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Abstract

The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of

liquid water. One particular reason is that liquid water can collect in the gas diffusion layers

(GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport

losses.  At  higher  temperatures,  evaporation  of  water  becomes  a  dominant  water-removal

mechanism  and  specifically  phase-change-induced  (PCI)  flow  is  present  due  to  thermal
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gradients.  This  study  used  synchrotron  based  micro  X-ray  computed  tomography  (CT)  to

visualize and quantify the water distribution within gas diffusion layers subject to  a  thermal

gradient. Plotting saturation as a function of through-plane distance quantitatively shows water

redistribution, where water evaporates at hotter locations and condenses in colder locations. The

morphology of the GDLs on the micro-scale, as well as evaporating water clusters, are resolved,

indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the

mean radii of water distributions and visual inspection, it is observed that larger water clusters

evaporate faster than smaller ones.

Keywords: porous media, fuel cells, phase-change-induced flow, evaporation, X-ray tomography

1. Introduction

The performance of polymer-electrolyte fuel cells (PEFCs) and other multiphase flow technologies is 

significantly dependent on liquid-water management [1-4]. This is particularly true for PEFCs at low 

operating temperatures and during startup operations due to hindered reactant delivery by water in 

cathode [5-9]. Because of the exothermic oxygen reduction reaction (ORR) at the cathode, a thermal 

gradient develops during operation in the through-plane direction, with the hottest location in the 

catalyst layer (CL). At higher temperatures (~80 °C), this thermal gradient, in combination with the 

dependence of vapor pressure on temperature, promotes removal of water in a vapor form [1, 4, 5, 10-

13]. Water vapor within the CL travels through the gas diffusion layer (GDL) to the gas channels (GCs) 

(see Figure 1), where it condenses due to the decrease in temperature. This type of flow, which is due to 

the evaporation and condensation of water, is known as phase-change-induced (PCI) flow [4, 5, 14]. 

Wang and Wang [4] were the first study in the PEFC field to investigate this phenomenon using a multi-

dimensional model that incorporated electrochemical heat generation, phase-change, two-phase flow, 
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non-constant gas phase pressure, and the entire PEFC domains. By doing so, the authors in [4] also 

clearly identified the importance of thermal gradients as the driving force for PCI flow within the porous 

media of the fuel cell. Although water is removed in the vapor phase, depending on a PEFC’s operating 

temperature, a fraction of the total water has to still be removed in the liquid phase. Thus PEFCs 

experience two-phase water flow and, consequently, substantially coupled heat and mass transport. As 

such, effective water management requires an understanding of the interaction between 

pressure-driven, capillary-driven, and PCI water transport [4, 5]. Phase change is not a drive potential or 

force like pressure and capillary forces, however, the term “PCI” has become the common name in 

literature for heat-driven mass transport of water by evaporation and condensation in a temperature 

gradient.

Figure 1 Goes Here

The GDL is a porous fibrous component of PEFCs responsible for the transport of electrons, water 

byproduct, gaseous reactants, and heat [15]. It is made from carbon fibers which are assembled to form 

either nonwoven paper, woven cloth, or felt. With pores on the order of 10 μm, these materials have 

porosities typically ranging from 65 % to 90 % and thickness around 200 – 400 μm [16, 17]. Generally, 

cell compression influences the GDL’s structure [15] and performance during operation. Because carbon 

fibers are naturally hydrophilic, GDLs are typically treated with 5 – 20 % of polytetrafluoroethylene 

(PTFE). Due to non-uniformities in the coating, there is a mix of hydrophilic and hydrophobic pores, 

which causes the overall structure to possess mixed wettability [18, 19]. As with most porous media, 

heat and mass transport properties depend on local morphology in addition to bulk material properties.

Most scientific work concerning transport in porous media has been conducted in the fields of civil 

and petroleum engineering [20-24]. Although this provides a starting point, there are a number of 

notable differences between the systems studied in those fields and thin materials such as GDLs and CLs.
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It is necessary to re-examine each of the various transport mechanisms as they pertain to engineered 

systems [18]. To this end, much has already been accomplished for transport mechanisms guided by 

capillary, convection, and gravitational forces. Non-isothermal phenomena, on the other hand, remain 

an area that is not well researched [1, 5, 18]. Amongst existing non-isothermal studies, most do not 

address multiphase flow; let alone phase change [1]. Furthermore, those that do address multiphase 

flow are typically simulation-based [18] due to difficulties with an experimental approach [1].

Previous studies have shown PCI flow to be a significant contributor to overall water transport within

PEFCs. For instance, Weber and Newman [1], through use of one-dimensional simulations, showed that 

non-isothermal effects are significant when feed gas flows are or become saturated. According to their 

results, net evaporation/condensation accounts for only 2.6 % of overall heat generation within a fuel 

cell. However, the heat generated/consumed by each individually is approximately 100 times that of the 

net contribution. Additionally, their work shows that a thermal gradient of only a few degrees is required

across the GDL to completely remove product water from the CL, with larger thermal gradients needed 

at lower temperatures. As noted by Kumbur and Mench [18], the GDL provides one of the largest 

thermal resistances in a PEFC and therefore may experience a temperature gradient in excess of 5 °C. 

Kim and Mench [5] conducted an experimental study of PCI flow in which they tested various 

membrane-GDL combinations. It was found that PCI flow does dominate net water flux at high 

temperatures (80 °C). Furthermore, it was shown that incomplete saturation of the porous media is key 

to determining whether or not PCI flow will occur.

Over the last several years, there has been a significant effort in characterizing morphology and 

water distribution within the pores of the GDL by using X-ray computed tomography (CT) [25-32]. 

Micro-CT with a resolution of 1.3 μm is well fit to non-destructively visualize three-dimensional GDL 

structures and water filling of GDL pores [15, 27, 33]. Recent studies indicate that, during PEFC 
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operation, liquid water occupies less than 50 % [34] of the GDL pore volume because of the GDL’s 

hydrophobic treatments, and, in the absence of temperature gradients, capillary fingering is the 

predominant liquid-water-transport mechanism [32, 35]. Previously, X-ray CT was used to study the 

evaporation of water within GDLs under constant temperature. It was found that evaporation rates at 

water saturations higher than 10 % scale with the surface area of water and are diffusion limited [15].

In this study, a novel X-ray CT technique to explore PCI flow within a PEFC is presented. Coupled 

measurements of temperature, thermal gradients, and thermal conductivity are combined with 

visualizations of GDL morphology and water distribution. The overall results of this study contribute to 

the general understanding of evaporation phenomena in porous media pertaining to PEFCs.

2. Experimental

2.1. Sample Apparatus

A custom apparatus (Figure 2), was designed and fabricated to conduct the experiment at the 

synchrotron X-ray CT beamlines. The design aimed to control sample compression, temperature, 

temperature gradient, and water capillary pressure. The apparatus adheres to size restrictions for the 

two different X-ray CT beamlines where data was collected and achieves a balance between the needs 

for structural stability and an un-obstructed view of the sample. The sample sits inside a 

polyetheretherkeytone (PEEK) ring. Figure 2 shows a schematic of the experimental setup, its 

three-dimensional rendering, and photographs of the apparatus at the two synchrotron beamlines.

The upper portion of the apparatus consists of a PEEK support structure, nitrile-PVC tube insulation, 

stainless steel compression cap, stainless steel or aluminum piston, and copper water injection tube. The

piston serves as a thermal conductor and a water pathway to simultaneously heat and fill the sample 

with water. The compression cap allows the piston to be pressed against the sample so as to ensure 

5



proper contact. The lower portion of the apparatus consists of a PEEK support structure, nitrile-PVC tube 

insulation, stainless steel or aluminum piston, and copper water cooling coil. The lower piston serves as a

thermal conductor to remove heat from the sample. With regards to the upper and lower pistons, 

stainless steel was used for the initial data set. However, due to the low thermal conductivity of stainless 

steel, aluminum was used for further experiments. See Table 1 for general specifications of the 

components mentioned. K-type thermocouples (product number 5TC-TT-K-30-36 from OMEGA 

Engineering Inc., Norwalk, Connecticut, USA) were attached to both pistons (two each) (see Figure 3c for 

positions) with the leads running between the side of the pistons and a small channel in the inner wall of

the PEEK supports. A Ø3 mm cartridge heater (product number HT15W from Thorlabs Inc., Newton, New

Jersey, USA) was concentrically inserted through the compression cap and into the top of the upper 

piston. Lastly, three Nylon thumb screws hold the upper support, sample ring, and lower support 

together. No sealant was used between the sample and the apparatus. This was intentionally done to 

minimize the possibility of unintended stress on the sample, interference with imaging, and intrusion 

between GDL layers. It is important to note that use of a sealant could have interfered with the water 

distribution in the sample due to the sealant’s hydrophobic nature. This is critical as the field of view is 

limited to, at most, a diameter of 4.4 mm (see section 2.2). Furthermore, the absence of a sealant 

allowed water vapor to exhaust without the need for a dedicated exit.

Figure 2 Goes Here

Table 1. General specifications for apparatus parts. Some dimensions have been converted from US

customary units.
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Part Material General Dimensions
sample ring PEEK 5 OD × 4 ID × 2 mm

upper
support PEEK

main: Ø40 × 45 mm
flange: Ø50.8 × 4 mm

lip: 5 OD × 4 ID × 1 mm
lower

support PEEK main: Ø40 × 45 mm
flange: Ø50.8 × 5 mm

upper piston
304 stainless steel

Ø4 × 40 mm
6061 aluminum

lower piston
304 stainless steel upper: Ø4 × 50.5 mm

lower: Ø25.4 × 51.1 mm6061 aluminum

cooling coil copper tube: 6.4 OD × 3.9 ID mm
coil: 25.4 mm ID, 6.4 mm pitch, 4.5 turns

water
injection

tube
copper 3.2 OD × 1.5 ID × 76.2 mm

compression
cap

304 stainless steel overall: 10 OD × 3.2 ID × 30 mm
threaded bottom: M10×1.5 × 15 mm

thumb
screws

Nylon #6-32 × 1 in. (cut to length)

tube
insulation

Nitrile-PVC 9.5 mm thick
k = 0.036 W m-1 K-1

2.2. Beamlines

X-ray tomographic microscopy imaging was conducted at two different beamlines. The first set of 

experiments was carried out at Beamline 8.3.2 of the Advanced Light Source (ALS) at Lawrence Berkeley 

National Laboratory (LBNL), Berkeley, CA, USA. A second set of this experiment was conducted at 

Beamline 2-BM-A of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), Lemont, 

IL, USA. The data presented in this manuscript is a subset of that from ALS. The other data from ALS will 

be presented with the data from APS in a future manuscript.

2.2.1. ALS

Image acquisition was conducted using a 500 μm LuAG scintillator, 5x lenses, and a sCMOS PCO. 

Dimax camera. This resulted in 2.2 μm cubic voxels and a horizontal field of view (FOV) of 4.4 mm. A 
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double-multilayer monochromator was used to select a beam energy of 22 keV. Each scan was 

performed over a rotation range of 180° with 1025 projections and an exposure time of 40 ms.

2.2.2. APS

Image acquisition was conducted using a 20 μm LuAG scintillator, 5x lenses, and a sCMOS PCO. Edge 

camera. This resulted in 1.33 μm cubic voxels and a horizontal FOV of 3.3 mm. A double-multilayer 

monochromator was used to select a beam energy of 25 keV. Each scan was performed over a rotation 

range of 180° with 1500 projections, an exposure time of 50 ms, and a total scan time of 3 minutes.

2.3. Materials and Setup

SGL10BA (SGL CARBON GmbH - Fuel Cell Components, Meitingen, Germany) was used as the GDL 

sample in this study. This sample was chosen because it was previously well studied with X-ray CT [15, 

32] and is easy to handle. In order to obtain a larger thermal gradient, the sample consisted of a stack of 

two GDLs. Water capillary pressure was controlled by attaching a flexible tube to the water injection tube

and then adjusting the water column height to 2 – 3 cm. Water vapor was exhausted from the apparatus 

through the unsealed interfaces between the sample ring and the PEEK supports. After water injection 

and before each tomography scan, temperatures and heat flux were recorded. The scans were timed to 

have these measurements every 13 minutes. For each heat flux, 4 – 5 measurements and scans were 

done; after which the heat flux was increased by stepping the voltage to the heater by 1 V on the power 

supply. Data collection for a given case was stopped when water completely evaporated within the GDL 

(as observed with X-ray CT scans). Each case lasted 50 – 200 minutes. Cooling was accomplished by using

flexible tubing to connect the cooling coil to a refrigerated water bath. Temperature data was obtained 

through use of a thermocouple data acquisition board (product number IPDAS TC from CyberResearch 
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Inc., Branford, Connecticut, USA). Temperature drops across the apparatus ranging from 15 °C to 28 °C 

were generated by adjusting the voltage applied to the resistive heater. The setup was insulated resulting

in negligible heat escape through the top and sides of the PEEK, ensuring one-dimensional heat 

transport through the sample.

2.4. Image Processing

2.4.1. Data Reconstruction

For data from ALS, preprocessing was conducting using Fiji/ImageJ [36]. This was followed by the 

Modified Bronnikov Algorithm (MBA) to retrieve phases and reconstruction using Octopus 8.6 [37]. For 

APS data, all steps of reconstruction were conducted using the TomoPy package (version 0.1.15) for 

Anaconda/Python. First the sinograms were normalized to the white and dark field projections. Then 

they were normalized to the background intensity using a scaling factor based on 10 pixels from the right

boundary and another 10 pixels from the left boundary. Horizontal stripes were removed using the 

sym16 wavelet filter with 10 discrete wavelet transform levels and a Fourier space damping parameter of

1. For the actual reconstruction, the Gridrec algorithm was applied [38].

2.4.2. Segmentation and Results Collection

Post  reconstruction  processing  was  conducted  using  Fiji/ImageJ  [36].  All  images  were

cropped to include the region of interest but exclude the significant reconstruction artifacts along

the edges. Separation of three phases (voids, fibers, and water) was obtained through use of a dry

reference image for each sample. For these reference images, voids and fibers were separated

using the Otsu algorithm. For images of saturated samples, manual threshold determination was
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used to separate voids from fibers and water. Manual thresholding was conducted by setting

various thresholds and the visually judging the balance between retaining water and removing

fibers. The corresponding reference image was then subtracted from the sample image to isolate

water. Next, ImageJ’s “Open” operation (erosion followed by dilation) was used to remove noise

from the images of the isolated phases. The operation was repeated 8 times for ALS data and 6

times for APS data. These numbers of iterations were determined by testing multiple numbers of

iterations and then selecting those that visually provided the best balance between removing

fibers and retaining water. In both cases, the minimum neighbor count was 4. See “Supplemental

Information” section 4 for a sample image at various stages in this process.

Through-plane porosity was determined by counting the number of background pixels in the 

reference image. This was done separately for each slice; thus corresponding to depth into the GDL. 

Through-plane water volume fraction was determined in a similar manner but using the isolated water 

images. The through-plane saturation was then calculated from the porosity and water content data. 

Both pore size distributions and water cluster size distributions were determined using the Local 

Thickness plug-in [39]. Local Thickness utilizes sphere fitting and assigns a pixel value equal to the radius 

of the largest sphere whose domain contains the pixel. Classification of pore/water cluster shape was 

conducted using the ellipsoid factor (EF) method [40] from the BoneJ plug-in [41]. The EF method utilizes

ellipsoid fitting to calculate an index (see “Supplemental Information” section 3.3 for details; Figure S5 

provides example ellipsoids) used to classify pores/clusters according to shape.

3. Calculations

3.1. Thermal Conductivity
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Assuming one-dimensional heat flow though the setup, heat flux and temperature are coupled by

the following formulation of Fourier’s Law.

q=−k
∆T
∆ x (1)

where q is heat flux per unit area, k is thermal conductivity, ΔT is temperature difference, and Δx

is position difference. Thermal resistance, R [K W-1], can be used to rearrange Equation (1) as

follows were Q is heat flux and A is cross-sectional area:

∆T=−QR (2)

R=
∆ x
kA

=
−∆T
Q (3)

 Figure 3 Goes Here

Figure 3c  shows  relevant  temperature  locations.  Taking  T3/T4 to  be  at  0 mm  along  their

respective pistons, T2/T5 are at 5 mm and T1/T6 are at 15 mm. T6 is at 10 mm for the lower steel

piston. T1, T2, T5, and T6 correspond to thermocouple readings while T3 and T4 correspond to

extrapolated temperatures.  Using the  thermal  resistance  network  in  Figure 3a,  the  following

equation  can  be  derived  where  Rtot is  the  resistance  calculated  using  Ttop and  Tbot,  the

temperatures at the tips of the top and bottom pistons respectively. Note that R cont, top, Rsamp, Rcont,

bot, and RPEEK are the thermal resistances of contact at the top of the sample, the sample itself,

contact at the bottom of the sample, and the sample ring respectively.
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1
R tot

=
1

Rcont ,top+R samp+Rcont ,bot

+
1

RPEEK
(4)

Rsamp=
1

1
Rtot

−
1

RPEEK

−Rcont , top−Rcont , bot

(5)

Combining Equation (3) and Equation (5, Equation (6 can be derived and solved for the GDL

thermal conductivity:

∆ xsamp

ksamp A samp

=
1

Qtot

T top−T bot

−
k PEEK APEEK

∆ xPEEK

−R cont ,top−R cont ,bot
(6)

k samp=
∆ xsamp

A samp(
1

Qtot

T top−T bot

−
k PEEK APEEK

∆ xPEEK

−Rcont ,top−R cont ,bot ) (7)

where  Δxsamp is  sample  thickness,  ksamp is  sample  thermal  conductivity,  Asamp is  GDL

cross-sectional  area,  Qtot is  total  heat  flux  through  the  apparatus,  ΔxPEEK is  the  PEEK ring

thickness (approximately same as GDL thickness), kPEEK is the thermal conductivity of PEEK,

and APEEK is the cross-sectional area of the PEEK ring. By assuming no significant inductive or

capacitive effects, use of a resistive heater allows for the following equation to be used. R heater is

the resistance of the heater and Vheater is the voltage across the heater’s leads.
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Qtot=
V heater

2

Rheater
(8)

The contact resistances are estimated using data from [42] along with the following equation:

Rcont=
rcont
A cont

(9)

where rcont is the value as provided by [42] and Acont is the simple geometric area of the contact

surface.  The  thermal  conductivity  of  the  sample  can  then  be  determined  by  applying

Equation (7), Equation (8), and Equation (9) using the data summarized in Table 2.

Table 2. Values used to compute thermal conductivity of the GDL.

Parameter Value Units Method of Acquisition

Δxsamp 482.6 μm Average calculated using visual selection of surfaces in 
tomogram

Asamp 12.57 mm2 Assumed same as Acont, bot

Vheater Various V Power supply readout

Rheater 38.4 Ω
Average calculated using power supply current and voltage 
readouts

Ttop Various °C Linear extrapolation along heated piston
Tbot Various °C Linear extrapolation along cooled piston
kPEEK 0.25 W m-1 K-1 Common value provided by multiple suppliers

APEEK 7.1 mm2 Calculated from caliper measurements of inner and outer 
diameters

ΔxPEEK 482.6 μm Assumed same as Δxsamp

rcont, top 7.2 × 10-4 m2 K W-1 From data in [42]
Acont, top 12.57 mm2 Estimated same as Acont, bot

rcont, bot 0.45 × 10-4 m2 K W-1 Linearly extrapolated from data in [42]
Acont, bot 12.57 mm2 Calculated from design diameter

3.2. Water Vapor Flux

13



In order to compare results to previous literature, it is necessary to first define tortuosity, τ. This

study uses the definition put forth in [43]:

τ=
Le

L (10)

where Le is  the  diffusion path  length  and L is  the  Euclidean distance  of  the  diffusion path.

Corresponding to this definition of tortuosity, effective diffusivity, Deff, is defined as:

Deff=
εD

τ2 (11)

where D is diffusivity and ε is porosity [43]. The water vapor flux, J, is calculated using:

J=
−D eff

R s

d (P sat

T )
dT

∇T (12)

from  [5] where Rs is  the specific  gas constant  of  water,  Psat is saturation pressure,  and T is

temperature in Kelvin. [5] also provides a means of calculating diffusivity:

D=Do( TT o )
n Po

P (13)

where Do is diffusivity at reference absolute temperature, To, and reference pressure, Po; n is a

fitting  parameter;  and  P  is  pressure.  By  combining  Equation (11),  Equation (12),  and
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Equation (13);  maintaining  the  assumption  of  one-dimensional  heat  flow;  and  discretizing

differentials, water vapor flux can be expressed as:

J=
−M Do ε Po

Ru τ
2P ( TT o

)
n ( Psat , air ,top

T top

−
Psat , air, bot

T bot
)

∆ xsamp
(14)

where M is the molar mass of water, Ru is the universal gas constant, Psat,air,top and Psat,air,bot are

saturation pressures in air at the top and bottom of the sample respectively, and temperatures are

in Kelvin. According to [44], saturation pressure, over the temperature range of 0 °C to 100 °C,

is given by:

Psat , air=f Psat , vap≈P sat , vap=611.21e
17.123 T
T+234.95 (15)

where  f  is  the  enhancement  factor  (~1),  Psat,vap is  saturation  pressure  in  water  vapor,  and

temperature is in Celsius.

Table 3. Values used to predict water vapor flux.

Parameter Value Units Source
Do 2.26  10∙ -5 m2 s-1 [5]
Po 1 bar [5]
P 1 bar assumed
T 0.5  (T∙ top + Tbot) K experiment data
To 273.15 K [5]
n 1.81 - [5]

τ2  ε∙ -1 1.5 - [5]
τ2 1.5 - [15]
ε1 0.84 - [15]
ε2 Various - experiment data
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4. Results and Discussion

4.1. Thermal Considerations

Figure 4 shows mean temperature of the GDL, temperature drop across it, and calculated thermal 

conductivity as a function of heat flux. Per each heat flux value, multiple measurements are shown. 

These are measurements for different times as plotted by Figure 5. Figure 4a-b clearly show the same 

trends observed in Figure 5a-b. As heat flux increases, so does the mean temperature of the sample. On 

the other hand, the temperature drop does not show a clear trend. Figure 4c shows a gradual decrease 

in thermal conductivity with increasing heat flux. At higher heat flux values, liquid water saturation 

decreases until complete dryout; thus, at lower heat flux values, there is a higher content of liquid water 

in the sample. Since water’s thermal conductivity is about 20 times higher than that of air, net thermal 

conductivity is slightly higher at low heat flux values due to increased saturation. This observation is 

consistent with previous studies where higher thermal conductivities were observed for saturated 

samples due to water having a higher thermal conductivity than air and providing better fiber to fiber 

connectivity [45]. The reason such a small decrease in thermal conductivity was observed in this study is 

that, at all points, saturation levels were relatively low (< 0.2 compared to 0.4 – 0.7).

Figure 4 Goes Here

Figure 5a shows various temperatures as a functions of time with vertical dashed lines indicating a 

point in time for water injection. This plot also shows a gradual increase in the mean temperature with 

time roughly from 40 °C to 50 °C. Different marker symbols correspond to the heat fluxes shown in

Figure 4. While the increase can be attributed to increases in heat flux, Figure 4a shows that this occurs 

even when the heat flux is kept constant. The simplest explanation for this is that the system is in a 

pseudo-steady state. Figure 5b shows the temperature drop over the sample. The temperature drop 
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remains relatively constant, around 8 °C. Unlike the mean temperature, the temperature drop for a given

heat flux fluctuates. More specifically, the time data (Figure 5b) shows that the temperature drop tends 

to increase directly after an increase in heat flux and then decrease with time. At first, this seems like 

random fluctuations. Further consideration presents the possibility that this may be the combined result 

of a thermal “response time” and evaporation/condensation. Figure 5c shows near-zero saturation 

approaching the moment of water injection. Since evaporation/condensation is the proposed 

mechanism of heat transport, it is reasonable to assume that low saturation would hinder heat transport

and thus prevent equalization of the sample’s face temperatures. Consistent with this proposed 

mechanism, the injection of water at 187 minutes corresponds to a significant increase in saturation 

(Figure 5c) and the onset of decreasing temperature drop (Figure 5b). As such, this behavior appears to 

verify the importance of PCI flow.

Overall (volume-average) saturation (Figure 5c) does not experience a substantial decrease until a 

time of 143 minutes. The first two measurement points were collected as the system was equilibrating 

and were excluded from the analysis. The particular scan at which evaporation appears to dramatically 

increase corresponds to a mean temperature of 49 °C and a temperature drop of 7.4 °C. This point 

divides the apparent regimes of slow and fast evaporation, which is discussed in detail in section 4.4 of 

this manuscript. After the second injection of water at 173 minutes, the dryout of the GDL occurred 

within 50 minutes. This was because a high heat flux of 225 kW m-2 was supplied; causing high 

evaporation rates. The “slow” evaporation regime persisted for only 30 minutes compared to more than 

100 minutes for the first water injection where lower heat fluxes were applied. Given the estimated 

errors (see “Supplemental Information” section 2.2), thermal conductivity remains approximately 

constant at 0.68 W m-1 K-1 (about two times that of the dry GDL [42]) as shown by Figure 5d. However, 

there is a consistent slight decrease in thermal conductivity shortly after water injection.
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Figure 5 Goes Here

4.2. Through-plane Saturation

Figure 6 shows the through-plane saturation and GDL porosity corresponding to representative data 

points from 53 to 157 minutes in Figure 5; where 0 μm is the top piston (hot location). The apparent 

sharp decreases in porosity at the top and bottom of the sample are caused by the fact that the sample 

and the apparatus are not perfectly level. Consequently, the top and bottom slices of the image stack 

begin to capture portions of the pistons; which appear as solid material when segmented. Also, the 

possible cause of the saturation increase from 400 μm to the bottom of the sample (~445 μm) is the 

collection of water due to the lack of a sufficient exit path. The water distribution at time 53 is 

equilibrated water distribution after liquid water injection. Figure 6a clearly shows a decrease in 

saturation with time in all GDL locations, particularly near the hot piston, until complete dryout at time 

of 157 minutes. Figure 6b shows each saturation data set normalized to its own volume average (see 

“Supplemental Information” section 5). Essentially, this adjusts each data set such that they may be 

compared as if taken at the same overall saturation, i.e., the liquid-water content remains unchanged for

all heat flux and time series. If liquid-water content stays the same within the enclosed volume, it can 

only spatially change and redistribute. This water redistribution is clearly seen in Figure 6b where 

significant evaporation and a decrease in saturation is observed with time at the GDL’s hot side and 

condensation of water is observed 305 μm into the GDL, close to the cold piston. Since it appears that 

most condensation has occurred by a distance of 305 μm into the sample, it is reasonable to expect that 

capillary-driven flow would be the dominant mechanism for water transport from 305 μm to the bottom 

of the sample (~445 μm). The saturation in the middle of the GDL remains unchanged. This behavior is 

consistent with what would be expected from PCI flow.
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Figure 6 Goes Here

4.3. Evaporation of Water Clusters

Figure 7 shows volume-rendered images of the GDLs corresponding to the data in Figure 6. These 

images aid in visualizing the changes described by numeric data. The time sequence is described from 

the left (t = 53) to the right (t = 157). The dramatic change between the last two time steps corresponds 

to the “rapid” evaporation shown in Figure 5c. The shift towards smaller water clusters, as will be 

explained by Figure 8a, is also noticeable. Furthermore, looking at the gray-scale cross-section 

tomographs of the GDL near the hot location (Figure 7c), fast evaporation, primarily that of large water 

domains, is observed. This is perhaps due to larger surface area of water droplets, which is exposed as an

evaporation front. From the cross-section tomographs near the cold location of the GDL (Figure 7d), 

water redistribution is observed with almost no evaporation in the first three images and complete 

dryout in the last image.

Figure 7 Goes Here

Through-plane saturation data is useful for determining the amount of water present. However, it 

does not provide any insight with regards to cluster geometry. For this, it is desirable to know both the 

size and the shape of the water clusters as well as compare the cluster geometry to that of the pores. 

Precisely defining the geometry of each pore/cluster is unrealistic and does not add much value. As such,

sphere and ellipsoid fitting (described in “Supplemental Information” section 3.3) may be used to group 

clusters by similar geometric properties. The collection of these groups can then be represented as a 

discrete probability density function (PDF) relative to the total pore/cluster volume. Figure 8 shows the 

size and EF distributions corresponding to the data in Figure 6 (see Figure S4 for PDFs as functions of 

both size and EF). Plotting the distributions with respect to time visually demonstrates the impact of 

evaporation. As seen from the size distributions, the water clusters start with a distribution similar to 
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that of the pores. However, as evaporation occurs, water distributions shift towards smaller cluster sizes. 

This can be due to evaporation of larger clusters or breaking of large clusters into smaller ones. Also note

that the initial size distribution is already biased towards smaller clusters. For radii smaller than 20 μm, 

water clusters favor the smallest size possible while pores have peak radii around 10 μm and no 

observable peak at a lower radius. Although this is visible in Figure 8a, it is more clearly shown in 

Figure S3c. During evaporation, this preference for forming the smallest clusters possible persists in 

addition to an overall distribution shift towards smaller radii (from 19.9 μm to 14.5 μm at 0 minutes and 

90 minutes, respectively). 

For cluster shape, the EF distributions show a preference for negative EF values. This corresponds to 

oblate water clusters. In contrast, the pore shapes show a preference for prolate ellipsoids. In either 

case, the mean EF values are close to zero. A trend worth noting is that the magnitude of the mean EF 

values for water clusters decrease with time (evaporation). This indicates that water cluster shapes 

become less oblate as evaporation occurs, even though the slight tendency towards oblate shapes 

remains.

Figure 8 Goes Here

4.4. Regional Saturation and Local Evaporation

Figure 9 divides the GDL into 3 regions equally spaced in the through-plane direction (top, middle, 

and bottom) with dashed lines indicating when additional water was injected. From the average 

saturation data (Figure 9a), it can be seen that the top (hot) region of the GDL contains noticeably less 

water than the middle and bottom (cold) regions. Another interesting trend occurs prior to the 

significant decrease in saturation. In the time between 53 minutes and 143 minutes, which is the “slow” 

evaporation regime, the top experiences the highest evaporation rate while the bottom experiences the 

lowest evaporation rate. This is due to the fact that the top is at a higher temperature than the bottom of
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the GDL and confirms the PCI-flow observation. Figure 9b shows that the behavior of the mean water 

cluster radius is similar to that of the average saturation. This is what one would expect given that Figure 

6a shows a decrease in saturation with time and Figure 8a shows a decrease in mean pore radius with 

time.

Figure 9 Goes Here

The saturation data in Figure 9a shows the same type of behavior as the overall saturation data 

(Figure 5c); primarily, there is a sudden increase in the saturation reduction rate at 143 minutes. As 

mentioned while discussing Figure 5c, this suggests two regimes of evaporation. However, identifying the

first regime (53 minutes to 143 minutes) as the slow regime is actually incorrect. To understand why, it is 

important to refer back to the experimental setup. Recall that additional tubing was attached to the 

water injection tube. This additional tubing was then filled with water to achieve a specific water column

height and, in doing so, control capillary pressure. Also, the tomographic scans were taken at each heat 

flux until the water in the GDL was completely evaporated. This, as observations confirm, means that the

entire contents of the water column has also been evaporated as it entered the GDL. The reason is that, 

while water in the GDL is evaporated, the water column provides a reservoir from which replacement 

liquid water is taken. Therefore, two regimes do exist; one in which evaporated water is replaced due to 

the reservoir and another in which it is not because the reservoir has been depleted. These two cases 

are depicted in Figure 9c-d respectively. Since liquid water is replaced during the first regime, this 

decouples the evaporation and saturation reduction rates. In order to determine the evaporation rate, 

the rates of saturation reduction and reduction in water column height must be combined. Table 4 shows

the calculated evaporation rates assuming that the water column becomes depleted at 143 minutes. 

From this data, the first regime is the one that experiences a higher (2 orders of magnitude) evaporation 

rate. This is due to large saturation and evaporating surface area of water, as well as a substantial 
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amount of water in contact with the hot piston, thus evaporating at faster rates. Lower evaporation rates

in the second regime are due to much lower saturation values and evaporating surface areas of water; 

moreover at these low saturations water is in contact primarily with the cold piston.

Table 4. Evaporation rates and equivalent current densities for time spans with and without a reservoir of

water for the whole GDL.

15 mm Resevoir 30 mm Resevoir No Resevoir

Evaporation Rate
10-3 kg m-2 s-1 2.53 3.68 0.0215

Equivalent Current Density
A cm-2 2.71 3.94 0.0230

Given that liquid water is produced during PEFC operation, and at constant current density is 

injected into the GDL, the first evaporation regime is an accurate reflection of operating conditions. 

However, the second regime can be applicable during the cell purge at shutdown, where irreducible 

water saturation needs to be removed from the cell, there is no water production, and the gas phase is 

no longer at 100% RH. Figure 10 shows the evaporation rates predicted by Equation (14) using the 

experimental temperature values. The results are on the same order of magnitude as those predicted by 

the previous study, where the authors used full fuel cell hardware and a theoretical model [5]. Small 

variations in water flux are observed with varied values of tortuosity.

Figure 10 Goes Here

5. Conclusion

X-ray computed tomography (CT) and a custom sample apparatus were used to examine 

phase-change-induced (PCI) flow within SGL10BA. A thermal gradient was imposed on the stack of two 
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GDLs and water was injected to emulate the operating conditions within a polymer-electrolyte fuel cell 

(PEFC). Once a pseudo-steady thermal state was reached, the sample was scanned 4 – 5 times per heat 

flux chosen to collect the necessary tomographic data. Tomographic scans were conducted at several 

heat flux values with the intent of subjecting the sample to various mean temperatures and temperature

gradients.

Because data was collected while the system was in a pseudo-steady thermal state, there is a 

continuous gradual increase in mean temperature even when the applied heat flux does not change. The

temperature drop across the stack of two GDL samples was 8 °C. The apparent thermal conductivity of 

the GDL decreased slightly with decreasing saturation. Even near 0 saturation, the thermal conductivity 

of the sample remained almost double that of a dry GDL. This presents an opportunity for future 

research. Error calculations (see “Supplemental Information” section 2.2) show that the most significant 

source of error is the uncertainty in the contact resistivities between the metal pistons and the sample.

From area-averaged saturation plots in the through-plane GDL direction, it is evident that water near

the top of the GDL (hot location) evaporates at a faster rate compared to water at the bottom of the GDL

(cold location). Consideration of water cluster size and shape reveal how the geometry of the water 

clusters change during evaporation. The initial water size distribution closely follows that of the pore size 

distribution. As time progresses and more water clusters evaporate, the mean radius of the water 

clusters decreases from 19.9 μm to 14.5 μm; more than 5 μm. Furthermore, a large peak in water 

distribution is observed for very small water cluster sizes. From the ellipsoid factor (EF) data, voids have a

slight tendency to be prolate while water clusters have oblate shapes.

The saturation data for the sample as a whole shows a point at which a dramatic increase in the 

saturation reduction rate occurs. This suggests that there are two regimes of evaporative water 

transport; one representing PEFC operation and the other potentially representing cell purge. The first 
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regime actually experiences a higher evaporation rate even if saturation decrease is slow. This is due to 

the presence of a water reservoir during the first regime. Because water is produced during PEFC 

operation, it is expected that this first regime reflects operating PEFC conditions. Net water vapor flux 

per kg of water was calculated and it agrees well with previous experimental studies. The follow-up 

study will explore PCI flow under a larger window of temperatures and temperature gradients and with 

various GDLs.

6. Symbols

Symbol  Explanation, Units
q’’ heat flux [W m-2]
k thermal conductivity [W m-1 K-1]

ΔT temperature difference [K]
Δx position difference [m]
Q heat [W]

R
thermal resistance [K W-1]
electrical resistance [Ω]

A cross-sectional area [m2]
T temperature [K]
V direct current voltage [V]
r thermal resistivity [m2 K W-1]
τ tortuosity [-]
Le diffusion path length [m]
L Euclidean diffusion path length [m]
D diffusivity [m2 s-1]
ε porosity [-]
J water vapor flux [kg m-2 s-1]

Rs specific gas constant [J kg-1 K-1]
P pressure [Pa]
n fitting parameter [-]
Ru universal gas constant [J mol-1 K-1]
M molar mass of water [kg mol-1]
f enhancement factor [-]
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Figure 1. a) Cross-section of PEFC and b) PCI flow schematic with transport processes shown.
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Figure 2. Experimental setup a) computer-aided-design (CAD) cross-section view identifying various

components, b) CAD shaded view, c) CAD overall dimensions, d) setup at LBNL ALS Beamline 8.3.2, and

e) setup at ANL APS Beamline 2-BM-A.
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Figure 3. a) Resistance network used to estimate thermal conductivity. b) Rotated apparatus and c)

cut-out with temperature locations shown.

Figure 4. a) Mean temperature, b) temperature drop, and c) thermal conductivity of the sample as

functions of heat flux, q. Marker shapes group data by heat flux.
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Figure 5. a) Measured and calculated temperatures for the apparatus and sample. b) Temperature drop

over the sample. c) Saturation of the sample with a fit (blue line) indicating evaporation when water

reservoir was connected to the sample and a fit (red line) indicating evaporation without water reservoir

(see section 4.4). d) Thermal conductivity of the sample. All plots are with respect to time, t. Dashed

lines indicate times at which more water was introduced. Marker shapes group data by heat flux (see

Figure 4).
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Figure 6. a) Saturation of the sample in through-plane direction and b) saturation normalized to each

image stack’s own volume-average saturation. The hot (top) face of the GDL is the origin. Different lines

represent different instances in time. Sample porosity is indicated in black.
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Figure 7. Time series of a) 3D volume-rendered water clusters and b) 3D volume-rendered water clusters

with fibers/PTFE. The top of the volume rendering is the hot side of the sample and the bottom of the

rendering is the cold side. c) Gray-scale in-plane cross-section near top and d) gray-scale in-plane

cross-section near bottom, both corresponding to parts a and b. Fibers, PTFE, and water are light gray

while pores are dark gray.
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Figure 8. Time series of water cluster a) size distribution (Local Thickness) and b) ellipsoid-factor (EF)

distribution. In both plots, the data set colored red is for the pores of the dry sample. Mean values are

labeled for each data set.
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Figure 9. a) Volume-average saturation with a fit (blue line) indicating evaporation when water reservoir

was connected to the sample and a fit (red line) indicating evaporation without water reservoir. b) Mean

water cluster size (radius) as a function of time. Data is split into thirds by equal spacing along the

through-plane direction. Dashed lines indicate times at which more water was introduced. Marker

shapes group data by heat flux (see Figure 4). c-d) Show (not to scale) the two different evaporation
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cases; with and without a water reservoir respectively. e-f) Gray-scale images obtained from

reconstructing data for dry and wet samples respectively. These images are labeled to show the top,

middle, and bottom regions referred to in a-b. Fibers, PTFE, and water are light gray while pores are dark

gray.

Figure 10. Water vapor flux (left axis) and equivalent current density (right axis) for the entire GDL, as

predicted by Equation (14). Circles correspond to the tortuosity-porosity value provided by [5], triangles

correspond to the tortuosity and porosity (ε1) values provided by [15], and squares correspond to the

tortuosity provided by [15] combined with the porosity (ε2) values determined in this experiment.

Dashed lines indicate times at which more water was introduced.
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