∥u0 − u⋆∥ ≤ ϵ1, ∥B0 − L⋆∥ ≤ ϵ2,

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 83

and λ0 = −(Ḡ0Ḡ
⊤
0)

−1Ḡ0h0, then the sequence (uq, λq) generated by the SQP procedure (6.7)
and (6.10) converges linearly to (u⋆, λ⋆).

Proof. We obtain the result by showing that the conditions of [23, Theorem 3.3] are satisfied.
The first condition requires that the approximations Bq are positive definite on the null space
of Ḡq. Since Bq is constructed by projecting Lq into the positive definite cone, this condition
is satisfied trivially.

The second condition requires that the sequence {Bq} satisfies the bounded deterioration
property from Definition 2. To show this, we begin with the following derivation:

∥Bq+1 − L⋆∥ = ∥Bq+1 −Bq +Bq − L⋆∥
≤ ∥Bq − L⋆∥+ ∥Bq+1 −Bq∥.

From the above, it can be seen that {Bq} satisfies the bounded deterioration property with
α1 = 0 if there exists α2 such that ∥Bq+1−Bq∥ ≤ α2σq. We will show this via the mean value
theorem, where we first observe that by Assumption 3, L(uq, λq) is continuous and differen-
tiable in uq and λq. The smoothness of B(uq, λq) is therefore dependent on the smoothness of
the projection operator in (6.9). It was established in [2] that for parametric strongly convex
conic optimization problems, there exists a unique, continuous, and differentiable mapping
from the parameters to the optimal solution of the problem. The projection operator (6.9)
is a semi-definite program which admits a unique solution [29]. Therefore, we may conclude
that B(uq, λq) is continuous and differentiable in uq and λq. This allows us to establish the
following inequalities:

∥Bq+1 −Bq∥ = ∥Bq+1 −B⋆ +B⋆ −Bq∥
≤ ∥Bq+1 −B⋆∥+ ∥Bq −B⋆∥
= ∥Bq+1 −B(u⋆, λq+1) +B(u⋆, λq+1)−B⋆∥
+ ∥Bq −B(u⋆, λq) +B(u⋆, λq)−B⋆∥
≤ ∥Bq+1 −B(u⋆, λq+1)∥+ ∥B(u⋆, λq+1)−B⋆∥
+ ∥Bq −B(u⋆, λq)∥+ ∥B(u⋆, λq)−B⋆∥.

Since B is continuous and differentiable, by the mean value theorem:

∥Bq+1 −B(u⋆, λq+1)∥+ ∥B(u⋆, λq+1)−B⋆∥+ ∥Bq −B(u⋆, λq)∥+ ∥B(u⋆, λq)−B⋆∥
≤ β1∥uq+1 − u⋆∥+ β2∥λq+1 − λ⋆∥+ β3∥uq − u⋆∥+ β4∥λq − λ⋆∥
≤ max(β1, β2, β3, β4)σq,

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 84

where

β1 = sup
t∈[0,1]

∥∇uB(tuq+1 + (1− t)u⋆, λq+1)∥,

β2 = sup
t∈[0,1]

∥∇λB(u⋆, tλq+1 + (1− t)λ⋆)∥,

β3 = sup
t∈[0,1]

∥∇uB(tuq + (1− t)u⋆, λq)∥,

β4 = sup
t∈[0,1]

∥∇λB(u⋆, tλq + (1− t)λ⋆)∥.

This satisfies the bounded deterioration property with α2 = max(β1, β2, β3, β4). Given As-
sumption 4 holds, linear convergence of the SQP iterations follows directly as a consequence
of [23, Theorem 3.3]. ■

6.5 Numerical Robustness of Dynamic Game SQP
We have shown that our proposed SQP approach exhibits linear convergence when close
to a local GNE. However, as is commonly seen with numerical methods for nonlinear opti-
mization, a naïve implementation of the procedure defined by (6.7), (6.8), and (6.10) often
performs poorly due to overly aggressive steps leading to diverging iterates. In this sec-
tion, we introduce multiple practical considerations which will help address this problem in
practice. Namely, a merit function, a non-monotonic line search method, and a decaying
regularization scheme. These components will be used to determine how much of the SQP
step puq and pλq can be taken to make progress towards a local GNE while remaining in a
region about the current iterate where the QP approximation (6.10) is valid. We will show
through examples that these additions are crucial in improving the numerical robustness of
the proposed SQP approach.

A Novel Merit Function

Merit functions are commonly used in conjunction with a backtracking line search technique
as a mechanism for measuring progress towards the optimal solution and limiting the step size
taken by an iterative solver [148]. This is important as the quality of the QP approximation
(6.10) may be poor when far away from the iterate, which could result in divergence of the
iterates if large steps are taken.

In traditional constrained optimization, merit functions typically track a combination
of cost value and constraint violation. In the context of dynamic games, this is not as
straightforward as the agents may have conflicting objectives and a proposed step may result
in an increase in the objectives of some agents along with a decrease in others’. We also
cannot just simply sum the objectives as minimizers of the combined cost function may not

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 85

be local GNE. We therefore propose the following merit function:

ϕ(u,λ, s;µ) =
1

2
∥

 ∇u1L1(u, λ)
...

∇uMLM(u, λ)

︸ ︷︷ ︸

=∇L(u,λ)

∥22 + µ∥C(u)− s∥1, (6.16)

and define γ(u, λ) = (1/2)∥∇L(u, λ)∥22. The slack variable s = min(0, C(u)) is defined
element-wise such that C − s captures violation of the inequality constraints and we define
the step ps = C(u) + G(u)pu − s. Compared to the merit function from [76], which only
included the first term of (6.16), the novelty of our’s is the l1 norm term, whose purpose will
be described shortly. Instead of measuring the agent objectives, our merit function tracks
the first order optimality conditions in addition to constraint violation. It should be easy to
see that the merit function attains a minimum of zero at any local GNE. However, we note
that this merit function is not exact [148] since the first order conditions are only necessary
for optimality.

Since we would like the sequence of iterates to converge to the minimizers of ϕ, it follows
that at each iteration we would like take a step in a descent direction of ϕ. As such, we
will now, in a manner similar to [148], analyze the directional derivative of the proposed
merit function in the direction of the steps computed from (6.10) and describe a procedure
for choosing the parameter µ and the corresponding conditions such that a descent in ϕ is
guaranteed.

Since the l1 norm is not differentiable everywhere, we begin by taking a Taylor series
expansion of γ and C − s for α ∈ (0, 1]:

ϕ(u+ αpu, λ+ αpλ, s+ αps;µ)− ϕ(u, λ, s;µ)

≤ α∇u,λγ

[
pu

pλ

]
+ µ∥C − s+ α(Gpu − ps)∥1 − µ∥C − s∥1 + βα2∥p∥22

= α

(
∇u,λγ

[
pu

pλ

]
− µ∥C − s∥1

)
+ βα2∥p∥22,

where the term βα2∥p∥22 bounds the second derivative terms for some β > 0. Following a
similar logic, we can obtain the bound in the other direction:

ϕ(u+ αpu, λ+ αpλ, s+ αps;µ)− ϕ(u, λ, s;µ)

≥ α

(
∇u,λγ

[
pu

pλ

]
− µ∥C − s∥1

)
− βα2∥p∥22.

Dividing the inequality chain by α and taking the limit α → 0, we obtain the directional
derivative:

D(ϕ(u, λ, s;µ), pu, pλ) = ∇u,λγ

[
pu

pλ

]
− µ∥C − s∥1 (6.17)

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 86

From (6.17), it should be clear that given C − s ̸= 0, there exists a value for µ > 0 such
that the directional derivative is negative. As such, we propose the following expression to
compute µ, given some ρ ∈ (0, 1):

µ ≥
(
∇u,λγ

[
pu

pλ

])
/((1− ρ)∥C − s∥1), (6.18)

which results in D(ϕ(u, λ;µ), pu, pλ) ≤ −ρµ∥C − s∥1.
In the case when C − s = 0, we unfortunately cannot guarantee that the directional

derivative will always be negative. To see this, let us analyze the first term of (6.17):

∇u,λγ

[
pu

pλ

]
= ∇L⊤ [L G⊤

] [pu
pλ

]
= ∇L⊤ [B +R G⊤

] [pu
pλ

]
= −∇L⊤∇L+∇L⊤Rpu, (6.19)

where R denotes the residual matrix i.e. R = L− B and we arrive at the third equality by
plugging in for the stationarity condition from (6.10). From (6.19), it should be immediately
apparent that when the residual matrix is large and dominates the first term, it is possible
for the directional derivative to be positive. This can be interpreted as a condition on how
well the positive definite B actually approximates the original stacked Hessian matrix L.
For dynamic games where the agents have highly coupled and differing objectives, i.e. when
L is highly non-symmetric, it is reasonable to expect that the approximation would suffer
and that we may not be able to achieve a decrease in the merit function. For this reason,
we utilize a non-monotone strategy for the line search step, which will be discussed in the
following.

A Non-Monotone Line Search Strategy

Line search methods are used in conjunction with merit functions to achieve a compromise
between the goals of making rapid progress towards the optimal solution and keeping the
iterates from diverging. This is done by finding the largest step size α ∈ (0, 1] such that the
following standard decrease condition is satisfied [23]:

ϕ(uq + αpuq , λq + αpλq , sq + αpsq;µ) (6.20)

≤ ϕ(uq, λq, sq;µ) + ζαD(ϕ(uq, λq, sq;µ), p
u
q , p

λ
q),

where ζ ∈ (0, 0.5). However, since our merit function is not exact, the line search procedure
can be susceptible to poor local minima which do not correspond to local GNE. Moreover,
there is evidence that requiring monotonic decrease in the merit function at each iteration

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 87

may actually impede the solution process [49]. We therefore include in our approach a non-
monotone approach to line search called the watchdog strategy [34]. Instead of insisting on
sufficient decrease in the merit function at every iteration, this approach allows for relaxed
steps to be taken for a certain number of iterations where increases in the merit function
are allowed. The decrease requirement (6.20) is then enforced after the prescribed number
of relaxed iterations or if the step size exceeds some given threshold. The rationale behind
this strategy is that we can use the relaxed steps as a way to escape regions where it is
difficult to make progress w.r.t. the merit function. The algorithm we implement is based
on the non-monotone stabilization scheme presented in [38] and involves the taking of d-steps
and m-steps, where d-steps correspond to relaxed steps (α = 1) which disregard the merit
decrease condition and m-steps which enforce merit decrease through an Armijo backtracking
linesearch on α in (6.20). Furthermore, the method stores the list of iterates which satisfy the
merit decrease condition as checkpoints. This allows for a watchdog step to reset the iterate
to a checkpoint in the event that an m-step was unsuccessful and to perform a backtracking
linesearch from there.

A Decaying Regularization Scheme

The regularization parameter ϵ introduced in (6.8) is a common mechanism used in iterative
Newton-based procedures to control the size of pu. However, the selection of the regular-
ization parameter is non-trivial in many cases as the convergence behavior of the iterative
procedure can be highly sensitive to the value of ϵ. Often, it is observed that iterates can
diverge if ϵ is too small, whereas progress is slow if ϵ is too big. To address this challenge, one
method which has seen success is that of decaying regularization which given some initial
setting of ϵ gradually decreases its value over iterations of the algorithm [78, 141, 95]. In
this work, we take a similar approach to updating the values of ϵ, but importantly, integrate
it into the non-monotone line search procedure. Specifically, for some initial regularization
value ϵ0 ≥ 0 and decay multiplier η ∈ (0, 1], we impose the following update rule:

ϵq+1 =

{
ϵq if d-step,
ηϵq if m-step,

(6.21)

where the regularization value only decays after a step which satisfies the merit function
decrease condition is found. The reason for this is to avoid reducing the regularization
strength when potentially spurious relaxed d-steps are taken and the iterate is reset to a
checkpoint.

6.6 The Dynamic Game SQP Algorithm
By combining the elements discussed in the previous section, we arrive at the dynamic game
SQP (DG-SQP) algorithm, which is presented in Algorithm 7. The algorithm requires as

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 88

Algorithm 7: Dynamic Game SQP (DG-SQP)
Input: u0, ϵ0

1 q ← 0;
2 uq ← u0, λq ← max(0,−(G0G

⊤
0)

−1G0h0);
3 while not converged do
4 Bq(ϵq), hq, Gq, Cq ← (6.8);
5 puq , p

λ
q ← (6.10), (6.11);

6 sq ← min(0, Cq), psq ← Cq +Gqp
u
q − sq;

7 if Cq − sq ̸= 0 then
8 Compute µ from (6.18);
9 else

10 µ← 0;
11 end
12 uq+1, λq+1, ϵq+1 ← watchdog line search;
13 q ← q + 1

14 end
15 return u⋆ ← uq, λ⋆ ← λq;

input initial guesses of open-loop input sequences for each agent and the initial regularization
value ϵ0. Line 2 initializes the primal and dual iterates, where the dual variables are initialized
as the least squares solution to (6.6a). Lines 3 to 14 perform the SQP iteration which has
been described in Sections 6.4 and 6.5. An iterate is said to have converged to a local GNE if
it satisfies the KKT conditions described in (6.6) up to some user specified tolerance. Namely,
for some given ρ1, ρ2, ρ3 > 0, we require the conditions ∥∇L(uq, λq)∥∞ ≤ ρ1, ∥C(uq)∥∞ ≤
ρ2, |λ⊤q C(uq)| ≤ ρ3 be satisfied in order for the algorithm to terminate successfully. The
algorithm outputs the open-loop strategies for the M agents and the corresponding Lagrange
multipliers.

6.7 Frenet-Frame Games for Autonomous Racing
This section presents the second main contribution of this paper. We formulate the au-
tonomous racing problem as a dynamic game using ideas from contouring control [87, 47]
and leverage the solver presented in the previous section to compute the solution to such
game. Numerical studies in Section 6.8 will show that with this formulation, we achieve
significantly higher success rates when solving for GNE of racing dynamic games.

We consider the class of racing dynamic games where the race track is represented as a
parametric path τ : [0, L] 7→ R2, which is assumed to be twice differentiable and of total
length L. In particular, when given an arclength s ∈ [0, L], τ returns the inertial x-y position
of the path and we may write the path tangent angle at s is Φ(s) = arctan(τ ′y(s)/τ

′
x(s)). In the

case where τ forms a closed circuit we have that τ(0) = τ(L), τ ′(0) = τ ′(L), τ ′′(0) = τ ′′(L),
where τ ′ and τ ′′ are the element-wise first and second derivatives of τ . Given a path τ , we

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 89

(a) (b)

Figure 6.1: (a) Illustration of the contouring and lag errors ec and el. (b) An example of a poor approximation
s̄′ where el(p, s̄) = el(p, s̄

′) = 0, but s̄′ ̸= s(p).

may then transform an inertial frame position p = (x, y) and yaw angle ψ into a path-relative
pose as follows:

s(p) = argmin
s
∥τ(s)− p∥2, (6.22a)

ey(p) = [− sinΦ(s(p)), cosΦ(s(p))](p− τ(s(p)), (6.22b)
eψ(p, ψ) = ψ − Φ(s(p)),

which are the path progress, the lateral displacement from the path, and the heading devi-
ation from the path tangent corresponding to p and ψ respectively. These quantities, which
are illustrated in Figure 6.1a, are known as the coordinates of a Frenet reference frame [96]
and they enable a straightforward expression of quantities which are important to the for-
mulation of the autonomous racing problem as a dynamic game [129]. First, we may express
the difference in track progress between two agents as s(pi) − s(pj). Maximization of this
quantity in the game objective J i (6.2b) captures the direct competition between agents i
and j in racing. Furthermore, using the lateral deviation in (6.22b), we may easily express
track boundary constraints for agent i as simple bounds on eiy(pi), which are then included in
the game constraints C (6.3). Repeated evaluation of the potentially nonlinear optimization
problem (NLP) in (6.22a) can be avoided by directly describing the evolution of a vehicle’s
kinematics in the Frenet reference frame [96]. In this work, we consider two vehicle models
which can be expressed this way. The first is the Frenet-frame kinematic bicycle model
which, for vehicle i, has the state and input vector:

xikin = [v, s, ey, eψ]
⊤ ∈ X i

kin, (6.23a)
uikin = [a, δf]

⊤ ∈ U ikin, (6.23b)

where v and a are the velocity and acceleration of vehicle i along its direction of travel and
δf is the steering angle of the front wheel. The second is the Frenet-frame dynamic bicycle

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 90

model which, for vehicle i, has the state and input vector:

xidyn = [vx, vy, ω, s, ey, eψ]
⊤ ∈ X i

dyn, (6.24a)

uidyn = [ax, δf]
⊤ ∈ U idyn, (6.24b)

where vx and vy are the longitudinal and lateral velocity, ω is the yaw rate, and ax is the
longitudinal acceleration of vehicle i. The following functions describe the state evolution
of the kinematic or dynamic bicycle models and expressions for both can be found in the
Appendix.

xi,+kin = f ikin(x
i
kin, u

i
kin) (6.25)

xi,+dyn = f idyn(x
i
dyn, u

i
dyn) (6.26)

These can then be concatenated to construct the game dynamics in (6.1):

f∗ = vec(f 1
∗ , . . . , f

M
∗), (6.27)

where the subscript ∗ ∈ {kin, dyn} indicates the vehicle model. A Frenet-frame dynamic
game with either the kinematic or dynamic bicycle model can therefore be defined as:

Γ∗ = (N,X∗,U∗, f∗, {J i∗}Mi=1, C∗). (6.28)

Direct expression of the vehicle kinematics in a Frenet reference frame offers two benefits
in the formulation of racing tasks. The first is that it allows for the expression of progress
maximization as a linear function of the state variable s. The second is that it allows for track
boundary constraints to be imposed as simple bounds on the state variable ey [111, 67, 161].
However, this comes at the cost of introducing singularities at the centers of curvature (as
seen in the numerator of (A.1)) which can cause numerical instabilities especially on tracks
with tight turns. Furthermore, Frenet-frame kinematics also complicate the expression of
obstacle avoidance constraints in multi-agent settings, which will be seen in our description
of the racing scenarios in Section 6.8. Our formulation, which applies ideas from contouring
control [87, 47, 77] in the context of dynamic games, approximates the evolution of s and ey
without introducing singularities, and results in a dynamic game with inertial kinematics,
where the approximations of s and ey can be leveraged in a similar manner as before for
simple description of racing tasks.

Let us first define the inertial-frame counterparts of the kinematic and dynamic bicycle
models for vehicle i, which have as state and input vectors

x̄ikin = [v, x, y, ψ]⊤,∈ X̄ i
kin (6.29a)

ūikin = [a, δf]
⊤ ∈ Ū ikin. (6.29b)

and

x̄idyn = [vx, vy, ω, x, y, ψ]
⊤ ∈ X̄ i

dyn, (6.30a)

ūidyn = [ax, δf]
⊤ ∈ Ū idyn, (6.30b)

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 91

respectively. The dynamics functions describe the state evolution of the inertial-frame kine-
matic or dynamic bicycle models and expressions for both are again included in the Appendix.

x̄i,+kin = f̄ ikin(x̄
i
kin, ū

i
kin) (6.31)

x̄i,+dyn = f̄ idyn(x̄
i
dyn, ū

i
dyn) (6.32)

We begin the derivation of our approximation by augmenting the state and input vectors for
vehicle i with the variables s̄i and v̄i to obtain

x̂i∗ = (x̄i∗, s̄
i) ∈ X̂ i

∗, û
i
∗ = (ūi∗, v̄

i) ∈ Û i∗, (6.33)

where we use the subscript ∗ ∈ {kin, dyn} to indicate that this augmentation may be per-
formed on the state and input vectors for either the kinematic and dynamic bicycle models.
The variable s̄i represents our approximation of the progress s for vehicle i along a given
path τ and evolves according to simple integrator dynamics:

s̄ik+1 = s̄ik +∆t · v̄ik, (6.34)

with initial condition s̄i0 = s(pi0), where v̄i is a decision variable that can be thought of as an
approximate arcspeed for agent i. We denote the augmented dynamics function as

x̂i,+∗ = f̂ i∗(x̂
i
∗, û

i
∗), (6.35)

which is defined as the concatenation of the original inertial-frame vehicle dynamics f̄ i∗ in
(6.31) or (6.32) with (6.34). Construction of the game dynamics f̂∗ can then be done by
simply concatenating the augmented dynamics functions f̂ i∗ in (6.35) for all vehicles:

f̂∗ = vec(f̂ 1
∗ , . . . , f̂

M
∗). (6.36)

Now, given an inertial position pi and approximate progress s̄i, we define the lag error for
vehicle i as follows:

el(p
i, s̄i) = [− cosΦ(s̄i),− sinΦ(s̄i)](pi − τ(s̄i)). (6.37)

Specifically, the lag error approximates the difference between s̄i and s(pi). We note that the
complement of the lag error can be written as ec(pi, s̄i) = [− sinΦ(s̄i), cosΦ(s̄i)](pi − τ(s̄i)).
This term is known as the contouring error [77] and it approximates the lateral deviation
of the vehicle from the path at s̄i. It is straightforward to see through the illustration in
Figure 6.1a that when s̄ is in a local neighborhood of s(p) then el ≈ 0 implies that s̄ ≈ s(p)
and ec ≈ ey(p). However, if s̄ is far from s(p), as in the case of Figure 6.1b, then it is entirely
possible that the difference between s̄ and s(p) is arbitrarily large despite el = 0. Therefore,
in order to for s̄ to be a good approximation, we must not only drive el to zero, but we must
also attempt to keep s̄ close to s(p). This leads us to make the following two modifications
to the game objectives and constraints.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 92

First, to minimize the lag error, we introduce it into the augmented game objective for
agent i as follows:

Ĵ i∗(û
i
∗, û

¬i
∗) = J i∗(û

i
∗, û

¬i
∗) +

N∑
k=1

qlel(p
i
k(ū

i
∗), s̄

i
k(v̄

i))2, (6.38)

where J i∗ is the original game objective for agent i in (6.28), ql ≫ 0 is a weight on the lag error
cost, and pik(·) and s̄ik(·) denote functions which, given the input sequences ūi and v̄i, roll
out the dynamics function f̂ i∗ up to time step k and return the x-y position and approximate
progress respectively. For brevity, we have omitted the explicit dependence of Ĵ i∗ on s̄i0: the
path progress corresponding to the state x̂i∗,0. This can be easily computed via (6.22a) as
s̄i0 = s(pi0). Furthermore, under a slight abuse of notation, we replace the arguments of
the original Frenet-frame game objectives in (6.28) (i.e. the first term in (6.38)) with the
augmented input sequences to reflect that any terms in J i∗ which originally depended on si

and s¬i should be replaced with the approximations s̄i and s̄¬i. Second, to keep s̄ik close to
s(pik), we impose the simple bounds on the approximate arc speed input: |v̄ik| ≤ vmax. This
helps in avoiding undesirable local minima of the lag error term in (6.38) which correspond
to poor approximations with s̄ik as shown in Figure 6.1b. We denote the concatenation
of the arcspeed bounds for all agents i ∈ {1, . . . ,M} and time steps k ∈ {1, . . . , N} as
Cv(v̄

1, . . . , v̄M).
Next, we turn to the track boundary constraints which can no longer be expressed as

simple bounds on ey. Instead, we may conveniently use the contouring error ec in Figure 6.1a
as an approximation to ey to define the following constraints for agent i.

−w−(s̄ik(v̄
i)) ≤ ec(p

i
k(ū

i
∗), s̄

i
k(v̄

i)) ≤ w+(s̄ik(v̄
i)), (6.39)

where w+, w− : [0, L] 7→ R++ are functions which, for a value of s, return the distance from
τ(s) to the track boundaries in the directions normal to τ at s.

Finally, we define the augmented constraint function Ĉ∗ as the concatenation of the
original constraints of the dynamic game C∗ in (6.28) with the arc speed bounds:

Ĉ∗(û
1, . . . , ûM) = vec(C∗(û

1, . . . , ûM), Cv(v̄
1, . . . , v̄M)), (6.40)

where through a similar abuse of notation as before, we replace the arguments of the original
Frenet-frame game constraints C∗ with the augmented input sequences to reflect that the
original track boundary constraints in ey should be replaced with (6.39). Combining the
elements discussed above, we define the following dynamic game:

Γ̂∗ = (N, X̂∗, Û∗, f̂∗, {Ĵ i∗}Mi=1, Ĉ∗), (6.41)

which can be viewed as an approximation to the racing dynamic game Γ∗ in (6.28), which
uses the exact Frenet-frame kinematics when defining the game dynamics, agent objective,
and constraint functions. Table 6.1 summarizes the components of each of the exact and
approximate dynamic games which will be solved in the following numerical studies.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 93

Table 6.1: Summary of Exact and Approximate Dynamic Games

Dynamics Objectives Constraints

Γkin fkin (6.25),(6.27) {Jkin}Mi=1 (6.2b) Ckin (6.3)
Γdyn fdyn (6.26),(6.27) {Jdyn}Mi=1 (6.2b) Cdyn (6.3)
Γ̂kin f̂kin (6.31),(6.35),(6.36) {Ĵkin}Mi=1 (6.2b),(6.38) Ĉkin(6.3), (6.40)
Γ̂dyn f̂dyn (6.32),(6.35),(6.36) {Ĵdyn}Mi=1 (6.2b),(6.38) Ĉdyn(6.3), (6.40)

6.8 Numerical Study
In the following numerical studies, we examine the performance of our DG-SQP solver in
solving for open-loop GNE of three head-to-head racing scenarios, which are defined in Part
A. In Part B, we examine the effect of the proposed merit function and non-monotone line
search strategy on the success rate of the DG-SQP solver via an ablation study on these
components. In Part C, we investigate the effect of the proposed decaying regularization
scheme through a sensitivity study on the regularization value and decay rate. In Part D, we
compare the performance of our DG-SQP solver against the PATH solver from [38] and show
improved performance when solving both the exact and approximate dynamic games Γ∗ and
Γ̂∗. Our DG-SQP solver was implemented in Python and for the PATH solver, we use the
Julia implementation PATHSolver.jl for comparison, but call it through a custom Python
wrapper in order for us to easily pass identical definitions of the following dynamic games
to it. Our implementation can be found at https://github.com/zhu-edward/DGSQP.

Scenario Description

We perform our numerical studies on three head-to-head racing scenarios which were con-
structed to showcase the performance of our DG-SQP solver with different vehicle models
and track geometries.

Scenario 1

In this scenario, we use the L-shaped track shown in the left plot of Figure 6.2, where
the vehicles travel in the counter clockwise direction from the red start line. We model
both vehicles using the kinematic bicycle model f ikin with parameters that correspond to a
1/10th scale RC car. The discrete time dynamics are obtained via 4th order Runge-Kutta
discretization with a time step of ∆t = 0.1s. The Frenet-frame, or exact, dynamic game Γkin

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 94

Figure 6.2: Example head-to-head racing open-loop GNE solutions with N = 25 for the L-shaped track and
1/10th scale RC car (left) and the first hairpin turn of the Austin F1 track and a full scale race car (right).
The red trajectories show pre-computed race lines which are used to warm start Scenarios 2 and 3 of our
numerical study. In both plots, the cars are traveling in the counter-clockwise direction.

is defined with the game dynamics fkin = vec(f 1
kin, f

2
kin) and objectives:

J1
kin(u

1,u2) =
N−1∑
k=0

∥u1k∥2R1 + ∥∆u1k∥2P 1 + q12s
2
N(u

2)− q11s1N(u1)

J2
kin(u

2,u1) =
N−1∑
k=0

∥u2k∥2R2 + ∥∆u2k∥2P 2 + q21s
1
N(u

1)− q22s2N(u2)

where ∆uik = uik−uik−1, ui−1 is the input from the previous time step, Ri, P i ⪰ 0 are weights
on the quadratic input and input rate penalties, qi1, qi2 > 0 are weights on the competition
costs, and ∥x∥2A = x⊤Ax. The constraints Ckin are defined as follows:

ul ≤ uik ≤ uu, i = 1, 2 (6.42a)
−w/2 ≤ eiy,k(u

i) ≤ w/2, i = 1, 2 (6.42b)
∥p1k(u1)− p2k(u2)∥22 ≥ (r1 + r2)2, (6.42c)

which consist of input limits (6.42a), track boundary constraints (6.42b), and collision avoid-
ance constraints (6.42c). In the above, ul and uu are the lower and upper bounds on the
input, w is the track width, and r1, r2 are the radii of the circular collision buffers for the
two vehicles. When implementing the collision avoidance constraint for the exact dynamic
game Γkin, the mapping pik(ui), which returns the inertial x-y position of agent i at time step
k, is written as:

pik(u
i) = τ(sik(u

i)) +
eiy,k(u

i)

∥τ ′(sik(ui))∥2

[
−τ ′y(sik(ui))
τ ′x(s

i
k(u

i))

]
. (6.43)

For the approximate game Γ̂kin, we construct the game dynamics as f̂kin = vec(f̂ 1
kin, f̂

2
kin).

The game objectives J ikin are obtained by replacing any occurrences of siN(·) with s̄iN(·) in

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 95

the expressions for J ikin above. The game constraints are constructed as Ĉkin = vec(Ckin, Cv)
where eiy,k(ui) is replaced with ec(p

i
k(ū

i), s̄ik(v̄
i)) in the original track boundary constraints

(6.42b) in Ckin. When implementing the collision avoidance constraint for the approximate
dynamic game Γ̂kin, the mapping pik(ū

i) simply extracts elements corresponding to x and
y from the state vector of vehicle i at time k. Finally, for this scenario, given an initial
condition, we warm start the solver using trajectories obtained via a PID controller which
attempt to maintain the speed v and lateral deviation ey as specified in the initial condition.

Scenario 2

This scenario is identical to the previously described Scenario 1 in all aspects except for
the game dynamics and warm start strategy, where instead, the vehicle is modeled using the
dynamic bicycle model [73] and the tire forces are described via Pacejka tire models [102] with
parameters that correspond to a 1/10th scale RC car. Γdyn and Γ̂dyn are therefore constructed
in a similar manner as Scenario 1. Warm starting of the solvers is done with trajectories
computed from an optimal control problem which attempts to track a pre-computed race
line (the red line in the left plot of Figure 6.2) for the two vehicles but does not consider
collision avoidance.

Scenario 3

In this scenario, we use a segment of the Austin F1 track corresponding to the first hairpin
turn, as shown in the right plot of Figure 6.2, and again model the vehicles using the dynamic
bicycle model. Model parameters are chosen which match those of a full scale race car. The
agent objectives in this scenario remain identical to Scenario 1 and the constraints are also
the same, with the exception of the the track boundary constraints which, due to the variable
track width, are now written as:

−w−(s
i
k(u

i)) ≤ eiy,k(u
i) ≤ w+(s

i
k(u

i)),

where w−, w+ : [0, L] 7→ R++ are functions which return the width of the track in the
directions normal to the parametric path at the given arclength s. We also use the same
warm start strategy as in Scenario 2 with the race line shown in the right plot of Figure 6.2.

An Ablation Study on the Merit Function and Non-Monotone Line
Search Strategy

We first demonstrate the value of our proposed merit function and non-monotone line search
strategy, by performing an ablation study on these components for the dynamic game γ̂kin

described in Scenario 1 with a horizon of N = 25 and the cost parameter settings q11 = q12 =
q21 = q22 = 1 and R1 = R2 = P 1 = P 2 = diag(1e−1, 1e−1, 1e−4). We compare convergence
results from the full DG-SQP approach presented in Algorithm 7 with three ablative cases.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 96

Table 6.2: Ablation study convergence results

no ablation ablation merit function ablation line search ablation both

Conv. 45 5 9 4

In the first, we replace the merit function (6.16) with the sum of all of the agents’ objectives:

ϕ(u, s;µ) =
M∑
i=1

J i(u1, . . . ,uM) + µ∥C(u)− s∥1, (6.44)

which is a generalization of the standard choice in nonlinear optimization approaches [148].
In the second, we do not use the non-monotone line search strategy and instead employ
a standard backtracking line search which enforces the merit decrease condition (6.20) at
every iteration. In the third, we ablate both the merit function and line search scheme.
The results are shown in Table 6.2 where GNE are solved for using DG-SQP and the two
ablative cases. This is done over 100 randomly sampled joint initial conditions on the L-
shaped track in Figure 6.2 where the vehicles start within 1.2 car lengths of each other and
are traveling at velocities that exhibit at most a 25% difference. We count the number of
trials where the solvers reached convergence with thresholds ρ1, ρ2, ρ3 = 10−4. From the
results, it can be clearly seen that certainly both the proposed merit function and the non-
monotone line search strategy have a significant impact on the numerical robustness of the
solver. In particular, we observe a 89% and 80% reduction in solver success rate when the
two components are ablated respectively. The choice in merit function plays an important
role due to the agent objectives being very close to zero-sum. As for the non-monotone line
search, we believe it’s impact is due to the globalizing effect that the non-monotone scheme
has on the solution process, which was shown in [38] for the PATH solver.

A Sensitivity Study on the Decaying Regularization Scheme

Next, we investigate the sensitivity of our approach to the regularization values and decay
rates, by performing a sensitivity study over a grid of these values for the dynamic game from
Scenario 1 with q11 = 6, q12 = 5, q22 = 6, q21 = 5 and R1 = R2 = P 1 = P 2 = diag(1, 1, 1e− 4).
In particular, we again randomly sample 100 joint initial conditions and count the number
of trials where the solver reached convergence for values of ϵ0 ∈ {0, 0.1, 1, 10, 1000} and
η ∈ {0.5, 0.65, 0.8, 0.95, 1}. Note that ϵ0 = 0 corresponds to no regularization (in which case
the value of the decay rate becomes irrelevant), and η = 1 corresponds to no regularization
decay, which corresponds to standard regularization schemes with a constant regularizer.
The results of this study are shown in Figure 6.3 for a horizon length of N = 15, where
we may observe 1) the importance of regularization, as the success rate is lowest when no
regularization is used (first column), and 2) the sensitivity of solver performance to the choice
of a constant ϵ0, where the solver’s success rate is highly dependent on ϵ0 when no decay is
performed (last row). This is especially apparent for larger values of ϵ0 where we can see that

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 97

Figure 6.3: DG-SQP success rates (left) and average solve times (right) for Γ̂kin with N = 15 over different
regularization weight (x-axis) and decay rate (y-axis) settings. “nan” indicates that no data was available
for that setting.

Figure 6.4: DG-SQP success rates for Γ̂kin with N = 25.

the average solve time increases dramatically due to the small step sizes. Next, by looking
along the rows of Figure 6.3, it can be seen that decaying regularization helps to alleviate
the sensitivity of solver convergence to the choice in ϵ0 as we observe nontrivial success rates
over a range of magnitudes for ϵ0. Finally, by looking along the columns of Figure 6.3, we see
that while some settings of decay rate can certainly lead to better success rates, it appears
that a fairly large range of values are sufficient to stabilize the solution process to achieve

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 98

high success rates of >80%. In Figure 6.4, we show success rates for a horizon length of
N = 25 which largely follow the trends in Figure 6.3, but are more exaggerated due to the
longer horizon. We note that the best success rates for both horizon lengths are observed
for the same settings of decay rate and initial value, i.e. η = 0.8 and ϵ0 = 100, and these
values are what we use in the following experiments.

Solver and Model Comparison for Racing Tasks

The PATH solver [38] is considered to be the state-of-the-art in solving for GNE of open-loop
dynamic games and has been used effectively in many multi-agent navigation tasks [90, 104].
However, these works have primarily demonstrated its performance on games with inertial
kinematic models. We now compare its performance against our DG-SQP approach for
the exact and approximate games Γ∗ and Γ̂∗ in the head-to-head racing scenarios described
above.

Scenario 1

For this scenario, we randomly sample 500 collision-free initial conditions where the agents
start within 1.2 car lengths of each other and are traveling at velocities that exhibit at
most a 25% difference. For each initial condition, we solve for GNE of Γkin and Γ̂kin with
horizon lengths of N ∈ {15, 20, 25} using both the PATH and DG-SQP solvers. Convergence
thresholds are again set to ρ1, ρ2, ρ3 = 10−4. The results are shown in Figure 6.5 where
we first observe that for the exact dynamic game Γkin, our DG-SQP solver shows better,
performance when compared against the PATH solver, achieving higher success rates for all
three horizon lengths. However, it is clear that both solvers struggle with finding a solution
for longer horizon dynamic games. We note from the first column of Figure 6.5, that for
the exact dynamic game Γkin, the majority of the failure cases for the PATH and DG-SQP
solvers occur at the entrance of the chicane. Due to the many tight turns, this section of
the track is where the numerical shortcomings of the Frenet-frame dynamics, as described in
Section 6.7, can be especially apparent. Next, we examine the performance of the solvers on
the approximate dynamic game Γ̂kin. Here, we observe significant improvements in success
rate for the DG-SQP solver over all horizon lengths, with a success rate of over 90% in the
case of N = 25. This is an ∼5x improvement when compared to the success rate of solving
the exact dynamic game Γkin with the same DG-SQP solver. When solving Γ̂kin with the
PATH solver, we see improvements over its performance with the exact dynamic game for
the longer horizons of N = 20 and N = 25. However, we again see that DG-SQP achieves
superior performance, with a >13x improvement compared to the PATH solver in the case
of N = 25.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 99

Figure 6.5: Results of the solver comparison study on the L-shaped track with the kinematic bicycle model
from Scenario 1. Each point corresponds to the average of the sampled initial x-y positions for the two
agents. A green ◦, and red × denote successful and failed trials respectively. The number in the top right of
each plot shows the number of successful GNE solves out of the 500 sampled inital conditions.

Scenario 2

For this scenario, we randomly sample 500 collision-free initial conditions about a pre-
computed race line (the red line in the left plot of Figure 6.2) where the agents start within
1.2 car lengths of each other and at velocities which are within ±0.75 m/s of the race line
velocity at the sampled s0. We compare the success rates of solving for GNE from these
initial conditions for the exact and approximate dynamic games Γdyn and Γ̂dyn. This is done
again for the set of horizon lengths of N ∈ {15, 20, 25}. The results are summarized in

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 100

Figure 6.6: Results of the solver comparison study on the L-shaped track with the dynamic bicycle model
from Scenario 2.

Figure 6.6, where we observe similar trends to the results from Scenario 1 in the case of the
exact dynamic game Γdyn, which shows that our DG-SQP solver achieves similar or superior
performance to PATH for all three values of horizon lengths. Turning our attention now to
the approximate dynamic game, we again see that our DG-SQP solver achieves significantly
higher success rates when solving Γ̂dyn, with an over 2x improvement over the case of Γdyn

with DG-SQP and N = 25.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 101

Figure 6.7: Results of the solver comparison study on the Austin F1 track from Scenario 3. The number
in the bottom right of each plot shows the number of successful GNE solves out of the 100 sampled inital
conditions.

Scenario 3

Using a similar procedure to Scenario 2, we randomly sample 100 joint initial conditions
about a precomputed raceline (the red line in the right plot of Figure 6.2) where the agents
start within 3 car lengths of each other and at velocities which are within ±7.5 m/s of the
race line velocity at the sampled s0. The success rates of solving for GNE of the approximate
dynamic game Γ̂dyn from these initial conditions are shown in Figure 6.7, where we observe
that, in the case of N = 25, our DG-SQP solver is able to achieve a success rate of 82% of
the sampled initial conditions and out-performs the PATH solver by over 50%.

Comparing GNE From the Exact and Approximate Dynamic
Games

We have just shown using three scenarios that significantly higher success rates can be
achieved when solving for GNE of the approximate dynamic games Γ̂∗ with the DG-SQP
solver. However, it should be clear that as our approximation scheme modifies the com-
ponents of the exact dynamic game Γ∗, we are therefore solving for the GNE of a related,
but nevertheless different dynamic game. The question that naturally arises is then how the

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 102

Figure 6.8: Distribution of the normalized mean squared error (MSE) between the GNEs from the three
approaches. The dashed black line corresponds to the mean.

GNEs from the approximate dynamic game Γ̂∗ compare with those from the exact one Γ∗. In
order to answer this question, we now examine the solutions from Scenario 2 with N = 15.
Specifically, compute the pairwise mean squared error (MSE) between the GNE from two
comparison cases. The first compares the GNE of Γdyn for the samples where both PATH
and DG-SQP were successful. The normalized MSE for this case is defined as follows:

1

N

N∑
k=0

M∑
i=1

∥ui,⋆DGSQP,k − u
i,⋆
PATH,k∥

2
D−1 .

The second case compares the GNE of Γdyn and Γ̂dyn from DG-SQP, where we only con-
sider samples where DG-SQP was able to successfully solve for GNE of both the exact and
approximate dynamic games. The normalized MSE for this case is defined as follows:

1

N

N∑
k=0

M∑
i=1

∥ûi,⋆DGSQP,k[1 : 2]− ui,⋆DGSQP,k∥
2
D−1 ,

where D = diag(uu) normalizes the errors using the input upper bound uu from (6.42a) and
ûi,⋆DGSQP,k[1 : 2] denotes the first two elements of the GNE solution at time step k (recall
that û is the augmented input vector which includes the approximate arc speed v̄). The
distribution of these errors are shown in Figure 6.8, where we may first observe from the
top histogram that, when solving the exact Frenet-frame dynamic game, the DG-SQP and
PATH solvers, for the most part, produce the same solutions with a minimum, median,
and mean MSE of 8.71 × 10−8, 1.17 × 10−5, and 2.36 × 10−2 respectively. This serves as a
baseline to illustrate the correctness of our approach. Looking at the bottom histogram, we
see that although there are certainly outliers, the majority of the GNE from the approximate
dynamic game are close to those from the exact dynamic game when the same solver is used.
In this comparison case, we observe a minimum, median, and mean MSE of 2.54 × 10−3,
3.07× 10−2, and 3.30× 10−2 respectively.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 103

Figure 6.9: Comparison of GNEs of the exact dynamic game from the DG-SQP and PATH solvers. The
blue and green traces represent the GNE trajectories of agents 1 and 2 respectively. The three plots in each
column correspond to the top three cases in that category.

We now turn to specific examples from the histograms to examine the qualitative differ-
ences in the GNE from the two comparison cases in Figures 6.9 and 6.10. In particular, we
visualize the three GNE pairs with the smallest MSE (“Best" column), largest MSE (“Worst"
column), and the three pairs with a MSE that is closest to the mean value (“Average" col-
umn).

In Figure 6.9, we first compare the position traces arising from the GNE of the exact
dynamic game Γdyn from the DG-SQP and PATH solvers. In the “Best” column, we observe
that the GNE from the two solvers are are identical. We note that in this comparison
case, these examples are indicative of the majority of successful GNEs as evidenced by the
minimum and median MSEs. In the “Average” and “Worst” columns, we observe that some
differences arise especially towards the end of the game horizon. These instances correspond
to the solvers finding different local GNE. However, we note that in all of the “Average” and
“Worst” examples, the outcome, i.e. the relative ordering of the two vehicles at the end of

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 104

Figure 6.10: Comparison of GNEs of the approximate and exact dynamic games from the DG-SQP solver.

the game horizon, is the same.
In Figure 6.10, we compare GNE obtained with the DG-SQP solver for the exact and

approximate dynamic games. We first observe that in the “Best” column, the GNE of the
approximate and exact dynamic games are identical. The fact that this occurs on a straight
section of the track is unsurprising as this is where s̄ can most accurately approximate the
true path progress s through the lag error in (6.37). To see this, simply evaluate (6.37) with
Φ = 0, which leads to el(p, s̄) = τx(s̄)−x. From the “Average” column, we see that differences
between the GNE are minor and that importantly, the GNE of the approximate dynamic
game still capture the competitive nature of the racing scenario. Furthermore, we note that
as in the previous comparison, the outcome remains the same despite small perturbations to
the GNE trajectories between the exact and approximate dynamic games. In the “Worst”
column, we may observe a reversal in outcome in the top two plots where the leading vehicle
at the end of the game horizon is different between the two solutions. However, we note that
such examples are rare as evidenced by the long tail of the histograms in Figure 6.8.

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 105

Figure 6.11: Results of tracking the GNE computed using a dynamic (left) and kinematic (right) bicycle
model with an MPC policy. In the top plots, darker rectangles correspond to the vehicle’s pose later in time.
In all plots, the dashed lines represents the GNE reference and the solid lines represent the actual tracking
performance of the vehicle.

Tracking Feasibility of Dynamic and Kinematic GNE

We finally show, through an example in Figure 6.11, the importance of higher fidelity models
in the solution of GNE for racing scenarios. In particular, we take GNE computed with
kinematic and dynamic bicycle models from the same initial conditions on the Austin F1
track from Scenario 3 and attempt to track the solutions using a MPC policy in a manner
similar to [145] and [143]. As the true system is modeled using a dynamic bicycle model, we
first see in the left plots of Figure 6.11 that it is able to track the dynamic GNE accurately.
On the other hand, if the kinematic GNE is used as a reference, we observe significant
mismatch between the reference and actual trajectories. This is due to the lack of tire forces
in the kinematic model which results in an overestimation of cornering performance of the
vehicles. This is especially evident in the trajectory of the blue vehicle, where the dynamic
infeasibility of the reference induces poor numerical performance in the QP solver of the
MPC policy. This actually results in a reversal of outcome, where instead of being overtaken
by the blue vehicle (as was predicted by the GNE), the green vehicle is able to maintain its
lead over the blue vehicle at the end of the game horizon.

6.9 Chapter Summary
In this chapter, we have presented DG-SQP, an SQP approach to the solution of generalized
Nash equilibria for open-loop dynamic games. We show that the method exhibits local linear

CHAPTER 6. ON THE SOLUTION OF GAME-THEORETIC EQUILIBRIA FOR
AUTONOMOUS RACING 106

convergence in the neighborhood of GNE and present several practical improvements to the
vanilla SQP algorithm including a non-monotone line search strategy with a novel merit
function and decaying regularization scheme. We further present an approximation scheme
to Frenet-frame dynamic games which can be used to improve the performance of our solver
in racing scenarios. We conducted an extensive numerical study on various head-to-head
racing scenarios with both kinematic and dynamic vehicle models and different race tracks.
In particular, we measured the performance of our DG-SQP solver against the state-of-the-art
PATH solver using the metric of success rate and showed significant improvements in racing
scenarios especially when approximate dynamics are used. Another metric which we have not
discussed is that of solution time. This is especially important if we would like to use our DG-
SQP solver in a real-time MPGP manner like in [90] and [104]. However, we note that main
shortcoming of our approach at this time is computational efficiency, with solutions taking
up to two minutes for some of the successful trials with N = 25 in Scenario 3. This is due
to two reasons. The first is that our solver requires the solution of a sequence of constrained
quadratic programs, which can be computationally demanding especially when compared to
the PATH solver, which at its core, solves a sequence of linear systems. Secondly, our solver
is implemented in Python, which is again significantly slower than the C++ implementation
of the PATH solver. Though we can certainly implement our solver in a different language,
we anticipate that it would still be difficult to achieve real-time solutions for the long-horizon
racing problems presented here due to the solution of QPs. As such, an important direction
of future work is to improve the computational efficiency of our DG-SQP solver, which would
allow us to leverage its solutions for real-time racing experiments. One possible approach
could be to improve the quality of the initial guess through supervised learning of GNE as
in [146] and [106]. By warm starting the solver with the a neural network, which predicts
GNE for a given joint initial condition, this would potentially reduce the number of solver
iterations required to reach convergence. An alternative approach would be to leverage the
numerical robustness of our DG-SQP solver to generate an extensive dataset of GNE from
various initial conditions and track environments. This data could then be used to learn a
game-theoretic value function which can be integrated in an optimal control scheme to aid
in long-term strategic planning without the need for online solutions from our solver. We
will explore this idea in the next chapter.

107

Chapter 7

Strategy Learning for Autonomous
Racing using Game-Theoretic Equilibria

7.1 Introduction
In this chapter, we continue our investigation into the use of game-theoretic methods for
prediction and planning in autonomous racing. Previously in Chapter 6, we had introduced
DG-SQP, which was a solver for generalized Nash equilibria (GNE) of open-loop dynamic
games. Through the introduction of a merit function, nonmonontone line search, and decay-
ing regularization scheme in the step selection procedure for the solver, we showed that our
approach was able to out-perform the state of the art PATH solver for mixed complemen-
tarity problems, which are a super class of the GNE finding problem for open-loop dynamic
games, in terms of success rate. Now, we would like to leverage the GNE from our solver for
the real-time control of an autonomous race car in a head-to-head race. Broadly speaking,
there are two complementary approaches to this problem, namely in the tactical and strate-
gic utilization of GNE for prediction and/or planning. In tactical approaches, such as those
employed in [129, 123, 88], GNE are used directly to provide both a prediction of ones oppo-
nents and a motion plan for the ego agent over the planning horizon. Therefore, solve rates
between 1 to 10 Hz are typically required of the GNE solver in order for these solutions to
be used either for real-time control [122] or as a high-level plan for a tracking policy [129]. In
strategic approaches, such as the one presented in [50], GNE are used to estimate the value of
long-term behavior beyond the planning horizon, which importantly can be performed offline,
thereby removing the real-time requirement for the solver. We will discuss the distinctions
between the two approaches in greater detail in Chapter 8. As was discussed in Section 6.9,
one drawback of our current implementation of DG-SQP is its high computational burden.
This limits its applicability in one of the aforementioned tactical approaches. However, due
to our emphasis on the robustness of the solver, we believe that it is particularly well-suited
for the class of strategic approaches which benefit from data generated under a wide range
of dynamic game descriptions and initial conditions. As such, we now present our strategic

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 108

Figure 7.1: Time-lapse of head-to-head races on a 1/10th scale RC car platform where a) The green car uses
MPC with a game-theoretic value function to successfully defend against the blue car. b) The blue car uses
the same to successfully overtake the green car. The numbers indicate the order of the video frames, which
are equally spaced in time.

approach, which leverages the GNE solutions from DG-SQP to learn a game-theoretic value
function which can be embedded in a real-time model-predictive control (MPC) scheme to
guide the solution of short-horizon optimal control problems. In particular, we aim to endow
the racing agent with the ability to reason about long-term strategic value through game-
theoretic state space equilibria. Our results show that by leveraging this reasoning in a MPC
scheme, we observe the emergence of competitive behaviors in car racing such as position
defense and overtaking at the limit of tire friction as shown in Figure 7.1. The contributions
of this chapter are as follows:

• A strategy learning approach which constructs a value function estimate using GNE
solutions from our DG-SQP solver.

• The design of a racing MPC policy which leverages the learned value function as a
terminal cost-to-go function.

• Experiments in simulation and hardware which demonstrate the performance of the
MPC policy in closed-loop with the learned value function as compared to a progress
maximization baseline.

7.2 Problem Formulation
Consider the head-to-head racing problem on the L-shaped track shown in Figure 7.2 where
we describe the motion of the racing agents using the Frenet frame dynamic bicycle model
in (A.2) which is discretized with a time step of ∆t = 0.1s. In particular, for Agents 1 and
2, with which we will associate the colors blue and green respectively, we denote their states
and inputs as xi = [vx, vy, ω, eψ, s, ey]

⊤ and ui = [ax, δ]
⊤ for i = 1, 2. The agent dynamics

functions are assumed to be identical, i.e. f 1 = f 2 = f . Like in Chapter 6, the race track is
represented as a parametric path τ : [0, L] 7→ R2, which is assumed to be twice differentiable,

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 109

Figure 7.2: Illustration of the head-to-head racing problem.

of length L, and of constant width W . The definition of the Frenet frame pose (s, ey, eψ) is
given in (6.22). The agents are each subject to identical private state and input constraints

−W/2 ≤ eiy ≤ W/2, (7.1a)
ul ≤ ui ≤ uu, (7.1b)

∆ul ≤ ∆ui ≤ ∆uu, (7.1c)
af (xi, ui), ar(xi, ui) ≤ µg (7.1d)

where (7.1a) are the track boundary constraints, (7.1b) and (7.1c) denote magnitude and rate
limits on the control inputs, and (7.1d) denotes friction circle constraints on the front and
rear tires for the tire-road friction coefficient µ. Here, af and ar are functions which return
the magnitude of the acceleration experienced by the front and rear tires respectively for a
given state and input. Finally, each agent imposes circular collision avoidance constraints
with respect to the prediction of their opponent:

∥p(xik)− p̂k∥22 ≥ (ri + r̂k)
2 (7.2)

where p(xik) is the function defined in (6.43) which performs the transformation of the agent’s
Frenet frame position coordinates (s, ey) into the inertial frame (x, y). ri is the radius of
the collision buffer for agent i. p̂k and r̂k are the predicted position of the opponent for

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 110

agent i and the radius of the collision buffer for that corresponding prediction at time step
k. Finally, for each agent i = 1, 2, we assume that a pre-computed racing line for the track,
i.e. a state reference trajectory x̄i(l) : [0, T] 7→ R6 has been made available, where T > 0 is
the lap time associated with the racing line. This is shown as the red curve in Figure 7.2.
Now, given a state xik, we may obtain the N -step racing line reference at time step k for
agent i as

x̄ik = {x̄i(l⋆), x̄i(l⋆ +∆t), . . . , x̄i(l⋆ +N∆t)} (7.3)

where l⋆ = argminl∈[0,T] ∥x̄i(l)− xik∥22.

Race Setup

All races in simulation and hardware are initialized with Agent 1 (the blue car) trailing Agent
2 (the green car) by at least 3 car lengths and end after both agents finish a prescribed number
of laps around the track. Just as human racing drivers will modify their driving behavior
depending whether there are opponents in close proximity, we distinguish between a race
line tracking mode and an interaction mode for the operation of the two agents. The race
line tracking mode will be used by the agents when they are far from each other and there
is no possibility of direct interactions. In this mode, the agents will ignore the presence of
their opponent and simply focus on optimizing their own driving in terms of tracking the
pre-computed race line. The interaction mode will be used when the agents are within a
certain distance of each other, where for each agent, the behavior of their opponent will have
a direct effect on their own motion plan. In this mode, the agents must take care to avoid
collisions, but will also engage in competition to achieve the best possible race outcome. The
transition from the race line tracking mode to the interaction mode occurs when the trailing
car closes its gap with the leading car to within 3 car lengths. The cars revert to race line
tracking upon a successful overtake by the trailing Agent 1 or if Agent 1 falls behind Agent
2 by more than 3 car lengths.

Race Line Tracking MPC Policy

We now define the path tracking optimal control problem for agent i which will be used by
both agents when operating in the race line tracking mode:

ui,⋆k (xik, x̄
i
k) = argmin

ui

N−1∑
t=0

∥xit − x̄ik+t∥2Qi + ∥uit∥2Ri
1
+ ∥∆uit∥2Ri

2
(7.4a)

subject to xi0 = xik, (7.4b)
xit+1 = f i(xit, u

i
t), k = 0, . . . , N − 1, (7.4c)

xl ≤ xit ≤ xu, k = 0, . . . , N, (7.4d)
ul ≤ uit ≤ uu, ∆ul ≤ ∆uit ≤ ∆uu, k = 0, . . . , N − 1, (7.4e)
af (xit, u

i
t), a

r(xit, u
i
t) ≤ µg, k = 0, . . . , N − 1. (7.4f)

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 111

We denote the solution to (7.4) as ui,⋆k (xik, x̄
i
k) which, at time step k, is a function of the

state xik and the race line reference x̄ik = {x̄ik, x̄ik+1, . . . , x̄
i
k+N}, which was defined in (7.3).

The stage costs in (7.4a) are comprised of tracking, input, and input rate penalties with
Qi, Ri

1, R
i
2 ⪰ 0. (7.4b) and (7.4c) are the initial condition and dynamics constraints respec-

tively and the remainder of the constraints correspond those described earlier in this section.
Note that we do not impose the collision avoidance constraint defined in (7.2) since this
policy is only used when the agents are greater than three car lengths apart where there is
no possibility of collision. In typical receding horizon fashion, the tracking policy applies the
first element of ui,⋆k to the system of agent i at time k, then resolves (7.4) at the next time
step.

7.3 Learning a Game-Theoretic Value Function
In this section, we describe a simple technique for learning a value function for our head-
to-head racing task using the GNE of an open-loop dynamic game. We define the dynamic
game via the following coupled optimal control problems:

u1,⋆(u2,⋆) = argmin
u1

N̄−1∑
k=0

∥u1k∥2P 1
1
+ ∥∆u1k∥2P 1

2
+ b1s2N̄(u

2,⋆)− a1s1N̄(u
1) (7.5a)

subject to (r1 + r2)− ∥p1k(u1)− p2k(u2,⋆)∥2 ≤ 0, k = 0, . . . , N̄ , (7.5b)
−W/2 ≤ e1y,k(u

1) ≤ W/2, k = 0, . . . , N̄ , (7.5c)
ul ≤ u1k ≤ uu, k = 0, . . . , N̄ − 1. (7.5d)

u2,⋆(u1,⋆) = argmin
u2

N̄−1∑
k=0

∥u2k∥2P 2
1
+ ∥∆u2k∥2P 2

2
+ a2s1N̄(u

1,⋆)− b2s2N̄(u
2) (7.6a)

subject to (r1 + r2)− ∥p1k(u1,⋆)− p2k(u2)∥2 ≤ 0, k = 0, . . . , N̄ , (7.6b)
−W/2 ≤ e2y,k(u

2) ≤ W/2, k = 0, . . . , N̄ , (7.6c)
ul ≤ u2k ≤ uu, k = 0, . . . , N̄ − 1. (7.6d)

Note that the horizon N̄ of the dynamic game does not have to be the same as the horizon
of the optimal control problem N . In practice, we choose N̄ = 25.

As previously mentioned, tactical approaches to learning with GNE of dynamic games
for racing typically attempt to replicate the GNE over the planning horizon. This can be
thought of as a prediction of the trajectory outcome of the dynamic game where for some
initial condition x10 and x20, we obtain a prediction in the form û1 and û2 which should ideally
be close to the GNE u1,⋆ and u2,⋆. In contrast, our strategic approach attempts to learn
the reward outcome of the dynamic game where instead of the entire trajectory, we would
like to predict a scalar representation of the value or benefit of being at x10 and x20 given

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 112

that the agents behave rationally. In particular, since it is straightforward in racing to use
the progress difference as a way to measure the relative standing of two agents, we propose
to use the following learning target computed from the GNE solution of the dynamic game
with initial conditions x10 and x20

s1N̄(u
1,⋆)− s2N̄(u

2,⋆). (7.7)

This target is associated with the feature vector

vec(x10, x
2
0 − x10). (7.8)

Here we are treating Agent 1 as the ego agent, which means that we are predicting the
progress advantage that Agent 1 will have over Agent 2. We may also construct features
and targets from the perspective of Agent 2 by swapping the superscripts in (7.8) and (7.7).
The dataset generation procedure then involves 1. sampling of initial conditions x10 and x20,
2. solving for a corresponding GNE of the dynamic game, and 3. the construction of (7.8)
and (7.7) which are added to the dataset.

With this dataset, we can then solve a simple regression problem to obtain the game-
theoretic value function ∆s ≈ VGT (x, x̂), which estimates the difference in track progress ∆s
for a given ego state x and opponent state x̂. We model this function as an MLP with two
hidden layers of size 48 and tanh activation function. Training is done on a dataset of ∼1800
GNE solutions from joint initial conditions that were sampled from the L-shaped track in
Figure 7.2. We use the Adam optimizer with a scheduled learning rate initialized at 1e-3
and stop training if no improvement is observed after 10 epochs.

7.4 Closed-Loop Head-to-Head Racing Policy
With the learned game-theoretic value function VGT , we may now introduce the MPC policy
which will be used during the interactive periods of the race, i.e. when the two cars are
within 3 car lengths of each other. The optimal control problem is defined as follows:

min
ui

N−1∑
t=0

∥xit − x̄ik+t∥2Qi + ∥uit∥2Ri
1
+ ∥∆uit∥2Ri

2
− VGT (xiN , x̂k+N) (7.9a)

subject to xi0 = xik, (7.9b)
xit+1 = f i(xit, u

i
t), k = 0, . . . , N − 1, (7.9c)

xl ≤ xit ≤ xu, k = 0, . . . , N, (7.9d)
ul ≤ uit ≤ uu, ∆ul ≤ ∆uit ≤ ∆uu, k = 0, . . . , N − 1, (7.9e)
af (xit, u

i
t), a

r(xit, u
i
t) ≤ µg, k = 0, . . . , N − 1 (7.9f)

∥p(xit)− p̂k+t∥22 ≥ (r + r̂k+t)
2, k = 0, . . . , N, (7.9g)

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 113

where one can quickly observe that it is largely similar to the race line tracking policy
defined in (7.4). The differences are the addition of the game-theoretic value function as
the terminal cost function in (7.9a) and the collision avoidance constraint in (7.9g), which
is a function of the opponent prediction ẑk = {ẑk, ẑk+1, . . . , ẑk+N}, where ẑk+t = (x̂k+t, r̂k+t)
denotes a nominal state and collision buffer radius of the opponent at time step k + t for
t = 0, . . . , N . We note that since our goal is to demonstrate the impact of the value function,
for simplicity, we generate ẑk using an oracle but corrupt it with Gaussian noise. We use
time-varying collision buffer radii, i.e. r̂k < r̂k+1 < · · · < r̂k+N , to capture robustness against
growing prediction uncertainty. Of course, this could be replaced by any number of existing
trajectory prediction schemes, though we defer an investigation of their impact on racing
performance to future work.

In the following simulation and hardware races, we denote the vehicle using (7.9) as GT
and we compare against a non-game-theoretic optimal control policy which is identical to
(7.9) in all but the terminal cost function. Namely, we replace VGT with a maximum progress
value function

VMP (x, x̂) = s(x)− s(x̂), (7.10)

where the function s(x) extracts the element of the state vector corresponding to the track
progress s. Of course, since the opponent prediction is treated as a parameter in (7.9), s(x̂)
is a constant and therefore has no effect on the optimal solution. However, we keep the
value function in this form in order to make a direct comparison to VGT , which, as described
in Section 7.3, predicts the progress advantage of the ego vehicle against its opponent. We
denote the vehicle using this baseline as MP.

7.5 Results
We now present the results of our strategic learning approach. In particular, we will first
examine the reward outcome predictions of the learned game-theoretic value function in
isolation to identify the high-value regions of the state space. We will then show the results
of head-to-head races between agents using the GT and MP policies as defined in Section 7.4.

Open-Loop Results

Let us first examine the learned game-theoretic value function VGT (x, x̂) by evaluating it
over a grid of ego state values and for a set of opponent states. Each of the plots shown
in Figure 7.3 correspond to an evaluation of VGT (x, x̂) over a grid of positions states in x
and for a fixed x̂. The rows of the two figures correspond to different settings of the lateral
position state ey for x̂. The columns correspond to different settings of longitudinal velocity
for x, where positive values of ∆v indicate that the longitudinal velocity for x is greater
than that of x̂. Note that in both figures, we chose the longitudinal velocity of x̂ to be 2.5
m/s. In Figure 7.3, we would like to highlight two visual elements which are important in

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 114

Figure 7.3: Evaluation of the learned game-theoretic value function VGT (x, x̂) for different values of lateral
position ey (illustrated by the red dot in each plot) and longitudinal velocity difference ∆v.

understanding outputs of the value function. The first is the red dot in each plot which
denotes the position of x̂. This can be thought of as the position of the opponent and
we center our evaluation of VGT (x, x̂) about this position. The second is the red contour
line which is a projection of the level set {x | VGT (x, x̂) = 0} (given a constant x̂) on to
the position states. This line can be thought of as the “tie” line which indicates the set of
positions for an ego vehicle where the progress difference between the two agents is predicted
to be zero.

In Figure 7.3, we show the dependency of the reward predictions from VGT on the lateral
position of the opponent and the velocity difference between the two agents. First, we can see
that as a general trend, for positions which have the same s coordinate, the value function
predicts a greater reward for positions closer to the inside of the turn. This preference
for inside lateral positions aligns with standard car racing strategy as many head-to-head
battles between drivers are determined by whomever attains control of these crucial parts of
the track. Now, let us examine the rows of plots where the lateral position of the opponent is
fixed. Going from left to right, we see that as the velocity difference increases, the “tie” line
shifts backwards which indicates an enlargement of the set of states where the ego vehicle
is predicted to end up ahead of its opponent. Unsurprisingly, this means that the value
function shows preference for greater velocity differences which are another key ingredient of

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 115

Figure 7.4: Histogram of the lead (in number of car lengths) of the faster agent over the slower agent at the
end of the simulation races. Green bars indicate races where the faster agent wins, red bars indicate losses.
The black dashed line indicates the average lead over all trials.

successful overtakes or position defenses in real-world car racing. Finally, let us look at the
columns of the plots where the velocity difference is fixed. Going from top to bottom, we
see that as the opponent’s position goes moves towards the outside of the turn, the “tie” line
also shifts backwards. This builds on top of the previously discussed preference in absolute
lateral position and shows that, when entering into a turn, relative lateral positioning with
respect to your opponent can have a significant effect on the predicted reward. In particular,
the value function shows preference for positions that have the inside advantage over an
opponent which, again is a strategy seen in real-world racing behavior.

Closed-Loop Results

We now move on to the results of head-to-head races which are set up according to Section 7.2.
While both vehicles track pre-computed racelines of the same shape (i.e. the red line in
Figure 7.5), similar to [123] and [143], we force the initially leading Agent 2 to be slower
than the initially trailing Agent 1 by reducing its velocity profile by 10%. In the remainder,
we refer to these two cars as “slow” and “fast” respectively. Finally, we formulate both the
GT and MP optimal control problems using CasADi [7] with a horizon length of N = 10.
These are solved using real-time iteration with the QP solver HPIPM [53].

Simulation Monte-Carlo Experiment

For our simulation study, we sample 100 joint initial conditions from the pre-computed
raceline for the L-shaped track such that the two cars begin with a difference in track
progress of 2m. For each initial condition, four scenarios are simulated. Namely, Fast GT
vs. Slow GT, Fast GT vs Slow MP, Fast MP vs. Slow GT, and Fast MP vs. Slow MP,
which indicate the assignment of the aforementioned MPC policies defined in (7.9) to each
of the two cars. The outcomes of the races are summarized in Figure 7.4. From the results,
we first note that when using GT, the faster car is able to win all races. However, there is
a clear reduction in its average lead at the end of the race when the slower car also uses
GT, which indicates that GT allows the slower car to defend its position more effectively

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 116

Figure 7.5: In a simulation experiment, the faster (blue) car with MP is unable to overtake the slower
(green) car with GT (Top). The faster car with GT is able to overtake the slower car with GT (Bottom).
The heatmaps and black level curves visualize the value functions used in this scenario by the faster (blue)
car.

Figure 7.6: Lateral position traces from two racing scenarios. The vertical black lines correspond to the time
stamps in Figure 7.5.

than MP by leveraging the game-theoretic value function. This is further emphasized in the
case of Fast MP vs. Slow GT where the slower car is able to successfully defend its lead
and win all races with the game-theoretic MPC policy. We include results from the Fast
MP vs. Slow MP scenario as a baseline to show that when no game-theoretic component
is included, the faster car has a win rate of approximately 50%. From these results, it is
clear that the learned game-theoretic value function imparts a clear competitive advantage
in both overtaking and position defense scenarios. Next, we will highlight the differences
in how the GT and MP value functions guide the short-horizon MPC solution through two
interactions in Figures 7.5 and 7.7 where we visualize the MPC plans and value function
heatmaps.

In Figure 7.5, we show an overtaking attempt by the faster agent and where the slower
agent uses the GT policy. The top row of frames shows the scenario when the faster agent
uses the MP value function. While this value function directly encourages the agent to make
progress along the track by maximizing s, it does not provide any guidance in terms of
desireable lateral positions as all points with the same s coordinate are of equal value. On

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 117

Figure 7.7: In a simulation experiment, the slower (green) car with MP is unable to defend its position
against the faster (blue) car with GT (Top). The slower car with GT is able to defend its position against
the faster car with GT (Bottom). The heatmaps and black level curves visualize the value functions used in
this scenario by the slower (green) car.

Figure 7.8: Speed traces from two racing scenarios. The vertical black lines correspond to the time stamps
in Figure 7.7.

the other hand, when the faster agent uses the GT value function, we can see in the bottom
frames that not only does the learned value function encourage track progression, but we
also observe non-linear level curves which indicate a preference for certain lateral positions
for a given s. In fact, we note that the high value regions shown in these frames match
target regions in conventional racing strategy which look to minimize the curvature of the
path taken through turns, thereby allowing the agent to carry higher speed. By leveraging
guidance from the GT value function, the faster agent is able to find an inside line through
the 180◦ turn which forces the slower agent to deviate from its raceline in order to avoid
collisions. This can be clearly seen in the shaded region of Figure 7.6 where the faster agent
stays to the right of the centerline as the MPC solution is being guided towards the inside
of the turn. This finally results in a successful overtake by the faster agent.

In Figure 7.7, we show a position defense attempt by the slower agent and where the
faster agent uses the GT policy. From these frames, we see that the GT value function
indicates preference for lateral track positions in the vicinity of the precomputed raceline
(of which the learned value function had no prior knowledge). Moreover, we can clearly see
from the shaded regions of Figure 7.8 that the GT value function causes the slower agent to
speed up in order to defend its lead against the faster agent. This is because the GT value
function allows for explicit reasoning over the value of the velocity states by the optimal

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 118

Figure 7.9: In a hardware experiment, the slower (green) car with MP is unable to defend its position
against the faster (blue) car with GT (Top). The slower car with GT is able to defend its position against
the faster car with GT (Bottom). The heatmaps and black level curves visualize the value functions used in
this scenario by the slower (green) car.

Figure 7.10: Rear tire g traces. The horizontal dashed line indicates the limit of friction with µ = 0.9. The
vertical black lines correspond to the time stamps in Figure 7.9.

control policy as conditioned on opponent behavior. On the other hand, when using the MP
value function, any reasoning about the velocity of the car can only occur indirectly through
the propagation of gradient information through the s coordinate and the vehicle dynamics.

It is important to note that while it is certainly possible to obtain similarly competitive
behavior via more a sophisticated hand-engineered value function, our emphasis here is on
how we can arrive at such behavior without excessive reward shaping. Instead, by learning
from GNE, our GT value function can automatically encode various aspects of conventional
racing strategy which can then be leveraged to achieve good competitive performance against
an opponent in both overtaking and position defense scenarios.

Hardware Experiments

We conducted hardware experiments on a 1/10th scale RC car platform where state feedback
is provided by an OptiTrack motion capture system. The MPC policies for the two cars are
both run at 10 Hz on a laptop with a 2.6 GHz 9th-Gen Intel Core i7 CPU and communication
of control commands and state measurements are handled using ROS2. We pick 5 different

CHAPTER 7. STRATEGY LEARNING FOR AUTONOMOUS RACING USING
GAME-THEORETIC EQUILIBRIA 119

Table 7.1: Outcomes of the hardware experiments

Scenario Races won (fast/slow) Avg. lead (fast)

Fast GT vs. Slow GT 4/1 6.10
Fast GT vs. Slow MP 5/0 9.14
Fast MP vs. Slow GT 0/5 -1.28

joint initial poses for the two cars and run three racing scenarios of 4 laps from each of these
starting conditions, i.e. Fast GT vs. Slow GT, Fast GT vs. Slow MP, and Fast MP vs.
Slow GT. The results are summarized in Table 7.1, where we can see that the outcomes of
these races closely mirror those from the simulation study in both the win rates as well as
the average lead of the faster car.

We finally illustrate the impact of the value function on tire friction, which is the limiting
factor of performance in car racing. This is shown through the position defense interaction
and corresponding friction traces in Figures 7.9 and 7.10, where once again we see that the
slower car is able to defend its position when using the GT value function, but is overtaken
when using the MP value function. The key differences are highlighted in the shaded regions
of 7.10 where it can be clearly seen that although the slower car begins cornering at the
limit of friction at approximately the same time for both GT and MP policies, the under-
utiliziation of friction by MP as the car enters into the turn results in a much wider trajectory
that leaves room for the faster car to overtake. On the other hand, when using the GT value
function, the slower car is able to enter the turn more aggresively and therefore defend its
position through the turn.

7.6 Chapter Summary
In this chapter, we proposed a strategic learning approach which leveraged GNE from our
DG-SQP solver to learn a game-theoretic value function for predicting the reward outcomes
of a head-to-head racing dynamic game. We showed that the reward predictions made
by the learned value function align with conventional car racing strategies which place an
emphasis on maintaining a speed advantage and a relative lateral position advantage over
one’s opponent when approaching a turn. When incorporated in an MPC policy as a terminal
cost function, we show that an agent using the resulting game-theoretic MPC racing policy
is able to significantly outperform the progress maximizing baseline in both overtaking and
position defense scenarios in simulation and hardware races.

120

Chapter 8

A Discussion on Game-Theoretic
Methods for Prediction and Planning

8.1 Introduction
In Chapter 6, we proposed a solver for generalized Nash equilibria (GNE) of open-loop
dynamic games as an approach to obtain highly interactive solutions to the coupled prediction
and planning problem. We then used the GNE obtained from the solver in Chapter 7 to
learn a game-theoretic value function which, when used as the terminal cost function for
an MPC racing policy, allowed it to leverage game-theoretic reward outcomes to guide the
solution of the optimal control problem to win races against a baseline policy. The work in
these chapters showed that dynamic games are certainly a powerful formalism for describing
multi-agent scenarios and that the equilibria of these games can capture highly interactive
behavior which are “optimal” in the sense of achieving a strategic equilibrium between agents.
Furthermore, we showed that this interactive behavior could indeed be leveraged for real-
time planning in competitive scenarios. However, there are some important limitations which
come with the dynamic game formalism presented in Chapter 6, namely in the assumptions
made about knowledge of the game components in (6.4). In this chapter, we will explore the
benefits and, perhaps more importantly, the drawbacks of utilizing equilibria of open-loop
dynamic games for joint prediction and planning. We will also examine the state-of-the-art in
the field of game-theoretic prediction and planning for robotic systems and discuss solution
approaches which are attempting to address the drawbacks we identified.

Running Example

let us first introduce the running example that will be used in this chapter. In particular,
we use a head-to-head car racing dynamic game with two agents on a race track which is
similar to the one used in the numerical studies of Chapter 6. The dynamic game which
describes this competitive scenario is defined, as in (6.5), via the coupled optimal control
problems in (8.1) and (8.2) below, which are played over a horizon of length N . The input

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 121

Figure 8.1: Illustration of the car racing running example.

sequences are written as u1 = {u10, . . . , u1N−1} and u2 = {u20, . . . , u2N−1} and the functions
sik(u

i), pik(ui), and eiy,k(u
i) apply the input sequence ui to the system dynamics, described

using a kinematic bicycle model, starting from a given initial condition x0 and return the
value of the specified state at time step k for agent i = 1, 2. Note that as in Chapter 6, we
have omitted the explicit dependence on x0 for simplicity of notation.

u1,⋆(u2,⋆) = argmin
u1

s2N(u
2,⋆)− s1N(u1) (8.1a)

subject to (r1 + r2)− ∥p1k(u1)− p2k(u2,⋆)∥2 ≤ 0, k = 0, . . . , N, (8.1b)
−H ≤ e1y,k(u

1) ≤ H, k = 0, . . . , N, (8.1c)
u1l ≤ u1k ≤ u1u, k = 0, . . . , N − 1. (8.1d)

u2,⋆(u1,⋆) = argmin
u2

s1N(u
1,⋆)− s2N(u2) (8.2a)

subject to (r1 + r2)− ∥p1k(u1,⋆)− p2k(u2)∥2 ≤ 0, k = 0, . . . , N, (8.2b)
−H ≤ e2y,k(u

2) ≤ H, k = 0, . . . , N, (8.2c)
u2l ≤ u2k ≤ u2u, k = 0, . . . , N − 1. (8.2d)

Looking at the optimal control problem for Agent 1 in (8.1), we see that the objective (8.1a)
consists of the progress difference between the two agents which encourages the maximization

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 122

of the agent’s own progress s1N and the minimization of their opponent’s progress s2N . The
constraints consist of track boundaries and actuation limits in (8.1c) and (8.1d) respectively,
which are private to Agent 1, and collision avoidance constraints in (8.1b), which are shared
between the agents. As for the optimal control problem for Agent 2 in (8.2), one can quickly
see that it mostly identical, with the key difference being the sign changes in the cost function
(8.2a), which results in a zero-sum dynamic game. This captures the competitive nature of
the agents, where each agent would like to make progress along the race track preferably
at the expense of their opponent. However, the two agents are coupled in part by a shared
requirement for safety, which is described by their common collision avoidance constraint
(8.1b) and (8.2b).

8.2 Advantanges of a GNE Solver for Prediction and
Planning

Using this car racing example, let us first discuss the advantages of using GNE of open-loop
dynamic games as a model-based solution to the prediction and planning problem. Consider
now an alternative solution approach to the joint prediction and planning problem where we
construct a centralized optimal control problem from (8.1) and (8.2) and solve jointly for u1

and u2. Specifically, let us define the following optimal control problem:

u1,⋆,u2,⋆ = arg min
u1,u2

s2N(u
2)− s1N(u1) + s1N(u

1)− s2N(u2) = 0 (8.3a)

subject to (r1 + r2)− ∥p1k(u1)− p2k(u2)∥2 ≤ 0, k = 0, . . . , N, (8.3b)
−H ≤ e1y,k(u

1) ≤ H, k = 0, . . . , N, (8.3c)
u1l ≤ u1k ≤ u1u, k = 0, . . . , N − 1 (8.3d)
−H ≤ e2y,k(u

2) ≤ H, k = 0, . . . , N, (8.3e)
u2l ≤ u2k ≤ u2u, k = 0, . . . , N − 1. (8.3f)

which was constructed by summing together the agent objectives in (8.1a) and (8.2a) and
concatenating the agent constraints. Simplifying the objective in (8.3a), we can easily find
that the objective is identically zero regardless of the choice of u1 and u2. This is to be
expected since, as we mentioned in the previous section, this racing example is an instance
of a zero-sum dynamic game. This means that the centralized optimal control problem
defined in (8.3) reduces to a feasibility problem where the notion of competition between
agents is entirely lost. Indeed, if we compare a GNE of the dynamic game and a solution
of the centralized optimal control problem from the same initial condition, we may obtain
the trajectories shown in Figure 8.2 where the solution of the centralized optimal control
problem is feasible but does not at all capture the competitive goals of the agents. We note
that this issue of information loss in the centralized objective function is not only limited
to strictly zero-sum games, but can occur in any general-sum game which has zero-sum
components in the agent objective function, i.e. any terms which may cancel out when the

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 123

Figure 8.2: Solutions of the joint prediction and planning problem as a GNE of a dynamic game (left) and
as the optimal solution of a centralized optimal control problem (right). The blue and green trajectories
illustrate the position traces corresponding to the input sequences u1,⋆ and u2,⋆ respectively.

agent objectives are summed together. A subclass of dynamic games which does not suffer
from this limitation is that of potential dynamic games [97, 21, 70, 22] whose equilibria can
be equivalently found as the solutions of a centralized optimal control problem. However,
potential dynamic games are somewhat restrictive in terms of allowable cost structures and
importantly cannot model zero-sum interactions between agents except under very strict
conditions [83].

8.3 Limitations of GNE Solvers for Prediction and
Planning

We have shown the advantage of GNE of open-loop dynamic games as a solution to the joint
prediction and planning problem when compared to a centralized model-based approach.
However, it is also important to understand the challenges and limitations of GNE which
are currently limiting its application to real-world systems. These are twofold:

1. High computational burden of solving for equilibria of dynamic games.

2. Strict modeling assumptions which are required in the definition of dynamic games.

The first challenge is illustrated by the solve time performance of DG-SQP in Chapter 6.
Even for other GNE solvers such as ALGAMES [78] and PATH [38] where users have reported
real-time performance for robotic navigation tasks, this has only been shown for up to
three agents in a receding horizon manner [90]. While optimizing the implementations of
these solvers can certainly help to reduce the computational burden, there are interesting
approaches which attempt to leverage learning to accelerate the solution process, which we
will discuss in the next section.

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 124

The focus of this section will be on the second challenge, where the effectiveness of game-
theoretic prediction and planning can easily be hamstrung by possibly restrictive assumptions
on knowledge about the other agents in the environment. This challenge can manifest in two
ways. The first is in the assumption that agents are “rational”, which, in the game-theoretic
sense, means that agents have full knowledge of their available actions and the associated
costs and will always choose the action with the lowest cost. The second is in the requirement
that all components of the game definition (6.4) are known exactly a priori.

Now, of the two manifestations, the first one is perhaps more benign. Though it certainly
precludes treatment of completely random agents, such agents are somewhat rare in multi-
agent robotic systems. Regardless of whether they leverage a model-based or learned control
policy the behavior of an autonomous robot largely follows from the optimization of an
objective or reward function, which explicitly quantifies the value of the actions available
to it. As such, in the case of multi-robot interactions, this assumption is largely satisfied.
In mixed autonomy settings where robots interact with humans, this assumption may be
violated by human agents due to their bounded rationality [117, 127]. We will discuss
approaches which account for this possible discrepancy in the next section.

The second manifestation, which is more directly an engineering challenge, asks the ques-
tion “even if we know all agents are rational and are playing a game, how do we know what
game they are playing?”. Whereas it is reasonable that an ego agent would know their own
dynamics, constraint, and objective functions to a high degree of certainty, it is impossi-
ble to have exact knowledge of these components for the other agents in the environment
when there is no communication between agents. Therefore, the formulation of a station-
ary dynamic game must be done under a certain hypothesis about the realizations of these
components, where it is then entirely likely that mismatch can occur between, say, Agent 1’s
hypothesis of Agent 2’s objective function and the actual objective function used by Agent
2. To illustrate this challenge and its consequences for agent behavior, let us return to the
running example, but modify it slightly by replacing the objective functions in (8.1a) and
(8.2a) with

b1s2N(u
2)− a1s1N(u1) (8.4)

a2s1N(u
1)− b2s2N(u2) (8.5)

respectively, where a1, a2, b1, b2 > 0 are scalar weights on the terms in the progress difference
objectives for the two agents. Consider now a simple case of mismatch where we assume
that the agents each know the correct functional form of their opponent’s objective, but
there can be a mismatch in the weight parameters. We use a subscript to denote which
agent “owns” the parameter, i.e. a11, a21, b11, b21 and a12, a

2
2, b

1
2, b

2
2 correspond to the parameters

which are hypothesized by Agents 1 and 2 respectively. We will now show two scenarios to
illustrate the impact of mismatch on the open-loop behavior of the agents.

In the first scenario, we set a11, a21, b11, b21 = 1 for the dynamic game of Agent 1 and
a12 = 2, b22 = 2, a22, b

1
2 = 1 for the dynamic game of Agent 2. The GNE for these two dynamic

games are shown in the left and middle panels of Figure 8.3, which show that in this case, the

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 125

Figure 8.3: Solution GNEs of Agent 1 (left) and Agent 2 (middle) for scenario 1 and the corresponding
outcome of each agent applying their open-loop plans, which is collision-free (right). The trajectories progress
CCW from the bottom left.

Figure 8.4: Solution GNEs of Agent 1 (left) and Agent 2 (middle) for scenario 2 and the corresponding
outcome of each agent applying their open-loop plans, where a collision would occur (right). The trajectories
progress CCW from the bottom left.

GNE for the two agents are similar in that both prediction Agent 2 (the green trajectory)
leading Agent 1 (the blue trajectory) at the end of the game horizon. Now if both agents
execute their open-loop plans, i.e. the trajectories drawn with blue circles and green triangles
for Agents 1 and 2 respectively, then the outcome is illustrated in the right panel of Figure 8.3
where the lead of Agent 2 over Agent 1 at the end of the horizon is larger than either had
anticipated, but the overall outcome is consistent with the predictions made by both agents
and is also collision-free.

In the second scenario, we set a11 = 5, a21, b
1
1, b

2
1 = 1 for the dynamic game of Agent 1 and

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 126

b22 = 5, a12, a
2
2, b

1
2 = 1 for the dynamic game of Agent 2 and show the corresponding GNE in

the left and middle panels of Figure 8.4. In this case, we can see that both agents in fact
predict that they will be ahead of their opponent at the end of the game horizon. However,
if we again have both agents execute their open-loop plans, then the outcome, illustrated in
the right panel of Figure 8.4, shows that first of all, there will be a collision between the two
agents. Secondly, even if we ignore the collision, we can see that the actual overall outcome
is reversed for Agent 2, with Agent 1 ahead at the end of the horizon.

These two scenarios show that mismatch in the game components will lead to diverging
predictions and plans over agents. Whereas the differences in scenario 1 are relatively minor
and benign in terms of outcome, the differences in scenario 2 are much more consequential
in terms of both safety and performance. Of course, in practice for online prediction and
planning, it is likely that the GNE of dynamic games would be implemented in a receding
horizon manner, thereby incorporating the element of feedback which has been observed
to help alleviate the issues caused by discrepancies in the agent GNEs [78]. However, this
obviously does not solve the issue of mismatch and can lead to highly suboptimal behavior.
In the next section, we will discuss approaches which leverage learning and inference to tackle
this problem.

8.4 Going Beyond Stationary Open-Loop Dynamic
Games via Learning

In order to address the aforementioned challenges of computational burden of solving for
GNE and model mismatch in stationary dynamic games, recent works have proposed data-
driven methods which follow one of two main paradigms. Namely tactical and strategic
learning with game-theoretic equilibrium.

The first, which we call tactical learning of game-theoretic equilibrium, involves replicat-
ing or adapting equilibria with data for use over the planning horizon. Replication-based
methods attempt to directly reproduce equilibria for dynamic games by training on datasets
of equilibria and have been primarily used to alleviate the computational burden of the so-
lution process. In [146] a neural network is trained to directly predict an equilibrium for a
given initial condition. This estimate was then used to warm start the Sensitivity Enahanced
Iterative Best Response (SE-IBR) algorithm in order to accelerate the solution process. The
authors showed significant improvements in solution accuracy when initializing their solver
with the neural network predictions. In [106] a similar approach is taken to train so called
reference generators for each of the two-players in a pursuit-evasion game. This allowed for
approximate equilibria to be found in parallel by querying the reference generator for the
opposing agent and solving a trajectory optimization problem for the ego agent. These works
are part of an effort to address the first challenge as presented in Section 8.3 from a tactical
learning standpoint.

On the other hand, adaptation-based methods have addressed the problem of model

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 127

mismatch by updating parameters θ of a parametric dynamic game Γ(θ) given observations
of the other agents in the environment. Γ(θ) can be obtained from (6.4) by exposing the
parameters of the dynamics, constraint, and objective functions as additional arguments to
those functions. Such methods still require the explicit definition of the functional form of
the game components, but leave the parameters of these components variable such that they
can be updated over iterations of learning. We will discuss three classes of approaches which
fall under this category.

The first leverages ideas from inverse optimal control (IOC) and attempts to minimize
the residuals of the first-order optimality criteria, i.e. KKT conditions, of the dynamic game
in (6.6) with respect to its parameters [11, 116, 64]. In particular, the following problem is
solved:

min
θ,λ
∥F (x̄, ū, λ, θ)∥, (8.6)

where F represents the concatenated KKT conditions in (6.6), x̄, ū are some given state and
input sequence, and λ are the dual variables associated with the KKT conditions F . Given
that ∥F∥ is sufficiently small for the solution θ⋆ and λ⋆, then under regularity conditions,
we may say that x̄, ū are a GNE for the parameteric dynamic game Γ(θ⋆).

An important limitation of the IOC-based approach is its dependence on full state and
input sequences. This can be relaxed to partially observable settings by optimizing the game
parameters in the maximum likelihood sense [90, 95, 105, 84, 107]. These methods take
gradient steps in the parameter space to maximize the likelihood of observations under some
probabilistic observation model with equilibrium constraints. In particular, variations of the
following problem are solved:

max
θ

p(y|x,u) (8.7a)

subject to x,u is an equilibrium of Γ(θ), (8.7b)

where y denotes a sequence of observations. This is done by computing the gradient of the
likelihood p in (8.7a) and taking gradient steps in θ. Note that computing the gradient of
the likelihood p with respect to the parameters θ requires differentiation through equilibrium
solutions of Γ(θ). Such methods therefore leverage the implicit function theorem to construct
differentiable game solvers.

A third class of approach performs Bayesian inference over a belief space to estimate the
full distribution of the parameter θ. This is done by solving the Bayesian filtering problem as
follows to find the posterior distribution of the parameter θ conditioned on the observations
y:

p(θk+1|yk+1) =
p(yk+1|θk+1)p(θk+1|yk)∫
θ̄
p(yk+1|θ̄)p(θ̄|yk)dθ̄

, (8.8)

which can be done exactly when θ has discrete values [104], or approximately via Kalman
or particle filtering when θ is continuous [122, 79]. Since the full probabilistic measurement

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 128

model is included in (8.8), this allows for estimation of the parameters θ to account for
randomness in the measurements y, which can help to model the bounded rationality of
human agents [104]. Furthermore, since the full probability distribution is tracked, such
approaches can also account for multi-modal behavior of target agents. Ultimately, the goal
of all three of these approaches is to align the game description with the observed behavior
by refining the value of game parameters based on data. We note that our DG-SQP solver
presented in Chapter 6 is complementary to most of these methods as the robustness of
the parameter estimation scheme is directly tied to the robustness of the equilibrium solver,
which was a focus in our solution approach.

The second paradigm, which is where our racing approach from Chapter 7 belongs, is
strategic learning with game-theoretic equilibria. This involves distilling high-level strategy
from equilibria in the form of a value function to capture multi-agent system performance
beyond the planning horizon. This idea of value function learning has been a popular ap-
proach in reinforcement learning and has been extensively explored in single agent cases to
synthesize the terminal cost-to-go function for optimal control [60, 91, 159, 19, 20]. However,
there is no game-theoretic component in these methods as they act in environments which
are largely stationary. On the other hand, value function learning is also a critical com-
ponent in many multi-agent reinforcement learning approaches which admit game-theoretic
interpretations [119, 135, 108]. However, such methods largely eschew model-based optimal
control in favor of learned policies, which limits their application to hardware with safety-
critical constraints. So far, to the best of our knowledge, the idea of strategic learning for
optimal control with explicit game-theoretic equilibria is relatively unexplored. [50] is the
most similar to our work where a value function is learned directly from game equilibria.
In particular, the approach formulates a Stackelberg dynamic game over gridded state and
input spaces for simplified agent dynamics and solves for the game values via dynamic pro-
gramming. These values are then interpolated to synthesize a value function which is used
as the terminal cost function for an MPC policy. Our work is distinct in that we consider
GNE over continuous state and input spaces. We note that, like [50], our racing approach
does not require the real-time solution of game equilibria, which helps to address the chal-
lenge of computational burden. Instead, we capture long-term strategic information about
the multi-agent system in a value function whose output and gradients which can be quickly
evaluated. To the best of our knowledge, the work presented in Chapter 7 is the first time
a strategic learning approach with game-theoretic equilibria was demonstrated in hardware
experiments for car racing.

8.5 Chapter Summary
In this chapter, we examined the benefits and drawbacks of utilizing GNE of open-loop
dynamic games for joint prediction and planning. In particular, we showed that GNE of
dynamic games are especially well-suited in modeling multi-agent scenarios involving zero-
sum objectives, where a centralized optimal control approach would reduce to a feasibility

CHAPTER 8. A DISCUSSION ON GAME-THEORETIC METHODS FOR
PREDICTION AND PLANNING 129

problem which is not representative of the agent intentions. However, two challenges prevent
the widespread application of game-theoretic methods for prediction and planning. Namely
the high computational burden of solving for equilibria of dynamic games and the strict
modeling assumptions which are required in the definition of dynamic games. We illustrated
the second challenge by showing that mismatch in the game components leads to diverging
predictions and plans over agents which can not only result in suboptimal behavior but also
constraint violation. We finally presented a discussion on recent research directions which
are tackling these limitations and showed how our work in Chapters 6 and 7 fits in to this
broader landscape.

130

Chapter 9

Conclusions

As robotic systems advance in sophistication and in the complexity of their application, it
is not enough to only consider a robot’s behavior in a vacuum when they are increasingly
expected to operate in environments populated with other intelligent agents. In order to per-
form their tasks well while obeying constraints, these robotic systems must be endowed with
the ability to predict the behavior of the other agents in the environment in addition to plan-
ning their own actions over a time horizon. This is especially important in scenarios where
agents do not communicate with each other and may behave in an adversarial manner. In
this thesis, we have investigated methods for prediction and planning for multi-agent systems
over a variety of reward structures and information structures. Namely, we have examined
approaches which tackle the problem in cooperative, non-cooperative, and competitive sce-
narios where agents engage in partial or no communication about their intentions and future
plans. These approaches are formulated through a combination of model-based optimal con-
trol and data-driven learning techniques, where we have used data in a principled manner
to construct or augment the objective and constraint functions of optimal control problems.
This allows us to incorporate the rich and expressive behavior stemming from learned models
in a transparent manner though the integration in and solution of constrained optimization
problems for control. Namely, in Chapters 2 and 3, we introduced a learning model pre-
dictive control method for decoupled nonlinear and coupled linear multi-agent systems in
a cooperative setting with partial communication between agents. The methods leveraged
data from prior executions of an iterative task for the synthesis of the terminal cost function
and terminal set of an optimal control problem to improve the performance of the group as a
whole while guaranteeing constraint satisfaction over all iterations of the task. In Chapter 4,
we proposed an MPC policy for an agent operating in a non-cooperative tightly constrained
setting with no communication. Here, we used a dataset of optimal trajectories for a parking
lot navigation task to learn a high-level strategy predictor conditioned on the behavior of a
dynamic obstacle. This predictor produced a target set which informed the construction of
collision avoidance constraints for effectively circumventing the obstacle. In Chapter 5, we
begin investigating the problem of autonomous car racing which is a competitive setting with
no communication between agents. We formulated a MPC policy for head-to-head racing

CHAPTER 9. CONCLUSIONS 131

where the opponent predictions were obtained through a Gaussian process model which was
trained on the one-step closed-loop behavior of an opponent from prior races. We leveraged
the predictions and uncertainty from the GP to construct tightened collision avoidance con-
straints which were instrumental in enabling the ego vehicle to overtake its opponent safely
in simulation and hardware races. In Chapters 6 and 7, we pose the racing problem as an
open-loop dynamic game and present a novel solver for generalized Nash equilibria as the
solution to the coupled prediction and planning problem. To address the computational bur-
den of our solver which prevented a real-time receding horizon implementation, we leveraged
the robustness of the solver to generate a dataset of GNE which were then used to learn a
game-theoretic value function for head-to-head racing. By using this value function as the
terminal cost function of an MPC racing policy, we were able to observe highly competitive
behaviors of overtaking and position defense in simulation and hardware races. We finally
provide some perspectives on the area of game-theoretic methods for prediction and planning
in Chapter 8.

9.1 Future Work
We now outline a few exciting directions for future work in the area of prediction and planning
for multi-agent systems

Prediction and Planning under Partial Observability

In this thesis, we made the blanket assumption that we have access to the state vector
for the multi-agent systems we are predicting and planning for. Of course, in reality this
is rarely the case due to limitations in communication and/or sensing. As an example,
in the autonomous racing case, agents are unlikely to be broadcasting their state to the
field of competitors. We must therefore obtain measurements of our opponents using the
onboard sensors. However, these measurements are unlikely to capture the entire vehicle
state. In particular, while distance measurements can be obtained in a straightforward
manner, e.g. using radar or lidar, the orientation and velocities (linear and angular) of
one’s opponents must be inferred. This notion of incomplete information can be captured
through a measurement function y = h(x). One straightforward method for dealing with
partial observability is to use common filtering methods, e.g. the Kalman filter, to obtain
a state estimate x̂ from an observation. The methods presented in this thesis can then be
immediately applied to the state estimate. Now, this decoupled approach to estimation and
planning is commonly used and is in fact optimal under certain assumptions on linearity.
However, an interesting direction of work could investigate methods where state estimation,
especially for the other agents in the environment, is coupled or implicit. This may produce
better performance for both estimation and prediction and planning for nonlinear systems.

CHAPTER 9. CONCLUSIONS 132

Prediction and Planning under Uncertainty

Even if partial observability is considered, another simplifying assumption made in this the-
sis is that the multi-agent systems are deterministic. In reality, the system may exhibit
both aleatoric and epistemic uncertainty, which typically manifests as uncertainty in the
process model and in the measurements respectively. All of the approaches in the work
could be extended to account for both of these types of uncertainty. In particular, this
would be helpful with addressing the limitation of model mismatch in dynamic games that
we illustrated in Chapter 8, which is a source of aleatoric uncertainty and we may leverage
ideas of maximum likelihood estimation and (approximate) Bayesian filtering for addressing
this uncertainty. An especially interesting direction of future work for the strategy learning
approach in Chapter 7 is an extension to account for a set of different opponent policies.
Currently, we generate data for a single setting of parameters for the dynamic game. The
stationarity of the generating distribution then allows for even a simple model to accurately
capture the reward outcomes. By sampling over both the parameters and the initial con-
ditions of the dynamic game, we could obtain a rich dataset of opponent behavior over a
wide spectrum of interactive policies. Further work could explore learning methods which
can efficiently leverage the richness in the dataset, though ideally with a minimal increase
in model complexity such that it could still be incorporated in a real-time receding horizon
control policy.

Prediction and Planning under Closed-Loop Information Structures

The methods described in this thesis have formulated the prediction and planning problem
under an open-loop information structure where at each time step, where the resulting
prediction and motion plan are in the form of a state and input vector sequence such as
{u⋆0, u⋆1, . . . , u⋆N−1}. Though applying this output in a receding horizon offers some robustness
in the closed-loop behavior of the system, such an open-loop structure for policy synthesis
can be fragile to model mismatch and measurement noise. Instead of solving the prediction
and planning problem over the sequences of control inputs, we could instead solve over
the space of feedback policies π⋆k such that the prediction and motion plan are of the form
{π⋆0(x0), π⋆1(x1), . . . , π⋆N−1(xN−1)}. Such approaches typically result in a larger decision space
as we are now solving over the parameters of a parametric family of functions, but can
improve the performance of the system in the presence of uncertainty. Future work could
examine ways of extending the work in this thesis to leverage a closed-loop information
structure.

Efficient Prediction and Planning at Scale

Finally, we note that though much of the work in this thesis applies to multi-agent systems
with an arbitrary number of agents, in practice the real-time tractability of these approaches
may not extend beyond a handful of agents. In fact, all hardware demonstrations in this

CHAPTER 9. CONCLUSIONS 133

thesis were done with two agents. Therefore, an important direction for future work is the
improvement of computational efficiency for prediction and planning at a larger scale. This
may be done by further leveraging offline computation in the synthesis of (possibly data-
driven) components for decentralized online optimal control. We note that for the approaches
which were designed for two agents, generalization to an arbitrary number of agents may
not be trivial due to the combinatorial aspect of enumerating pairwise strategies or reward
outcomes and is also an interesting direction for further investigation.

134

Bibliography

[1] Ahmed Aboudonia, Annika Eichler, and John Lygeros. “Distributed model predic-
tive control with asymmetric adaptive terminal sets for the regulation of large-scale
systems”. In: arXiv:2005.04077 (2020).

[2] Akshay Agrawal et al. “Differentiating Through a Cone Program”. In: Journal of
Applied & Numerical Optimization 1.2 (2019).

[3] Alessandro Alessio, Davide Barcelli, and Alberto Bemporad. “Decentralized model
predictive control of dynamically coupled linear systems”. In: Journal of Process Con-
trol 21.5 (2011), pp. 705–714.

[4] Alessandro Alessio and Alberto Bemporad. “Decentralized model predictive control
of constrained linear systems”. In: ECC. 2007, pp. 2813–2818.

[5] Carmen Amo Alonso and Nikolai Matni. “Distributed and localized model predictive
control via system level synthesis”. In: (2019). arXiv: 1909.10074. url: http://
arxiv.org/abs/1909.10074.

[6] Javier Alonso-Mora et al. “Distributed multi-robot formation control in dynamic en-
vironments”. In: Autonomous Robots 43 (2019), pp. 1079–1100.

[7] Joel A E Andersson et al. “CasADi – A software framework for nonlinear optimization
and optimal control”. In: Mathematical Programming Computation 11.1 (2019), pp. 1–
36. doi: 10.1007/s12532-018-0139-4.

[8] Anil Aswani et al. “Practical comparison of optimization algorithms for learning-based
MPC with linear models”. In: arXiv preprint arXiv:1404.2843 (2014).

[9] Anil Aswani et al. “Provably safe and robust learning-based model predictive control”.
In: Automatica 49.5 (2013), pp. 1216–1226.

[10] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex programming
approach”. In: IEEE/RSJ Int. Conf. Intell. Robots Sys. IEEE. 2012, pp. 1917–1922.

[11] Chaitanya Awasthi and Andrew Lamperski. “Inverse differential games with mixed
inequality constraints”. In: 2020 American control conference (ACC). IEEE. 2020,
pp. 2182–2187.

https://arxiv.org/abs/1909.10074
http://arxiv.org/abs/1909.10074
http://arxiv.org/abs/1909.10074
https://doi.org/10.1007/s12532-018-0139-4

BIBLIOGRAPHY 135

[12] Andrea Bajcsy et al. “Learning Vision-based Pursuit-Evasion Robot Policies”. In:
arXiv preprint arXiv:2308.16185 (2023).

[13] Goran Banjac et al. “Decentralized resource allocation via dual consensus ADMM”.
In: Proc. Am. Control Conf. 2019-July (2019), pp. 2789–2794. issn: 07431619. arXiv:
1809.07376.

[14] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM,
1998.

[15] Alberto Bemporad, Maurice Heemels, Mikael Johansson, et al. Networked control
systems. Vol. 406. Springer, 2010.

[16] Dimitri Panteli Bertsekas and John N. Tsitsiklis. Parallel and distributed computation:
Numerical methods. Prentice Hall, Inc., 1989.

[17] Johannes Betz et al. “Autonomous vehicles on the edge: A survey on autonomous
vehicle racing”. In: IEEE Open Journal of Intelligent Transportation Systems (2022).

[18] Johannes Betz et al. “TUM autonomous motorsport: An autonomous racing soft-
ware for the Indy Autonomous Challenge”. In: Journal of Field Robotics 40.4 (2023),
pp. 783–809.

[19] Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. “Blending MPC & Value
Function Approximation for Efficient Reinforcement Learning”. In: International Con-
ference on Learning Representations. 2020.

[20] Mohak Bhardwaj et al. “Information theoretic model predictive q-learning”. In: Learn-
ing for Dynamics and Control. PMLR. 2020, pp. 840–850.

[21] Maulik Bhatt, Yixuan Jia, and Negar Mehr. “Efficient Constrained Multi-Agent Tra-
jectory Optimization Using Dynamic Potential Games”. In: 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE. 2023, pp. 7303–
7310.

[22] Maulik Bhatt and Negar Mehr. “Strategic Decision-Making in Multi-Agent Domains:
A Weighted Potential Dynamic Game Approach”. In: arXiv preprint arXiv:2308.05876
(2023).

[23] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta nu-
merica 4 (1995), pp. 1–51.

[24] Francesco Borrelli. Constrained optimal control of linear and hybrid systems. Berlin:
Springer, 2003. isbn: 354000257X. doi: 10.1007/BF03047352.

[25] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[26] Carlo Bosio et al. “Automated Layout Design and Control of Robust Cooperative
Grasped-Load Aerial Transportation Systems”. In: arXiv preprint arXiv:2310.07649
(2023).

https://arxiv.org/abs/1809.07376
https://doi.org/10.1007/BF03047352

BIBLIOGRAPHY 136

[27] Stephen Boyd. Sequential Convex Programming. Lecture Notes. 2008.

[28] Stephen Boyd et al. “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers”. In: Found. Trends Mach. Learn. 3.1 (2010),
pp. 1–122. issn: 1935-8237. doi: 10.1561/2200000016.

[29] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[30] Tim Brüdigam et al. “Gaussian Process-based Stochastic Model Predictive Control
for Overtaking in Autonomous Racing”. In: ArXiv abs/2105.12236 (2021).

[31] Eduardo Camponogara et al. “Distributed model predictive control”. In: Control Syst.
Mag. 22.1 (2002), pp. 44–52. issn: 10991514. doi: 10.1002/oca.2167.

[32] John F. Canny. The Complexity of Robot Motion Planning. Cambridge, MA, USA:
MIT Press, 1988. isbn: 0262031361.

[33] Yufan Chen, Mark Cutler, and Jonathan P How. “Decoupled multiagent path plan-
ning via incremental sequential convex programming”. In: IEEE Int. Conf. Robot.
Autom. 2015, pp. 5954–5961.

[34] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods.
SIAM, 2000.

[35] Christian Conte et al. “Distributed synthesis and stability of cooperative distributed
model predictive control for linear systems”. In: Automatica 69 (2016), pp. 117–125.

[36] Henggang Cui et al. “Deep Kinematic Models for Kinematically Feasible Vehicle Tra-
jectory Predictions”. In: 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA) (2020), pp. 10563–10569.

[37] Georgios Darivianakis, Annika Eichler, and John Lygeros. “Distributed model pre-
dictive control for linear systems with adaptive terminal sets”. In: IEEE Trans. Au-
tomat. Contr. 65.3 (2020), pp. 1044–1056. issn: 0018-9286. doi: 10.1109/tac.2019.
2916774.

[38] Steven P Dirkse and Michael C Ferris. “The path solver: a nommonotone stabilization
scheme for mixed complementarity problems”. In: Optimization methods and software
5.2 (1995), pp. 123–156.

[39] Nemanja Djuric et al. “Uncertainty-aware Short-term Motion Prediction of Traffic
Actors for Autonomous Driving”. In: 2020 IEEE Winter Conference on Applications
of Computer Vision (WACV) (2020), pp. 2084–2093.

[40] Dmitri Dolgov et al. “Path planning for autonomous vehicles in unknown semi-
structured environments”. In: International Journal of Robotics Research 29.5 (2010),
pp. 485–501.

[41] Alexander Domahidi and Juan Jerez. FORCES Professional. Embotech AG. 2014–
2023.

https://doi.org/10.1561/2200000016
https://doi.org/10.1002/oca.2167
https://doi.org/10.1109/tac.2019.2916774
https://doi.org/10.1109/tac.2019.2916774

BIBLIOGRAPHY 137

[42] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: Proceed-
ings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[43] William B Dunbar and Richard M Murray. “Distributed receding horizon control for
multi-vehicle formation stabilization”. In: Automatica 42.4 (2006), pp. 549–558.

[44] Christer Ericson. Real-time collision detection. CRC Press, 2004.

[45] Francisco Facchinei and Christian Kanzow. “Generalized Nash equilibrium problems”.
In: Annals of Operations Research 175.1 (2010), pp. 177–211.

[46] F Farokhi, I Shames, and K H Johansson. “Distributed MPC via dual decomposition
and alternative direction method of multipliers”. In: Distrib. Model Predict. Control
Made Easy. Ed. by José M Maestre and Rudy R Negenborn. Dordrecht: Springer
Netherlands, 2014, pp. 115–131. isbn: 978-94-007-7006-5. doi: 10.1007/978-94-
007-7006-5_7.

[47] Timm Faulwasser, Benjamin Kern, and Rolf Findeisen. “Model predictive path-
following for constrained nonlinear systems”. In: Proceedings of the 48h IEEE Con-
ference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference. IEEE. 2009, pp. 8642–8647.

[48] Laura Ferranti et al. “Coordination of multiple vessels via distributed nonlinear model
predictive control”. In: ECC. 2018, pp. 2523–2528.

[49] MC Ferris and S Lucidi. “Nonmonotone stabilization methods for nonlinear equa-
tions”. In: Journal of Optimization Theory and Applications 81.1 (1994), pp. 53–71.

[50] Jaime F Fisac et al. “Hierarchical game-theoretic planning for autonomous vehicles”.
In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 9590–9596.

[51] Jaime F Fisac et al. “Probabilistically Safe Robot Planning with Confidence-Based
Human Predictions”. In: 14th Robotics: Science and Systems, RSS 2018. MIT Press
Journals. 2018.

[52] David Fridovich-Keil et al. “Efficient iterative linear-quadratic approximations for
nonlinear multi-player general-sum differential games”. In: 2020 IEEE international
conference on robotics and automation (ICRA). IEEE. 2020, pp. 1475–1481.

[53] Gianluca Frison and Moritz Diehl. “HPIPM: a high-performance quadratic program-
ming framework for model predictive control”. In: IFAC-PapersOnLine 53.2 (2020),
pp. 6563–6569.

[54] Jacob Gardner et al. “Gpytorch: Blackbox matrix-matrix gaussian process inference
with gpu acceleration”. In: Advances in neural information processing systems 31
(2018).

[55] Pontus Giselsson and Anders Rantzer. “On feasibility, stability and performance in
distributed model predictive control”. In: IEEE Trans. Automat. Contr. 59.4 (2014),
pp. 1031–1036. issn: 00189286. doi: 10.1109/TAC.2013.2285779. arXiv: 1302.1974.

https://doi.org/10.1007/978-94-007-7006-5_7
https://doi.org/10.1007/978-94-007-7006-5_7
https://doi.org/10.1109/TAC.2013.2285779
https://arxiv.org/abs/1302.1974

BIBLIOGRAPHY 138

[56] David González et al. “A Review of Motion Planning Techniques for Automated
Vehicles”. In: IEEE Trans. Intell. Transp. Syst. 17.4 (2016), pp. 1135–1145.

[57] Erico Guizzo. Kiva Systems: Three engineers, hundreds of robots, one warehouse.
Sept. 2022. url: https://spectrum.ieee.org/three-engineers-hundreds-of-
robots-one-warehouse.

[58] James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. “Scalable
Variational Gaussian Process Classification”. In: AISTATS. 2015.

[59] Andreas Hock and Angela P Schoellig. “Distributed iterative learning control for
multi-agent systems: Theoretic developments and application to formation flying”.
In: Auton. Rob. 43.8 (2019), pp. 1989–2010.

[60] David Hoeller, Farbod Farshidian, and Marco Hutter. “Deep value model predictive
control”. In: Conference on Robot Learning. PMLR. 2020, pp. 990–1004.

[61] Joey Hong, Benjamin Sapp, and James Philbin. “Rules of the Road: Predict-
ing Driving Behavior With a Convolutional Model of Semantic Interactions”. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019), pp. 8446–8454.

[62] Mokter Hossain. Self-Driving Robots: A Revolution in the Local Delivery. Apr. 2022.
url: https : / / cmr . berkeley . edu / 2022 / 04 / self - driving - robots - a -
revolution-in-the-local-delivery/.

[63] Haimin Hu et al. “Non-Cooperative Distributed MPC with Iterative Learning”. In:
IFAC-PapersOnLine (2020).

[64] Jairo Inga et al. “Inverse dynamic games based on maximum entropy inverse rein-
forcement learning”. In: arXiv preprint arXiv:1911.07503 (2019).

[65] Yixuan Jia, Maulik Bhatt, and Negar Mehr. “RAPID: Autonomous Multi-
Agent Racing using Constrained Potential Dynamic Games”. In: arXiv preprint
arXiv:2305.00579 (2023).

[66] Colin N. Jones and Manfred Morari. “Polytopic approximation of explicit model pre-
dictive controllers”. In: IEEE Trans. Automat. Contr. 55.11 (2010), pp. 2542–2553.
issn: 00189286. doi: 10.1109/TAC.2010.2047437.

[67] Chanyoung Jung et al. “An Autonomous System for Head-to-Head Race: Design,
Implementation and Analysis; Team KAIST at the Indy Autonomous Challenge”. In:
arXiv preprint arXiv:2303.09463 (2023).

[68] Christos Katrakazas et al. “Real-time motion planning methods for autonomous on-
road driving: State-of-the-art and future research directions”. In: Transp. Res. Part
C Emerg. Technol. 60 (2015), pp. 416–442.

[69] Elia Kaufmann et al. “Champion-level drone racing using deep reinforcement learn-
ing”. In: Nature 620.7976 (2023), pp. 982–987.

https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse
https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse
https://cmr.berkeley.edu/2022/04/self-driving-robots-a-revolution-in-the-local-delivery/
https://cmr.berkeley.edu/2022/04/self-driving-robots-a-revolution-in-the-local-delivery/
https://doi.org/10.1109/TAC.2010.2047437

BIBLIOGRAPHY 139

[70] Talha Kavuncu, Ayberk Yaraneri, and Negar Mehr. “Potential iLQR: A Potential-
Minimizing Controller for Planning Multi-Agent Interactive Trajectories”. In: 17th
Robotics: Science and Systems, RSS 2021. MIT Press Journals. 2021.

[71] TamáS Keviczky, Francesco Borrelli, and Gary J Balas. “Decentralized receding hori-
zon control for large scale dynamically decoupled systems”. In: Automatica 42.12
(2006), pp. 2105–2115.

[72] Maximilian Kneissl et al. “A Multi-Vehicle Control Framework With Application to
Automated Valet Parking”. In: IEEE Trans. Intell. Transp. Syst. (2020), pp. 1–11.
issn: 1524-9050.

[73] Jason Kong et al. “Kinematic and dynamic vehicle models for autonomous driving con-
trol design”. In: 2015 IEEE intelligent vehicles symposium (IV). IEEE. 2015, pp. 1094–
1099.

[74] Jason Kong et al. “Kinematic and dynamic vehicle models for autonomous driving
control design”. In: IEEE Intelligent Vehicles Symposium, Proceedings 2015-August
(2015), pp. 1094–1099.

[75] Forrest Laine et al. “Multi-Hypothesis Interactions in Game-Theoretic Motion Plan-
ning”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021, pp. 8016–8023.

[76] Forrest Laine et al. “The computation of approximate generalized feedback nash equi-
libria”. In: SIAM Journal on Optimization 33.1 (2023), pp. 294–318.

[77] Denise Lam, Chris Manzie, and Malcolm Good. “Model predictive contouring control”.
In: 49th IEEE Conference on Decision and Control (CDC). IEEE. 2010, pp. 6137–
6142.

[78] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “ALGAMES: a fast aug-
mented Lagrangian solver for constrained dynamic games”. In: Autonomous Robots
46.1 (2022), pp. 201–215.

[79] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “LUCIDGames: Online
unscented inverse dynamic games for adaptive trajectory prediction and planning”.
In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5485–5492.

[80] Jonathan W Lee et al. “Traffic Control via Connected and Automated Vehicles: An
Open-Road Field Experiment with 100 CAVs”. In: arXiv preprint arXiv:2402.17043
(2024).

[81] Stéphanie Lefèvre et al. “Driver models for personalised driving assistance”. In: Vehicle
System Dynamics 53.12 (2015), pp. 1705–1720.

[82] Esko Lehtonen et al. “Look-ahead fixations in curve driving”. In: Ergonomics 56.1
(2013), pp. 34–44.

[83] Changxi Li, Fenghua He, and Ning Hao. “Verification and design of zero-sum potential
games”. In: IFAC-PapersOnLine 53.2 (2020), pp. 16932–16937.

BIBLIOGRAPHY 140

[84] Jingqi Li et al. “Cost Inference for Feedback Dynamic Games from Noisy Partial State
Observations and Incomplete Trajectories”. In: Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems. 2023, pp. 1062–1070.

[85] Sheng Li, Maxim Egorov, and Mykel J. Kochenderfer. “Optimizing collision avoidance
in dense airspace using deep reinforcement learning”. In: 13th USA/Europe Air Traffic
Management Research and Development Seminar 2019 3 (2019).

[86] Daniel Liberzon. Calculus of variations and optimal control theory: a concise intro-
duction. Princeton University Press, 2011.

[87] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-based
autonomous racing of 1: 43 scale RC cars”. In: Optimal Control Applications and
Methods 36.5 (2015), pp. 628–647.

[88] Alexander Liniger and John Lygeros. “A noncooperative game approach to au-
tonomous racing”. In: IEEE Transactions on Control Systems Technology 28.3 (2019),
pp. 884–897.

[89] Jinfeng Liu, David Muñoz de la Peña, and Panagiotis D Christofides. “Distributed
model predictive control of nonlinear systems subject to asynchronous and delayed
measurements”. In: Automatica 46.1 (2010), pp. 52–61.

[90] Xinjie Liu, Lasse Peters, and Javier Alonso-Mora. “Learning to Play Trajectory Games
Against Opponents with Unknown Objectives”. In: IEEE Robotics and Automation
Letters (2023).

[91] Kendall Lowrey et al. “Plan Online, Learn Offline: Efficient Learning and Exploration
via Model-Based Control”. In: International Conference on Learning Representations.
2018.

[92] Sergio Lucia, Markus Kögel, and Rolf Findeisen. “Contract-based predictive control
of distributed systems with plug and play capabilities”. In: IFAC-PapersOnLine 48.23
(2015), pp. 205–211. issn: 24058963. doi: 10.1016/j.ifacol.2015.11.284.

[93] Carlos E Luis and Angela P Schoellig. “Trajectory generation for multiagent point-to-
point transitions via distributed model predictive control”. In: IEEE Robot. Autom.
Letters 4.2 (2019), pp. 375–382.

[94] David Q Mayne et al. “Constrained model predictive control: Stability and optimal-
ity”. In: Automatica 36.6 (2000), pp. 789–814.

[95] Negar Mehr et al. “Maximum-entropy multi-agent dynamic games: Forward and in-
verse solutions”. In: IEEE Transactions on Robotics (2023).

[96] Alain Micaelli and Claude Samson. “Trajectory tracking for unicycle-type and two-
steering-wheels mobile robots”. PhD thesis. INRIA, 1993.

[97] Dov Monderer and Lloyd S Shapley. “Potential games”. In: Games and economic
behavior 14.1 (1996), pp. 124–143.

https://doi.org/10.1016/j.ifacol.2015.11.284

BIBLIOGRAPHY 141

[98] Simon Muntwiler et al. “Distributed Model Predictive Safety Certification for
Learning-based Control”. In: ArXiv:1911.01832 (2019). doi: 2004.01298.

[99] Ofir Nachum et al. “Multi-Agent Manipulation via Locomotion using Hierarchical
Sim2Real”. In: Conference on Robot Learning. PMLR. 2020, pp. 110–121.

[100] Rudy R Negenborn, Bart De Schutter, and J Hellendoorn. “Multi-agent model pre-
dictive control: A survey”. In: arXiv:0908.1076 (2009).

[101] Rudy R Negenborn and Jose Maria Maestre. “Distributed model predictive control:
An overview and roadmap of future research opportunities”. In: IEEE Control Systems
Magazine 34.4 (2014), pp. 87–97.

[102] Hans B Pacejka and Egbert Bakker. “The magic formula tyre model”. In: Vehicle
system dynamics 21.S1 (1992), pp. 1–18.

[103] Brian Paden et al. “A survey of motion planning and control techniques for self-driving
urban vehicles”. In: IEEE Trans. Intell. Veh. 1.1 (2016), pp. 33–55.

[104] Lasse Peters et al. “Contingency Games for Multi-Agent Interaction”. In: arXiv
preprint arXiv:2304.05483 (2023).

[105] Lasse Peters et al. “Inferring Objectives in Continuous Dynamic Games from Noise-
Corrupted Partial State Observations”. In: Robotics: Science and Systems XVII, 2021.
2021.

[106] Lasse Peters et al. “Learning Mixed Strategies in Trajectory Games”. In: Proceedings
Robotics: Science and System XVIII (2022).

[107] Lasse Peters et al. “Online and offline learning of player objectives from partial ob-
servations in dynamic games”. In: The International Journal of Robotics Research
(2023), p. 02783649231182453.

[108] Tabish Rashid et al. “Monotonic value function factorisation for deep multi-agent
reinforcement learning”. In: The Journal of Machine Learning Research 21.1 (2020),
pp. 7234–7284.

[109] Stefano Riverso and Giancarlo Ferrari-Trecate. “Tube-based distributed control of
linear constrained systems”. In: (2011), pp. 1–10.

[110] J Ben Rosen. “Existence and uniqueness of equilibrium points for concave n-person
games”. In: Econometrica: Journal of the Econometric Society (1965), pp. 520–534.

[111] Ugo Rosolia and Francesco Borrelli. “Learning how to autonomously race a car: a
predictive control approach”. In: IEEE Transactions on Control Systems Technology
28.6 (2019), pp. 2713–2719.

[112] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iter-
ative tasks: A computationally efficient approach for linear system”. In: IFAC-
PapersOnLine 50.1 (2017), pp. 3142–3147. issn: 24058963. doi: 10.1016/j.ifacol.
2017.08.324. arXiv: 1702.07064.

https://doi.org/2004.01298
https://doi.org/10.1016/j.ifacol.2017.08.324
https://doi.org/10.1016/j.ifacol.2017.08.324
https://arxiv.org/abs/1702.07064

BIBLIOGRAPHY 142

[113] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks. a data-driven control framework”. In: IEEE Transactions on Automatic Control
63.7 (2017), pp. 1883–1896.

[114] Ugo Rosolia and Francesco Borrelli. “Minimum Time Learning Model Predictive Con-
trol”. In: arXiv preprint arXiv:1911.09239 (2019).

[115] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. “Robust learning model predic-
tive control for linear systems”. In: (2019). arXiv: arXiv:1911.09234v1.

[116] Simon Rothfuß et al. “Inverse optimal control for identification in non-cooperative
differential games”. In: IFAC-PapersOnLine 50.1 (2017), pp. 14909–14915.

[117] Ariel Rubinstein. Modeling bounded rationality. MIT press, 1998.

[118] Tim Salzmann et al. “Trajectron++: Dynamically-Feasible Trajectory Forecasting
with Heterogeneous Data”. In: ECCV. 2020.

[119] Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a
learned model”. In: Nature 588.7839 (2020), pp. 604–609.

[120] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. “Planning and decision-
making for autonomous vehicles”. In: Annual Review of Control, Robotics, and Au-
tonomous Systems 1 (2018), pp. 187–210.

[121] Wilko Schwarting et al. “Parallel autonomy in automated vehicles: Safe motion gener-
ation with minimal intervention”. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA) (2017), pp. 1928–1935.

[122] Wilko Schwarting et al. “Social behavior for autonomous vehicles”. In: Proceedings of
the National Academy of Sciences 116.50 (2019), pp. 24972–24978.

[123] Wilko Schwarting et al. “Stochastic dynamic games in belief space”. In: IEEE Trans-
actions on Robotics 37.6 (2021), pp. 2157–2172.

[124] Xu Shen and Francesco Borrelli. “Multi-vehicle Conflict Resolution in Highly Con-
strained Spaces by Merging Optimal Control and Reinforcement Learning”. In: IFAC-
PapersOnLine 56.2 (2023), pp. 3308–3313.

[125] Xu Shen and Francesco Borrelli. “Reinforcement learning and distributed model pre-
dictive control for conflict resolution in highly constrained spaces”. In: 2023 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2023, pp. 1–6.

[126] Xu Shen et al. “ParkPredict: Motion and Intent Prediction of Vehicles in Parking
Lots”. In: arXiv preprint arXiv:2004.10293 (2020).

[127] Herbert A Simon. “Bounded rationality”. In: Utility and probability (1990), pp. 15–18.

[128] Stanley W Smith et al. “Improving urban traffic throughput with vehicle platooning:
Theory and experiments”. In: IEEE Access 8 (2020), pp. 141208–141223.

[129] Riccardo Spica et al. “A real-time game theoretic planner for autonomous two-player
drone racing”. In: IEEE Transactions on Robotics 36.5 (2020), pp. 1389–1403.

https://arxiv.org/abs/arXiv:1911.09234v1

BIBLIOGRAPHY 143

[130] Raphael E Stern et al. “Dissipation of stop-and-go waves via control of autonomous
vehicles: Field experiments”. In: Transportation Research Part C: Emerging Technolo-
gies 89 (2018), pp. 205–221.

[131] Yvonne R Stürz et al. “Distributed learning model predictive control for linear sys-
tems”. In: 2020 59th IEEE Conference on Decision and Control (CDC). IEEE. 2020,
pp. 4366–4373.

[132] Yvonne R. Stürz, Annika Eichler, and Roy S. Smith. “Distributed control design for
heterogeneous interconnected systems”. In: arXiv preprint arXiv:2004.04876 (2020).

[133] Yvonne Rebecca Stürz, Annika Eichler, and Roy Stephen Smith. “Scalable controller
synthesis for heterogeneous interconnected systems applicable to an overlapping con-
trol framework”. In: Eur. Control Conf. 1 (2018), pp. 2561–2568.

[134] Libo Sun, Jinfeng Zhai, and Wenhu Qin. “Crowd navigation in an unknown and dy-
namic environment based on deep reinforcement learning”. In: IEEE Access 7 (2019),
pp. 109544–109554.

[135] Peter Sunehag et al. “Value-Decomposition Networks For Cooperative Multi-Agent
Learning Based On Team Reward”. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems. 2018, pp. 2085–2087.

[136] Peter Trautman and Andreas Krause. “Unfreezing the robot: Navigation in dense, in-
teracting crowds”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2010, pp. 797–803.

[137] Paul A. Trodden and J. M. Maestre. “Distributed predictive control with minimization
of mutual disturbances”. In: Automatica 77 (2017), pp. 31–43. issn: 00051098. doi:
10.1016/j.automatica.2016.11.023.

[138] Charlott Vallon and Francesco Borrelli. “Data-Driven Hierarchical Predictive Learn-
ing in Unknown Environments”. In: 2020 IEEE 16th International Conference on
Automation Science and Engineering (CASE). 2020, pp. 104–109.

[139] Charlott Vallon and Francesco Borrelli. “Data-Driven Strategies for Hierarchical Pre-
dictive Control in Unknown Environments”. In: ArXiv abs/2105.06005 (2022).

[140] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent reinforcement
learning”. In: Nature 575.7782 (2019), pp. 350–354.

[141] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. In: Mathematical
programming 106 (2006), pp. 25–57.

[142] Marcel Walch et al. “Autonomous driving”. In: 21.5 (2015), pp. 11–18. doi: 10.1145/
2799250.2799268.

[143] Mingyu Wang et al. “Game Theoretic Planning for Self-Driving Cars in Competitive
Scenarios.” In: Robotics: Science and Systems. 2019, pp. 1–9.

https://doi.org/10.1016/j.automatica.2016.11.023
https://doi.org/10.1145/2799250.2799268
https://doi.org/10.1145/2799250.2799268

BIBLIOGRAPHY 144

[144] Mingyu Wang et al. “Game-theoretic planning for self-driving cars in multivehicle
competitive scenarios”. In: IEEE Transactions on Robotics 37.4 (2021), pp. 1313–
1325.

[145] Zijian Wang, Riccardo Spica, and Mac Schwager. “Game theoretic motion planning
for multi-robot racing”. In: Distributed Autonomous Robotic Systems: The 14th Inter-
national Symposium. Springer. 2019, pp. 225–238.

[146] Zijian Wang, Tim Taubner, and Mac Schwager. “Multi-agent sensitivity enhanced
iterative best response: A real-time game theoretic planner for drone racing in 3D
environments”. In: Robotics and Autonomous Systems 125 (2020), p. 103410.

[147] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for ma-
chine learning. MIT press Cambridge, MA, 2006.

[148] Stephen Wright, Jorge Nocedal, et al. “Numerical optimization”. In: Springer Science
35.67-68 (1999), p. 7.

[149] Peter R Wurman et al. “Outracing champion Gran Turismo drivers with deep rein-
forcement learning”. In: Nature 602.7896 (2022), pp. 223–228.

[150] Chenyu Yang et al. “Collaborative navigation and manipulation of a cable-towed
load by multiple quadrupedal robots”. In: IEEE Robotics and Automation Letters 7.4
(2022), pp. 10041–10048.

[151] Zhengyuan Yang et al. “End-to-end multi-modal multi-task vehicle control for self-
driving cars with visual perceptions”. In: 2018 24th International Conference on Pat-
tern Recognition (ICPR). IEEE. 2018, pp. 2289–2294.

[152] Youngmin Yoon et al. “Interaction-Aware Probabilistic Trajectory Prediction of Cut-
In Vehicles Using Gaussian Process for Proactive Control of Autonomous Vehicles”.
In: IEEE Access 9 (2021), pp. 63440–63455.

[153] Ekim Yurtsever et al. “A survey of autonomous driving: Common practices and emerg-
ing technologies”. In: IEEE access 8 (2020), pp. 58443–58469.

[154] A. Zanelli et al. “FORCES NLP: an efficient implementation of interior-point methods
for multistage nonlinear nonconvex programs”. In: International Journal of Control
(2017), pp. 1–17.

[155] Ornella Zerlenga, Vincenzo Cirillo, and Rosina Iaderosa. “Once upon a time there
were fireworks. The new nocturnal drones light shows”. In: img Journal 4 (2021),
pp. 402–425.

[156] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-Based Col-
lision Avoidance”. In: IEEE Transactions on Control Systems Technology (2020),
pp. 1–12.

[157] Xiaojing Zhang et al. “Autonomous Parking Using Optimization-Based Collision
Avoidance”. In: 2018 IEEE Conference on Decision and Control (CDC). IEEE, Dec.
2019, pp. 4327–4332.

BIBLIOGRAPHY 145

[158] Hang Zhao et al. “TNT: Target-driveN Trajectory Prediction”. In: CoRL. 2020.

[159] Mingyuan Zhong et al. “Value function approximation and model predictive control”.
In: 2013 IEEE symposium on adaptive dynamic programming and reinforcement learn-
ing (ADPRL). IEEE. 2013, pp. 100–107.

[160] Edward L Zhu and Francesco Borrelli. “A sequential quadratic programming approach
to the solution of open-loop generalized nash equilibria”. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 3211–3217.

[161] Edward L Zhu et al. “A Gaussian Process Model for Opponent Prediction in Au-
tonomous Racing”. In: 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2023, pp. 8186–8191.

[162] Edward L Zhu et al. “Trajectory optimization for nonlinear multi-agent systems using
decentralized learning model predictive control”. In: 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE. 2020, pp. 6198–6203.

[163] Quanyan Zhu. “A Lagrangian approach to constrained potential games: Theory and
examples”. In: 2008 47th IEEE Conference on Decision and Control. IEEE. 2008,
pp. 2420–2425.

146

Appendix A

Vehicle Dynamics Models

Here, we describe the kinematic and dynamic bicycle models which are commonly used
throughout this dissertation.

The Frenet-frame kinematic bicycle model has the state and input vectors:

xkin = [v, s, ey, eψ]
⊤, ukin = [a, δ]⊤,

and the continuous-time dynamics are written as:

v̇ = a, (A.1)
ṡ = v cos(eψ + β(δ))/(1− eyκ(s)),
ėy = v sin(eψ + β(δ)),

ėψ = v sin(β(δ))/lr − κ(s)v cos(eψ + β(δ))/(1− eyκ(s)),

where β(δ) = arctan(tan δ · lf/(lf + lr)) is the side slip angle, lf , lr are the distance
from the center of mass to the front and rear axles respectively, and κ(s) = (τ ′x(s)τ

′′
y (s) −

τ ′y(s)τ
′′
x (s))/(τ

′
x(s)

2 + τ ′y(s)
2)3/2 is the curvature of the path τ at a given s.

The Frenet-frame dynamic bicycle model has the state and input vectors:

xdyn = [vx, vy, ω, s, ey, eψ]
⊤, udyn = [ax, δ]

⊤,

and the continuous-time dynamics are written as:

v̇x = ax −
1

m
F f
y sin δ − cdvx + ωvy,

v̇y =
1

m
(F r

y + F f
y cos δ)− ωvx,

ω̇ =
1

Iz
(lfF f

y cos δ − lrF r
y),

ṡ = (vx cos(eψ)− vy sin(eψ))/(1− eyκ(s)),
ėy = vx sin(eψ) + vy cos(eψ),

ėψ = ω − κ(s)(vx cos(eψ)− vy sin(eψ))/(1− eyκ(s)),

APPENDIX A. VEHICLE DYNAMICS MODELS 147

where m and Iz are the mass and yaw moment of inertia of the vehicle and cd is an aero-
dynamic drag coefficient. The lateral tire forces are modeled using a simplified Pacejka tire
model [102]:

F f
y = Df sin(Cf + arctan(Bfαf))

F r
y = Dr sin(Cr + arctan(Brαr)),

where B, C, and D are parameters obtained experimentally and αf and αr are the slip angles
of the front and rear tires respectively:

αf = − arctan

(
ωlf + vy

vx

)
+ δ

αr = arctan

(
ωlr − vy
vx

)
.

The inertial-frame kinematic bicycle model has the state and input vectors:

x̄kin = [v, x, y, ψ]⊤, ūkin = [a, δ]⊤, (A.2)

and the continuous-time dynamics are written as:

v̇ = a,

ẋ = v cos(β(δ) + ψ),

ẏ = v sin(β(δ) + ψ),

ψ̇ = v sin(β(δ))/lr,

The inertial-frame dynamic bicycle model has the state and input vectors:

x̄dyn = [vx, vy, ω, x, y, ψ]
⊤, ūdyn = [ax, δ]

⊤,

and the continuous-time dynamics are written as:

v̇x = ax −
1

m
F f
y sin δ − cdvx + ωvy,

v̇y =
1

m
(F r

y + F f
y cos δ)− ωvx,

ω̇ =
1

Iz
(lfF f

y cos δ − lrF r
y),

ẋ = vx cosψ − vy sinψ,
ẏ = vx sinψ + vy cosψ,

ψ̇ = ω.

We obtain the discrete-time Frenet-frame dynamics fkin, fdyn, and inertial-frame dynamics
f̄kin, f̄dyn via 4-th order Runge-Kutta discretization with a time step of ∆t.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Thesis Outline and Contributions
	List of Publications

	Decentralized Learning Model Predictive Control for Multi-Agent Non-linear Systems
	Introduction
	Preliminaries
	Problem Formulation
	Properties of the Decentralized LMPC
	Multi-Vehicle Collision Avoidance
	Chapter Summary

	Distributed Learning Model Predictive Control for Multi-Agent Linear Systems
	Introduction
	Problem Formulation
	Background on LMPC
	DLMPC
	Distributed Synthesis for DLMPC
	Numerical Experiments
	Chapter Summary

	Hierarchical Predictive Control for Multi-Agent Systems
	Introduction
	Problem Formulation: Strategy-Guided Collision Avoidance
	Offline Learning of the Strategy Predictor
	Online Strategy Prediction and Control
	Simulation and Experimental Results
	Chapter Summary

	A Gaussian Process Model for Opponent Prediction in Autonomous Racing
	Introduction
	Problem Formulation
	Learning TV Behavior via Gaussian Processes
	Design of MPCC Racing Policy
	Results and Discussion
	Chapter Summary

	On the Solution of Game-Theoretic Equilibria for Autonomous Racing
	Introduction
	Related Work
	Problem Formulation
	An SQP Approach to Dynamic Games
	Numerical Robustness of Dynamic Game SQP
	The Dynamic Game SQP Algorithm
	Frenet-Frame Games for Autonomous Racing
	Numerical Study
	Chapter Summary

	Strategy Learning for Autonomous Racing using Game-Theoretic Equilibria
	Introduction
	Problem Formulation
	Learning a Game-Theoretic Value Function
	Closed-Loop Head-to-Head Racing Policy
	Results
	Chapter Summary

	A Discussion on Game-Theoretic Methods for Prediction and Planning
	Introduction
	Advantanges of a GNE Solver for Prediction and Planning
	Limitations of GNE Solvers for Prediction and Planning
	Going Beyond Stationary Open-Loop Dynamic Games via Learning
	Chapter Summary

	Conclusions
	Future Work

	Bibliography
	Vehicle Dynamics Models

