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Abstract

Classical simulation of quantum many-body systems

by

Yichen Huang

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Classical simulation of quantum many-body systems is in general a challenging problem
for the simple reason that the dimension of the Hilbert space grows exponentially with the
system size. In particular, merely encoding a generic quantum many-body state requires an
exponential number of bits. However, condensed matter physicists are mostly interested in
local Hamiltonians and especially their ground states, which are highly non-generic. Thus,
we might hope that at least some physical systems allow efficient classical simulation.

Starting with one-dimensional (1D) quantum systems (i.e., the simplest nontrivial case),
the first basic question is: Which classes of states have efficient classical representations? It
turns out that this question is quantitatively related to the amount of entanglement in the
state, for states with “little entanglement” are well approximated by matrix product states
(a data structure that can be manipulated efficiently on a classical computer). At a technical
level, the mathematical notion for “little entanglement” is area law, which has been proved
for unique ground states in 1D gapped systems. We establish an area law for constant-
fold degenerate ground states in 1D gapped systems and thus explain the effectiveness of
matrix-product-state methods in (e.g.) symmetry breaking phases. This result might not be
intuitively trivial as degenerate ground states in gapped systems can be long-range correlated.

Suppose an efficient classical representation exists. How can one find it efficiently? The
density matrix renormalization group is the leading numerical method for computing ground
states in 1D quantum systems. However, it is a heuristic algorithm and the possibility that
it may fail in some cases cannot be completely ruled out. Recently, a provably efficient
variant of the density matrix renormalization group has been developed for frustration-free
1D gapped systems. We generalize this algorithm to all (i.e., possibly frustrated) 1D gapped
systems. Note that the ground-state energy of 1D gapless Hamiltonians is computationally
intractable even in the presence of translational invariance.

It is tempting to extend methods and tools in 1D to two and higher dimensions (2+D),
e.g., matrix product states are generalized to tensor network states. Since an area law for en-
tanglement (if formulated properly) implies efficient matrix product state representations in
1D, an interesting question is whether a similar implication holds in 2+D. Roughly speaking,
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we show that an area law for entanglement (in any reasonable formulation) does not always
imply efficient tensor network representations of the ground states of 2+D local Hamilto-
nians even in the presence of translational invariance. It should be emphasized that this
result does not contradict with the common sense that in practice quantum states with more
entanglement usually require more space to be stored classically; rather, it demonstrates
that the relationship between entanglement and efficient classical representations is still far
from being well understood.

Excited eigenstates participate in the dynamics of quantum systems and are particularly
relevant to the phenomenon of many-body localization (absence of transport at finite tem-
perature in strongly correlated systems). We study the entanglement of excited eigenstates
in random spin chains and expect that its singularities coincide with dynamical quantum
phase transitions. This expectation is confirmed in the disordered quantum Ising chain using
both analytical and numerical methods.

Finally, we study the problem of generating ground states (possibly with topological or-
der) in 1D gapped systems using quantum circuits. This is an interesting problem both in
theory and in practice. It not only characterizes the essential difference between the entan-
glement patterns that give rise to trivial and nontrivial topological order, but also quantifies
the difficulty of preparing quantum states with a quantum computer (in experiments).
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Chapter 1

Introduction

1.1 Motivation and background

The main object of study in condensed matter physics is quantum many-body systems, i.e.,
a system of a very large (or even an infinite) number of particles (or spins) governed by the
laws of quantum mechanics. In addition, particles are usually arranged in a regular lattice,
and they typically have short-range interactions. Such a situation gives rise to the notion of
a local Hamiltonian. A local Hamiltonian is a Hermitian operator of the form H =

∑
iHi,

where each term Hi acts non-trivially only on a small constant number of particles. Although
H is a matrix of dimension exponential in the system size, its description in terms of each
individual term is efficient because there are at most a polynomial number of terms.

The goal is to study the physics of local Hamiltonians. Besides the time evolution (gov-
erned by the Schrodinger equation) and thermal properties (described by the canonical
ensemble), the ground state (i.e., the eigenvector of H with the smallest eigenvalue) is of
the most fundamental interest, as it is the state of matter when the system is cooled to
zero (or very low compared to the energy gap) temperature. For instance, one might wish to
estimate the ground-state energy (i.e., the smallest eigenvalue of H) or to compute two-point
correlation functions for the ground state. Indeed, the ground states of local Hamiltonians
can exhibit a variety of exotic phases of matter including the quantum Hall effect and the
high-temperature superconductors. Thus, understanding the physics of local Hamiltonians
is an essential step towards designing new, advanced materials with desirable properties.

This dissertation studies local Hamiltonians (mostly) with a classical computer. Given a
local Hamiltonian H, we ask questions such as:
1. Can objects of interest, especially the ground state ofH, be represented by a space-efficient
data structure? Can physical properties be efficiently extracted from such a space-efficient
data structure?
2. Is there an efficient algorithm for finding such a space-efficient (classical) representation?
3. Can we quantify the hardness of determining certain properties of local Hamiltonians by
establishing connections to computational complexity theory?
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As a side remark, an efficient algorithm to a physicist typically means a heuristic algo-
rithm that is fast in practice, while an efficient algorithm to a computer scientist usually
means a rigorous algorithm that runs in polynomial time in worst cases.

The main technical challenge comes from the simple observation that the dimension of
the Hilbert space grows exponentially with the system size. Specifically, we would like to
compute the physical properties of local Hamiltonians, which are square matrices of expo-
nential dimension, whereas an efficient algorithm must run in polynomial time. Despite this
challenge, a lot of progress has been made in the past decade, especially for one-dimensional
(1D) quantum systems.

Before closing this section, we would like to point out that quantum simulation (i.e.,
simulating quantum systems efficiently with quantum devices [43]) is another very exciting
field of research [35]. Note that quantum simulation does not require a universal quantum
computer; rather, a device tailored to the doped Hubbard model would suffice to demystify
high-temperature superconductivity. Unfortunately, quantum simulation will not be covered
in this dissertation.

1.2 Organization and overview

This dissertation assumes almost no prior knowledge in condensed matter theory (e.g., it is
not necessary to know the phase diagram of the 1D transverse field Ising model), but requires
a solid background in quantum mechanics. Thus, it is accessible to any graduate student in
physics.

Chapter 2 is a gentle review of preliminary knowledge in the field. It begins with an
introduction to basic and important techniques for simulating quantum many-body systems,
such as matrix product states (MPS), density matrix renormalization group (DMRG; here,
the word “group” does not refer to a group in mathematics), and tensor network states. We
then discuss area laws, which are a set of theorems and conjectures about the entanglement
in various interesting classes of quantum states. We close this chapter with a mini-survey
of the computational complexity of the local Hamiltonian problem. The materials in this
chapter (and Section 1.1) are extracted from the review article available on arXiv [49] (and
has been accepted for publication as a monograph in Foundations and Trends in Theoretical
Computer Science).

The bulk (i.e., remainder) of this dissertation is a collection of my papers (with collabo-
rators) in 2014. Before 2014, I had worked on quantum entanglement [72, 75, 73], quantum
information [76, 71], quantum mechanics [74, 78], and other topics in condensed matter the-
ory [80, 77]. These papers are not included in this dissertation as they are outside the scope
of my current research.

We now give a chapter-by-chapter overview of the bulk of this dissertation. Each chapter
stands on its own and can be read independently from others.

Since the technical challenge is forbidding, we must resort to the most humble scientific
method: starting with the simplest nontrivial case. In particular, we mainly study 1D quan-
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tum systems, in which the DMRG algorithm is remarkably successful in practice. However,
DMRG is a heuristic algorithm: There is no guarantee that it never gets stuck in local min-
ima, nor that it always converges rapidly. Since DMRG is a variational algorithm over MPS,
we ask: First, which classes of states can be efficiently represented as (or approximated by)
MPS? Second, if an efficient MPS representation exists, can one find it efficiently?

The first question is quantitatively related to the amount of entanglement in the state:
Indeed, states with “little entanglement” are well approximated by MPS. It has been proved
that the entanglement (across any cut) of unique ground states in 1D gapped systems is
upper bounded by a constant independent of the system size [59, 10]. This is known as an
area law. Chapter 3 extends the area law to 1D gapped systems with constant-fold ground-
state degeneracy and thus explains the effectiveness of DMRG in (e.g.) symmetry breaking
phases. In particular, we show that any state in the ground-state space satisfies an area law.
This chapter also includes some technical improvements to the previous results [59, 10] for
unique ground states. This chapter is available on arXiv [70].

On the second question, very important progress for frustration-free systems was made in
[95]. Chapter 4 extends this result to a (provably) deterministic polynomial-time algorithm
for computing the ground-state wave function of any (i.e., possibly frustrated and non-
translationally invariant) 1D gapped Hamiltonian. In the case that the ground states are
constant-fold degenerate, the algorithm returns a basis of the ground-state space. As a
consequence, 1D adiabatic quantum computation allows efficient classical simulation if the
final Hamiltonian is gapped, improving the result of Hastings [61] which requires a constant
energy gap along the path of Hamiltonians. This chapter is available on arXiv [69].

Quantum many-body systems in two and higher dimensions (2+D) can host a variety
of exotic phases of matter including the quantum Hall effect and the high-temperature su-
perconductors. Thus, they are much more exciting to physicists. They are also much more
challenging from a technical perspective, and indeed there are a lot of important open prob-
lems. For example, a famous conjecture in the community is that the ground states of gapped
local Hamiltonians in any spatial dimension satisfy an area law for entanglement, but a proof
of (or a counterexample to) this conjecture appears very difficult.

It is well known that an area law for entanglement (if formulated properly) implies efficient
MPS representations in 1D, and it was commonly believed that a similar implication holds
in 2+D: An area law implies efficient tensor network state representations. In contrast to
the belief, it was recently proved that there exist (translationally invariant) quantum many-
body states satisfying area laws but do not have efficient tensor network representations [48].
Under a very mild and widely accepted assumption in quantum complexity theory, Chapter
5 establishes a similar result with an additional important physical property: there exist
(translationally invariant) local Hamiltonians whose ground states satisfy area laws but do
not have efficient tensor network representations. This chapter is available on arXiv [68].

Excited eigenstates are physical states participating in the dynamics of quantum systems.
They become particularly relevant in the context of many-body localization as localization is
a (dynamic) property associated with all eigenstates (not just the ground state) of disordered
systems. Chapter 6 studies the singularities of the entanglement of excited eigenstates in
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random spin chains using both analytical (renormalization group) techniques and numerical
simulations. In the random quantum Ising chain, we find that the entanglement of (almost)
all eigenstates becomes singular at the quantum critical point, which strongly suggests that
the zero-temperature quantum phase transition is also a dynamical phase transition. This
chapter was published as a Rapid Communication in Physical Review B [81].

Finally, we study the problem of generating the ground states of 1D gapped Hamiltonians
using quantum circuits. Although this problem is not directly related to classical simula-
tion (of quantum many-body systems), it is still marginally relevant to the scope of this
dissertation as quantum circuits provide a powerful tool for quantitatively characterizing the
entanglement patterns of topologically ordered states. Also, the quantum circuit complexity
of generating quantum states (from product states) is a fundamental problem describing the
difficulty of preparing quantum states with a quantum computer (in experiments).

It was argued that topological order is essentially a pattern of long-range entanglement.
Although such an entanglement point of view has led to important advances in understanding
topological order and has been widely accepted by the community, a quantitative charac-
terization of long-range entanglement is still not totally clear. Quantum circuits provide a
new perspective on classifying entanglement patterns (or topological order). In particular, it
was defined in [31] that a quantum state is short-range entangled if it can be generated from
a product state via a local quantum circuit of constant depth, suggesting that short-range
entanglement is just local rearrangement of quantum correlations.

Intuitively, topologically ordered (i.e., long-range entangled) states have global quantum
correlations. In 1D, Chapter 7 makes this intuition precise by showing that to generate states
with nontrivial topological order (from product states) local quantum circuits of linear (in
the system size) depth are necessary and (up to reasonably small errors) sufficient. This
result holds for both fermionic and (bosonic) spin systems and for all symmetry protected
topological phases (where we use symmetric circuits). This chapter is available on arXiv [79]
(and has been accepted for publication as a long article in Physical Review B).

1.3 List of acronyms

1D one dimension
2D two dimensions
3D three dimensions
2+D two and higher dimensions
MPS matrix product state
PEPS projected entangled pair state
MERA multi-scale entanglement renormalization ansatz
DMRG density matrix renormalization group
NP nondeterministic polynomial
QMA quantum Merlin Arthur
SPT symmetry protected topological (phase)
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Chapter 2

Preliminaries

In this chapter, we give a brief introduction to basic concepts and techniques that are relevant
to the bulk of this dissertation.

2.1 Matrix product state

As the simplest class of tensor network states, MPS is a very useful ansatz of trial wave
functions. It plays a fundamental role not only in the classical simulation of 1D quantum
systems [155, 156], but also in the classification of (symmetry protected) topological phases
[29, 136]. Consider a chain of n spins, each of which has local dimension d = Θ(1). We

associate each site i with d matrices A
[j]
i for j = 1, 2, . . . , d. In the bulk 2 ≤ i ≤ n− 1, each

A
[j]
i is of dimension D×D; at the boundaries, each A

[j]
1 is of dimension 1×D and each A

[j]
n

is of dimension D × 1. An MPS takes the form

|ψ〉 =
d∑

j1,j2,...,jn=1

A
[j1]
1 A

[j2]
2 · · ·A[jn]

n |j1j2 · · · jn〉. (2.1)

Since A
[j1]
1 and A

[jn]
n are row and column vectors, respectively, the expression A

[j1]
1 A

[j2]
2 · · ·A

[jn]
n

is a (complex) number, which is the amplitude of |j1j2 · · · jn〉. As such, the amplitudes are
encoded as products of matrices, justifying the name “matrix product state”. The index ji
is referred to as a physical index, as it corresponds to the physical degrees of freedom (at
the site i).

The value D is called the bond dimension. Using singular value decompositions, it is easy
to see that any state |ψ〉 can be expressed exactly as an MPS if the bond dimension D is
large enough. Indeed, it suffices that D is the maximum Schmidt rank of |ψ〉 across any cut.
In general, such a value of D is not computationally feasible as it grows exponentially with n.
However, the strength of MPS is that any state with “little entanglement” (across any cut)
is well approximated by an MPS with small D. This feature of MPS turns out to be very
essential, as condensed matter physicists are mainly interested in the ground states of local
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Hamiltonians, which are highly non-generic. For example, in 1D gapped systems we have an
area law [59, 10, 70], implying that the entanglement across any cut is upper bounded by a
constant independent of n. In 1D conformally invariant critical (gapless) systems, the area
law is slightly violated with a logarithmic factor ∼ log n [66, 28, 27], suggesting that MPS
is still a fairly efficient parametrization.

Another key property of MPS is that it supports efficient computation of physical observ-
ables, such as energy, (expectation values of) order parameters, correlation functions, and
even entanglement entropy [133]. This is in contrast to more complicated tensor network
states such as PEPS, which are in general #P-hard to contract [138].

2.2 Density matrix renormalization group

The DMRG algorithm is nowadays considered the most powerful numerical method for 1D
quantum systems. In many applications of DMRG, we are able to obtain the physics (e.g.,
the ground-state energy, ground-state correlation functions) of a 1D quantum lattice model
with extraordinary precision and moderate computational resources. Historically, White’s
invention of DMRG [161, 162] two decades ago was stimulated by the failure of Wilson’s
numerical renormalization group [163] for homogeneous systems. Subsequently, a milestone
was achieved when it was realized [115, 131, 150, 109] that DMRG is a variational algorithm
over MPS.

The purpose of this section is to sketch at a high level how DMRG works from the MPS
point of view. For further details, we refer the reader to the following review papers on the
topic. Ref. [133] is a very detailed account of coding with MPS. The earlier paper [132]
discusses DMRG mostly in its original formulation. Refs. [149, 34] focus on the role MPS
plays in DMRG, as well as other variational classes of states, such as tree tensor network
states [140], PEPS [147] and MERA [153].

The idea behind DMRG from the MPS perspective is as follows. Given an input Hamilto-
nian H, we minimize the energy 〈ψ|H|ψ〉 with respect to all MPS |ψ〉 of some bond dimension
D, i.e., with respect to O(ndD2) parameters (n is the system size). In general, D has to
grow with n (especially in critical or gapless systems). Unfortunately, minimizing the energy
for D = poly(n) can be NP-hard even for frustration-free Hamiltonians [134]. To cope with
this, DMRG is a heuristic algorithm for finding local minima. There is no guarantee that the
local minima we find are global minima, nor that the algorithm converges rapidly. However,
perhaps surprisingly, in practice DMRG works fairly well even in critical systems.

At a high level, the DMRG algorithm proceeds as follows. We start with an MPS denoted
by a collection of matrices {A[j]

i }
j=1,2,...,d
i=1,2,...,n, and then perform a sequence of local optimizations.

A local optimization at site i0 means minimizing the energy 〈ψ|H|ψ〉 with respect to the

matrices {A[j]
i }

j=1,2,...,d
i=i0

associated with the site, while keeping all other matrices {A[j]
i }

j=1,2,...,d
i 6=i0

fixed. These local optimizations are performed in a number of “sweeps” until the solution
{A[j]

i }
j=1,2,...,d
i=1,2,...,n converges. Here, a sweep consists of local optimizations applied in sequence
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starting at site 1 up to site n, and then backwards back to site 1, i.e., in a sweep we apply
the local optimizations in the following order of sites: 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1.

2.3 Tensor network states

Since tensor network states are usually constructed as trial wave functions, we begin this
section with a brief discussion of the variational principle. As a heuristic method, the main
idea of the variational principle is as follows. Suppose we would like but it is difficult to
optimize a function f over a set S. Our strategy is to do the optimization over some subset
S ′ ⊆ S. We wish that (i) the optimization over S ′ is (in some sense) close to the optimization
over S; (ii) performing the optimization over S ′ is technically easier. In the context of this
section, we would like to compute the ground-state wave function |ψ〉 by minimizing the
energy 〈ψ|H|ψ〉. Apparently, a generic state |ψ〉 requires an exponential number of bits to
describe. This is an obstacle for designing a heuristic method to minimize the energy. Using
the variational principle, we can instead minimize over a simpler set S ′ of certain physically
relevant quantum states to approximate the ground-state energy. The key is of course to
decide which set S ′ of states we should choose.

For example, one may choose S ′ as the set of product states. This simple ansatz, known
as mean-field theory, turns out to be quite effective in many scenarios. Note that working
with product states is in general still a hard problem. It is easy to see that minimizing the
energy over product states is NP-hard. Indeed, a quantum Hamiltonian becomes a classical
Hamiltonian if each term is diagonal in the computational basis, and finding the ground
state (which must be a product state) of a classical Ising spin glass is NP-hard [13].

One may choose S ′ as the set of tensor network states [149]. Unlike product states,
which have absolutely no entanglement or correlations, tensor network states can represent
a variety of exotic quantum phases of matter, such as those with (even chiral [38, 159])
topological order [151, 2]. However, contracting tensor networks is in general #P-hard [138].
One strategy to circumvent this is to choose a subset S ′′ of tensor network states which
support efficient computation of physical observables. The most successful application of the
variational principle based on tensor network states is the DMRG algorithm as a variational
algorithm over MPS.

We now give an informal definition of tensor network states. Suppose you were a software
engineer at the moment. A k-dimensional tensor (or k-tensor for short) M(i1, i2, . . . , ik) is a
k-dimensional array of complex numbers. For instance, in the language of linear algebra, a
1-tensor is a vector, and a 2-tensor is a matrix. Note that we often denote indices as super-
or sub-scripts, e.g., a 3-tensor M(i1, i2, i3) can be denoted by M i1,i2

i3
. The bond dimension of

a tensor is the maximum number of different values any index can take.
The contraction of two tensors is defined as follows. Suppose we are given two 3-tensors

M(i1, i2, i3) and N(j1, j2, j3). Their contraction on the middle indices yields a 4-tensor P :

P (i1, i3, j1, j3) =
∑
k

M(i1, k, i3)N(j1, k, j3). (2.2)
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Any quantum state |ψ〉 of n spins (each of which has local dimension d) can be identified with
an n-tensor of bond dimension d. Indeed, by expanding |ψ〉 =

∑d
i1,i2,...,in=1 αi1,i2,...,in|i1i2 · · · in〉

in the computational basis, we define an n-tensor M such that M(i1, i2, . . . , in) = αi1,i2,...,in .
The state |ψ〉 is called a tensor network state if the n-tensor M can be expressed as the con-
traction of a network of c-tensors, where c is a small absolute constant. The bond dimension
of the tensor network is defined as the maximum bond dimension of each c-tensor.

Tensor network states include as special cases MPS [118], MERA [153], and PEPS [147].
Indeed, an MPS can be expressed as the contraction of a line of 3-tensors, and on a 2D
square lattice a PEPS can be expressed as the contraction of 5-tensors. Note that MPS and
MERA [152] can be contracted efficiently, but contracting PEPS is #P-complete [138].

The bond dimension D determines the space complexity of tensor network states. Ap-
parently, the larger D is, the more quantum states we can represent, at the price of more
storage space. In practice, we should keep the bond dimension as small as possible. Since
representing a generic quantum state requires exponential bond dimension, a key question is:
Which quantum many-body systems have ground states that are well approximated by tensor
network states of small bond dimension?

We now briefly review recent progress on this question and related algorithmic advances.
In 1D gapped systems, Hastings [59] first proved that MPS of polynomial bond dimension
approximate the ground state well. Indeed, MPS of polynomial bond dimension approxi-
mate the ground state well as long as certain Renyi entanglement entropy diverges at most
logarithmically [146] (see also [139]). These results give an intuitive explanation of the effec-
tiveness of DMRG as a variational algorithm over MPS, although DMRG remains heuristic.
To develop a rigorous variant of DMRG that is provably efficient in all 1D gapped systems, it
was first realized that the optimal MPS of constant bond dimension can be found efficiently
via dynamic programming [5, 135]. This algorithm does not require the Hamiltonian to be
gapped, but its running time grows exponentially with the bond dimension. For 1D gapped
systems with energy gap ε, Arad, Kitaev, Landau and Vazirani [10] improved Hastings’ re-
sult by showing that MPS of sub-polynomial bond dimension D = exp(Õ(ε−1/4 log3/4 n))
approximate the ground state well, where Õ(x) := O(x poly log x) hides a polylogarithmic
factor. In the case that the ground states are constant-fold degenerate, any state in the
ground-state space allows MPS approximations with the same scaling of the bond dimension
[70]. Combined with the algorithms of [5, 135], this immediately implies a sub-exponential
time algorithm for 1D gapped systems. Finally, a polynomial-time algorithm for computing
MPS approximations to ground states in 1D gapped systems was proposed recently [95, 69,
33].

The thermal mixed state exp(−H/T ) (T is the temperature) of any local Hamiltonian
H in any spatial dimension is well approximated by a projected entangled pair operator of
bond dimension D = nO(1/T ) [104], where n is the system size. This result is built on the
techniques developed in previous works [62, 93].
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2.4 Area law

As a main object of study in this dissertation, the notion of “area law” [40] for entanglement
has received much attention in the community. An area law states that for certain interesting
classes of quantum many-body states, the amount of entanglement between a subsystem
and its complement grows as the boundary (area) rather than the volume of the subsystem.
Formally, suppose a quantum lattice system is partitioned into two regions L and L̄. If a state
satisfies an area law, then the amount of entanglement between L and L̄ is upper bounded by
O(|∂L|). Note that we usually use the entanglement entropy, i.e., the von Neumann entropy
of the reduced density matrix on L, as the measure of entanglement for pure quantum states.

Area law has its origins in black hole thermodynamics, cf. the holographic principle. It
is of interest to condensed matter theorists because it characterizes the structure of entan-
glement in quantum many-body states. Indeed, a generic state satisfies a volume law rather
than an area law [65]. Thus, area law provides a rigorous formulation of the statement that
many physically relevant states are highly non-generic and only occupy a small corner of the
entire Hilbert space.

Another important motivation to study area law is that it is related to the classical simu-
lability of quantum many-body systems. In contrast to the fact that a generic state requires
an exponential number of bits to describe, states that satisfy an area law are heuristically ex-
pected to allow efficient classical approximations using (e.g.) tensor network states of small
bond dimension. Indeed, MPS in 1D and PEPS in 2+D are intentionally constructed to sat-
isfy an area law: For any region L, the Schmidt rank between L and L̄ is upper bounded by
D|∂L|, where D is the bond dimension. Hence, the entanglement entropy is upper bounded
by |∂L| logD, giving rise to an area law if D is a constant. Furthermore, MPS or PEPS of
polynomial bond dimension can at most describe states that violate area law by a logarithmic
factor.

We now give some intuition on why it is reasonable to believe an area law in the ground
states of gapped local Hamiltonians in any spatial dimension. Indeed, Hastings [60] proved
that these ground states have exponential decay of correlations, e.g., any correlation functions
decay exponentially with distance. Intuitively, exponential decay of correlations implies that
the entanglement between a region and its complement is localized near the boundary (within
a distance of the order of the correlation length). However, establishing this implication
rigorously is very challenging. Note that the ground states of 1D local Hamiltonians with
an inverse polynomial energy gap can have a volume law of entanglement [52] even in the
presence of translational invariance [83].

Typically, proving area laws rigorously is very difficult. It was not until 2007 that Hast-
ings proved [59] that the ground states of all 1D gapped Hamiltonians satisfy an area law
(this is a breakthrough!). As a by-product, these ground states allow MPS approximations
of polynomial bond dimension. Hastings’ proof uses the Lieb-Robinson bound [100] and the
Fourier transform. Recently, Arad, Kitaev, Landau, and Vazirani [10] developed a combi-
natorial proof of the area law in 1D gapped systems. This proof significantly improves the
upper bound of Hastings (on the entanglement entropy). Furthermore, it was adapted to



CHAPTER 2. PRELIMINARIES 10

the setting of constant-fold degenerate ground states [70]. In particular, any state in the
ground-state space satisfies an area law. Brandao and Horodecki [19, 18] showed that expo-
nential decay of correlations implies an area law in 1D. Together with Hastings’ result [60]
that the ground states of gapped local Hamiltonians have exponential decay of correlations,
we get another proof of 1D area law. The upper bound obtained in this way matches that
of Hastings in [59].

However, it is easy to prove an area law for the thermal mixed state of any local Hamil-
tonian, regardless of the energy gap or the spatial dimension of the underlying lattice [165].
It is important to note that we cannot use the entanglement entropy because thermal states
are not pure states. Instead, we use mutual information as a measure of correlation.

The most well-known open problem in this area is whether an area law holds for the
ground states of all gapped Hamiltonians in any spatial dimension. Recently, it was proved
that the ground state of a gapped local Hamiltonian satisfies an area law if and only if all
other ground states in the same phase satisfy an area law [1].

2.5 Complexity of the local Hamiltonian problem

QMA is the notion that captures the computational complexity of the local Hamiltonian
problem. Roughly speaking, it is the quantum (and probabilistic) analog of NP. The verifier
uses a quantum computer instead of a classical computer, and the proof can be a quantum
state. Since measurement outcomes in quantum mechanics are inherently random, the veri-
fier should be allowed to err with small probability. Formally, we define QMA using quantum
circuits as a quantum verifier.

Definition 1 (QMA). A problem is in QMA if and only if there exists a uniform family of
polynomial-size quantum circuits {Qx} (one for each input instance x) such that:
1 (completeness). If x is a yes instance, then there exists a quantum state |y〉 of polynomial
size such that Qx accepts |y〉 with probability at least 2/3;
2 (soundness). If x is a no instance, then for any quantum state |y〉 of polynomial size, Qx

accepts |y〉 with probability at most 1/3.

We have set the error probability to be 1/3. Indeed, this number is quite arbitrary and
can be made exponentially small by applying the circuit Qx many times in parallel to many
copies of the proof |y〉 [8], cf. a biased coin can be detected with high probability by tossing
it many times.

Similar to NP, the complexity class QMA also has complete problems. The canonical
example is the local Hamiltonian problem. Formally, a k-local Hamiltonian acting on n spins
(each of which has local dimension d = Θ(1)) is a Hermitian operator H =

∑
iHi, where

each term Hi acts non-trivially on k spins.
Suppose every real number is represented by a polynomial number of bits.

Definition 2 (k-local Hamiltonian problem [91]). We are given a k-local Hamiltonian H
and a real number a with the promise that either (Yes) λ(H) ≤ a or (No) λ(H) ≥ a + δ,
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where λ(H) denotes the ground-state energy (i.e., the smallest eigenvalue) of H, and δ is
some inverse polynomial in the system size. We must decide which is the case.

Apparently, the local Hamiltonian problem is a generalization of the satisfiability problem
(a well-known NP-complete problem). Indeed, it is easy to construct a reduction from a
satisfiability problem to a local Hamiltonian problem, where each term Hi is diagonal in
the computational basis and encodes a constraint in the satisfiability problem by penalizing
unsatisfying assignments. Then, a satisfying assignment corresponds the a product state with
zero energy. This simple argument implies that the local Hamiltonian problem is NP-hard.
We expect the local Hamiltonian problem to be much harder as it is QMA-complete.

We now briefly review known results on the computational complexity of the local Hamil-
tonian problem in various settings. Since this dissertation is mostly written for physicists,
certain results that are of limited interest in physics will not be covered in detail, although
they might be very interesting to computer scientists.

In a pioneering work, Kitaev [91] developed the quantum analog of the Cook-Levin the-
orem: The k-local Hamiltonian problem is in QMA for k ≥ 1 and QMA-hard for k ≥ 5.
Kitaev’s proof is based on a combination of the ideas behind the Cook-Levin theorem and the
early ideas of Feynman for a quantum computer [42]. Subsequently, the 3-local Hamiltonian
problem was shown to be QMA-complete [86] (see [106] for an alternative proof), and Kempe,
Kitaev, and Regev [85] proved that the 2-local Hamiltonian problem is QMA-complete. Note
that the 1-local Hamiltonian problem is trivially in P.

From a physicist’s perspective, however, the Hamiltonians involved in the aforementioned
QMA-hardness proofs are not very physical in the sense that the particles (or spins) are not
arranged on a regular lattice. To address this, Oliveira and Terhal [111] showed that the local
Hamiltonian problem is QMA-complete even if it is restricted to a 2D square lattice with
nearest-neighbor interactions. Subsequently, it was found that the 2D Heisenberg model
in a nonuniform magnetic field is QMA-complete [137]. In contrast to the classical case
of the satisfiability problem on a line (which can be easily solved in polynomial time by
dynamic programming), Aharonov, Gottesman, Irani and Kempe [7] showed that the 1D
local Hamiltonian problem with nearest-neighbor interactions is QMA-complete if the local
dimension is at least 13. The local dimension can be reduced to 8 [58]. Gottesman and
Irani [53] obtained similar results for translationally invariant 1D systems (see also [84]).

As a special case of the k-local Hamiltonian problem, one might ask whether a given k-
local Hamiltonian is frustration-free, i.e., whether the ground state of the k-local Hamiltonian
H =

∑
iHi is the ground state of each individual term Hi. Bravyi [20] showed that the

problem is in P for k = 2, and is QMA1-complete for k ≥ 4, where QMA1 is the variant of
QMA with perfect completeness. Recently, Gosset and Nagaj [51] showed that the problem
is also QMA1-complete for k = 3.

The second special case of local Hamiltonians is commuting local Hamiltonians, which
are interesting to physicists because most exactly solvable models (e.g., the toric code) for
topological order in 2+D are commuting (and frustration-free). It was shown the commuting
2-local Hamiltonian problem on qudits [24] and the commuting 3-local Hamiltonian problem
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on qubits [4] are in NP. Furthermore, Ref. [4] showed that the toric code is in some rigorous
sense the “minimal model” for topological order. In 1D, the ground states of commuting
local Hamiltonians can be expressed exactly (up to the truncation of real numbers) as MPS
of constant bond dimension, and the ground-state energy can be computed efficiently by
dynamic programming [5, 135].

Another special case of local Hamiltonians is stoquastic local Hamiltonians, in which each
individual term has only non-positive off-diagonal matrix elements in the computational
basis. Stoquastic local Hamiltonians do not suffer from the so-called “sign problem” in
quantum Monte Carlo simulations and thus are expected to be easier than general local
Hamiltonians. Note that quantum Monte Carlo is not a quantum algorithm; it is just a
classical Monte Carlo algorithm applied to quantum systems. See Refs. [21, 23] for results
on the computational complexity of stoquastic local Hamiltonians.

The local Hamiltonian problem is QMA-complete for indistinguishable particles (both
fermions [101] and bosons [160]). It is also QMA-complete for the 2D Hubbard model at
half filling in a nonuniform magnetic field [137] and for the Bose-Hubbard model on general
interaction graphs (i.e., not on a regular lattice) [32].

The PCP theorem is one of the cornerstones of modern complexity theory. Hence, a major
open problem for computer scientists is whether a quantum analog of this theorem holds [8].
The quantum PCP conjecture is of limited interest in physics because it is apparently not
true on a lattice. We refer interested readers to the recent survey [3] on this topic.
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Chapter 3

Area law for degenerate ground states
in one dimension

An area law is proved for the Renyi entanglement entropy of possibly degenerate ground
states in 1D gapped quantum systems. Suppose in a chain of n spins the ground states
of a local Hamiltonian with energy gap ε are constant-fold degenerate. Then, the Renyi
entanglement entropy Rα(0 < α < 1) of any ground state across any cut is upper bounded
by Õ(α−3/ε), and any ground state can be well approximated by an MPS of sub-polynomial

bond dimension 2Õ(ε−1/4 log3/4 n).

3.1 Introduction

The area law states that for a large class of “physical” quantum many-body states the
entanglement of a region scales as its boundary (area) [40]. This is in sharp contrast to the
volume law for generic states [65]: the entanglement of a region scales as the number of
sites in (i.e., the volume of) the region. In 1D, the area law is of particular interest for it
characterizes the classical simulability of quantum systems. Specifically, bounded (or even
logarithmic divergence of) Renyi entanglement entropy across all cuts implies efficient MPS
representations [146], which underlie the (heuristic) DMRG algorithm [161, 162]. Since MPS
can be efficiently contracted, the 1D local Hamiltonian problem with the restriction that the
ground state satisfies area laws is in NP. Furthermore, a structural result from the proof of
the area law for the ground state of 1D gapped Hamiltonians is an essential ingredient of the
(provably) polynomial-time algorithm [95, 69, 33] for computing such states, establishing
that the 1D gapped local Hamiltonian problem is in P. The area law is now a central topic
in the emerging field of Hamiltonian complexity [113, 49].

We start with the definition of entanglement entropy.

Definition 3 (Entanglement entropy). The Renyi entanglement entropy Rα(0 < α < 1) of
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Table 3.1: Relations between various conditions in 1D: unique ground state of a gapped local
Hamiltonian (Gap), exponential decay of correlations (Exp), area law for Renyi entanglement
entropy Rα, ∀α (AL-Rα), area law for von Neumann entanglement entropy (AL-S), efficient
matrix product state representation (MPS). A check (cross) mark means that the item in the
row implies (does not imply) the item in the column. The asterisk marks one contribution
of this chapter. It is an open problem whether exponential decay of correlations implies area
laws for Renyi entanglement entropy Rα,∀α: Indeed, Theorem 4 in [19] (or Theorem 1 in
[18]) may lead to divergence of Rα if α is small.

Exp AL-Rα AL-S MPS
Gap X[60] X* X[59, 10] X[59, 10]
Exp X ? X[19, 18] X[19, 18]

AL-Rα X X X X[146]
AL-S X X X X[139]

a bipartite (pure) quantum state ρAB is defined as

Rα(ρA) = (1− α)−1 log tr ραA, (3.1)

where ρA = trB ρAB is the reduced density matrix. The von Neumann entanglement entropy
is defined as

S(ρA) = − tr(ρA log ρA) = lim
α→1−

Rα(ρA). (3.2)

Here are three arguments why Renyi entanglement entropy is more suitable than von
Neumann entanglement entropy for formulating area laws, although the latter is the most
popular entanglement measure (for pure states) in quantum information and condensed mat-
ter theory.
1 (conceptual, classical simulability). In 1D, (unlike bounded Renyi entanglement entropy)
bounded von Neumann entanglement entropy across all cuts does not necessarily imply ef-
ficient MPS representations; see [139] for a counterexample. Although slightly outside the
scope of this chapter, related results are summarized in Table 3.1.
2 (conceptual, quantum computation). Quantum states with little von Neumann entangle-
ment entropy across all cuts support universal quantum computation, while an analogous
statement for Renyi entanglement entropy is expected to be false [145].
3 (technical). An area law for Renyi entanglement entropy implies that for von Neumann
entanglement entropy, as Rα is a monotonically decreasing function of α.

Hastings first proved an area law for the ground state of 1D Hamiltonians with energy
gap ε: The von Neumann entanglement entropy across any cut is upper bounded by 2O(ε−1)

[59], where the local dimension of each spin (denoted by “d” in qud its) is assumed to be an
absolute constant. The Renyi entanglement entropy Rα for α0 < α < 1 was also discussed,
where α0 is ε-dependent and limε→0+ α0 = 1. The bound on the von Neumann entanglement
entropy was recently improved to Õ(ε−3/2) [10] (see Section 3.5 for an explanation of this
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result), where Õ(x) := O(x poly log x) hides a polylogarithmic factor. These proofs of area
laws assume a unique (non-degenerate) ground state.

Ground-state degeneracy is an important physical phenomenon often associated with
symmetry breaking (e.g., the transverse field Ising chain) and/or topological order (e.g.,
the Haldane/AKLT chain with open boundary conditions). Since not all degenerate ground
states of 1D gapped Hamiltonians have exponential decay of correlations, it may not be
intuitively obvious to what extent they satisfy area laws.

In this chapter, an area law is proved for the Renyi entanglement entropy of possibly
degenerate ground states in 1D gapped systems. Since in this context the standard bra-ket
notation may be cumbersome, quantum states and their inner products are simply denoted
by ψ, φ . . . and 〈ψ, φ〉, respectively, cf. ‖|ψ〉 − |φ〉‖ versus ‖ψ − φ‖. Suppose in a chain of n
spins the ground states are constant-fold degenerate.

Theorem 1. (a) The Renyi entanglement entropy Rα(0 < α < 1) of any ground state across
any cut is upper bounded by Õ(α−3/ε);
(b) Any ground state ψ can be approximated by an MPS φ of sub-polynomial bond dimension

2Õ(ε−1/4 log3/4 n) such that |〈ψ, φ〉| > 1− 1/ poly(n).

Remark. The proof of this theorem assumes constant-fold exact ground-state degeneracy and
open boundary conditions (with one cut). It should be clear that a minor modification of
the proof leads to the same results in the presence of an exponentially small 2−Ω(n) splitting
of the ground-state degeneracy (as is typically observed in physical systems) and works for
periodic boundary conditions (with two cuts). However, it remains an open problem to what
extent degenerate ground states satisfy area laws if the degeneracy grows with the system
size. Theorem 1(b) is a theoretical justification of the practical success of DMRG as a
(heuristic) variational algorithm over MPS to compute the ground-state space in 1D gapped
systems with ground-state degeneracy, and paves the way for a (provably) polynomial-time
algorithm to compute the ground-state space [69, 33]. As an important immediate corollary
of Theorem 1(a), the von Neumann entanglement entropy of a unique ground state is upper
bounded by Õ(ε−1), which even improves the result of [10] and may possibly be tight up
to a polylogarithmic factor. An example with the von Neumann entanglement entropy
S = Ω̃(ε−1/4) was constructed in [52]; see also [83] for a translationally invariant construction
with S = Ω(ε−1/12).

We loosely follow the approach in [10] with additional technical ingredients. Approximate
ground-space projection (AGSP) [12] is a tool for bounding the decay of Schmidt coefficients:
An “efficient” family of AGSP imply an area law. Section 3.2 is devoted to perturbation
theory, which is necessary to improve the efficiency of AGSP. As a technical contribution,
the analysis in Section 6 of [10] is improved (and simplified), resulting in a tightened upper
bound Õ(ε−1) (versus Õ(ε−3/2) given in [10]) on the (von Neumann) entanglement entropy.
Although the perturbation theory is developed in 1D, generalizations to higher dimensions
may be straightforward but are not presented in this chapter. In Section 3.3, a family of
AGSP are constructed in 1D systems with nearly degenerate ground states. Although the



CHAPTER 3. AREA LAW FOR DEGENERATE GROUND STATES IN ONE
DIMENSION 16

ground-state degeneracy of the original Hamiltonian is assumed to be exact, perturbations
may lead to an exponentially small splitting of the degeneracy. Then, “fine tunning” using
Lagrange interpolation polynomials appears necessary to repair this splitting at the level of
AGSP. In Section 3.4, an area law is derived from AGSP for any ground state by constructing
a sequence of approximations to a set of basis vectors of the ground-state space (it requires
new ideas to keep track of such a set of basis vectors). The construction is more efficient
than the approach (Corollary 2.4 and Section 6.2) in [10], resulting in an area law for the
Renyi entanglement entropy. Finally, efficient MPS representations follow from the decay of
the Schmidt coefficients.

3.2 Perturbation theory

Assume without loss of generality that the original 1D Hamiltonian is H ′ =
∑n

i=−nH
′
i, where

0 ≤ H ′i ≤ 1 acts on the spins i and i + 1. Consider the middle cut. Let ε0(·) denote the
ground-state energy of a Hamiltonian. Define

H = HL +H−s +H1−s + · · ·+Hs−1 +Hs +HR (3.3)

as
(i) HL = H ′L−ε0(H ′L) and HR = H ′R−ε0(H ′R), where H ′L :=

∑−s−1
i=−nH

′
i and H ′R :=

∑n
i=s+1 H

′
i;

(ii) Hi = H ′i for i = ±s;
(iii) Hi = H ′i − ε0(H ′M)/(2s− 1) for 1− s ≤ i ≤ s− 1, where H ′M :=

∑s−1
i=1−sH

′
i.

Hence,
(a) HL ≥ 0, HR ≥ 0, and ε0(HL) = ε0(HR) = 0;
(b) 0 ≤ Hi ≤ 1 for i = ±s;
(c) 0 ≤

∑s−1
i=1−sHi ≤ 2s− 1 and ε0(

∑s−1
i=1−sHi) = 0;

(d) H = H ′ − ε0(H ′L) − ε0(H ′M) − ε0(H ′R) so that the (degenerate) ground states and the
energy gap are preserved.

Suppose the ground states of H are f -fold degenerate, where f = Θ(1) is assumed to be
an absolute constant. Let 0 ≤ ε0 = ε1 = · · · = εf−1 < εf ≤ εf+1 ≤ · · · be the lowest energy
levels of H with the energy gap ε := εf − ε0. Define

H≤tL = HLP
≤t
L + t(1− P≤tL ), (3.4)

where P≤tL is the projection onto the subspace spanned by the eigenstates of HL with eigen-
values at most t. H≤tR is defined analogously. Let

H(t) := H≤tL +H−s +H1−s + · · ·+Hs−1 +Hs +H≤tR ≤ 2t+ 2s+ 1 (3.5)

be the truncated Hamiltonian with the lowest energy levels 0 ≤ ε′0 ≤ ε′1 ≤ · · · and the

corresponding (orthonormal) eigenstates φ
(t)
0 , φ

(t)
1 , . . .. Note that all states are normalized

unless otherwise stated. Define ε′ = ε′f − ε′0 as the energy gap of H(t). Let B := H−s + Hs
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be the sum of boundary terms, and Pt be the projection onto the subspace spanned by the
eigenstates of H −B with eigenvalues at most t so that

HLPt = H≤tL Pt, HRPt = H≤tR Pt ⇒ HPt = H(t)Pt. (3.6)

Lemma 1. 0 ≤ ε′0 ≤ ε0 ≤ 2 and ε′f ≤ εf ≤ [log2 f ] + 4 = O(1).

Proof. Let ψ0, ψL, ψM , ψR be the ground states of H,HL,
∑s−1

i=1−sHi, HR, respectively.

ε0 ≤ 〈ψLψMψR, HψLψMψR〉

= 〈ψL, HLψL〉+

〈
ψM ,

s−1∑
i=1−s

HiψM

〉
+ 〈ψR, HRψR〉+ 〈ψLψMψR, BψLψMψR〉

≤ ‖B‖ ≤ 2. (3.7)

Let f ′ = [log2 f ] + 1 and φR be the ground state of
∑s

i=f ′−s+1 Hi +HR. For any state φM of
the spins 1− s, 2− s, · · · , f ′ − s,

〈ψLφMφR, HψLφMφR〉

= 〈ψL, HLψL〉+

〈
ψLφMφR,

f ′−s∑
i=−s

HiψLφMφR

〉
+

〈
φR,

(
s∑

i=f ′+1−s

Hi +HR

)
φR

〉

≤ 〈ψ,HLψ〉+

〈
ψ,

f ′−s∑
i=−s

Hiψ

〉
+ f ′ + 1 +

〈
ψ,

(
s∑

i=f ′+1−s

Hi +HR

)
ψ

〉
≤ 〈ψ,Hψ〉+ f ′ + 1 = ε0 + f ′ + 1 ≤ f ′ + 3 ⇒ εf ≤ f ′ + 3 = [log2 f ] + 4. (3.8)

Let φ(r) be an eigenstate of H(r) with eigenvalue ε(r).

Lemma 2. For r, t > ε(r),

‖(1− Pt)φ(r)‖2 ≤ |〈φ(r), (1− Pt)BPtφ(r)〉|/(min{r, t} − ε(r)). (3.9)

Proof. It follows from

ε(r) = 〈φ(r), H(r)φ(r)〉
= 〈φ(r), (1− Pt)H(r)(1− Pt)φ(r)〉+ 〈φ(r), PtH

(r)φ(r)〉+ 〈φ(r), (1− Pt)H(r)Ptφ
(r)〉

≥ 〈φ(r), (1− Pt)(H(r) −B)(1− Pt)φ(r)〉+ ε(r)‖Ptφ(r)‖2

+〈φ(r), (1− Pt)(H(r) −B)Ptφ
(r)〉+ 〈φ(r), (1− Pt)BPtφ(r)〉

≥ min{r, t}‖(1− Pt)φ(r)‖2 + ε(r)(1− ‖(1− Pt)φ(r)‖2)

−|〈φ(r), (1− Pt)BPtφ(r)〉|. (3.10)
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Suppose ε(r) = O(1) and r ≥ ε(r) + 100 = O(1).

Lemma 3.
‖(1− Pt)φ(r)‖ ≤ 2−Ω(t). (3.11)

Proof. Let t0 = ε(r) + 100 = O(1). We show that there exists c = O(1) such that

‖(1− Pti)φ(r)‖ ≤ 2−i (3.12)

for ti = t0 + ci. The proof is an induction on i with fixed r. Clearly, (3.12) holds for i = 0.
Suppose it holds for i = 0, 1, . . . , j − 1. Let Pt−1 = 0 for notational convenience. Lemma 2
implies

‖(1− Ptj)φ(r)‖2 ≤ |〈φ(r), (1− Ptj)BPtjφ(r)〉|/(min{r, tj} − ε(r))

≤

∣∣∣∣∣
〈
φ(r), (1− Ptj)B

j∑
i=0

(Pti − Pti−1
)φ(r)

〉∣∣∣∣∣ /100

≤ ‖(1− Ptj)φ(r)‖
j∑
i=0

‖(1− Ptj)B(Pti − Pti−1
)‖‖(Pti − Pti−1

)φ(r)‖/100

⇒ ‖(1− Ptj)φ(r)‖ ≤
j∑
i=0

‖(1− Ptj)BPti‖‖(1− Pti−1
)φ(r)‖/100

≤
j∑
i=0

e(ti−tj)/82−i/10, (3.13)

where we have used the induction hypothesis and the inequality ‖(1−Ptj)BPti‖ ≤ 4e(ti−tj)/8

(Lemma 6.6(2) in [10]). Hence (3.12) holds for i = j by setting c = 16 ln 2.

Let Φ(t) := Ptφ
(t)/‖Ptφ(t)‖.

Lemma 4.
〈Φ(t), HΦ(t)〉 ≤ ε(t) + 2−Ω(t). (3.14)

Proof. (3.6) implies

ε(t) = 〈φ(t), H(t)φ(t)〉
≥ 〈φ(t), PtH

(t)Ptφ
(t)〉+ 〈φ(t), PtH

(t)(1− Pt)φ(t)〉+ 〈φ(t), (1− Pt)H(t)Ptφ
(t)〉

= 〈φ(t), PtHPtφ
(t)〉+ 〈φ(t), PtB(1− Pt)φ(t)〉+ 〈φ(t), (1− Pt)BPtφ(t)〉

≥ 〈φ(t), PtHPtφ
(t)〉 − 2‖BPtφ(t)‖ · ‖(1− Pt)φ(t)‖ ≥ 〈φ(t), PtHPtφ

(t)〉 − 2−Ω(t)

⇒ 〈Φ(t), HΦ(t)〉 ≤ (ε(t) + 2−Ω(t))/‖Ptφ(t)‖2

= (ε(t) + 2−Ω(t))/(1− 2−Ω(t)) = ε(t) + 2−Ω(t). (3.15)
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Remark. Suppose r ≥ t. A very minor modification of the proof implies

〈Φ(r),t, HΦ(r),t〉 ≤ ε(r) + 2−Ω(t) for Φ(r),t := Ptφ
(r)/‖Ptφ(r)‖. (3.16)

Since the proofs of Lemmas 1–4 do not require an energy gap, these lemmas also hold in
gapless systems. Let G be the ground-state space of H.

Lemma 5. For any state ψ with 〈ψ,Hψ〉 ≤ ε0 + ε, there exists a state ψg ∈ G such that

‖ψ − ψg‖2 ≤ 2ε/ε. (3.17)

Proof. The state ψ can be decomposed as

ψ = cgψg + ceψe, cg, ce ≥ 0, c2
g + c2

e = 1, (3.18)

where ψg ∈ G and ψe ⊥ G. Then,

c2
gε0 + c2

eεf ≤ 〈ψ,Hψ〉 ≤ ε0 + ε⇒ c2
e ≤ ε/ε⇒ ‖ψ − ψg‖2 = 2− 2cg ≤ 2ε/ε. (3.19)

Theorem 2. For t ≥ O(log ε−1),
(a) 0 ≤ ε0 − ε′f−1 ≤ ε0 − ε′f−2 ≤ · · · ≤ ε0 − ε′0 ≤ 2−Ω(t);

(b) there exists ψ
(t)
i ∈ G such that ‖ψ(t)

i − φ
(t)
i ‖2 ≤ 2−Ω(t) for i = 0, 1, . . . , f − 1;

(c) ε′ ≥ ε/10.

Proof. Lemma 4 implies

ε′0 ≤ ε′1 ≤ · · · ≤ ε′f−1 ≤ ε0 ≤ 〈Φ(t)
0 , HΦ

(t)
0 〉 ≤ ε′0 + 2−Ω(t), (3.20)

〈Φ(t)
f , HΦ

(t)
f 〉 ≤ ε′f + 2−Ω(t) = ε′0 + ε′ + 2−Ω(t) ≤ ε0 + ε′ + 2−Ω(t). (3.21)

(a) follows from (3.20). Using Lemma 5, there exists ψ
(t)
0 , ψ

(t)
1 , . . . , ψ

(t)
f ∈ G such that

‖Φ(t)
i − ψ

(t)
i ‖2 ≤ 2−Ω(t)/ε = 2−Ω(t)+log ε−1

(3.22)

for i = 0, 1, . . . , f − 1 and

‖Φ(t)
f − ψ

(t)
f ‖

2 ≤ ε′/ε+ 2−Ω(t)/ε. (3.23)

Lemma 3 implies
‖φ(t)

i − Φ
(t)
i ‖2 ≤ 2−Ω(t). (3.24)

(b) follows from (3.22), (3.24) as t ≥ O(log ε−1). (c) follows from (3.22), (3.23), (3.24),

because φ
(t)
0 , φ

(t)
1 , . . . , φ

(t)
f are pairwise orthogonal while ψ

(t)
0 , ψ

(t)
1 , . . . , ψ

(t)
f are linearly depen-

dent.
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3.3 Approximate ground-space projection

Recall that H(t) is the truncated Hamiltonian with the lowest energy levels 0 ≤ ε′0 ≤ ε′1 ≤ · · ·
and the corresponding (orthonormal) eigenstates φ

(t)
0 , φ

(t)
1 , . . .. Theorem 2 implies that the

lowest f energy levels are nearly degenerate: ε′0 ≈ ε′f−1, and ε′ = ε′f − ε′0 is the energy gap.

Let G′ := span{φ(t)
i |i = 0, 1, . . . , f − 1} be the ground-state space of H(t). Let R(ψ) denote

the Schmidt rank of a state ψ across the middle cut.

Definition 4 (Approximate ground-space projection (AGSP) [12]). A linear operator A is
a (∆, D)-AGSP if
(i) Aψ = ψ for ∀ψ ∈ G′;
(ii) Aψ ⊥ G′ and ‖Aψ‖2 ≤ ∆ for ∀ψ ⊥ G′;
(iii) R(Aψ) ≤ DR(ψ) for ∀ψ.

Let ε′∞ := 2s+ 2t+ 1 be an upper bound on the maximum eigenvalue of H(t).

Lemma 6. Suppose l2(ε′f−1 − ε′0)/(ε′∞ − ε′f ) ≤ 1/10. Then there exists a polynomial Cl of
degree fl such that
(i) Cl(ε

′
0) = C(ε′1) = · · · = C(ε′f−1) = 1;

(ii) C2
l (x) ≤ 22f+4e−4l

√
ε′/ε′∞ for ε′f ≤ x ≤ ε′∞.

Proof. The Chebyshev polynomial of the first kind of degree l is defined as

Tl(x) = cos(l arccosx) = cosh(ly), y := arccoshx. (3.25)

By definition, |Tl(x)| ≤ 1 for |x| ≤ 1. For x ≥ 1, Tl(x) is monotonically increasing function
of x, and

Tl(x) ≥ ely/2 ≥ e2l tanh(y/2)/2 = e2l
√

(x−1)/(x+1)/2,
T ′l (x)

Tl(x)
=
l tanh(ly)

sinh y
≤ l(ly)

y
= l2. (3.26)

Let g(x) := (ε′∞ + ε′f − 2x)/(ε′∞ − ε′f ) such that g(ε′∞) = −1 and g(ε′f ) = 1. Define Sl(x) =
Tl(g(x)) as a polynomial of degree l. Clearly, |Sl(x)| ≤ 1 for ε′f ≤ x ≤ ε′∞ and

Sl(ε
′
0) = Tl(g(ε′0)) ≥ e2l

√
(g(ε′0)−1)/(g(ε′0)+1)/2 ≥ e2l

√
ε′/ε′∞/2. (3.27)

There exists ε′0 ≤ ξ ≤ ε′f−1 such that

Sl(ε
′
f−1) = Sl(ε

′
0) + (ε′f−1 − ε′0)S ′l(ξ) ≥ Sl(ε

′
0)(1 + (ε′f−1 − ε′0)T ′l (g(ξ))g′(ξ)/Tl(g(ξ)))

⇒ Sl(ε
′
f−1)/Sl(ε

′
0) ≥ 1− 2l2(ε′f−1 − ε′0)/(ε′∞ − ε′f ) ≥ 4/5. (3.28)

Assume without loss of generality that ε′0, ε
′
1, . . . , ε

′
f−1 are pairwise distinct. Let L(x) =∑f

i=1 aix
i be the Lagrange interpolation polynomial of degree f such that L(0) = 0 and
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L(Sl(ε
′
0)) = L(Sl(ε

′
1)) = · · · = L(Sl(ε

′
f−1)) = Sl(ε

′
0). For each i = 1, 2, . . . , f − 1, there exists

Sl(ε
′
i−1) > ξi > Sl(ε

′
i) such that L′(ξi) = 0. Then,

L′(x) = a1

f−1∏
i=1

(1− x/ξi). (3.29)

Clearly, a1 > 0 and L′(x) > 0 for x < Sl(ε
′
f−1). Hence,

Sl(ε
′
0) = L(Sl(ε

′
f−1)) =

∫ Sl(ε
′
f−1)

0

L′(x)dx ≥ a1

∫ Sl(ε
′
f−1)

0

(1− x/Sl(ε′f−1))f−1dx

= a1Sl(ε
′
f−1)/f ⇒ a1 ≤ 5f/4. (3.30)

For |x| ≤ 1,

ξ1 > ξ2 > · · · > ξf−1 > Sl(ε
′
f ) = 1⇒ |L′(x)| ≤ a1(1 + |x|)f−1 ⇒ |L(x)| ≤ 2f+1. (3.31)

Finally, Cl(x) := L(Sl(x))/Sl(ε
′
0) is a polynomial of degree fl.

Lemma 7 (Lemma 4.2 in [10]). For any polynomial pl of degree l ≤ s2 and any t, ψ,

R(pl(H
(t))ψ) ≤ lO(

√
l)R(ψ). (3.32)

Let l = s2/f and t = Ω(s). The assumption

1/10 ≥ l2(ε′f−1 − ε′0)/(ε′∞ − ε′f ) = O(s42−Ω(t)/(s+ t)) = O(s32−Ω(s)) (3.33)

is satisfied with sufficiently large s > O(1). Lemmas 6, 7 imply a (∆, D)-AGSP A = Cl(H
(t))

for H(t) with

∆ = 22f+4e−4l
√
ε′/ε′∞ = 2−Ω(s2

√
ε/t), D = (s2)O(

√
s2) = sO(s). (3.34)

In particular, the condition

1/100 ≥ ∆D2 = 2−Ω(s2
√
ε/t)sO(s) ⇒ 1/100 ≥ ∆D (3.35)

can be satisfied by fixing t = t0 = Θ(s0) and s = s0 = Õ(ε−1) so that ∆ = 2−Ω̃(ε−1) and

D = 2Õ(ε−1).

3.4 Area law

Hereafter f = 2 is assumed for ease of presentation. It should be clear that a very minor
modification of the proof works for any f = O(1). Suppose s = s0 and t = t0 as given above

so that A is a (∆, D)-AGSP for H(t0) with ∆D2 ≤ 1/100. Recall that φ
(t0)
0 , φ

(t0)
1 are the

lowest two eigenstates and G′ = span{φ(t0)
0 , φ

(t0)
1 } is the ground-state space of H(t0).
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Lemma 8. There exist ϕ0, ϕ1 ∈ G′ and ψ0, ψ
′
0 such that (i) ϕ0 ⊥ ϕ1; (ii) |〈ϕ0, ψ0〉|2 ≥ 24/25;

(iii) R(ψ0) = 2Õ(ε−1); (iv) |〈ϕ1, ψ
′
0〉|2 ≥ 24/25; (v) R(ψ′0) = 2Õ(ε−1).

Proof. Let P ′ be the projection onto G′. Consider

max
R(ψ)=1

‖P ′ψ‖2. (3.36)

As the set {ψ|R(ψ) = 1} of product states is compact, the optimal state exists and is still
denoted by ψ. This state and φ := Aψ can be decomposed as

ψ = cgψg + ceψe, φ = c′gφg + c′eφe, (3.37)

where ψg, φg ∈ G′ and ψe, φe ⊥ G′. The definition of AGSP implies

cg = c′g, ψg = φg, |c′e|2 ≤ ∆, R(φ) ≤ D. (3.38)

The Schmidt decomposition of the unnormalized state φ implies

φ =

R(φ)∑
i=1

λiLi ⊗Ri ⇒
R(φ)∑
i=1

λ2
i = ‖φ‖2 = |c′g|2 + |c′e|2 ≤ |cg|2 + ∆. (3.39)

Since |cg|2 is the optimal value in (3.36),

|cg| = |〈ψg, φ〉| ≤
R(φ)∑
i=1

λi|〈ψg, Li ⊗Ri〉| ≤
R(φ)∑
i=1

λi‖P ′Li ⊗Ri‖ ≤ |cg|
R(φ)∑
i=1

λi

⇒ 1 ≤

R(φ)∑
i=1

λi

2

≤ R(φ)

R(φ)∑
i=1

λ2
i ≤ D(|cg|2 + ∆) ≤ D|cg|2 + 1/100

⇒ |cg|2 ≥ 99D−1/100 ≥ 99∆. (3.40)

Applying the AGSP twice, the state ψ0 := A2ψ/‖A2ψ‖ satisfies

‖P ′ψ0‖2 ≥ 1−∆/50, R(ψ0) = D2 = 2Õ(ε−1). (3.41)

Define ϕ0 = P ′ψ0/‖P ′ψ0‖ ∈ G′ and ϕ1 ∈ G′ such that ϕ0 ⊥ ϕ1. Clearly,

|〈ϕ0, ψ0〉|2 ≥ 1−∆/50, 〈ϕ1, ψ0〉 = 0, |〈ϕe, ψ0〉|2 ≤ ∆/50 for ∀ ϕe ⊥ G′. (3.42)

Consider
max
R(ψ′)=1

|〈ϕ1, ψ
′〉|2. (3.43)

As the set {ψ′|R(ψ′) = 1} of product states is compact, the optimal state exists and is still
denoted by ψ′. This state and φ′ := Aψ′ − 〈ψ0, ψ

′〉ψ0 can be decomposed as

ψ′ = c0ϕ0 + c1ϕ1 + ceϕe, φ
′ = c1ϕ1 + crϕr, (3.44)
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where ϕe ⊥ G′ and ϕr ⊥ ϕ1. Specifically,

crϕr = c0(Aϕ0 − 〈ψ0, ϕ0〉ψ0)− c1〈ψ0, ϕ1〉ψ0 + ce(Aϕe − 〈ψ0, ϕe〉ψ0) (3.45)

implies

|cr| ≤ 0.2|c0|
√

∆ + 1.2|ce|
√

∆ ≤ 1.4
√

∆ and R(φ′) ≤ D +R(ψ0) ≤ D +D2 ≤ 2D2. (3.46)

The Schmidt decomposition of the unnormalized state φ′ implies

φ′ =

R(φ′)∑
i=1

λ′iL
′
i ⊗R′i ⇒

R(φ′)∑
i=1

λ′2i = ‖φ′‖2 = |c1|2 + |cr|2 ≤ |c1|2 + 2∆. (3.47)

Since ψ′ is the optimal state,

|c1| = |〈ϕ1, φ
′〉| ≤

R(φ′)∑
i=1

λ′i|〈ϕ1, L
′
i ⊗R′i〉| ≤

R(φ′)∑
i=1

λ′i|〈ϕ1, ψ
′〉| = |c1|

R(φ′)∑
i=1

λ′i

⇒ 1 ≤

R(φ′)∑
i=1

λ′i

2

≤ R(φ′)

R(φ′)∑
i=1

λ′2i ≤ 2D2(|c1|2 + 2∆) ≤ 2D2|c1|2 + 1/25

⇒ |c1|2 ≥ 12D−2/25 ≥ 48∆. (3.48)

Hence ψ′0 = φ′/‖φ′‖ is a state with R(ψ′0) = R(φ′) ≤ 2D2 = 2Õ(ε−1) and |〈ϕ1, ψ
′
0〉|2 ≥

24/25.

Recall that G is the ground-state space of H.

Lemma 9. For any Ψ ∈ G, there is a sequence of approximations {Ψi} such that
(a) |〈Ψi,Ψ〉| ≥ 1− 2−Ω(i);

(b) Ri := R(Ψi) = 2Õ(ε−1+ε−1/4i3/4).

Proof. Let ti = t0 + i. Theorem 2(b) is a quantitative statement that G and span{φ(ti)
0 , φ

(ti)
1 }

are exponentially close. In particular, setting t0 to be a sufficiently large constant implies
that G′ and span{φ(ti)

0 , φ
(ti)
1 } are close up to a small constant. Hence Lemma 8(ii) implies

|〈φ(ti)
0 , ψ0〉|2 + |〈φ(ti)

1 , ψ0〉|2 ≥ 9/10. (3.49)

Let li = s2
i /2 = Θ(

√
t3i /ε) = O(t2i ) such that the assumption

1/10 ≥ l2i (ε
′
1 − ε′0)/(ε′∞ − ε′2) = O(s3

i 2
−Ω(si)) (3.50)

is satisfied with sufficiently large si > O(1). Lemmas 6, 7 imply a (∆i, Di)-AGSP Ai =
Cli(H

(ti)) for H(ti) with

∆i = 2−Ω(s2i

√
ε/ti) = 2−Ω(ti), Di = s

O(si)
i = 2Õ(ε−1/4t

3/4
i ). (3.51)
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Hence the sequence of operators {Ai}+∞
i=1 converges exponentially due to Theorem 2(b).

Clearly, A∞ := limi→+∞Ai is just the projection onto G. Let ψi := Aiψ0/‖Aiψ0‖ with
ψ∞ ∈ G such that

R(ψi) ≤ R(ψ0)Di ≤ 2Õ(ε−1+ε−1/4t
3/4
i ), |〈ψi, ψ∞〉| ≥ 1− 2−Ω(ti). (3.52)

Similarly, Let ψ′i := Aiψ
′
0/‖Aiψ′0‖ with ψ′∞ ∈ G such that

R(ψ′i) ≤ 2Õ(ε−1+ε−1/4t
3/4
i ), |〈ψ′i, ψ′∞〉| ≥ 1− 2−Ω(ti). (3.53)

(3.49) with i = +∞ is a quantitative statement that ψ0 is close to G, and hence ψ0 and ψ∞
are close up to a small constant. Since ψ0 and ϕ0 are close up to a small constant, ψ∞ and
ϕ0 are also close. The same arguments imply that ψ′∞ and ϕ1 are close. Hence, ψ∞ and ψ′∞
are almost orthogonal. Any state Ψ ∈ G can be decomposed as

Ψ = cψ∞ + c′ψ′∞, |c| = O(1), |c′| = O(1). (3.54)

Then, {Ψi := cψi + c′ψ′i}+∞
i=0 is a sequence of approximations to Ψ with (b) R(Ψi) =

2Õ(ε−1+ε−1/4t
3/4
i ). (a) also follows immediately.

Proof of Theorem 1. (a) Let Λi be the Schmidt coefficients of Ψ across the middle cut. Then,

1− pi :=

Ri∑
j=1

Λ2
j ≥ |〈Ψi,Ψ〉|2 ≥ 1− 2−Ω(i). (3.55)

The Renyi entanglement entropy of Ψ is upper bounded by

log
(
R1−α

0 +
∑+∞

i=0 p
α
i (Ri+1 −Ri)

1−α)
1− α

≤
log
(

2(1−α)Õ(ε−1) +
∑+∞

i=0 2(1−α)Õ(ε−1+ε−1/4i3/4)−αΩ(i)
)

1− α

= Õ(ε−1) +
log(O(1) + 2(1−α)Õ((1−α)3α−3/ε))

1− α
= Õ(ε−1 + (1− α)3α−3/ε) = Õ(α−3ε−1). (3.56)

(b) Finally we sketch the proof that Ψ is well approximated by an MPS of small bond
dimension. We first express it exactly as an MPS of possibly exponential (in n) bond
dimension and then truncate the MPS cut by cut. It is shown in [146] the error accumulates
at most additively: If an inverse polynomial overall error 1/p(n) = 1/ poly(n) is allowed, it
suffices that the error of truncating each cut is 1/(np(n)) = 1/ poly(n). We require that

1/ poly(n) = pi ⇒ i = O(log n), (3.57)

and hence the bond dimension is 2Õ(ε−1/4 log3/4 n).
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3.5 Notes

For non-degenerate systems (f = 1), the upper bound claimed in [10] on the von Neumann
entanglement entropy is Õ(ε−1). However, the proof in [10] of this claim appears incomplete.
Specifically, in Lemma 6.3 in [10] t0 should be at least O(ε0/ε

2 + ε−1) in order that the
robustness theorem (Theorem 6.1 in [10]) applies to H(t0), i.e., the robustness theorem does
not guarantee that H(t0) is gapped if t0 = O(1). Then s = Õ(ε−1) (and l = s2) does not give
an AGSP for H(t0) with ∆D ≤ 1/2, but s = Õ(ε−3/2) does. A straightforward calculation
shows that the upper bound Õ(ε−3/2) on the von Neumann entanglement entropy follows
from the proof in [10]. Nevertheless, in this chapter we have shown that the claim in [10] is
correct, because Theorem 2 (as a stronger version of the robustness theorem) only requires
t ≥ O(log ε−1).

After the appearance of this chapter on arXiv [70], Section 3.2 (perturbation theory) was
extended to higher dimensions [11]. In particular, Theorems 4.2, 4.6 in [11] are generaliza-
tions of Lemmas 3, 4, respectively.
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Chapter 4

Efficient algorithm for ground states
in gapped spin chains

A (deterministic) polynomial-time algorithm is proposed for approximating the ground state
of (general) 1D gapped Hamiltonians. Let ε, n, η be the energy gap, the system size, and the
desired precision, respectively. Neglecting ε-dependent sub-polynomial (in n) and constant
factors, the running time of the algorithm is nO(1/ε) for η = n−O(1) and is nO(1) for η = n−o(1).

4.1 Introduction and background

Computing the ground state in quantum many-body systems with local interactions is a fun-
damental problem in condensed matter physics. Intuitively, this problem is likely intractable
because the dimension of the Hilbert space of the system grows exponentially with the sys-
tem size. Indeed, computing the ground-state energy of 1D Hamiltonians is QMA-complete
[7, 58]. Therefore, (assuming QMA 6=NP) ground states of 1D Hamiltonians do not in general
have classical representations from which physical properties can be efficiently extracted. It
should be emphasized that the local Hamiltonians constructed in all known proofs of the
QMA-hardness are gapless. Indeed, the ground state of 1D gapped Hamiltonians can be
[59, 10, 70] efficiently represented as an MPS [118, 41], a data structure that allows efficient
computation of physical observables. Thus, the 1D gapped local Hamiltonian problem is in
NP.

In practice, the DMRG algorithm [161, 162] is highly successful in 1D gapped systems,
and moderately successful in a large class of 1D gapless systems. It is the leading numerical
method in 1D and is now running on the computers of condensed matter physicists every-
where on earth. Despite its remarkable popularity, DMRG is still a heuristic local search
algorithm over MPS: It can get stuck in a local minimum and there is no guarantee that it
always converges in polynomial time. The worst-case performance of DMRG-like algorithms
has been a long-standing problem for more than two decades. Is there a variant of DMRG
that provably finds the ground state of 1D gapped Hamiltonians in polynomial time, or is
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the 1D gapped local Hamiltonian problem in P? We are in a situation reminiscent of the
practical success of the simplex algorithm for linear programming before the advent of the
ellipsoid and interior-point methods.

A lot of progress has been made. Without assuming an energy gap, the ground-state
energy of 1D commuting Hamiltonians can be computed efficiently using dynamic program-
ming [135, 5]. This algorithm also provably finds the ground state of 1D gapped Hamilto-
nians in sub-exponential time [10]. Recently, Landau, Vazirani, and Vidick [95] proposed
a randomized polynomial-time algorithm for approximating the ground state of “almost
frustration-free” 1D gapped Hamiltonians (see the remark on Lemma 12 for an explanation
of this result). However, settling the complexity of the 1D gapped local Hamiltonian problem
is still highly desirable because (a) a generic Hamiltonian is not almost frustration-free; (b)
frustration-free Hamiltonians are expected to be easier to solve, e.g., they do not suffer from
the so-called sign problem in quantum Monte Carlo simulations.

In this chapter, a (deterministic) polynomial-time algorithm is proposed for approximat-
ing the ground state of (general) 1D gapped Hamiltonians, i.e., we prove that the 1D gapped
local Hamiltonian problem is in P. This algorithm not only has a broader scope, but is also
significantly faster than the algorithm in [95]. As an immediate corollary, adiabatic quantum
computation with a final 1D gapped Hamiltonian can be efficiently simulated classically and
(assuming BQP6=P) is therefore not universal, improving Hastings’ result [61] that adia-
batic quantum computation with a path of 1D gapped Hamiltonians allows efficient classical
simulation.

4.2 Main results

Suppose we are working with a chain of n spins (qud its), and the local dimension d = Θ(1)
of each spin is an absolute constant. Let Hi = Cd be the Hilbert space of the spin i; define
H[i,j] =

⊗j
k=iHk as the Hilbert space of the spins with indices in the interval [i, j] and

H = H[1,n] as the Hilbert space of the system. Since the standard bra-ket notation can be
cumbersome, in most but not all cases quantum states and their inner products are simply
denoted by ψ, φ . . . and 〈ψ, φ〉, respectively, cf. ‖|ψ〉 − |φ〉‖ versus ‖ψ − φ‖. All states are
normalized unless otherwise stated.

Let H =
∑n−1

i=1 Hi be a 1D Hamiltonian, where Hi acts on the spins i and i+ 1 (nearest-
neighbor interaction). Assume without loss of generality that the ground-state energy of
each Hi is zero, and Hi ≤ 1. Let ε0 denote the ground-state energy of H, which is a measure
of how frustrated H is: H is frustration-free if ε0 = 0, and H is “almost frustration-free” if
ε0 = O(1). Suppose H has a unique ground state Ψ0, and there is a constant gap ε between
the energies of the ground state and the first excited state. It is easy to see ε ≤ 1. The goal
is to find an efficient MPS approximation to the ground state of H.

Definition 5 (MPS [118, 41]). Let {|ji〉}dji=1 be the computational basis of Hi and {Di}ni=0
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with D0 = Dn = 1 be a sequence of positive integers. An MPS Ψ takes the form

Ψ =
d∑

j1,j2,...,jn=1

A
[1]
j1
A

[2]
j2
· · ·A[n]

jn
|j1j2 · · · jn〉, (4.1)

where A
[i]
ji

is a matrix of size Di−1 ×Di. Define D = max{Di}ni=0 as the bond dimension of
the MPS Ψ.

Clearly, an MPS representation is efficient if its bond dimension is (at most) a polynomial
in n. The existence of an efficient MPS approximation to the ground state of 1D gapped
Hamiltonians is a by-product of the proof of the area law for entanglement [59, 10, 70].
Let Õ(x) := O(x polylog x) hide a polylogarithmic factor, and suppose the desired precision
η = n−O(1) is lower bounded by an inverse polynomial in n.

Lemma 10 ([10, 70]). There exists an MPS Ψ of bond dimension D = 2Õ(1/ε+ε−1/4 log3/4(n/η))

such that |〈Ψ,Ψ0〉| ≥ 1− η.

As a corollary, the ground state of 1D gapped Hamiltonians can be computed in sub-
exponential time using dynamic programming.

Lemma 11 ([10, 135, 5]). In 1D gapped systems there is a 22Õ(ε−1/4 log3/4 n)
-time algorithm

that outputs an MPS Ψ such that |〈Ψ,Ψ0〉| ≥ 1− η.

Recently, Landau, Vazirani, and Vidick [95] proposed a randomized polynomial-time
algorithm for approximating the ground state of almost frustration-free 1D gapped Hamil-
tonians.

Lemma 12 ([95]). In almost frustration-free 1D gapped systems there is a randomized
polynomial-time algorithm that outputs an MPS Ψ such that |〈Ψ,Ψ0〉| ≥ 1− η with probabil-

ity at least 1 − 1/ poly n. Its running time is n2Õ(1/ε)
for η = n−O(1) and is still n2Õ(1/ε)

for
η = n−o(1).

Remark. In general 1D gapped systems the running time of this algorithm is n2Õ(1/ε)+O(ε0/ε)

and may be exponential in n if ε0 = Θ(n). In frustration-free 1D gapped systems this
algorithm can be derandomized using the detectability lemma [6]. See Section 4.7 for details.

Some ε-dependent sub-polynomial (e.g., 2Õ(ε−1/4 log3/4 n)) and constant (e.g., 22Õ(1/ε)
) fac-

tors will appear below. If not dominant (e.g., accompanied with poly n), depending on the
context they may be neglected or kept for simplicity or clarity, respectively. The main result
of this chapter is

Theorem 3. In (general) 1D gapped systems there is a (deterministic) polynomial-time
algorithm that outputs an MPS Ψ such that 〈Ψ, HΨ〉 ≤ ε0 + ηε. Its running time is nO(1/ε)

for η = n−O(1) and is nO(1) for η = n−o(1).



CHAPTER 4. EFFICIENT ALGORITHM FOR GROUND STATES IN GAPPED SPIN
CHAINS 29

Remark. It is easy to see that 〈Ψ, HΨ〉 ≤ ε0 + ηε implies |〈Ψ,Ψ0〉| ≥ 1− η.

Hastings [61] proved that adiabatic quantum computation with a path of 1D gapped
Hamiltonians allows efficient classical simulation and (assuming BQP 6=P) is therefore not
universal. Suppose H(t) with 0 ≤ t ≤ tmax ≤ poly n is a “smooth” path of 1D Hamiltonians,
where the ground state of H(0) is a simple product state. Let Ψ0(t) and ε(t) be the ground
state and the energy gap of H(t), respectively.

Lemma 13 ([61]). Suppose H(t) has a constant energy gap for 0 ≤ t ≤ tmax. Then there
is a polynomial-time algorithm that outputs an MPS Ψ such that |〈Ψ,Ψ0(tmax)〉| ≥ 1 − η.
Its running time is nO(1/min0≤t≤tmax{ε(t)}) for η = n−O(1) and is still nO(1/min0≤t≤tmax{ε(t)}) for
η = n−o(1).

As an immediate corollary of Theorem 3, adiabatic quantum computation with a final 1D
gapped Hamiltonian can be efficiently simulated classically. Suppose H(tmax) has a constant
energy gap. Then our algorithm outputs an MPS Ψ such that |〈Ψ,Ψ0(tmax)〉| ≥ 1 − η. Its
running time is nO(1/ε(tmax)) for η = n−O(1) and is nO(1) for η = n−o(1).

4.3 Overview

The outline of our algorithm is similar to that in Lemma 12. We begin by defining the notion
of “support set” (known as “viable set” in [95]).

Definition 6 (support set). S ⊆ H[1,i] is an (i, s, b, δ or ∆)-support set if there exists a state
ψ ∈ H (called a witness for S) such that
(i) the reduced density matrix of ψ on H[1,i] is supported on spanS;
(ii) |S| ≤ s;
(iii) all elements in S are MPS of bond dimension at most b;
(iv) |〈ψ,Ψ0〉| ≥ 1− δ or 〈ψ,Hψ〉 ≤ ε0 + ∆ε (depending on the context either δ or ∆ is used
as the precision parameter).

Remark. Lemma 14 implies that an (i, s, b,∆ = η)-support set is also an (i, s, b, δ = η)-
support set.

Our algorithm iteratively constructs an (i, p1p3, p2p3,∆ = cε6)-support set Si for i =
1, 2, . . . , n− 1, where p1, p2, p3 are (upper bounded by) i-independent and ε-dependent poly-
nomials in n, and c is a sufficiently small absolute constant. The nth iteration is slightly
different and constructs an (n, p1p4, p2p4,∆ = η)-support set Sn, where p4 is again a polyno-
mial in n. After the last iteration, we obtain an MPS approximation to the ground state Ψ0

of H from the last support set Sn by minimizing the energy over the subspace spanSn. The
solution has the desired precision η, and the minimization can be formulated as a convex
program of polynomial size. Indeed, spanSn is of polynomial dimension, and any element in
spanSn is an MPS of polynomial bond dimension.
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Table 4.1: Evolution of the parameters in each iteration. The asterisks mark the parameter
that is reduced at every step.

i s b δ ∆
start i− 1 p1p3 p2p3 n/a cε6

extension i dp1p3 p2p3 n/a cε6

cardinality reduction i p1* dp1p2p
2
3 1/1000 1/1000

bond truncation i p1 p2* 1/20 n/a
error reduction (i ≤ n− 1) i p1p3 p2p3 n/a cε6*

error reduction (i = n) n p1p4 p2p4 η* η*

Each iteration consists of four steps: extension, cardinality reduction, bond trun-
cation, and error reduction. Table 4.1 summarizes the evolution of the parameters s, b, δ
or ∆ in each iteration of our algorithm.

We briefly recall the algorithm in Lemma 12. This algorithm only uses δ as the precision
parameter, which is reduced to O(ε2/n) at the end of the ith iteration for i = 1, 2, . . . , n− 1.
The analysis in [95] gives

p1 = n2Õ(1/ε)

, p2 = n2Õ(ε−1/4 log3/4 n), p3 = nO(1/ε), p4 = nO(1/ε) (4.2)

in almost frustration-free 1D gapped systems. The running time of the algorithm is a poly-
nomial in p1, p2, p3, p4, and is dominated by p1. Specifically, extension is trivial; the analysis
of cardinality reduction determines p1; bond truncation is straightforward; error re-
duction is the only step that involves randomness (it succeeds with probability at least
1 − 1/ poly n) and the only step that requires ε0 = O(1). Indeed, p3 = nO(1/ε+ε0/ε) and
p4 = nO(1/ε+ε0/ε) in general 1D gapped systems. See Section 4.7 for details.

In this chapter, we significantly improve the analysis of cardinality reduction using

perturbation theory (the truncation lemma [10, 70]) so that p1 = 22Õ(1/ε)
no longer dominates

the running time of the algorithm. More importantly, we redesign error reduction so that

p3 = nO(1) and p4 = nO(1+
√

log(1/η)/ logn/ε) in general 1D gapped systems (clearly, p4 = nO(1/ε)

for η = n−O(1) and p4 = nO(1) for η = n−o(1)). This is achieved using the Fourier transform
and the Lieb-Robinson bound [100] but not randomness. Extension and bond truncation
remain unchanged.

4.4 Preliminaries

Lemma 14. 〈ψ,Hψ〉 ≤ ε0 + ηε implies |〈ψ,Ψ0〉| ≥ |〈ψ,Ψ0〉|2 ≥ 1− η.

Proof. The state ψ can be decomposed as ψ = c0Ψ0 +c1Ψ1, where Ψ1 ⊥ Ψ0 and 〈Ψ1, HΨ1〉 ≥
ε0 + ε.

ε0 + ηε ≥ 〈ψ,Hψ〉 ≥ |c0|2ε0 + |c1|2(ε0 + ε) = ε0 + |c1|2ε⇒ |c0|2 = 1− |c1|2 ≥ 1− η. (4.3)
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Lemma 15. |〈ψ, φ1〉| ≥ 1− η1 and |〈ψ, φ2〉| ≥ 1− η2 imply |〈φ1, φ2〉| ≥ 1− 2(η1 + η2).

Proof. Let θ1 be the angle between ψ and φ1, and θ2 be the angle between ψ and φ2.

|〈φ1, φ2〉| ≥ cos(θ1 + θ2) = cos θ1 cos θ2 −
√

(1− cos2 θ1)(1− cos2 θ2)

≥ (1− η1)(1− η2)−
√

(2η1 − η2
1)(2η2 − η2

2) ≥ 1− 2(η1 + η2). (4.4)

Lemma 16. |〈ψ, φ〉| ≥ 1 − η implies |〈ψ, Ôψ〉 − 〈φ, Ôφ〉| ≤ 2
√

2η for any operator Ô with
‖Ô‖ ≤ 1.

Proof. Assume without loss of generality that 〈ψ, φ〉 is a positive real number.

‖ψ − φ‖2 = 2− 2〈ψ, φ〉 ≤ 2η and 〈ψ, Ôψ〉 − 〈φ, Ôφ〉 = 〈ψ − φ, Ôψ〉+ 〈φ, Ô(ψ − φ)〉
⇒ |〈ψ, Ôψ〉 − 〈φ, Ôφ〉| ≤ ‖ψ − φ‖ · ‖Ô‖ · ‖ψ‖+ ‖φ‖ · ‖Ô‖ · ‖ψ − φ‖ ≤ 2

√
2η. (4.5)

Definition 7 (truncation). Let ψ =
∑

j≥1 λjlj ⊗ rj be the Schmidt decomposition of a
state ψ ∈ H across the cut i|i + 1, where the Schmidt coefficients are in descending order:
λ1 ≥ λ2 ≥ · · · > 0. Define truncD ψ =

∑D
j=1 λjlj ⊗ rj.

Lemma 17 (Eckart-Young theorem [39]). The state ψ′ = truncD ψ/‖ truncD ψ‖ satisfies
〈ψ′, ψ〉 ≥ |〈φ, ψ〉| for any state φ ∈ H of Schmidt rank D (across the cut i|i+ 1).

Lemma 18 ([95]). Suppose φ ∈ H is a state of Schmidt rank D (across the cut i|i+ 1).

|〈truncD/η ψ, φ〉| ≥ |〈ψ, φ〉| − η, ∀η > 0, ψ ∈ H. (4.6)

Remark. This is a simple corollary of Lemma 17.

Lemma 19. 〈Ψ′0,Ψ0〉 ≥ 1−η for Ψ′0 = truncBη Ψ0/‖ truncBη Ψ0‖, where Bη = 2Õ(1/ε+ε−1/4 log3/4(1/η)).

Proof. As a by-product of the proof of the area law for entanglement [70], there exists a
state φ ∈ H of Schmidt rank Bη such that 〈φ,Ψ0〉 ≥ 1 − η. Then, this lemma follows from
Lemma 17.

Lemma 20. ε ≤ 1.

Proof. It suffices to find two orthogonal states with energies at most ε0 + 1. Let {|j1〉}dj1=1

be the computational basis of H1, and ψ ∈ H[2,n] be the ground state of
∑n−1

i=2 Hi. For any
|j1〉,

〈j1ψ,Hj1ψ〉 = 〈j1ψ,H1j1ψ〉+

〈
ψ,

n−1∑
i=2

Hiψ

〉
≤ 〈Ψ0, H1Ψ0〉+ 1 +

〈
Ψ0,

n−1∑
i=2

HiΨ0

〉
= ε0 + 1.

(4.7)
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Lemma 21. 〈ψ,Hψ〉 ≤ ε0 + ηε and η ≤ 1/10 imply 〈ψ′, Hψ′〉 ≤ ε0 + 25
√
η for ψ′ =

truncBη ψ/‖ truncBη ψ‖.

Proof. Lemma 14 implies |〈ψ,Ψ0〉| ≥ 1−η. Since |〈Ψ′0,Ψ0〉| ≥ 1−η for Ψ′0 = truncBη Ψ0/‖ truncBη Ψ0‖
(Lemma 19), Lemma 15 implies |〈ψ,Ψ′0〉| ≥ 1 − 4η. Let φ′ = truncBη ψ and ψ = φ′ + φ.
Lemma 17 implies ‖φ′‖ = 〈ψ, φ′〉/‖φ′‖ ≥ 1 − 4η. Hence, ‖φ‖2 = 1 − ‖φ′‖2 ≤ 8η. Since
η ≤ 1/10,

〈ψ, (H −Hi)ψ〉 = 〈φ′, (H −Hi)φ
′〉+ 〈φ, (H −Hi)φ〉

⇒ 〈φ′, Hφ′〉 = 〈ψ,Hψ〉 − 〈φ,Hφ〉+ 〈φ,Hiφ〉 − 〈φ′, Hiφ〉 − 〈φ,Hiψ〉
≤ ε0 + ηε− ε0‖φ‖2 + ‖φ‖2 + 2‖φ‖ ≤ ε0‖φ′‖2 + ηε+ 8η + 4

√
2η

⇒ 〈ψ′, Hψ′〉 ≤ ε0 + (ηε+ 8η + 4
√

2η)/(1− 4η)2 ≤ ε0 + 25
√
η. (4.8)

Definition 8 (matrix product operator (MPO)). Let {Ôji}d
2

ji=1 be a basis of the space of
operators on Hi and {Di}ni=0 with D0 = Dn = 1 be a sequence of positive integers. As the
operator analog of MPS, an MPO K takes the form

K =
d2∑

j1,j2,...,jn=1

(
A

[1]
j1
A

[2]
j2
· · ·A[n]

jn

)
Ôj1 ⊗ Ôj2 ⊗ · · · ⊗ Ôjn , (4.9)

where A
[i]
ji

is a matrix of size Di−1 ×Di. Define D = max{Di}ni=0 as the bond dimension of
the MPO K.

4.5 Algorithm and analysis

In the ith iteration our algorithm constructs an (i, p1p3, p2p3,∆ = cε6)-support set Si from
an (i− 1, p1p3, p2p3,∆ = cε6)-support set Si−1 returned in the (i− 1)th iteration.

Extension

Extension is trivial. Let {|ji〉}dji=1 be the computational basis of Hi. It is easy to see that

S
(1)
i := {ψ|ji〉 : ∀ψ ∈ Si−1, ji = 1, 2, . . . , d} is an (i, dp1p3, p2p3,∆ = cε6)-support set.

Cardinality reduction

Dynamic programming for MPS is the essential ingredient of cardinality reduction. It was
first developed by [135, 5] and then reformulated using the notion of “boundary contraction”
[95].
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Boundary contraction

Let tr[i,j] ρ denote the partial trace over H[i,j] of a density matrix ρ on H.

Definition 9 (boundary contraction). Let ψ =
∑B

j=1 λjlj⊗rj be the Schmidt decomposition

of a state ψ ∈ H across the cut i|i+ 1. Let {|j〉}Bj=1 be the computational basis of CB. Let

Uψ : CB → H[i+1,n] be the isometry specified by Uψ|j〉 = rj such that U−1
ψ ψ =

∑B
j=1 λjlj|j〉 ∈

H[1,i] ⊗CB. The boundary contraction contψ is a density matrix on Hi ⊗CB:

contψ := U−1
ψ tr[1,i−1](|ψ〉〈ψ|)Uψ. (4.10)

Let εL, εR be the ground-state energies of HL :=
∑i−1

j=1Hj and HR :=
∑n−1

j=i+1 Hj, respec-
tively. Define H ′L = HL− εL and H ′R = HR− εR so that the ground-state energies of H ′L, H

′
R

are 0.

Lemma 22. Let ρ be a density matrix on H[1,i]⊗CB and ψ =
∑B

j=1 λjlj⊗ rj be the Schmidt

decomposition of a state ψ ∈ H (across the cut i|i + 1). The density matrix ρ′ := UψρU
−1
ψ

on H has energy

tr(ρ′H) ≤ tr(ρHL)+〈ψ, (Hi+HR)ψ〉+‖ tr[1,i−1] ρ−contψ‖1

(
1 + max

r∈span{rj}
‖H ′Rr‖

)
. (4.11)

Proof. Since Uψ is a isometry,

tr(ρ′H)− tr(ρHL)− 〈ψ, (Hi +HR)ψ〉 = tr(ρ′H)− tr(ρ′HL)− 〈ψ, (Hi +HR)ψ〉
= tr(ρ′(Hi +HR))− 〈ψ, (Hi +HR)ψ〉 = tr[(ρ′ − |ψ〉〈ψ|)(Hi +HR)]

= tr[(ρ′ − |ψ〉〈ψ|)(Hi +H ′R)] = tr[tr[1,i−1](ρ
′ − |ψ〉〈ψ|)(Hi +H ′R)]

= tr[U−1
ψ tr[1,i−1](ρ

′ − |ψ〉〈ψ|)UψU−1
ψ (Hi +H ′R)Uψ]

= tr[(tr[1,i−1] ρ− contψ)(U−1
ψ HiUψ + U−1

ψ H ′RUψ)]

≤ ‖ tr[1,i−1] ρ− contψ‖1 · ‖U−1
ψ HiUψ + U−1

ψ H ′RUψ‖
≤ ‖ tr[1,i−1] ρ− contψ‖1(1 + ‖U−1

ψ H ′RUψ‖)

≤ ‖ tr[1,i−1] ρ− contψ‖1

(
1 + max

r∈span{rj}
‖H ′Rr‖

)
. (4.12)

Algorithm

Let N be a ξ-net with ξ = Ω̃(ε) for the trace norm over the space of boundary contractions

of bond dimension B8
√
cε2 = 2Õ(1/ε) so that |N | = (B/ξ)O(B) = 22Õ(1/ε)

. It is straightforward

to construct N in time poly |N | = 22Õ(1/ε)
.
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===================================================
Cardinality reduction convex program and bond truncation
———————————————————————————————————————–
0. Let the variable ρ be a density matrix on spanS

(1)
i ⊗CB8

√
cε2 ⊆ H[1,i] ⊗CB8

√
cε2 .

1. For each X ∈ N , solve the convex program:

min tr(ρHL); s. t. ‖ tr[1,i−1] ρ−X‖1 ≤ ξ, tr ρ = 1, ρ ≥ 0. (4.13)

2. Let ϕ =
∑

j ϕj|j〉 be the eigenvector of the solution ρ with the largest eigenvalue.
3. Let ϕ′ =

∑
j ϕ
′
j|j〉 be the state obtained by truncating each bond (in whatever order) of

ϕ to p2.
4. S

(3)
i consists of the MPS representations of all ϕ′j.

===================================================

Analysis

Let Pt be the projection onto the subspace H≤tR spanned by the eigenvectors of H ′R with
eigenvalues at most t, and Qt be the projection onto the subspace spanned by the eigenvectors
of H ′L +H ′R with eigenvalues at most t.

Lemma 23 (truncation lemma).

‖(1− Pt)Ψ0‖ ≤ ‖(1−Qt)Ψ0‖ ≤ 100 · 2−t/20. (4.14)

Proof. The first inequality is obvious: Pt ≥ Qt as [H ′L, H
′
R] = 0 and H ′L ≥ 0. The second

inequality was proved in [10].

Let t = O(log(1/ε)) so that 100 · 2−t/20 ≤ cε6.

Lemma 24. There exists a state ψ ∈ spanS
(1)
i ⊗ H

≤t
R of Schmidt rank B8

√
cε2 (across the

cut i|i+ 1) such that 〈ψ,Hψ〉 ≤ ε0 + 200c1/4ε.

Proof. Let φ be a witness for S
(1)
i . Since S

(1)
i is an (i, dp1p3, p2p3,∆ = cε6)-support set,

Lemma 14 implies |〈φ,Ψ0〉| ≥ 1 − cε6. Lemma 16 implies 〈φ,Hiφ〉 ≥ 〈Ψ0, HiΨ0〉 − 2
√

2cε3.

Let φ′ = Ptφ/‖Ptφ‖ so that φ′ ∈ spanS
(1)
i ⊗ H

≤t
R by construction. Since the state φ has

energy at most ε0 + cε7,

〈Ψ0, (H
′
L +H ′R)Ψ0〉+ 4

√
cε3 ≥ 〈Ψ0, (H

′
L +H ′R)Ψ0〉+ 2

√
2cε3 + cε7 ≥ 〈φ, (H ′L +H ′R)φ〉

= 〈φ, Pt(H ′L +H ′R)Ptφ〉+ 〈φ, (1− Pt)(H ′L +H ′R)(1− Pt)φ〉
≥ 〈φ′, (H ′L +H ′R)φ′〉‖Ptφ‖2 + t‖(1− Pt)φ‖2. (4.15)

The ground-state energy of H ′L+Hi+H
′
R is at most 1 as Hi ≤ 1. Hence, 〈Ψ0, (H

′
L+H ′R)Ψ0〉 ≤

1 as Hi ≥ 0. (4.15) implies

t� 〈Ψ0, (H
′
L+H ′R)Ψ0〉+4

√
cε3 ⇒ 〈φ′, (H ′L+H ′R)φ′〉 ≤ 〈Ψ0, (H

′
L+H ′R)Ψ0〉+4

√
cε3. (4.16)
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Lemmas 16, 23 imply

|〈φ′,Ψ0〉| ≥ |〈Ptφ,Ψ0〉| = |〈φ, PtΨ0〉| ≥ |〈φ,Ψ0〉| − |〈φ, (1− Pt)Ψ0〉|
≥ 1− cε6 − ‖(1− Pt)Ψ0‖ ≥ 1− cε6 − 100 · 2−t/20 ≥ 1− 2cε6

⇒ 〈φ′, Hiφ
′〉 ≤ 〈Ψ0, HiΨ0〉+ 4

√
cε3. (4.17)

Summing (4.16) (4.17) gives 〈φ′, Hφ′〉 ≤ 〈Ψ0, HΨ0〉+ 4
√
cε3 + 4

√
cε3 = ε0 + 8

√
cε3. Finally,

Lemma 21 implies that the state ψ := truncB8
√
cε2
φ′/‖ truncB8

√
cε2
φ′‖ ∈ spanS

(1)
i ⊗H

≤t
R has

energy 〈ψ,Hψ〉 ≤ ε0 + 75c1/4ε.

Lemma 25. S
(2)
i is an (i, p1, dp1p2p

2
3,∆ = 1/1000)-support set, where S

(2)
i consists of the

MPS representations of all ϕj.

Proof. Since N is a ξ-net, there is an element X ∈ N such that ‖ contψ−X‖1 ≤ ξ. Clearly,
tr(ρHL) ≤ 〈ψ,HLψ〉 as U−1

ψ |ψ〉〈ψ|Uψ is a feasible solution to the convex program (4.13). Let

σ = UψρU
−1
ψ , and set ξ = Ω̃(ε) such that 2ξ(1 + t) ≤ ε/4000. Lemma 22 implies

tr(σH) ≤ tr(ρHL) + 〈ψ, (Hi +HR)ψ〉+ ‖ tr[1,i−1] ρ− contψ‖1

(
1 + max

r∈span{rj}
‖H ′Rr‖

)
≤ 〈ψ, (HL +Hi +HR)ψ〉+ 2ξ

(
1 + max

r∈H≤tR
‖H ′Rr‖

)
≤ 〈ψ,Hψ〉+ 2ξ(1 + t)

≤ ε0 + 200c1/4ε+ ε/4000 ≤ ε0 + ε/2000 (4.18)

for sufficiently small constant c. We observe that
(1) there exists at least an eigenstate of σ with energy at most ε0 + ε/1000;
(2) there is at most one such eigenstate as Lemma 14 implies that such an eigenstate is close
to Ψ0;
(3) this eigenstate (denoted by Φ) has the largest eigenvalue due to Markov’s inequality in
probability theory;
(4) Φ = Uψϕ is a witness for S

(2)
i as an (i, p1, dp1p2p

2
3,∆ = 1/1000)-support set with p1 =

B8
√
cε2|N | = 22Õ(1/ε)

.

Bond truncation

The analysis of bond truncation follows immediately from Lemmas 10, 18, and is (almost)
identical to that in [95].

Lemma 26. S
(3)
i is an (i, p1, p2, δ = 1/20)-support set.

Proof. Since Φ is a witness for S
(2)
i with energy at most ε0 + ε/1000, Lemma 14 implies

|〈Φ,Ψ0〉| ≥ 999/1000. Lemma 10 implies the existence of an MPS Ψ of bond dimension
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2Õ(ε−1/4 log3/4 n) such that |〈Ψ,Ψ0〉| ≥ 999/1000. Lemma 15 implies |〈Ψ,Φ〉| ≥ 249/250. Let
Φ′ be the state obtained by truncating each bond to the left of the cut i|i + 1 (in the same

order as each bond of ϕ is truncated) of Φ to p2 = 1000n2Õ(ε−1/4 log3/4 n). Lemma 18 implies
|〈Ψ,Φ′〉| ≥ 199/200. Lemma 15 implies |〈Ψ0,Φ

′〉| ≥ 49/50. Hence Φ′ = Uψϕ
′ is a witness for

S
(3)
i as an (i, p1, p2, δ = 1/20)-support set.

Error reduction

To reduce the energy of the witness Φ′, we efficiently construct an MPO that approximately
projects Φ′ onto the ground state Ψ0. This construction was used extensively by Hastings to
prove several well-known results (e.g., the 1D area law for entanglement [59]) for the ground
state of gapped local Hamiltonians. It applies to general 1D gapped systems and does not
involve randomness. It uses the Fourier transform and the Lieb-Robinson bound [100].

Assume for the moment that we have an estimate ε′0 of the ground-state energy ε0 of H
in the sense that |ε0 − ε′0| ≤ ε/

√
q ≤ ε/2, where q = 4 log(1/η) + 24. Let

A := e−
q(H−ε′0)

2

2ε2 =
ε√
2πq

∫ +∞

−∞
e−

ε2t2

2q
−i(H−ε′0)tdt. (4.19)

Lemma 27. |〈Φ′,Ψ0〉| ≥ 19/20 implies 〈φ,Hφ〉 ≤ ε0 + ηε/100 for φ = AΦ′/‖AΦ′‖.

Proof. Let {Ψj}d
n−1
j=0 be the eigenvectors of H with the corresponding eigenvalues {εj}d

n−1
j=0

in ascending order. The state Φ′ can be decomposed as Φ′ =
∑dn−1

j=0 cjΨj with |c0| ≥ 19/20.

‖AΦ′‖ ≥ |c0| · ‖AΨ0‖ ≥ 19e−
q(ε0−ε

′
0)

2

2ε2 /20 ≥ 19/(20
√
e) ≥ 1/2. (4.20)

Since εj − ε0 ≤ 2(εj − ε′0) for j ≥ 1,

〈φ, (H − ε0)φ〉 = 〈AΦ′, (H − ε0)AΦ′〉/‖AΦ′‖2 ≤ 4
dn−1∑
j=1

(εj − ε0)|cj|2e−q(εj−ε
′
0)2/ε2

≤ 8
dn−1∑
j=1

(εj − ε′0)|cj|2e−
q(εj−ε

′
0)

2

ε2 ≤ 8 max
x≥ε/2
{xe−

qx2

ε2 }
dn−1∑
j=1

|cj|2 ≤ 4εe−
q
4 ≤ ηε/100. (4.21)

Lemma 28. An MPO K of bond dimension D = nO(1+
√

log(1/η)/ logn/ε) can be efficiently
constructed such that ‖K − A‖ ≤ ηε/(1000n) =: η′.

Proof. Following [61], we truncate and discretize the integral in (4.19):

A =
ε√
2πq

∫ +∞

−∞
e−

ε2t2

2q
−i(H−ε′0)tdt ≈ ε√

2πq

∫ T

−T
e−

ε2t2

2q
−i(H−ε′0)tdt

≈ ετ√
2πq

T/τ∑
j=−T/τ

e−
ε2τ2j2

2q
−i(H−ε′0)τj ≈ ετ√

2πq

T/τ∑
j=−T/τ

e−
ε2τ2j2

2q Kj =: K. (4.22)
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The truncation error is of order e−ε
2T 2/(2q) ≤ η′/3 for T = O(

√
q log(1/η′)/ε). The discretiza-

tion error is of order ετ‖H‖T/
√

2πq ≤ η′/3 for τ = O(η′
√
q/(ε‖H‖T )) = O(η′/(n

√
log(1/η′))).

As a consequence of the Lieb-Robinson bound [100], each propagator e−i(H−ε
′
0)τj can be ap-

proximated to precision η′/3 by an MPO Kj of bond dimension [112] 2O(τj) poly(n/η′) =

2O(T ) poly(n/η′) = 2O(
√
q log(1/η′)/ε) poly(n/η′). The number of terms is 2T/τ+1 = O(n

√
q log(1/η′)/(η′ε)).

Therefore, the bond dimension of the MPO K is D = nO(1+
√

log(1/η)/ logn/ε).

Lemmas 27, 28 imply 〈φ′, Hφ′〉 ≤ ε0 + ηε/50 for φ′ = KΦ′/‖KΦ′‖. Since K is an MPO
of bond dimension D, it can be decomposed as K =

∑D
j=1 Lj ⊗ Rj, where Lj and Rj are

MPO of bond dimension D on H[1,i] and on H[i+1,n], respectively. It is easy to see that

Si := {Ljψ : j = 1, 2, . . . , D, ∀ψ ∈ S(3)
i } is an (i, p1D, p2D,∆ = η)-support set. Hence p4 =

nO(1+
√

log(1/η)/ logn/ε) for i = n, and setting η = cε6 gives p3 = nO(1+
√

log(1/ε)/ logn/ε) = nO(1)

for i ≤ n− 1.
We briefly comment on the assumption that we have an estimate ε′0 of the ground-state

energy ε0 of H in the sense that |ε0 − ε′0| ≤ ε/
√
q. Since 0 ≤ ε0 ≤ n, we run the whole algo-

rithm with ε′0 = jε/
√
q and obtain a candidate MPS solution for each j = 0, 1, . . . , [n

√
q/ε].

The candidate MPS with the lowest energy is identified as the final output.

4.6 Degenerate ground states

Previously, we assumed a unique ground state. We now extend the results to 1D gapped
systems with degenerate ground states. After the appearance of this chapter on arXiv [69],
a different approach of extending results from unique to degenerate ground states was given
by [33].

Main results, overview, and preliminaries

Suppose the ground states of a 1D Hamiltonian H =
∑n−1

i=1 Hi are two-fold exactly degenerate
(for ease of presentation), and there is a constant energy gap ε. It should be clear that a
minor modification of the proof works for any constant-fold degeneracy and leads to the
same results in the presence of an exponentially small 2−Ω(n) splitting of the degeneracy (as
is typically observed in physical systems). The goal is to find efficient MPS approximations
to a set of basis vectors of the ground-state space G of H. The existence of an efficient MPS
approximation to any ground state Ψ0 ∈ G of H is a by-product of the proof of the area law
for entanglement [70].

Lemma 29 ([70]). For any ground state Ψ0 ∈ G of H, there exists an MPS Ψ of bond

dimension 2Õ(1/ε+ε−1/4 log3/4(n/η)) such that |〈Ψ,Ψ0〉| ≥ 1− η.

The main result of the present section is
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Theorem 4. In 1D gapped systems with two-fold ground-state degeneracy there is a polynomial-
time algorithm that outputs two orthogonal MPS Ψ,Ψ′ such that 〈Ψ, HΨ〉 ≤ ε0 + ηε and
〈Ψ′, HΨ′〉 ≤ ε0 + ηε. Its running time is nO(1/ε) for η = n−O(1) and is nO(1) for η = n−o(1).

Remark. Lemma 32 implies that any state in span{Ψ,Ψ′} has energy at most ε0 + 2ηε.

Definition 10 (support set). S ⊆ H[1,i] is an (i, s, b, δ or ∆)-support set if there exist two
orthogonal states ψ0, ψ1 ∈ H (each of which is called a witness for S) such that
(i) the reduced density matrices of both ψ0 and ψ1 on H[1,i] are supported on spanS (hence,
the reduced density matrix of any state ψ ∈ span{ψ0, ψ1} on H[1,i] is supported on spanS);
(ii) |S| ≤ s;
(iii) all elements in S are MPS of bond dimension at most b;
(iv) there are two ground states Ψ0,Ψ1 ∈ G of H such that |〈ψ0,Ψ0〉| ≥ 1−δ and |〈ψ1,Ψ1〉| ≥
1− δ; or (iv) 〈ψ0, Hψ0〉 ≤ ε0 + ∆ε and 〈ψ1, Hψ1〉 ≤ ε0 + ∆ε (depending on the context either
δ or ∆ is used as the precision parameter).

There are no major changes in the outline of the algorithm. Support sets Si’s are itera-
tively constructed for i = 1, 2, . . . , n, and Table 4.1 illustrates the evolution of the parameters
at every step in each iteration. A few lemmas in Section 4.4 should be modified, and a new
lemma is added.

Lemma 30. 〈ψ,Hψ〉 ≤ ε0 + ηε implies the existence of a ground state Ψ0 ∈ G such that
|〈ψ,Ψ0〉|2 ≥ 1− η.

Lemma 31 ([70]). 〈Ψ′0,Ψ0〉 ≥ 1 − η for any ground state Ψ0 ∈ G of H and Ψ′0 =

truncBη Ψ0/‖ truncBη Ψ0‖, where Bη = 2Õ(1/ε+ε−1/4 log3/4(1/η)).

Lemma 32. 〈ψ0, Hψ0〉 ≤ ε0 + ∆ε and 〈ψ1, Hψ1〉 ≤ ε0 + ∆ε imply 〈ψ,Hψ〉 ≤ ε0 + 2∆ε/(1−
|〈ψ0, ψ1〉|) for any state ψ ∈ span{ψ0, ψ1}.

Proof. Any state ψ = αψ0 +βψ1 ∈ span{ψ0, ψ1} has energy at most ε0 +2∆ε/(1−|〈ψ0, ψ1〉|)
as

1 = ‖ψ‖2 ≥ |α|2 + |β|2 − 2|α| · |β| · |〈ψ0, ψ1〉| ⇒ |α|2 + |β|2 ≤ 1/(1− |〈ψ0, ψ1〉|)
⇒ 〈ψ, (H − ε0)ψ〉
≤ |α|2〈ψ0, (H − ε0)ψ0〉+ |β|2〈ψ1, (H − ε0)ψ1〉+ 2|α| · |β| · |〈ψ0, (H − ε0)ψ1〉|
≤ (|α|2 + |β|2)∆ε+ 2|α| · |β|

√
〈ψ0, (H − ε0)ψ0〉 · 〈ψ1, (H − ε0)ψ1〉

≤ 2(|α|2 + |β|2)∆ε. (4.23)
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Algorithm and analysis

In the ith iteration our algorithm constructs an (i, p1p3, p2p3,∆ = cε6)-support set Si from
an (i−1, p1p3, p2p3,∆ = cε6)-support set Si−1 returned in the (i−1)th iteration. Extension

is trivial, and we obtain an (i, dp1p3, p2p3,∆ = cε6)-support set S
(1)
i . Let N be a ξ-net over

the space of boundary contractions of bond dimension 2B8
√
cε2 .

===================================================
Cardinality reduction convex program and bond truncation
———————————————————————————————————————–
0. Let the variables ρ0, ρ1 be density matrices on spanS

(1)
i ⊗C2B8

√
cε2 ⊆ H[1,i] ⊗C2B8

√
cε2 .

1. For each X ∈ N , solve the convex program:

min tr(ρ0HL); s. t. ‖ tr[1,i−1] ρ0 −X‖1 ≤ ξ, tr ρ0 = 1, ρ0 ≥ 0. (4.24)

2. Let ϕ0 =
∑

j ϕ0,j|j〉 be the eigenvector of the solution ρ0 with the largest eigenvalue.
3. Solve the convex program:

min tr(ρ1HL); s. t. ‖ tr[1,i−1] ρ1 −X‖1 ≤ ξ, tr ρ1 = 1, ρ1 ≥ 0, 〈ϕ0, ρ1ϕ0〉 ≤ 1/4. (4.25)

4. Let ϕ1 =
∑

j ϕ1,j|j〉 be the eigenvector of the solution ρ1 with the largest eigenvalue.
5. Let ϕ′0 =

∑
j ϕ
′
0,j|j〉 and ϕ′1 =

∑
j ϕ
′
1,j|j〉 be the states obtained by truncating each bond

(in whatever order) of ϕ0 and ϕ1 to p2, respectively.

6. S
(3)
i consists of the MPS representations of all ϕ′0,j, ϕ

′
1,j.

===================================================

Lemma 33 ([70]). For any ground state Ψ0 ∈ G of H,

‖(1− Pt)Ψ0‖ ≤ 100 · 2−t/20. (4.26)

Lemma 34. There exist two states ψ0, ψ1 ∈ spanS
(1)
i ⊗H

≤t
R of Schmidt rank B8

√
cε2 (across

the cut i|i+ 1) such that 〈ψ,Hψ〉 ≤ ε0 + 200c1/4ε for any state ψ ∈ span{ψ0, ψ1}.

Proof. Let φ0 ⊥ φ1 be two orthogonal witnesses for S
(1)
i . Define φ′0 = Ptφ0/‖Ptφ0‖. The

proof of Lemma 24 implies that the state ψ0 := truncB8
√
cε2
φ′0/‖ truncB8

√
cε2
φ′0‖ has energy

〈ψ0, Hψ0〉 ≤ ε0 + 75c1/4ε. Since φ0 is a low-energy state, Markov’s inequality in probability
theory implies |〈φ0, φ

′
0〉| ≥ 999/1000 for sufficiently large t. The proof of Lemma 21 implies

|〈ψ0, φ
′
0〉| ≥ 999/1000 for sufficiently small c. Lemma 15 implies |〈ψ0, φ0〉| ≥ 249/250. Simi-

larly, we obtain another state ψ1 such that 〈ψ1, Hψ1〉 ≤ ε0 +75c1/4ε and |〈ψ1, φ1〉| ≥ 249/250.
It is easy to see |〈ψ0, ψ1〉| ≤ 1/5, and Lemma 32 implies that 〈ψ,Hψ〉 ≤ ε0 + 200c1/4ε for
any state ψ ∈ span{ψ0, ψ1}.

Lemma 35. For any state ψ ∈ span{ψ0, ψ1}, let X ∈ N be the element that is closest to
contψ. Then, at least one of the following must hold:
(i) Φ0 = Uψϕ0 has energy at most ε0 + ε/20000 and satisfies |〈ψ,Φ0〉| ≥ 1/2;
(ii) Φ0 = Uψϕ0 and Φ1 = Uψϕ1 have energies at most ε0 + ε/20000 and satisfy |〈Φ0,Φ1〉| ≤√

3/2.
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Proof. The proof of Lemma 25 implies that σ0 = Uψρ0U
−1
ψ has energy tr(σ0H) ≤ ε0+ε/60000

for sufficiently small ξ = Ω̃(ε) and sufficiently small constant c. We observe that (1) there
exists at least an eigenstate of σ0 with energy at most ε0 + ε/20000; (2) there are at most
two such eigenstates as Lemma 30 implies that such eigenstates are close to the ground-
state space G; (3) one of these eigenstates has the largest eigenvalue (at least 1/3) due
to Markov’s inequality in probability theory; (4) this eigenstate is Φ0 = Uψϕ0. Therefore,
(i) holds if |〈ψ,Φ0〉| ≥ 1/2. Otherwise, U−1

ψ |ψ〉〈ψ|Uψ is a feasible solution to the second

convex program (4.25), and the proof of Lemma 25 implies that σ1 = Uψρ1U
−1
ψ has energy

tr(σ1H) ≤ ε0 + ε/60000. Let Φ1 = Uψϕ1 be the eigenvector of σ1 with the largest eigenvalue
λ. Similarly, we observe λ ≥ 1/3 and 〈Φ1, HΦ1〉 ≤ ε0+ε/20000. Therefore, (ii) holds because
〈Φ0, σ1Φ0〉 ≤ 1/4 implies |〈Φ0,Φ1〉| ≤

√
3/2.

Remark. Lemma 32 implies that S
(2)
i is an (i, p1, dp1p2p

2
3,∆ = 1/1000)-support set with

p1 = O(B8
√
cε2|N |) = 22Õ(1/ε)

, where S
(2)
i consists of the MPS representations of all ϕ0,j, ϕ1,j.

Lemma 36. S
(3)
i is an (i, p1, p2, δ = 1/20)-support set.

Proof. Φk and ϕk for k = 0, 1 in Lemma 35 are functions of ψ ∈ span{ψ0, ψ1}. We make
this explicit by using the notations Φk(ψ), ϕk(ψ). Lemma 35 implies the existence of ψ, ψ′ ∈
span{ψ0, ψ1} and k, k′ ∈ {0, 1} such that Φk(ψ) and Φk′(ψ

′) have energies at most ε0 +
ε/20000 and satisfy |〈Φk(ψ),Φk′(ψ

′)〉| ≤
√

3/2. Let ϕ′k(ψ) be the state obtained by truncating

each bond (in whatever order) of ϕk(ψ) to p2 = 10000n2Õ(ε−1/4 log3/4 n), and Φ′k(ψ) be the
state obtained by truncating each bond to the left of the cut i|i + 1 (in the same order)
of Φk(ψ) to p2. A minor modification of the proof of Lemma 26 implies the existence
of a ground state Ψ0 ∈ G such that |〈Φ′k(ψ),Ψ0〉| ≥ 999/1000 (i.e., Φ′k(ψ) = Uψϕ

′
k(ψ)

is a witness for S
(3)
i ) and |〈Φk(ψ),Φ′k(ψ)〉| ≥ 499/500. Similarly, Φ′k′(ψ

′) = Uψ′ϕ
′
k(ψ

′) is
another witness with |〈Φk′(ψ

′),Φ′k′(ψ
′)〉| ≥ 499/500. We obtain two orthogonal witnesses

Φ′0,Φ
′
1 ∈ span{Φ′k(ψ),Φ′k′(ψ

′)} for S
(3)
i as an (i, p1, p2, δ = 1/20)-support set.

Lemmas 27, 28 imply two witnesses φ′0 = KΦ′0/‖KΦ′0‖ and φ′1 = KΦ′1/‖KΦ′1‖ for Si with
energies 〈φ′0, Hφ′0〉 ≤ ε0+ηε/50 and 〈φ′1, Hφ′1〉 ≤ ε0+ηε/50. It is easy to see |〈φ′0,Φ′0〉| ≥

√
3/2

and |〈φ′1,Φ′1〉| ≥
√

3/2. Hence |〈φ′0, φ′1〉| ≤
√

3/2, and Lemma 32 implies that any state in
span{φ′0, φ′1} has energy at most ε0 + ηε/3. Therefore, Si is a support set with ∆ = η.

4.7 Frustration-free systems

It is claimed [95] that the algorithm in Lemma 12 runs in randomized polynomial time even
in general non-degenerate 1D gapped systems. However, this claim does not seem to be well
justified, because a possibly exponential (in n) factor is missing in the analysis of error
reduction in [95] if the Hamiltonian H =

∑n
i=1 Hi is not almost frustration-free.

We briefly recall the sampling MPO K constructed in Section 2.3.1 of [95], which reduces

the precision parameter of S
(3)
i such that δ = O(ε2/n) = poly(ε/n) for Si. We first define
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A = Cm(1 − H/n)m with C = 1/(1 − ε0/n). Clearly, AΨ0 = Ψ0 and ‖AΨ1‖ ≤ Cm(1 −
(ε0 + ε)/n)m ≤ (1− ε/n)m for any state Ψ1 ⊥ Ψ0. Hence, setting m = O(n/ε) log(n/ε) gives
‖A − |Ψ0〉〈Ψ0|‖ ≤ poly(ε/n). The operator A can be expanded as a sum of an exponential
number of terms:

A =
1

nm

∑
I=(i1,...,im)∈{1,...,n}⊗m

PI with PI := Cm

m∏
j=1

(1−Hij). (4.27)

Definition 11 (sampling MPO [95]). Let the sampling MPO K := (1/l)
∑l

j=1 PIj be the
average of l terms chosen uniformly at random from all terms in the expansion of A.

Lemma 37. Setting l = (n/ε)O(1+ε0/ε) gives a sampling MPO K such that with probability
at least 1− 1/ poly n,
(a) ‖K − A‖ ≤ poly(ε/n);
(b) the bond dimension of K is D = l2O(m/n) = (n/ε)O(1/ε+ε0/ε).

Proof sketch. (a) is an immediate corollary of the Chernoff bound for matrices [143]: l =
poly(n/ε)CO(m) = (n/ε)O(1+ε0/ε). (b) follows from a well-known fact in probability theory.

Recall from the proof of Lemma 26 that Φ′ is a witness for S
(3)
i with |〈Φ′,Ψ0〉| ≥ 19/20.

Lemma 37(a) implies |〈φ′,Ψ0〉| ≥ 1− poly(ε/n) for φ′ = KΦ′/‖KΦ′‖ with high probability.
Therefore, Si is an (i, p1D, p2D, δ = poly(ε/n))-support set with probability at least 1 −
1/ poly n. Clearly, the bond dimension D = nO(1/ε+ε0/ε) is a polynomial in n in almost
frustration-free 1D gapped systems (i.e., ε0 = O(1)) but may be exponential in n in general
1D gapped systems (e.g., ε0 = Θ(n)).

In frustration-free 1D gapped systems, the algorithm in Lemma 12 can be derandomized
using the detectability lemma. Let Pi be the projection onto the ground-state space of Hi.
Define

A =
∏

even i

Pi
∏

odd i

Pi = P2P4P6 · · ·P1P3P5 · · · . (4.28)

Clearly, AΨ0 = Ψ0.

Lemma 38 (detectability lemma [6]). ‖AΨ1‖ ≤ (1 + ε/2)−1/3 for any state Ψ1 ⊥ Ψ0.

Let K = Am with m = O(1/ε) log(n/ε) such that |〈φ′,Ψ0〉| ≥ 1 − poly(ε/n) for φ′ =
KΦ′/‖KΦ′‖. Since A is an MPO of bond dimension d2, the bond dimension of K is D =
d2m = (n/ε)O(1/ε).
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Chapter 5

Do area laws imply efficient tensor
network representations?

We show that the 2D local Hamiltonian problem with the restriction that the ground state
satisfies area laws is QMA-complete. We also prove similar results in 2D translationally
invariant systems and for the 3D Heisenberg and Hubbard models in external magnetic
fields. Consequently, in general the ground states of local Hamiltonians satisfying area
laws do not have efficient classical representations that support efficient computation of
local expectation values unless QMA=NP. Conceptually, even if in the future area laws are
proved for the ground state in 2D gapped systems, there is still a long way to go towards
understanding the computational complexity of 2D gapped systems.

5.1 Introduction

Computing the ground state of local Hamiltonians is a fundamental problem in condensed
matter physics. Intuitively, this problem is likely intractable because the dimension of the
Hilbert space for a quantum many-body system grows exponentially with the system size. In
a pioneering work [91] (see [8] for a write-up available online), Kitaev defined the complexity
class QMA as the quantum analog of NP (or more precisely, the quantum analog of MA)
and proved that the local Hamiltonian problem with 5-body interactions is QMA-complete.
This work is followed by a line of research: The local Hamiltonian problem is QMA-complete
even in (a) qubit systems with 2-body interactions [85, 111]; (b) 1D quantum systems with
nearest-neighbor interactions [7, 58]; (c) 1D translationally invariant systems [84, 53] (the re-
sult of Ref. [53] is QMAEXP-complete due to a technical reason to be explained later); (d) 2D
Heisenberg and Hubbard models [137] (see [17] for a summary of QMA-complete problems).
Consequently, (assuming QMA 6=NP) in general the ground states of local Hamiltonians do
not have efficient classical representations that support efficient computation of local ex-
pectation values. Here, the first “efficient” means that the classical representation uses a
polynomial number of bits, and the second “efficient” means that local expectation values
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can be computed in polynomial time from the classical representation. It should be em-
phasized that the latter “efficient” is crucial. Indeed, (assuming non-degeneracy) the local
Hamiltonian itself is an efficient classical representation of its ground state as it is the sum
of a polynomial number of terms, but (assuming QMA 6=P) this trivial representation does
not support efficient computation of local expectation values.

Entanglement appears to be a central concept from an algorithmic perspective. Generic
states in quantum many-body systems satisfy the volume law–the entanglement of a region
scales as the number of sites inside (i.e., the volume of) the region [65]. Perhaps surprisingly,
a large class of physical states satisfy the area law [40]–the entanglement of a region scales
as its boundary (area). Besides its beautiful mathematical formulation, area law is gaining
popularity in the emerging field of quantum Hamiltonian complexity [113, 49] because it
does capture the essence of classical simulability of 1D quantum systems: Bounded (or even
logarithmic divergence of) Renyi entanglement entropy across all bipartite cuts implies [146]
efficient MPS representations [41, 155, 118], which underlie the celebrated DMRG algorithm
[161, 162]. Since local expectation values of MPS can be computed efficiently, we conclude
that the 1D local Hamiltonian problem with the restriction that the ground state satisfies
area laws is in NP. Furthermore, a structural result from the proof [59, 10, 70] of the area law
for the ground state of 1D gapped Hamiltonians is an essential ingredient of the (provably)
polynomial-time algorithm [95, 69, 33] for computing such states, establishing that the 1D
gapped Hamiltonian problem is in P.

2D quantum systems can host exotic phases of matter, and are much more exciting and
challenging. Indeed, little rigorous results are known for 2D quantum systems from an al-
gorithmic perspective. Whether area laws hold for the ground states in 2D gapped systems
is one of the most well-known open problems in the field of Hamiltonian complexity. Ambi-
tiously, one may ask (1) Which class of 2D ground states has efficient classical representations
that support efficient computation of local expectation values? (2) If such classical repre-
sentations exist, can we find them efficiently? A lot of effort has been devoted to extending
methods and tools from 1D to 2D. Tensor network states [149] are generalizations of MPS
to higher dimensions. Examples include projected entangled pair states [147] and the multi-
scale entanglement renormalization ansatz [153], which, respectively, do not [138] and does
[152] support efficient computation of local expectation values. It is commonly believed that
physical states satisfying area laws have efficient tensor network state representations. This
belief is not provable before “physical” is defined. We do not attempt to define such a notion
here, but rather rely on intuitions to judge what is physical. For instance, the ground states
of local Hamiltonians are more physical than generic states in quantum many-body sys-
tems, and translationally invariant Hamiltonians on a regular lattice with nearest-neighbor
interactions are more physical than generic local Hamiltonians.

In contrast to the belief, it was recently proved that there exist quantum states satisfying
area laws for all Renyi entanglement entropies but do not have efficient classical representa-
tions [48]. The main idea of the proof is so elegant that we would like to sketch here. The
authors of Ref. [48] consider the question: How large is the space of all states satisfying area
laws? They explicitly construct a set S such that (i) S is parameterized by an exponential
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number of independent parameters; (ii) all states in S satisfy area laws. Consequently, a
generic state in S cannot be approximated using a polynomial number of bits (as the vol-
ume of S is too large) and does not have efficient classical representations. This counting
approach is very powerful: It applies to any classical representation, regardless of whether
the classical representation supports efficient computation of local expectation values. We
conclude that a generic state in S is not only not a tensor network state of polynomial bond
dimension, but also not a (non-degenerate) eigenstate of local Hamiltonians [48].

In this chapter, we show that the 2D local Hamiltonian problem with the restriction
that the ground state satisfies area laws is QMA-complete. We also prove similar results in
2D translationally invariant systems and for the 3D Heisenberg and Hubbard models with
local magnetic fields. Consequently, (assuming QMA 6=NP) in general the ground states of
local Hamiltonians satisfying area laws still do not have efficient classical representations
that support efficient computation of local expectation values. The result of Ref. [48] is
incomparable to ours: It considers general states in quantum many-body systems while
we limit ourselves to the ground states of local Hamiltonians, which are more physical.
Technically, the counting approach, which is the key to the result of Ref. [48], does not work
in our context. It should be emphasized that our results are not intended for diminishing
the importance of area laws. A proof of (or a counterexample to) area laws for the ground
state in 2D gapped systems is, in our opinion, a landmark achievement, which probably
requires the development of powerful new techniques. However, even if such area laws are
proved, it is just a starting point and there is still a long way to go towards understanding
the computational complexity of 2D gapped systems.

5.2 Preliminaries

We begin with the definition of the lattice Hamiltonian problem, which is the local Hamil-
tonian problem tailored to the context that the Hamiltonian acts on a regular lattice with
nearest-neighbor interactions (and on-site terms). Accounting for the finite precision of
numerical computing, hereafter, every real number is assumed to be represented by a poly-
nomial number of bits.

Definition 12 (lattice Hamiltonian problem). Consider a quantum many-body system of
spins (or bosons, fermions) arranged on a regular lattice. We are given a Hamiltonian H
(which is the sum of nearest-neighbor interactions) and a real number a with the promise
that either (Yes) λ(H) ≤ a or (No) λ(H) ≥ a + δ, where λ(H) denotes the ground-state
energy of H, and δ is some inverse polynomial in the system size. We must decide which is
the case.

QMA is the class of problems that can be efficiently verified by a quantum computer.
Below is a formal definition of QMA based on quantum circuits.

Definition 13 (QMA [91]). A problem is in QMA if there is a uniform family of polynomial-
size quantum circuits {Vx} (one for each input instance x) such that:
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(i) If x is a yes instance, then there exists a quantum state |y〉 of polynomial size such that
Vx accepts |y〉 with probability greater than 2/3;
(ii) If x is a no instance, then for any quantum state |y〉 of polynomial size Vx accepts |y〉
with probability less than 1/3.

We switch to the definitions of the Renyi entanglement entropy and the area law.

Definition 14 (Renyi entanglement entropy). The Renyi entanglement entropy Sα(0 < α <
1) of a bipartite (pure) quantum state ρAB is defined as

Sα(ρA) = (1− α)−1 log tr ραA, (5.1)

where ρA = trB ρAB is the reduced density matrix. Two limits are of special interest:

S0(ρA) := lim
α→0+

Sα(ρA) (5.2)

is the logarithm of the Schmidt rank, and

S1(ρA) := lim
α→1−

Sα(ρA) = − tr(ρA log ρA) (5.3)

is simply referred to as the entanglement entropy.

The entanglement entropy is the most popular entanglement measure (for pure states)
in quantum information and condensed matter theory.

Definition 15 (area law for Sα). A (pure) state on a lattice satisfies area laws if for any
region A,

Sα(ρA) = O(|∂A|), (5.4)

where ρA is the reduced density matrix of the region A, and ∂A is the set of the edges of the
lattice connecting the region A and its complement.

Since Sα is a monotonically decreasing function of α, area laws for Sα1 are more stringent
than those for Sα2 if α1 < α2. In 1D, bounded (or even logarithmic divergence of) S0

across all bipartite cuts implies efficient exact (up to the truncation of real numbers) MPS
representations [155]; bounded (or logarithmic divergence of) Sα for 0 < α < 1 across
all cuts implies efficient MPS approximations [146]. See [139] for an extensive discussion
of the relation between the scaling of the Renyi entanglement entropy and efficient MPS
approximations in 1D quantum systems.

5.3 Main results

In this section, we prove our main result: The 2D lattice Hamiltonian problem with the
restriction that the ground state satisfies area laws is QMA-complete. Recall that λ(·)
denotes the ground-state energy of a Hamiltonian.
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Theorem 5. We are given a 1D lattice Hamiltonian H ′ =
∑n−1

i=1 H
′
i,i+1, where H ′i,i+1 with

‖H ′i,i+1‖ ≤ 1 acts on the spins i and i+ 1 (nearest-neighbor interaction). Then, a 2D square
lattice Hamiltonian H can be efficiently constructed such that:
(a) |λ(H)− 2λ(H ′)− a| ≤ δ, where a is a real number that can be efficiently computed, and
δ = 1/ poly(n) is some inverse polynomial in n;
(b) The ground state |ψ〉 of H satisfies area laws for Sα(0 < α ≤ 1);
(c) H is translationally invariant if and only if H ′ is translationally invariant.

Proof. We construct H by stacking layers of H ′ so that H is translationally invariant in the
direction perpendicular to the layers. We then introduce strong interlayer coupling so that
H is almost trivial in the bulk. The (almost) trivial bulk “dilutes” the entanglement and
implies area laws. The edges of H are nontrivial and reproduce the low-energy physics of
H ′.

We now give the detailed construction. Suppose H ′ acts on a chain of n spin-(d/2−1/2),
i.e., the local dimension of each spin is d = Θ(1). Then, the Hamiltonian H acts on a 2D
square lattice of size n× n, and at each lattice site there are two spins of local dimension d
(you may combine these two spins into a single spin of squared local dimension d2 if you prefer
one spin per site). We label all spins by three indices i, j, k for 1 ≤ i, j ≤ n, k = 1, 2. The
coupling between the spins (i, j, k) and (i′, j′, k′) is denoted by Hi,j,k,i′,j′,k′ which is nonzero
only if |i− i′|+ |j − j′| = 1 (nearest-neighbor interaction). The terms within each layer are
given by

Hi,j,k,i+1,j,k = H ′i,i+1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, k = 1, 2. (5.5)

The terms between adjacent layers are given by

Hi,j,2,i,j+1,1 = (~Si,j,2 · ~Si,j+1,1 + d2/4− 1/4)Ω(n3/δ) for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, (5.6)

where ~Si,j,k = (Sxi,j,k, S
y
i,j,k, S

z
i,j,k) is a vector of spin operators of the spin (i, j, k), and

~Si,j,k · ~Si′,j′,k′ := Sxi,j,kS
x
i′,j′,k′ + Syi,j,kS

y
i′,j′,k′ + Szi,j,kS

z
i′,j′,k′ (5.7)

is a physical anti-ferromagnetic Heisenberg interaction. All other terms are zero. Since

2~Si,j,2 · ~Si,j+1,1 = (~Si,j,2 + ~Si,j+1,1)2 − ~S2
i,j,2 − ~S2

i,j+1,1 = (~Si,j,2 + ~Si,j+1,1)2 − (d2 − 1)/2, (5.8)

the ground state ofHi,j,2,i,j+1,1 is a singlet (i.e., a state of zero total spin), and λ(Hi,j,2,i,j+1,1) =
0. Clearly, by construction H is translationally invariant in the j direction, and H is trans-
lationally invariant in the i direction if and only if H ′ is translationally invariant. We
observe that H is the sum of n + 1 terms with pairwise disjoint supports. Specifically, let
H =

∑n
j=0 Hj, where on the edges j = 0, n,

H0 =
n−1∑
i=1

Hi,1,1,i+1,1,1 and Hn =
n−1∑
i=1

Hi,n,2,i+1,n,2 (5.9)
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act, respectively, on the spins (i, 1, 1) and on the spins (i, n, 2) for 1 ≤ i ≤ n; in the bulk
1 ≤ j ≤ n− 1,

Hj =
n−1∑
i=1

(Hi,j,2,i+1,j,2 +Hi,j+1,1,i+1,j+1,1) +
n∑
i=1

Hi,j,2,i,j+1,1 (5.10)

acts on the spins (i, j, 2) and (i, j + 1, 1) for 1 ≤ i ≤ n. Hence the ground state |ψ〉 =⊗n
j=0 |ψj〉 of H is a product state in the j direction, where |ψj〉 is the ground state of Hj.
We now bound the Renyi entanglement entropy of |ψ〉. For the ease of presentation,

we assume the region A is rectangular. However, it should be clear that area laws hold for
an arbitrary region A. Since |ψ〉 =

⊗n
j=0 |ψj〉 is a product state and the Renyi entropy is

additive, we can evaluate the Renyi entanglement entropy of each |ψj〉 and sum them up.
Suppose the rectangular region A consists of all spins (i, j, k) with indices i1 ≤ i ≤ i2, j1 ≤
j ≤ j2, k = 1, 2. Then,
(i) the Renyi entanglement entropy of |ψj〉 for j ≤ j1−2 or j ≥ j2 +1 is exactly zero because
such |ψj〉’s do not intersect with the boundary of A;
(ii) the Renyi entanglement entropy of |ψj〉 for j = j1−1 or j = j2 is trivially upper bounded
by O(i2 − i1);
(iii) the Renyi entanglement entropy of |ψj〉 for each j1 ≤ j ≤ j2 − 1 is O(1). This is a
straightforward consequence of the area law for the ground state in 1D gapped systems.

Lemma 39 ([70]). Let |Ψ〉 be the ground state of the 1D lattice Hamiltonian H =
∑n−1

i=1 Hi,i+1,
where Hi,i+1 with ‖Hi,i+1‖ ≤ 1 acts on the spins i and i + 1 (nearest-neighbor interaction).
Suppose the energy gap (i.e., the difference between the smallest and the second smallest
eigenvalues) of H is Θ(1). Then, the Renyi entanglement entropy Sα(0 < α ≤ 1) of |Ψ〉 is
O(1) per cut.

Case (iii) follows from this lemma by noting that |ψj〉 is the ground state of Hj, which
becomes a 1D lattice Hamiltonian by combining the spins (i, j, 2) and (i, j+1, 1) into a single
spin for each 1 ≤ i ≤ n. Indeed, after rescaling Hj so that the norm of each term in Hj is
O(1), we observe that its energy gap is Ω(1). Summing up cases (i) (ii) (iii), we obtain the
upper bound O(i2 − i1 + j2 − j1), i.e., a 2D area law for the Renyi entanglement entropy
Sα(0 < α ≤ 1).

We now estimate λ(H). Since H =
∑n

j=0 Hj and the supports of Hj’s are pairwise
disjoint,

λ(H) =
n∑
j=0

λ(Hj) = 2λ(H ′) + (n− 1)λ(H1), (5.11)

where the second step is due to λ(H0) = λ(Hn) = λ(H ′) and the translational invariance in
the j direction in the bulk. λ(H1) can be estimated using the projection lemma.

Lemma 40 (projection lemma [85]). Let H1,H2 be two Hamiltonians acting on the Hilbert
space H = H‖ ⊕ H⊥. Suppose H2|H‖ = 0 and H2|H⊥ ≥ J > 2‖H1‖, where H2|··· is the
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restriction of H2 to some subspace. Then,

λ(H1|H‖)− ‖H1‖2/(J − 2‖H1‖) ≤ λ(H1 + H2) ≤ λ(H1|H‖). (5.12)

In our context, we set

H1 = H1 + H2 with H1 =
n−1∑
i=1

(Hi,1,2,i+1,1,2 +Hi,2,1,i+1,2,1) and H2 =
n∑
i=1

Hi,1,2,i,2,1. (5.13)

Since the supports of Hi,1,2,i,2,1’s are pairwise disjoint, λ(H2) =
∑n

i=1 λ(Hi,1,2,i,2,1) = 0, and
the ground state |φ〉 of H2 is a product of singlets (unique). H‖ is the 1D subspace spanned
by |φ〉, and J = Ω(n3/δ) is the energy gap of H2. Since ‖H1‖ = O(n),

λ(H1|H‖) = 〈φ|H1|φ〉 ⇒ |λ(H1)− 〈φ|H1|φ〉| ≤ ‖H1‖2/(J − 2‖H1‖) = O(n2/J) = δ/n

⇒ |λ(H)− 2λ(H ′)− a| ≤ δ(n− 1)/n ≤ δ for a := (n− 1)〈φ|H1|φ〉. (5.14)

Finally, a can be efficiently computed as |φ〉 is a product of singlets: The running time is
O(n) if H ′ is not translationally invariant and O(1) if H ′ is.

The construction in the proof of Theorem 5 does not imply area laws for S0 because
the bulk of H is only almost trivial but not completely trivial. Practically, this is not a
limitation as S0 (the logarithm of the Schmidt rank) is not continuous and hence not stable
with respect to infinitesimal perturbations. In the absence of (c) translational invariance,
one can easily construct a completely trivial bulk and area laws for S0 follow.

The state-of-the-art QMA-completeness result for the 1D lattice Hamiltonian problem is
due to Hallgren et al. [58], which is an improvement over a previous work [7].

Lemma 41 ([58]). The 1D lattice Hamiltonian problem (with spin-7/2) is QMA-complete.

Corollary 1. The 2D square lattice Hamiltonian problem with the restriction that the ground
state satisfies area laws for Sα(0 ≤ α ≤ 1) is QMA-complete.

Proof. This is an immediate consequence of Theorem 5 and Lemma 41. Note that Theorem
5(b) also holds for S0 in the absence of translational invariance.

Translational invariance is an important physical condition, but from a theoretical per-
spective it introduces a slight technical complication that we have to address. Usually the
computational complexity of a problem is measured with respect to the input size, e.g., a
problem is in P if it can be solved in time growing polynomially with the input size. For
non-translationally invariant local Hamiltonians, the input size is a polynomial in the system
size (as a polynomial number of terms need to be specified), and hence we may equally use
the system size to measure the computational complexity. For translationally invariant local
Hamiltonians, however, the input size is the logarithm of the system size (the number of bits
to represent the system size), and hence in this case an exponential-time algorithm (with
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respect to the input size) is “efficient” in the sense that its running time grows polynomially
with the system size.

For translationally invariant lattice Hamiltonians, the notion of hardness is QMAEXP-
complete, which for brevity we do not formally define here. Serious readers should go to the
original reference [53] for its definition based on quantum Turing machines. Colloquially,
QMAEXP-complete (with respect to the input size) means QMA-complete with respect to
the system size. This “definition” is of course imprecise, but you do not lose any conceptual
messages in the following if you use it.

Lemma 42 ([53]). The 1D translationally invariant lattice Hamiltonian problem is QMAEXP-
complete.

Corollary 2. The 2D translationally invariant square lattice Hamiltonian problem with the
restriction that the ground state satisfies area laws for Sα(0 < α ≤ 1) is QMAEXP-complete.

Proof. This is an immediate consequence of Theorem 5 and Lemma 42.

5.4 Further extensions

In this section, we extend previous results to 3D Heisenberg and Hubbard models with local
magnetic fields, which are more physical than generic lattice Hamiltonians.

Lemma 43 ([137]). The 2D square lattice spin-1/2 Heisenberg Hamiltonian

H ′ =
∑
〈i′,j′〉

~σi′ · ~σj′ −
∑
i′

~h′i′ · ~σi′ (5.15)

is QMA-complete, where 〈i′, j′〉 denotes nearest neighbors, and ~σi′ = (σxi′ , σ
y
i′ , σ

z
i′) is a vector

of Pauli matrices at site i′.

Proposition 1. The 3D cubic lattice spin-1/2 Heisenberg Hamiltonian

H =
∑
〈i,j〉

~σi · ~σj −
∑
i

~hi · ~σi (5.16)

with the restriction that the ground state satisfies area laws for the entanglement entropy is
QMA-complete.

Proof. Given a 2D Hamiltonian (5.15), a 3D Hamiltonian (5.16) can be efficiently constructed
such that:
(a) |λ(H)− λ(H ′) + a| ≤ δ, where a is a real number that can be efficiently computed, and
δ is some inverse polynomial in n;
(b) The ground state |ψ〉 of H satisfies area laws for the entanglement entropy.
Then, Proposition 1 is an immediate consequence of Lemma 43.
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We label a site i′ in the 2D square lattice by two indices i′ = (i′x, i
′
y) and a site i in the 3D

cubic lattice by three indices i = (ix, iy, iz), where 1 ≤ i′x, i
′
y, ix, iy, iz ≤ n. The field strengths

in (5.15) are upper bounded by a fixed polynomial in n [137]: |~h′i′ | ≤ p(n) = poly(n) for any
i′. The site-dependent magnetic fields in (5.16) are given by

~hi = ~h′(ix,iy) + (0, 0, 1) for iz = 1, and ~hi = (0, 0, n4p2/δ) for 2 ≤ iz ≤ n. (5.17)

λ(H) can be estimated using the projection lemma. In our context, we set

H1 =
∑
〈i,j〉

~σi · ~σj −
n∑

ix,iy=1

~h(ix,iy ,1) · ~σ(ix,iy ,1) and H2 = (n− 1)n6p2/δ −
n∑

ix,iy=1

n∑
iz=2

~hi · ~σi (5.18)

such that H = H1 + H2 − (n− 1)n6p2/δ. Clearly, λ(H2) = 0, and

H‖ = span{|φ〉 : 〈φ|σzi |φ〉 = 1, ∀1 ≤ ix, iy ≤ n, 2 ≤ iz ≤ n} with dimH‖ = 2n (5.19)

is the ground-state space of H2. Let J = Ω(n4p2/δ) be the smallest nonzero eigenvalue of
H2. Since ‖H1‖ = O(n2p),

λ(H1|H‖) = λ(H ′) + 3n3 − 6n2 + 2n⇒ |λ(H)− λ(H ′) + a|
≤ ‖H1‖2/(J − 2‖H1‖) ≤ δ for a := (n− 1)n6p2/δ − 3n3 + 6n2 − 2n. (5.20)

We now bound the entanglement entropy of |ψ〉. Let P be the projection onto the
subspace H‖. Since |ψ〉 is also the ground state of H1 + H2,

‖H1‖ = ‖H1‖+ λ(H2) ≥ λ(H1 + H2) = 〈ψ|(H1 + H2)|ψ〉 = 〈ψ|H1|ψ〉+ 〈ψ|H2|ψ〉
⇒ O(n2p) = 2‖H1‖ ≥ 〈ψ|H2|ψ〉 = 〈ψ|(1− P )H2(1− P )|ψ〉 ≥ Ω(n4p2/δ)‖(1− P )|ψ〉‖2

⇒ ‖(1− P )|ψ〉‖2 = O(n−2p−1δ)⇒ ‖|ψ〉 − |φ〉‖ = 1/ poly(n) (5.21)

for |φ〉 = P |ψ〉/‖P |ψ〉‖. Clearly, |φ〉 ∈ H‖ satisfies area laws for any region A. Therefore,
|ψ〉 also satisfies area laws due to the continuity of the entanglement entropy [107].

Lemma 44 ([137]). The 2D square lattice (fermionic) Hubbard Hamiltonian

H = −
∑
〈i,j〉,s

a†i,saj,s + U
∑
i

a†i,↑aj,↑a
†
i,↓aj,↓ −

∑
i

~hi · ~σi (5.22)

at half filling is QMA-complete, where a†i,s, ai,s are the creation and annihilation operators

of spin s ∈ {↑, ↓} at site i, and ~σi =
∑

s,s′(σ
x
ss′ , σ

y
ss′ , σ

z
ss′)a

†
i,sai,s′ is a vector of operators with

σ···ss′ the elements of the Pauli matrices.

Proposition 2. The 3D cubic lattice (fermionic) Hubbard Hamiltonian

H = −
∑
〈i,j〉,s

a†i,saj,s + U
∑
i

a†i,↑aj,↑a
†
i,↓aj,↓ −

∑
i

~hi · ~σi (5.23)

at half filling with the restriction that the ground state satisfies area laws for the entanglement
entropy is QMA-complete.

Proof. Proposition 2 can be proved in the same way as Proposition 1.
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Chapter 6

Entanglement of excited eigenstates
in random spin chains

Entanglement properties of excited eigenstates (or of thermal mixed states) are difficult to
study with conventional analytical methods. We approach this problem for random spin
chains using a recently developed real-space renormalization group technique for excited
states (“RSRG-X”). For the random XX and quantum Ising chains, which have logarithmic
divergences in the entanglement entropy of their (infinite-randomness) critical ground states,
we show that the entanglement entropy of excited eigenstates retains a logarithmic divergence
while the mutual information of thermal mixed states does not. However, in the XX case
the coefficient of the logarithmic divergence extends from the universal ground-state value
to a universal interval due to the degeneracy of excited eigenstates. These models are
noninteracting in the sense of having free-fermion representations, allowing strong numerical
checks of our analytical predictions.

6.1 Introduction

Concepts from quantum information theory have been widely used in condensed matter and
atomic physics [9, 40] to characterize quantum correlations in various interesting classes
of states. One such concept is quantum entanglement [122, 67], which for critical ground
states [66, 154, 96, 97, 28, 27], topological phases [92, 98, 99], and Fermi liquids [164, 50]
provides unique insights into the physics that are difficult to obtain via other quantities.
Entanglement is also quantitatively related to the difficulty of describing 1D noncritical [59,
10, 70] and critical (“finite-entanglement scaling” [142, 123, 121]) ground states by MPS [41,
118] in numerical approximations [146, 139].

In this chapter, we study random spin chains, where entanglement is known to capture
important aspects of the ground state [129, 128], and examine how the entanglement of
individual excited eigenstates is different from the mutual information of thermal mixed
states at nonzero temperature. This question can be viewed as an entanglement version of
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the classical problem of equivalence of ensembles: Is the canonical ensemble described by
the density matrix ρ = exp(−H/T ), where H is the Hamiltonian and T is the temperature,
equivalent for important observables to the microcanonical ensemble of energy eigenstates
with the same energy density? As ρ is a mixed state, we need a notion that generalizes the
entanglement entropy (well defined only for pure states), and mutual information (though
not an entanglement measure) is a commonly used option.

Another motivation for studying excited eigenstates in random spin chains is the high
level of current interest [16, 110, 116, 15, 158] in how disorder (modeled by randomness)
can lead to localized states violating the eigenstate thermalization hypothesis, even in the
presence of interactions; this phenomenon is known as many-body localization. The eigen-
state thermalization hypothesis [37, 141, 130] is that (for some not yet delineated classes of
quantum many-body systems) local measurements of an energy eigenstate approach those of
the thermal mixed state with the same energy density. Intuitively, one region of the system
sees the rest of the system as a bath or reservoir capable of providing energy and particles.
Localization does not support the transport of energy or particles and hence prevents full
thermalization. We emphasize that many-body localization is a property associated with all
eigenstates (not just the ground state) of disordered systems.

Excited eigenstates are “physical” states participating in the dynamics of the system,
and hence their singularities strongly suggest a dynamical quantum phase transition. For
example, in the random quantum Ising chain we find that the entanglement of (almost) all
eigenstates becomes singular (i.e., diverges logarithmically) at the critical point. This is
indeed accompanied with a dynamical quantum phase transition characterized by the time
evolution of entanglement entropy [157].

The real-space renormalization group (RSRG) [102, 36, 47, 46, 45, 82] is a standard
technique for “infinite-randomness” ground states in random spin chains. It has recently
been generalized to excited states with the acronym RSRG-X [117]. Adapting this approach
to our context, we make analytical predictions for the scaling of excited-state entanglement
(defined as the average entanglement entropy of energy eigenstates sampled from a canonical
ensemble) and thermal mutual information (the mutual information of a thermal mixed state)
in the random XX and quantum Ising chains, which are verified numerically.

We find that excited-state entanglement and thermal mutual information behave very
differently. The latter behaves as one might expect for physical quantities at nonzero tem-
peratures above a (random) quantum critical point: The characteristic divergence [129] is
cut off by temperature. The former retains such a divergence, i.e., the entanglement entropy
of excited eigenstates diverges logarithmically as that of the ground state does. There is
a surprise: In the random XX chain, the coefficient of the logarithmic divergence extends
from the universal ground-state value to a universal interval due to the degeneracy of excited
eigenstates (it is basis dependent and is determined only after a way of lifting the degeneracy
of excited eigenstates is given).

Recently, we became aware of a paper [127] that studies the entanglement of states with
a small finite number of excitations. It should be clear that we study the entanglement
of states with a finite energy density above the ground state, i.e., an infinite number of



CHAPTER 6. ENTANGLEMENT OF EXCITED EIGENSTATES IN RANDOM SPIN
CHAINS 53

excitations in the thermodynamic limit.

6.2 Preliminaries

We start by introducing key definitions and then review RSRG. Entanglement reflects a
remarkable fact about the product structure of the Hilbert space for a bipartite quantum
system AB. This Hilbert space is constructed as the tensor product of the Hilbert spaces
for the two subsystems, i.e., it is spanned by product states made from (basis) vectors of A
and B. However, the superposition principle allows linear combinations of product states,
and in general such a linear combination is not a product of any wave functions in A and B.

The entanglement entropy of a pure state ρAB is the von Neumann entropy S(ρA) =
−trρA ln ρA of the reduced density matrix ρA = trBρAB. It is the standard measure of
entanglement for pure states. For mixed states, there are some entanglement measures in
the literature and no single one is standard [122, 67]. Most of these entanglement measures
reduce for pure states to entanglement entropy, and are difficult (NP-hard [71]) to compute.
Quantum mutual information I(ρAB) = S(ρA) + S(ρB) − S(ρAB) is not an entanglement
measure, as it is generically nonzero for separable (i.e., unentangled) states. It quantifies
the total (classical and quantum) correlation between A and B in a possibly mixed state
ρAB, and is the quantum analog of mutual information (the standard measure of correlation
between two random variables) in classical information theory.

Let SL(|ψ〉) be the entanglement entropy of the state |ψ〉 in a spin model, where A
consists of a block of L spins, and by default |ψ〉 is the ground state. SL satisfies an area law
[40] in 1D gapped systems [59, 10, 70]. In 1D gapless systems, SL ∼ (c lnL)/3 [66, 28, 27] if
the critical theory is a conformal field theory with central charge c, e.g., SL ∼ (lnL)/3 in the
homogeneous XX and anti-ferromagnetic Heisenberg chains [154, 96, 97]. Similarly, let ITL
be the mutual information of the thermal mixed state exp(−H/T ) at nonzero temperature
T . ITL always satisfies an area law [165], regardless of the energy gap or the dimension
(geometry) of the lattice.

6.3 Methods

As a standard analytical approach to the low-energy physics in random spin chains, RSRG is
successful in practice and believed to be asymptotically exact at infinite-randomness quantum
critical points. We briefly illustrate this approach in the context of the random XX chain
[46]. See Ref. [82] and references therein for details and more examples.

The Hamiltonian is H =
∑

iHi with Hi = Ji(σ
i
xσ

i+1
x +σiyσ

i+1
y ), where Ji’s are independent

and identically distributed (i.i.d.) random variables. At each step of RSRG, we find the
strongest bond Jj = maxi Ji =: Ω and diagonalize Hj. Assuming Jj � Jj±1, the spins j
and j + 1 form a singlet (the ground state of Hj), and then degenerate perturbation theory
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Table 6.1: Eigenvalues and eigenstates of Hj; effective interactions Hj−1,j+2 =
Jj−1,j+2(σj−1

x σj+2
x + σj−1

y σj+2
y ).

Eigenvalues Eigenstates Effective interactions
2Jj | ↑j↓j+1〉+ | ↓j↑j+1〉 Jj−1,j+2 = Jj−1Jj+1/Jj
0 | ↑j↑j+1〉, | ↓j↓j+1〉 Jj−1,j+2 = −Jj−1Jj+1/Jj
−2Jj | ↑j↓j+1〉 − | ↓j↑j+1〉 Jj−1,j+2 = Jj−1Jj+1/Jj

(Schrieffer-Wolff transformation [25]) leads to an effective interaction

Jj−1,j+2 = Jj−1Jj+1/Jj < Ω (6.1)

between the spins j − 1 and j + 2. As such, we eliminate the strongest bond Jj and reduce
the energy scale Ω. Repeating these steps, the ground state of the random XX chain is
approximately a tensor product of singlets. Moreover, Eq. (6.1) induces a RSRG flow equa-
tion for the distribution of Ji’s. There is a simple infinite-randomness fixed point solution as
the attractor for all nonsingular initial distributions of Ji’s [46], which justifies the assump-
tion Jj � Jj±1 in the asymptotic limit. Therefore, the low-energy physics of the random
XX chain is universal: It is governed by the fixed point distribution, regardless of initial
distributions.

The entanglement entropy SL is proportional to the number of singlets across one bound-
ary of the block [129]. Let Γ = ln(Ω0/Ω) with Ω0 the initial energy scale. The RSRG flow
equation and the fixed point distribution imply (a) λ ∼ Γ2, where λ is the length scale of the
singlets at the energy scale Ω, and (b) N ∼ (ln Γ)/3, where N is the average total number
of singlets across a particular cut at energy scales greater than Ω. Substituting λ ∼ L,

〈SL〉 ∼ 2N ln 2 ∼ (ln 2)(lnL)/3, (6.2)

where 〈·〉 denotes averaging over randomness. See Refs. [129, 128] for details.
In free-fermion systems, the algorithm for computing entanglement entropy is well es-

tablished [120]. It is used in Refs. [154, 96, 94] to compute the entanglement entropy of
ground states in the homogeneous (and random) XX chain, quantum Ising chain, etc., and
it also works for excited eigenstates. The algorithm for computing the mutual information
of thermal states is a variant of it [120]. Technically, these algorithms make use of (i) the
fact that a free-fermion system can be decomposed into a bunch of noninteracting fermionic
modes, and (ii) the observation that the eigenstates and the thermal states of a free-fermion
Hamiltonian are (fermionic) Gaussian states, i.e., they can be reconstructed from their co-
variance matrices. Since these algorithms are efficient in the sense that their running time
grows polynomially with the system size, we are able to simulate chains of 200–1000 spins
with a laptop and extract the coefficient of “lnL” convincingly. We verify with accurate nu-
merics all implications of RSRG and RSRG-X for the scaling of excited-state entanglement
and thermal mutual information. This is a numerical test of the recently developed RSRG-X
[117].
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6.4 Random XX chain

Let {|ψi〉} be a complete set of eigenstates of H, and define

STL =

∑
i exp(−〈ψi|H|ψi〉/T )SL(|ψi〉)∑

i exp(−〈ψi|H|ψi〉/T )
(6.3)

as the average entanglement entropy of eigenstates |ψi〉’s sampled from the Boltzmann dis-
tribution at temperature T . Here T is a parameter tuning the (average) energy, for we
wonder whether (and how) the scaling of excited-state entanglement depends on energy.
Alternatively, one may study the average entanglement entropy of eigenstates with (close
to) a particular energy. Note that STL is not the entanglement of the thermal mixed state
exp(−H/T ).

RSRG-X [117] is an approach to the long-range physics of excited states in random spin
chains. Following our previous discussion of RSRG, we show implications of RSRG-X for
the scaling of 〈STL 〉 in the random XX chain.

At each step of RSRG-X, we still diagonalize Hj: The eigenvalues and eigenstates are
given in Table 6.1. Here the spins j and j + 1 are in a random eigenstate of Hj sampled
from the Boltzmann distribution at temperature T (cf. they are always in the ground state
of Hj in RSRG), and then degenerate perturbation theory leads to an effective interaction
between the spins j − 1 and j + 2: Different eigenstates may induce different interactions,
but fortunately the difference is only in sign. Hence the flow equation and the fixed point
solution for the distribution of |Ji|’s in RSRG-X are identical to those in RSRG.

We calculate the amount of entanglement generated in RSRG-X. (i) If the spins j and
j+1 are in an eigenstate of Hj with eigenvalue ±2Jj, then a unit of entanglement is generated
as in RSRG. (ii) Otherwise, the spins j and j + 1 may be in a superposition of | ↑↑〉 and
| ↓↓〉, and an undetermined amount of entanglement is generated. Let α be the ratio of
the amount of entanglement generated in RSRG-X to that generated in RSRG. Averaging
cases (i) and (ii) gives 1/2 ≤ α ≤ 1. At any constant temperature T > 0, the energy scale
Ω becomes much lower than T after some number of RSRG-X steps. Hence the scaling of
〈ST>0

L 〉 is the same as that of 〈ST=∞
L 〉. Summarizing,

〈ST=∞
L 〉 ∼ 〈ST>0

L 〉 ∼ α(ln 2)(lnL)/3, 1/2 ≤ α ≤ 1. (6.4)

It is not a limitation of our approach that the prefactor α is undetermined. Indeed, the
eigenvalues of a random XX Hamiltonian are degenerate. Hence the complete set of eigen-
states {|ψi〉} and the scaling of 〈STL 〉 are not unique. We construct two examples in which
α = 1/2 and α = 1, respectively.

Example 1. Since the total magnetization σz =
∑

i σ
i
z is conserved, one may require that

each |ψi〉 is an eigenstate of σz, which is physically interpreted as fixing the fermion number
in the fermion representation. Then, in case (ii) the spins j and j + 1 are (approximately)
in either | ↑↑〉 or | ↓↓〉 (not a superposition) so that (almost) no entanglement is generated.
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Figure 6.1: (Color online) Scaling of 〈STL 〉 in random XX chain. Here Ji’s are i.i.d. uniform
random variables on the interval [0, 1]. Example 1 (α = 1/2). The blue, red, and green
dots are data (averaged over 5000 samples) for T = 0, 10−3, and ∞, respectively, in chains
of 1000 spins. The lines are fits based on (6.2) and (6.4): (ln 2)(lnL)/3 + 0.86 (blue),
(ln 2)(lnL)/6 + 1.18 (red), and (ln 2)(lnL)/6 + 2.09 (green). Example 2 (α = 1). The cyan
dots are data (averaged over 3000 samples) for T =∞, δ = 10−9 in chains of 500 spins. The
cyan line is a fit based on (6.4): (ln 2)(lnL)/3 + 2.13.

Hence α = 1/2, which is verified numerically for T =∞ (green) and T = 10−3 (red) in Fig.
6.1. Note that the (universal) logarithmic scaling starts at larger L for T = 10−3,∞ than
for T = 0 (blue).

Example 2. Let H ′ =
∑

i(1 + δ)Jiσ
i
xσ

i+1
x + Jiσ

i
yσ

i+1
y such that limδ→0H

′ = H. The
eigenvalues of H ′ are generically non-degenerate. Then, in case (ii) the spins j and j+ 1 are
(approximately) in (| ↑↑〉± | ↓↓〉)/

√
2 (maximally entangled state) so that (almost) one unit

of entanglement is generated. Hence α = 1, which is verified numerically for T =∞ (cyan)
in Fig. 6.1.

We calculate the scaling of 〈ITL 〉 using RSRG. (i) If Ω � T , we do RSRG as if T = 0.
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(ii) If Ω� T , the remaining spins are in the maximally mixed state as if T =∞. (iii) The
transition occurs at Ωc ∼ T :

Lc ∼ Γ2
c ∼ ln2(1/Ωc) ∼ ln2(1/T ). (6.5)

The thermal mixed state exp(−H/T ) is approximately of the form ρ1 ⊗ ρ0, where ρ1 is a
tensor product of singlets, and ρ0 is a maximally mixed state. Hence,

ITL ≈ IL(ρ1 ⊗ ρ0) = IL(ρ1) + IL(ρ0) = IL(ρ1) (6.6)

implies

〈ITL 〉 ∼ 〈ITLc〉 ∼ 2(ln 2)(lnLc)/3 ∼ 4(ln 2)[ln ln(1/T )]/3, 〈ITL 〉 ∼ 〈IT=0
L 〉 ∼ 2(ln 2)(lnL)/3

(6.7)
for L� Lc and L� Lc, respectively, or compactly

〈ITL 〉 ∼ 2(ln 2)[ln min{L, ln2(1/T )}]/3, (6.8)

which is verified numerically in Fig. 6.2.
Any entanglement measure (for mixed states) satisfies the following: (a) It does not

increase under local operations and classical communication (LOCC); (b) it reduces to en-
tanglement entropy for maximally entangled states; and (c) other postulates irrelevant to us.
See Refs. [122, 67] for details on the axiomatic approach to entanglement measures. Since
the states ρ1 and ρ1 ⊗ ρ0 can be transformed to each other by LOCC,

ET
L := EL(e−H/T ) ≈ EL(ρ1 ⊗ ρ0) = EL(ρ1) = SL(ρ1) = IL(ρ1)/2 ≈ ITL /2⇒ 〈ET

L 〉 ∼ 〈ITL 〉/2
(6.9)

for any entanglement measure E (including, but not limited to, entanglement cost, distill-
able entanglement, entanglement of formation, relative entropy of entanglement, squashed
entanglement, and logarithmic negativity). Note that logarithmic negativity, while it does
not reduce to entanglement entropy for all pure states, does reduce to entanglement entropy
for maximally entangled states and hence satisfies the postulate (b) above. We do not ex-
pect any of the aforementioned entanglement measures can be computed efficiently even in
free-fermion systems.

6.5 Random quantum Ising chain and beyond

We now study the random quantum Ising chain [47, 45, 82]. The Hamiltonian is

H =
∑
i

Jiσ
i
xσ

i+1
x + hiσ

i
z, (6.10)

where Ji’s are i.i.d. and hi’s are i.i.d. random variables. The eigenvalues of H are generically
non-degenerate. Let δ = (ln |h| − ln |J |)/(var ln |h| + var ln |J |). At δ = 0, the system is
critical, and RSRG implies [129]

〈ST=0
L 〉 ∼ (ln 2)(lnL)/6. (6.11)
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Figure 6.2: (Color online) Scaling of 〈ITL 〉 in random XX chain. The dots (from top to
bottom) are data (averaged over 2500 samples) for T = 0, 10−5, 3× 10−5, 10−4, and 3× 10−4

in chains of 200 spins. The line is a fit based on (6.7): 2(ln 2)(lnL)/3 + 1.66. 〈ITL 〉 behaves
as if T = 0 for L � Lc and saturates for L � Lc. Inset: Saturation value 〈ITL�Lc〉 vs
temperature. The line is a fit based on (6.7): 4(ln 2)[ln ln(1/T )]/3 + 0.77.

Otherwise (δ 6= 0) we expect an area law for 〈ST=0
L 〉. Let ξ ∼ 1/δ2 be the characteristic

length scale within and beyond which the system appears critical and noncritical, respec-
tively [45]. The saturation value is 〈ST=0

L�ξ〉 ∼ (ln 2)(ln ξ)/6 ∼ (ln 2)(ln |1/δ|)/3 for |δ| � 1.
Straightforward perturbative calculations show that fortunately the difference between ef-
fective interactions induced in RSRG and RSRG-X is only in sign [117]. Hence the flow
equation and the fixed point solution for the distributions of |Ji|, |hi|’s in RSRG-X are iden-
tical to those in RSRG. Moreover, the amount of entanglement generated in RSRG-X is the
same as that generated in RSRG. Therefore 〈S∀TL 〉 ∼ 〈ST=0

L 〉, which is verified numerically
in Fig. 6.3.

Consider the weakly interacting model H ′ = H +
∑

i J
′
iσ
i
zσ

i+1
z , where H is the random

quantum Ising Hamiltonian (6.10), and J ′i ’s (� Ji, hi’s) are i.i.d. random variables. This
model is studied using RSRG-X in Ref. [117]: There is strong numerical evidence for a
temperature-tuned dynamical quantum phase transition. After developing intuitions about
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Figure 6.3: (Color online) Scaling of 〈STL 〉 in critical random quantum Ising chain (δ = 0).
Here Ji, hi’s are i.i.d. uniform random variables on the interval [0, 1]. The blue, red, and green
dots are data (averaged over 2500 samples) for T = 0, 0.2, and ∞, respectively, in chains of
400 spins. The lines are fits based on (6.11): (ln 2)(lnL)/6+0.51 (blue), (ln 2)(lnL)/6+0.73
(red), and (ln 2)(lnL)/6 + 1.09 (green).

this transition, the scaling of entanglement will be clear.
Irrelevant perturbations do not change the universality class of phase transitions, but they

modify the strength of relevant terms. In RSRG-X, the J ′ perturbations are irrelevant [117].
Let δr(δ, T, J

′) be the “renormalized δ,” which is a function of T because the implementation
of RSRG-X is temperature dependent. The critical temperature Tc is given by δr(δ, Tc, J

′) =
0. Therefore,

〈ST=Tc
L 〉 ∼ (ln 2)(lnL)/6. (6.12)

We expect an area law for 〈ST 6=TcL 〉, and the saturation value is ∼ (ln 2)[ln |1/(T −Tc)|]/3 for
|T − Tc| � 1 (and finite Tc).
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Chapter 7

Quantum circuit complexity of
one-dimensional topological phases

Topological quantum states cannot be created from product states with local quantum cir-
cuits of constant depth and are in this sense more entangled than topologically trivial states,
but how entangled are they? Here we quantify the entanglement in 1D topological states
by showing that local quantum circuits of linear depth are necessary to generate them from
product states. We establish this linear lower bound for both bosonic and fermionic one-
dimensional topological phases and use symmetric circuits for phases with symmetry. We
also show that the linear lower bound can be saturated by explicitly constructing circuits gen-
erating these topological states. The same results hold for local quantum circuits connecting
topological states in different phases.

7.1 Introduction

Many-body entanglement is essential to the existence of topological order in strongly corre-
lated systems. While ground states in topologically trivial phases can take a simple product
form, ground states in topological phases are always entangled. Of course, ground states
in topologically trivial phases can be entangled, too. It is then natural to ask what is the
essential difference between the entanglement patterns that give rise to topologically trivial
and nontrivial states.

Besides topological entanglement entropy [92, 98] and the entanglement spectrum [99],
which partially capture the topological properties of the system, quantum circuits provide a
powerful tool for characterizing the entanglement patterns of topological states. Intuitively,
one would expect that states with more complicated entanglement patterns require larger
circuits to generate from product states. Also, small circuits would suffice to connect ground
states in the same phase as their entanglement patterns are similar, while large circuits are
necessary to map states from one phase to another.

Indeed, in gapped quantum many-body systems it has been shown that two ground states
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are in the same topological phase if and only if they can be mapped to each other with a
local quantum circuit of constant depth, i.e., a constant (in the system size) number of layers
of non-overlapping local unitaries [31]. States with nontrivial intrinsic topological order are
thus said to be long-range entangled in the sense that they cannot be created from product
states with circuits of constant depth. Circuits of constant depth can generate SPT states
from product states but only if the symmetry is broken. If only symmetric unitaries are
allowed, the circuit depth has to grow with the system size.

Therefore, topological states are in this sense more entangled than topologically trivial
states, but how entangled are they? In particular, we ask, what is the quantum circuit
complexity of generating topological states from product states, i.e., how does the circuit
depth scale with the system size? In two and higher dimensions, it has been shown that
circuits of linear (in the diameter of the system) depth are necessary to generate states with
topological degeneracy [22]. One might expect that topological states without topological
degeneracy are less entangled and can be created with circuits of sub-linear depth. However,
we show that this is not the case, at least in 1D.

We demonstrate that, to generate 1D gapped (symmetry protected) topological states from
product states, the depth of the (symmetric) local quantum circuits has to grow linearly with
the system size. The Majorana chain [90] provides an example of a topological state without
topological degeneracy, and we show that local fermionic circuits of linear depth are necessary
for its creation. For all 1D SPT states, we show that linear depth is required as long as the
symmetry is preserved. In particular, we prove that the nonlocal (string) order parameters
[55, 125] distinguishing different SPT phases remain invariant under symmetric circuits of
sub-linear depth. Furthermore, we explicitly construct circuits of linear depth that generate
1D topological states. These results suggest the dichotomous picture that ground states of
gapped local Hamiltonians are connected by local quantum circuits of either constant or
linear depth, depending on whether they are in the same phase or not.

The chapter is organized as follows. Section 7.2 reviews the basic notion of gapped
quantum phases and how 1D topological phases are classified with local quantum circuits.
Then we study the quantum circuit complexity of prototypical examples of 1D topological
phases: the Majorana chain in fermionic systems (Sec. 7.3) and the Haldane chain with
Z2 × Z2 on-site symmetry in bosonic (spin) systems (Sec. 7.4). We explicitly construct
circuits of linear depth that generate these topological states from product states and show
that linear depth is a lower bound. For the Majorana chain, the circuit is composed of
fermionic local unitaries; for the Haldane chain with symmetry, the circuit is composed of
symmetric local unitaries. Appendix 7.8 establishes the same results for all 1D topological
phases in a similar but more complicated way. Section 7.5 concludes with the implications
of our results.

7.2 Preliminaries

We first review the basic notions of gapped quantum phases and local quantum circuits.
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Definition 16 (gapped quantum phase). Two gapped local Hamiltonians H0 and H1 are in
the same phase if and only if there exists a smooth path of gapped local Hamiltonians H(t)
with 0 ≤ t ≤ 1 such that H(0) = H0 and H(1) = H1. Correspondingly, their ground states
are said to be in the same phase.

Indeed, gapped phases can be defined purely in terms of the ground states, without
referring to their Hamiltonians at all. To do this, we need local quantum circuits.

Definition 17 (local quantum circuit). A local quantum circuit C of depth m has a layered
structure of local unitary quantum gates,

C =
∏
im

C
(m)
im

∏
im−1

C
(m−1)
im−1

· · ·
∏
i1

C
(1)
i1
, (7.1)

where in each layer 1 ≤ k ≤ m the supports of the local unitaries C
(k)
ik

’s are pairwise non-
intersecting.

Theorem 6 (informal statement). Gapped ground states in the same phase are connected
by local quantum circuits of constant depth (up to some reasonably small error).

Remark. See Theorem 8 for the formal statement of Theorem 6.

Theorem 6 was discussed in Ref. [31] using quasi-adiabatic continuation [63, 26] and the
Lieb-Robinson bound [100, 105, 64]. Gapped phases can also be defined in the presence of
symmetry.

Definition 18 (SPT phase). In the absence of symmetry breaking, two symmetric gapped
local Hamiltonians H0 and H1 are in the same SPT phase if and only if there exists a smooth
path of symmetric gapped local Hamiltonians H(t) with 0 ≤ t ≤ 1 such that H(0) = H0

and H(1) = H1.

SPT phases can also be defined purely in terms of the symmetric ground states.

Definition 19 (symmetric local quantum circuit). A local quantum circuit C is symmetric

if each quantum gate C
(k)
ik

is symmetric.

Corollary 3 (informal statement). Symmetric gapped ground states in the same SPT phase
are connected by symmetric local quantum circuits of constant depth (up to some reasonably
small error).

Remark. See Corollary 4 for the formal statement of Corollary 3.

Based on Theorem 6 and Corollary 3, 1D gapped phases have been classified [126, 29, 30,
144, 44, 136]. It was found that there is no topological phase in 1D bosonic (spin) systems
without symmetry. In 1D fermionic systems without extra symmetry (beyond fermion parity
which is always preserved), there is one and only one topological phase: the Majorana
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chain with Majorana edge modes [90]. In 1D systems with (extra) symmetry, there can be
SPT phases with degenerate edge states carrying projective representations of the symmetry
group. See Appendix 7.7 for the classification of 1D SPT phases.

Since (symmetry protected) topological states cannot be mapped to topologically trivial
states (including product states) with (symmetric) local quantum circuits of constant depth,
we ask, what circuit depth is necessary to do this mapping? We show that linear depth is
necessary by proving the invariance of the nonlocal (string) order parameters [14, 55, 125]
distinguishing different (symmetry protected) topological phases under (symmetric) circuits
of sub-linear depth.

Theorem 7. Suppose |ψ〉 and C|ψ〉 are two gapped ground states in 1D systems (with sym-
metry), where C is a (symmetric) local quantum circuit of sub-linear depth. Then |ψ〉 and
C|ψ〉 are in the same (symmetry protected) topological phase.

7.3 Majorana chain

In the absence of (extra) symmetry (beyond fermion parity), the Majorana chain with Ma-
jorana edge modes [90] is the only 1D topological order. We now study the Majorana chain
by considering the fermionic model

H =
N−1∑
j=1

(
aj − a†j

)(
aj+1 + a†j+1

)
+ µ

N∑
j=1

(
2a†jaj − 1

)
−
(
aN − a†N

)(
a1 + a†1

)
(7.2)

with anti-periodic boundary conditions in the symmetry sector of even fermion parity, where
aj and a†j are the fermion annihilation and creation operators at the site j. This model is
in the topologically trivial and nontrivial phases for µ > 1 and 0 ≤ µ < 1, respectively. We
show that two ground states in different phases can be connected by a local fermionic circuit
of linear depth and that linear depth is a lower bound.

Proposition 3. Suppose |ψ0〉 and |ψ1〉 are two gapped ground states in the topologically
trivial and nontrivial phases in 1D fermionic systems, respectively. Given an arbitrarily
small constant ε, there exist |ψ′0〉, |ψ′1〉 and a local fermionic circuit C of linear depth such
that |ψ′1〉 = C|ψ′0〉 and

|〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε (k = 0, 1) (7.3)

for any local operator P with bounded norm.

Proof. Define two Majorana operators at each site:

c2j−1 = aj + a†j, c2j =
(
aj − a†j

)
/i. (7.4)

At µ = +∞, H = iµ
∑N

j=1 c2j−1c2j is in the trivial phase, and its ground state |φ0〉 is
the tensor product of the vacuum states of the modes aj = (c2j−1 + ic2j)/2. At µ = 0,
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Figure 7.1: (Color online) The renormalization group (RG) fixed-point states [148, 29] in
the (a) trivial and (b) nontrivial fermionic (Majorana chain) or SPT (e.g., Haldane chain)
phases. For states in fermionic phases, each dot represents a Majorana mode and connected
pairs form fermionic modes which are vacant or occupied. For states in SPT phases, each
dot carries a projective representation of the symmetry group and connected pairs form
symmetric singlets. (c) The states in (a) and (b) can be exactly mapped to each other with
a linear-depth 2-local quantum circuit composed of swap gates.

H = i
∑N−1

j=1 c2jc2j+1 − ic2Nc1 is in the nontrivial phase, and its ground state |φ1〉 is the
tensor product of the vacuum (or occupied) states of the fermionic modes bj = (c2j+ic2j+1)/2.
Figure 7.1(a) and (b) illustrate the structures of |φ0〉 and |φ1〉, which are the RG fixed-point
states in the topologically trivial and nontrivial phases, respectively.

As shown in Fig. 7.1(c), |φ0〉 and |φ1〉 can be exactly mapped to each other with a 2-local
fermionic circuit

Cφ =
1∏

j=N−1

C(j), C(j) =
c2j+2c2j+1 + c2j+1c2j√

2
(7.5)

of depth N − 1, where the local unitary C(j) swaps c2j and c2j+2. As |ψk〉 and |φk〉 are in
the same phase, there exists a local fermionic circuit Ck of constant depth (Appendix 7.6)
such that |〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε for any local operator P with bounded norm, where
|ψ′k〉 = Ck|φk〉. Finally, C = C1CφC

†
0 is the circuit of linear depth that connects |ψ0〉 and

|ψ1〉.

Proposition 4. Suppose |ψ〉 and C|ψ〉 are two gapped ground states in 1D fermionic systems,
where C is a local fermionic circuit of sub-linear depth. Then |ψ〉 and C|ψ〉 are in the same
topological phase.

Proof. The string order parameter

lim
N→+∞

〈(
a†N

3

+ aN
3

) 2N
3
−1∏

j=N
3

eiπa
†
jaj
(
a†2N

3

+ a 2N
3

)〉
(7.6)

is zero in the topologically trivial phase and nonzero in the topologically nontrivial phase
[14]. We show that its value cannot change between these two cases under local fermionic
circuits of sub-linear depth.
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This is easiest to see by applying the Jordan-Wigner transformation

ak = σ−k

k−1∏
j=1

(−σzj ), a
†
k = σ+

k

k−1∏
j=1

(−σzj ), (7.7)

where σ−k and σ+
k are the spin-1/2 lowering and raising operators at the site k. The fermionic

model (7.2) is mapped to the transverse field Ising model with periodic boundary conditions:

H = −
N−1∑
j=1

σxj σ
x
j+1 − σxNσx1 + µ

N∑
j=1

σzj , (7.8)

and the string order parameter (7.6) is mapped to limN→+∞〈ψs|σxN/3σx2N/3|ψs〉, where |ψs〉 is
the spin ground state. This spin model is in the disordered phase for µ > 1 with vanishing
correlations at large distances, e.g., limN→+∞〈ψs|σxN/3σx2N/3|ψs〉 = 0, and it is in the ordered

phase for 0 ≤ µ < 1 with long-range correlations: limN→+∞〈ψs|σxN/3σx2N/3|ψs〉 > 0. As
any local unitary in 1D fermionic systems remains local after the nonlocal Jordan-Wigner
transformation [in the case where the local unitary in 1D fermionic systems crosses the
boundary, there is a trivial factor

∏N
j=1(−σzj ) = 1 as the fermion parity is even], a local

fermionic circuit C of sub-linear depth is mapped to a local spin circuit Cs of sub-linear
depth. The Lieb-Robinson bound states that correlations can only propagate at a finite
speed in quantum many-body systems with local interactions [100, 105, 64]. As a conse-
quence, local quantum circuits of sub-linear depth cannot generate long-range order [22],
i.e., limN→+∞〈ψs|C†sσxN/3σx2N/3Cs|ψs〉 = 0 for any state |ψs〉 with vanishing correlations at

large distances. Therefore, the string order parameter (7.6) is either both zero or both
nonzero for the fermionic states |ψ〉 and C|ψ〉.

7.4 Haldane chain

We switch to 1D spin systems. In the absence of symmetry, all 1D gapped spin systems are
in the same phase. In the presence of symmetry, however, there can be SPT phases with
degenerate edge states carrying projective representations of the symmetry group [126, 29,
30, 136]. See Appendix 7.7 for the classification of 1D SPT phases, which includes a brief
review of projective representations. SPT states are short-range entangled in the sense that
they can be created from product states with local quantum circuits of constant depth by
breaking the symmetry. If the symmetry is preserved, we show that two ground states in
different SPT phases can be connected by a local quantum circuit of linear depth and that
linear depth is a lower bound.

We now study the Haldane chain with Z2×Z2 on-site symmetry as a prototypical example,
where we use periodic boundary conditions so that the ground state is unique and symmetric.
The proof for general 1D SPT phases is similar but more complicated (Appendix 7.8). With
Z2 × Z2 symmetry, there are two phases [126, 124]: the trivial phase and the Haldane
(nontrivial SPT) phase [56, 57].
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Proposition 5. Suppose |ψ0〉 and |ψ1〉 are two Z2×Z2 symmetric gapped ground states in the
trivial and the Haldane phases, respectively. Given an arbitrarily small constant ε, there exist
|ψ′0〉, |ψ′1〉 and a symmetric local quantum circuit C of linear depth such that |ψ′1〉 = C|ψ′0〉
and

|〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε (k = 0, 1) (7.9)

for any local operator P with bounded norm.

Proof. The proof proceeds analogously to that of Proposition 3. Figure 7.1(a) and (b)
illustrate the structures of the RG fixed-point states |φ0〉 and |φ1〉 in the trivial and the
Haldane phases, respectively, where each dot now represents a spin-1/2 degree of freedom
transforming projectively under π rotations about the x, y, z axes. It is apparent that the
edge state of |φ1〉 in the Haldane phase is twofold degenerate and transforms projectively
while that of |φ0〉 in the trivial phase is trivial.

As shown in Fig. 7.1(c), |φ0〉 and |φ1〉 can be exactly mapped to each other by applying
(N−1) 2-local swap gates sequentially. These swap gates rearrange the singlets, are Z2×Z2

symmetric and form a symmetric 2-local quantum circuit Cφ of depth N−1. As |ψk〉 and |φk〉
are in the same SPT phase, there exists a symmetric local quantum circuit Ck of constant
depth (Appendix 7.6) such that |〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε for any local operator P with
bounded norm, where |ψ′k〉 = Ck|φk〉. Finally, C = C1CφC

†
0 is the symmetric circuit of linear

depth that connects |ψ0〉 and |ψ1〉.

Proposition 6. Suppose |ψ〉 and C|ψ〉 are two symmetric gapped ground states in 1D spin
systems with Z2 × Z2 on-site symmetry represented by

{
1, eiπS

x
, eiπS

y
, eiπS

z}
, where C is a

symmetric local quantum circuit of sub-linear depth. Then |ψ〉 and C|ψ〉 are in the same
SPT phase.

Proof. We make use of the string (nonlocal) order parameters [55, 125] distinguishing differ-
ent SPT phases. For the Haldane chain, the string order operator is [108, 88, 87]

Q = SyN/3

2N/3−1∏
j=N/3+1

eiπS
y
j Sy2N/3, (7.10)

where ~Sj = (Sxj , S
y
j , S

z
j ) is the spin-1 operator at the site j. The string order parameter

limN→+∞〈Q〉 is zero in the trivial phase and nonzero in the Haldane phase. We show that
its value cannot change between these two cases under Z2 × Z2 symmetric local quantum
circuits of sub-linear depth.

Assume without loss of generality that C is a symmetric 2-local quantum circuit of depth
m ≤ N/9. Figure 7.2 shows the expectation value 〈ψ|C†QC|ψ〉. As each gate in the circuit
C is unitary and symmetric, the white gates cancel out. Then we merge the gray gates inside
the causal cones (dotted lines) of the left and right end operators Sy (small open red squares)
into Cl and Cr, respectively. As C is of sub-linear depth, Cl and Cr are non-overlapping.
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Figure 7.2: (Color online) The expectation value 〈ψ|C†QC|ψ〉. The horizontal lines attached
with small blue squares represent 〈ψ| (bra) or |ψ〉 (ket), and the short rectangles are the
2-local unitaries in C. The (white) unitaries outside the causal cones (dotted lines) of Sy

(small open red squares) can be removed, as they are symmetric. Then we merge the (gray)
symmetric local quantum gates inside each casual cone into one symmetric quantum gate
(long rectangle) of sub-linear support.

Hence Q′ = C†QC remains a string (order) operator. Specifically, the string becomes shorter

but is still of the form
∏

j e
iπSyj . The left and right end operators are changed to

Ql = C†l S
y
N/3

N/3+m∏
j=N/3+1

eiπS
y
jCl, Qr = C†r

2N/3−1∏
j=2N/3−m

eiπS
y
j Sy2N/3Cr, (7.11)

respectively. As Cl is symmetric, Ql transforms in the same way under the symmetry as Sy,
e.g., ∏

j

e−iπS
z
jQl

∏
j

eiπS
z
j = −Ql. (7.12)

Appendix 7.8 shows that limN→+∞〈ψ|Q′|ψ〉 = 0 if and only if limN→+∞〈ψ|Q|ψ〉 = 0. There-
fore, the string order operator (7.10) has either both zero or both nonzero expectation values
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for |ψ〉 and C|ψ〉.

Nonlocal (string) order parameters have been systematically constructed for general 1D
SPT phases [55, 125]. Appendix 7.8 extends our proof to all these cases accordingly.

7.5 Conclusion

We have quantified the many-body entanglement in 1D (symmetry protected) topological
states with (symmetric) local quantum circuits. In particular, we have shown that circuits
of linear depth are necessary to generate 1D topological states from product states. We
have also explicitly constructed circuits of linear depth that generate 1D topological states.
These results are useful not only conceptually but also operationally as a guide to preparing
topological states in experiments.

Although our proof is in 1D, we expect similar results in two and higher dimensions.
Indeed, it has been shown that local quantum circuits of linear (in the diameter of the system)
depth are necessary to generate states with topological degeneracy [22]. We conjecture
that this is also true for topological states without topological degeneracy, e.g., the integer
quantum Hall states, the p-wave superconductors, and the E8 states. See Ref. [54] for recent
progress in this direction.

More generally, we can ask, what is the quantum circuit complexity of generating ground
states in gapless phases or at phase transitions? We expect that quantum circuits also
characterize the entanglement patterns that give rise to the physical properties in gapless or
critical systems.

Acknowledgments. We would like to thank Isaac H. Kim, Spyridon Michalakis, Joel E.
Moore, John Preskill, Frank Pollmann, and Ashvin Vishwanath for helpful discussions. In
particular, I.H.K. pointed out that a variant of Proposition 4 can be proved using his entropic
topological invariant [89].

7.6 Appendix: States in the same phase

We give a rigorous formulation of the statement [31] that gapped ground states in the same
phase are connected by local quantum circuits of constant depth.

Lemma 45. Suppose H0(t) and H1(t) are two time-dependent Hamiltonians with ‖H0(t)−
H1(t)‖ ≤ δ. Then the (unitary) time-evolution operators

Uk(t) = T e−i
∫ t
0 Hk(τ)dτ (k = 0, 1) (7.13)

satisfy ‖U0(t)− U1(t)‖ ≤ δt, where T is the time-ordering operator.
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Proof. Let

UI(t) = T e−i
∫ t
0 U
†
0 (τ)[H1(τ)−H0(τ)]U0(τ)dτ (7.14)

be the (unitary) time-evolution operator in the interaction picture. Indeed, it is straightfor-
ward to verify U1(t) = U0(t)UI(t) by differentiating with respect to t. Then,

‖U ′I(t)‖ =
∥∥∥U †0(t)(H1(t)−H0(t))U0(t)UI(t)

∥∥∥ = ‖H1(t)−H0(t)‖ ≤ δ

⇒ ‖U0(t)− U1(t)‖ = ‖U0(t)UI(0)− U0(t)UI(t)‖ = ‖UI(0)− UI(t)‖ ≤ δt. (7.15)

Lemma 46. Suppose H(t) =
∑N−1

j=1 h(j)(t) is a time-dependent 1D 2-local Hamiltonians

with open boundary conditions, where h(j) acts on the spins j and j + 1 (nearest-neighbor
interaction). Define H∗(t) =

∑l−1
j=1 h

(j)(t) for l ≤ N . Let U(t) and U∗(t) be the (unitary)
time-evolution operators for H(t) and H∗(t), respectively. Then,

‖U †(1)PU(1)− U †∗(1)PU∗(1)‖ = e−Ω(l) (7.16)

for any operator P acting on the first spin with ‖P‖ ≤ 1.

Lemma 46 is a variant of the Lieb-Robinson bound [100, 105, 64]. See Ref. [24] in Ref.
[112] for a simple direct proof.

Theorem 8 (formal statement of Theorem 6). Suppose |ψ0〉 and |ψ1〉 are two gapped ground
states in the same phase in any spatial dimension. Given an arbitrarily small constant
ε = Θ(1), there exists a local quantum circuit C of depth O(1) such that

|〈ψ1|P |ψ1〉 − 〈ψ0|C†PC|ψ0〉| ≤ ε (7.17)

for any local operator P with ‖P‖ ≤ 1.

Proof. By Definition 16, there exists a smooth path of gapped local Hamiltonians H0(t) with
0 ≤ t ≤ 1 such that |ψ0〉 and |ψ1〉 are the ground states of H0(0) and H0(1), respectively.
Quasi-adiabatic continuation [63] defines a smooth time-dependent local Hamiltonian H1(t)
such that

|〈ψ1|P |ψ1〉 − 〈ψ0|U †1(1)PU1(1)|ψ0〉| ≤ ε/3 (7.18)

for any local operator P with ‖P‖ ≤ 1. Assume without loss of generality that H1(t) =∑N−1
j=1 h

(j)
1 (t) is a 1D 2-local Hamiltonian with open boundary conditions and that P is an

operator acting on the first spin. We approximate the time-dependent Hamiltonian H1(t)
by the piecewise time-independent Hamiltonian

N−1∑
j=1

h
(j)
2 = H2(t) := H1([rt]/r) =

N−1∑
j=1

h
(j)
1 ([rt]/r) (7.19)
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with sufficiently large r = O(1). Let l = O(1) be a cutoff and define

H3(t) =
l−1∑
j=1

h
(j)
1 (t) +

N−1∑
j=l

h
(j)
2 (t). (7.20)

Lemma 46 implies ∥∥∥U †1(1)PU1(1)− U †3(1)PU3(1)
∥∥∥ ≤ ε/6 (7.21)

for sufficiently large l = O(1). As H1(t) is smooth, Lemma 45 implies

lim
r→+∞

∥∥∥h(j)
1 (t)− h(j)

2 (t)
∥∥∥ = 0⇒ ‖H3(t)−H2(t)‖ ≤

l−1∑
j=1

∥∥∥h(j)
1 (t)− h(j)

2 (t)
∥∥∥ ≤ ε/12

⇒ ‖U3(1)− U2(1)‖ ≤ ε/12⇒
∥∥∥U †3(1)PU3(1)− U †2(1)PU2(1)

∥∥∥ ≤ ε/6 (7.22)

for sufficiently large r = O(l/ε) = O(1). Hence,∥∥∥U †1(1)PU1(1)− U †2(1)PU2(1)
∥∥∥ ≤ ε/3. (7.23)

As H2(t) is piecewise time independent, assume without loss of generality that it is time
independent. Define

H2 = Ho +He, Ho =

[N/2]∑
j=1

h
(2j−1)
2 , He =

[(N−1)/2]∑
j=1

h
(2j)
2 (7.24)

such that the first-order Trotter decomposition is given by

U2(1) =
(
e−iH

o/s−iHe/s
)s ≈ (e−iHo/se−iH

e/s
)s

=

[N/2]∏
j=1

e−ih
(2j−1)
2 /s

[(N−1)/2]∏
j=1

e−ih
(2j)
2 /s

s

=: C,

(7.25)
where C is a 2-local quantum circuit of depth 2s. Let L = O(1) be a cutoff and define

H∗ =
L−1∑
j=1

h
(j)
2 = Ho

∗ +He
∗ , H

o
∗ =

[L/2]∑
j=1

h
(2j−1)
2 , He

∗ =

[(L−1)/2]∑
j=1

h
(2j)
2 . (7.26)

Similarly,

U∗(1) =
(
e−iH

o
∗/s−iHe

∗/s
)s ≈ (e−iHo

∗/se−iH
e
∗/s
)s

=

[L/2]∏
j=1

e−ih
(2j−1)
2 /s

[(L−1)/2]∏
j=1

e−ih
(2j)
2 /s

s

=: C∗,

(7.27)
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where C∗ is also a 2-local quantum circuit of depth 2s. The standard error analysis of the
Trotter decomposition leads to

‖H∗‖ = O(L) = O(1)⇒ ‖U∗(1)− C∗‖ ≤ ε/18⇒ ‖U †∗(1)PU∗(1)− C†∗PC∗‖ ≤ ε/9 (7.28)

for sufficiently large s = O(1). We observe that C = T e−i
∫ 2
0 H

C(t)dt is the (unitary) time-
evolution operator for the piecewise time-independent Hamiltonian HC(t), where HC(t) =

Ho if [st] is odd and HC(t) = He if [st] is even. Similarly, C∗ = T e−i
∫ 2
0 H

C
∗ (t)dt, where

HC
∗ (t) = Ho

∗ if [st] is odd and HC
∗ (t) = He

∗ if [st] is even. Lemma 46 implies∥∥∥U †2(1)PU2(1)− U †∗(1)PU∗(1)
∥∥∥ ≤ ε/9, ‖C†PC − C†∗PC∗‖ ≤ ε/9 (7.29)

for sufficiently large L = O(1). Hence,∥∥∥U †2(1)PU2(1)− C†PC
∥∥∥ ≤ ε/3. (7.30)

Finally,

|〈ψ1|P |ψ1〉 − 〈ψ0|C†PC|ψ0〉|

≤
∣∣∣〈ψ1|P |ψ1〉 − 〈ψ0|U †1(1)PU1(1)|ψ0〉

∣∣∣+
∣∣∣〈ψ0|U †1(1)PU1(1)|ψ0〉 − 〈ψ0|C†PC|ψ0〉

∣∣∣
≤ ε/3 +

∥∥∥U †1(1)PU1(1)− C†PC
∥∥∥

≤ ε/3 +
∥∥∥U †1(1)PU1(1)− U †2(1)PU2(1)

∥∥∥+
∥∥∥U †2(1)PU2(1)− C†PC

∥∥∥
≤ ε/3 + ε/3 + ε/3 = ε. (7.31)

A minor modification of the proof of Theorem 8 leads to similar results in fermionic
systems and/or in the presence of symmetry.

Corollary 4 (formal statement of Corollary 3). Suppose |ψ0〉 and |ψ1〉 are two symmetric
gapped ground states in the same SPT phase in any spatial dimension. Given an arbitrarily
small constant ε = Θ(1), there exists a symmetric local quantum circuit C of depth O(1)
such that

|〈ψ1|P |ψ1〉 − 〈ψ0|C†PC|ψ0〉| ≤ ε (7.32)

for any local operator P with ‖P‖ ≤ 1.

The main result of Ref. [114] is an immediate corollary of Theorem 8.

Corollary 5 (efficient classical simulation of adiabatic quantum computation with a con-
stant gap in any spatial dimension). Suppose we are given a smooth path of gapped local
Hamiltonians H(t) with 0 ≤ t ≤ 1, where the ground state |ψ0〉 of H(0) is simple in the
sense that 〈ψ0|P |ψ0〉 can be efficiently computed classically for any local operator P with
‖P‖ ≤ 1. Then 〈ψ1|P |ψ1〉 can be efficiently computed classically up to an arbitrarily small
constant additive error, where |ψ1〉 is the ground state of H(1) encoding the solution of the
adiabatic quantum computation.
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7.7 Appendix: Symmetry protected topological phase

We review the classification of 1D SPT phases, and begin by recalling two key notions:
projective representations and MPS.

Projective representation

In the context of this chapter, a projective representation is a mapping u from the symmetry
group G to unitary matrices such that

u(g1)u(g2) = ω(g1, g2)u(g1g2), (7.33)

where ω(g1, g2) (called the factor system of the projective representation) is an U(1) phase
factor, cf. u is a linear representation of G if the factor system is trivial, i.e., ω(g1, g2) = 1
for any g1, g2 ∈ G. The associativity of G implies

ω(g2, g3)ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3). (7.34)

Multiplying u by U(1) phase factors β leads to a different projective representation u′ with
the factor system ω′:

u′(g) = β(g)u(g)⇒ ω′(g1, g2) = ω(g1, g2)β(g1)β(g2)/β(g1g2), (7.35)

Two projective representations u and u′ are equivalent if and only if they differ only by pref-
actors. Correspondingly, their factor systems ω and ω′ are said to be in the same equivalence
class [ω]. Let u1 and u2 be two projective representations with the factor systems ω1 and
ω2 in the equivalence classes [ω1] and [ω2], respectively. Apparently, u1 ⊗ u2 is a projec-
tive presentation with the factor system ω1ω2 in the equivalence class [ω1ω2]. By defining
[ω1] · [ω2] = [ω1ω2], the equivalence classes of factor systems form an Abelian group [called
the second cohomology group H2(G,U(1))], where the identity element is the equivalence
class that contains the trivial factor system.

Matrix product state

Suppose we are working with a chain of N spins (qudits), and the local dimension of each
spin is d = Θ(1). Let {|ik〉}dik=1 be the computational basis of the Hilbert space of the spin
k.

Definition 20 (MPS [118, 41]). Let {Dk}nk=0 with D0 = Dn be a sequence of positive
integers. As illustrated in Fig. 7.3(a), an MPS |Ψ〉 takes the form

|Ψ〉 =
d∑

i1,i2,...,iN=1

tr
(
A

(1)
i1
A

(2)
i2
· · ·A(N)

iN

)
|i1i2 · · · iN〉, (7.36)

where A
(k)
ik

is a matrix of size Dk−1 ×Dk. Define D = max{Dk}nk=0 as the bond dimension
of the MPS |Ψ〉.
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Figure 7.3: (Color online) (a) Graphical representation of MPS (7.36) [133]. Each square
represents a tensor A(k) with two bond indices (horizontal lines) and one physical index
(vertical line). The bond indices are contracted sequentially with periodic boundary condi-
tions (not shown). (b) The condition (7.38) for short-range correlated MPS. The graphical
equation is approximate up to error e−Ω(k−j), which can be neglected in the thermodynamic
limit N → +∞ if k − j = Θ(N). (c) Graphical representation of (7.39). The site labels are
not shown. (d) is a consequence of (b) and (c). Note that a prefactor of the second, third,
and fourth tensor networks is not shown.

The ground states of 1D gapped Hamiltonians can be represented as MPSs of small bond
dimension [59, 10, 70]. The ground states of gapped local Hamiltonians are short-range
correlated in the sense that all connected correlation functions decay exponentially with
distance [60, 105, 64].

For each k, define two linear maps

Ek(X) =
d∑

ik=1

A
(k)
ik
XA

(k)†
ik

, E∗k (X) =
d∑

ik=1

A
(k)†
ik

XA
(k)
ik
. (7.37)

Any MPS can be transformed into the so-called canonical form [118] such that Ek(I) = I
and E∗k (Mk−1) = Mk, where I is an identity matrix, and Mk is a positive diagonal matrix. A
canonical MPS is short-range correlated if for any X1, X2 with ‖X1‖, ‖X2‖ ≤ 1 there exist
coefficients c1, c2 such that

‖EjEj+1 · · · Ek(X1 − c1I)‖ = e−Ω(k−j), ‖E∗kE∗k−1 · · · E∗j (X2 − c2Mj−1)‖ = e−Ω(k−j) (7.38)
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at large k − j, i.e., X1 can be replaced by c1I up to error e−Ω(k−j), as illustrated in Figure
7.3(b). Hence X1 (and X2) can be replaced by any matrix up to a multiplicative prefactor

and an exponentially small error. When A
(k)
ik

’s are site independent (and the MPS |Ψ〉 is
translationally invariant), (7.38) is equivalent to the condition [41, 118] that the second
largest (in magnitude) eigenvalue |ν2| of Ek is less than 1, and its left-hand sides of decay as
O(|ν2|−(k−j)).

Classification of 1D SPT phases

1D SPT phases are completely characterized by the degenerate edge states carrying projective
representations of the symmetry group, i.e., there is a one-to-one correspondence between
1D SPT phases and the equivalence classes of projective representations. The edge states
can be easily seen from the short-range correlated MPS representation (7.36) of SPT states.
Suppose U is an on-site symmetry with the symmetry group G, i.e., U is an isomorphism
of G such that U(g)⊗N |Ψ〉 = |Ψ〉 for any g ∈ G. Recall that {|ik〉}dik=1 is the computational

basis of the Hilbert space of the spin k. One can show that A
(k)
ik

’s satisfy [119, 29]∑
i′k

〈ik|U(g)|i′k〉A
(k)

i′k
= eiθ(g)Vk−1(g)A

(k)
ik
V −1
k (g), (7.39)

as illustrated in Fig. 7.3(c). Furthermore, eiθ(g) is a 1D representation of G. It can be
effectively eliminated by blocking sites unless G has an infinite number of 1D representations
[29]; here we drop eiθ(g) for simplicity. Vk(g) is a projective representation of G. The
equivalence class of Vk(g) is site independent and labels the SPT phase of the MPS |Ψ〉.
As such, 1D SPT phases are classified by the second cohomology group H2(G,U(1)) in the
presence of an on-site symmetry U [29, 136]. In particular, all 1D gapped spin systems are
in the same phase in the absence of symmetry [29, 136], cf. H2(G,U(1)) is trivial if G is
trivial.

1D SPT phases can be detected by nonlocal (string) order parameters. When the sym-
metry group G is Abelian, there is a set of string order parameters from which the SPT
phase of any symmetric gapped ground state can be extracted [125, 103]. When G is not
necessarily Abelian, a different and more complicated type of nonlocal order parameters fully
characterizes SPT phases [55, 125].

7.8 Appendix: States in different phases

Complete proof of Proposition 6

Proof of Proposition 6. We use the string order operator Q (7.10). Its expectation value
limN→+∞〈Q〉 is zero in the trivial phase and nonzero in the Haldane phase. As shown in Fig.

7.2, Q′ = C†QC = Ql

∏2N/3−m−1
j=N/3+m+1 e

iπSyjQr remains a string (order) operator, where the end
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Figure 7.4: (Color online) Graphical proof of 〈ψ|Q′|ψ〉 = 0 in the thermodynamic limit
N → +∞ under the assumption that |ψ〉 is in the trivial phase.

operators Ql and Qr are given by (7.11). It suffices to prove limN→+∞〈ψ|Q′|ψ〉 = 0 under
the assumption that |ψ〉 is in the trivial phase.

See Fig. 7.4 for a graphical proof. We focus on the left end of the string (order) operator
Q′. The green squares and circles carry projective representations induced by the corre-
sponding symmetry operators (red squares and circles, respectively). We briefly explain
each step of the graphical equation chain:
Step 1: e−iπS

z
SyeiπS

z
= −Sy and e−iπS

z
SzeiπS

z
= Sz.

Step 2: Cl is symmetric.
Step 3: Figure 7.3(c).
Step 4: Figure 7.3(d).
Step 5: Figure 7.3(c).
In the last tensor network, the four green objects together contribute a trivial phase factor
as |ψ〉 is in the trivial phase. Therefore, the first tensor network is zero due to the minus
signs in the graphical equation chain.
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Linear depth

Theorem 9. Suppose |ψ0〉 and |ψ1〉 are two symmetric gapped ground states in different SPT
phases. Given an arbitrarily small constant ε = Θ(1), there exist |ψ′0〉, |ψ′1〉 and a symmetric
local quantum circuit C of depth O(N) such that |ψ′1〉 = C|ψ′0〉 and

|〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε (k = 0, 1) (7.40)

for any local operator P with ‖P‖ ≤ 1.

Proof. The proof proceeds analogously to that of Proposition 5. Assume without loss of
generality that |ψk〉 is in a nontrivial SPT phase. Let |φ〉 be the RG fixed-point state in
the trivial SPT phase, and |φk〉 be the RG fixed-point state in the same SPT phase as |ψk〉.
Figure 7.1(a) and (b) illustrate the structures of |φ〉 and |φk〉, respectively.

As shown in Fig. 7.1(c), |φ〉 and |φk〉 can be exactly mapped to each other by applying
O(N) 2-local swap gates sequentially. These swap gates are symmetric with respect to any
on-site symmetry and form a symmetric 2-local quantum circuit Cφ,k of depth O(N). As
|ψk〉 and |φk〉 are in the same SPT phase, there exists a symmetric local quantum circuit Ck
of depth O(1) (Corollary 4) such that |〈ψk|P |ψk〉 − 〈ψ′k|P |ψ′k〉| ≤ ε for any local operator P
with ‖P‖ ≤ 1, where |ψ′k〉 = Ck|φk〉. Finally, C = C1Cφ,1C

†
φ,0C

†
0 is the symmetric circuit of

linear depth that connects |ψ0〉 and |ψ1〉.

Linear lower bound

The proof of Proposition 6 can be generalized to other Abelian on-site symmetry. Indeed,
string order parameters do (do not) fully characterize 1D SPT phases with Abelian (non-
Abelian) on-site symmetry [125, 103]. When the symmetry group is not necessarily Abelian,
a different and more complicated type of nonlocal order parameters [55, 125] measures all
gauge-invariant phase factors, which provide a complete description of the equivalence class
of projective representations.

Theorem 10. Suppose |ψ〉 and C|ψ〉 are two symmetric gapped ground states in 1D spin
systems with an on-site symmetry U , where C is a symmetric local quantum circuit of sub-
linear depth. Then |ψ〉 and C|ψ〉 are in the same SPT phase.

Proof. As gauge-invariant phase factors provide a complete description of the equivalence
class of projective representations, it suffices to show that all gauge-invariant phase fac-
tors cannot change under symmetric local quantum circuits of sub-linear depth. Let V be
the projective representation of the symmetry group G that labels the SPT phase of |ψ〉.
The simplest example of a gauge-invariant phase factor is V (g1)V (g2)V −1(g1)V −1(g2) for
g1, g2 ∈ G with U(g1)U(g2)U−1(g1)U−1(g2) = 1. However, the graphical representation of
the nonlocal order parameter that measures this gauge-invariant phase factor contains eight
copies of |ψ〉 and is cumbersome. In order to simplify the illustration of our proof, we pre-
tend that V (g1)V (g2) with U(g1)U(g2) = 1 is a gauge-invariant phase factor so that the
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Figure 7.5: (Color online) (a) The domain wall (dashed line) that contributes the local phase
factor V (g1)V (g2) [125]. (b) The short rectangles are the local unitaries in C. The (white)
unitaries outside the causal cones (dotted lines) of the domain walls can be removed, as they
are symmetric. Then we merge the (gray) symmetric local quantum gates inside each casual
cone into one symmetric quantum gate (long rectangle) of sub-linear support. (c) Graphical
proof of the invariance of the local phase factor for the domain wall in (a) under symmetric
local quantum circuits of sub-linear depth.
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corresponding nonlocal order parameter contains only four copies of |ψ〉. We show that this
“gauge-invariant phase factor” cannot change under symmetric local quantum circuits of
sub-linear depth. It is straightforward to generalize the proof to any gauge-invariant phase
factor.

We briefly review the construction of the tensor network (nonlocal order parameter) that
measures the gauge-invariant phase factor V (g1)V (g2). The tensor network contains three
domain walls. As |ψ〉 is short-range correlated in the sense of (7.38), one can define a “local
phase factor” for each domain wall such that the overall phase factor is the product of all
three local phase factors. Specifically, the domain wall in Fig. 7.5(a) contributes the local
phase factor V (g1)V (g2). The other two domain walls (not shown) are Θ(N) sites away;
they do not contribute any nontrivial local phase factors, but are necessary for restoring
periodic boundary conditions. The left-hand side of the graphical equation in Fig. 7.5(a)
is constructed as follows. We take four copies of |ψ〉 (expressed as MPS): two copies above
and two copies below [tensors in the copies below are complex conjugated]; contract them
via a permutation to the left and via the symmetry operators U(g1), U(g2) (red squares and
circles) to the right of the domain wall. Then the local phase factor V (g1)V (g2) pops out,
as illustrated in Fig. 7.5(a).

Under symmetric local quantum circuits of sub-linear depth, Fig. 7.5(b) shows that
the local phase factor for each domain wall is still well defined and Fig. 7.5(c) proves its
invariance. Specifically, in Fig. 7.5(c) we assume without loss of generality that C is a
symmetric 2-local quantum circuit of depth 1 so that all four rectangles [corresponding to
the gates Cl and C†l in Fig. 7.5(b)] in each tensor network are symmetric and 2-local. The
first (from above to below) rectangle acts on the third and fifth (from left to right) vertical
lines; the second acts on the fourth and sixth; the third acts on the fourth and fifth; the
fourth acts on the third and sixth. All other crossings between rectangles and vertical lines
should not be there if we could draw the tensor networks in 3D rather than in 2D. We briefly
explain each step of the graphical equation chain:
Step 1: Figure 7.3(c) and the symmetry of the rectangles.
Step 2: Figure 7.3(c).
Step 3: Figure 7.3(d).
Step 4: Figure 7.3(c).
Step 5: Figure 7.3(d) and the symmetry of the rectangles.
Step 6: U(g1)U(g2) = 1.

Remark. The time-reversal symmetry is not an on-site symmetry as the anti-unitary time-
reversal operator cannot be expressed as a tensor product of on-site operators. However, it
can be effectively treated as an on-site symmetry using the trick in Sec. IVB of Ref. [125].
Therefore, we expect that the proof of Theorem 10 can be generalized to the time-reversal
symmetry.
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