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Abstract The ubiquity of trophic downgrading has led to
interest in the consequences of mesopredator release on

prey communities and ecosystems. This issue is of partic-

ular concern for reef-fish communities, where predation is
a key process driving ecological and evolutionary dynam-

ics. Here, we synthesize existing experiments that have

isolated the effects of mesopredators to quantify the role of
predation in driving changes in the abundance and biodi-

versity of recently settled reef fishes. On average, predators

reduced prey abundance through generalist foraging
behavior, which, through a statistical sampling artifact,

caused a reduction in alpha diversity and an increase in

beta diversity. Thus, the synthesized experiments provide

evidence that predation reduces overall abundance within
prey communities, but—after accounting for sampling

effects—does not cause disproportionate effects on

biodiversity.

Keywords Predator–prey ! Rarefaction ! Coral reef ! Reef
fish ! Assembly ! Invasive predators

Introduction

Declines in apex predator populations can cause irruptions

in the abundance and shifts in the behavior of previously

suppressed mesopredators (Prugh et al. 2009). This trophic
‘release’ of mesopredators is cause for conservation con-

cern, because when abundant, they can cause extinctions

and major shifts in ecosystem function (Crooks and Soulé
1999; Ritchie and Johnson 2009). The reduction of apex

predators and subsequent mesopredator release is a wide-

spread phenomenon across ecosystems (Estes et al. 2011)
and is particularly prevalent in coral-reef ecosystems due to

disproportionately high fishing rates at the top of the food

chain (Stallings 2009; DeMartini and Smith 2015). Abun-
dance of coral-reef mesopredators (e.g., small-bodied

groupers and snappers) has also increased through the
introduction of non-native predators. In some cases, these

introduced predators have become extremely successful,

for example, the intentionally introduced peacock grouper
(Cephalopholis argus) in Hawaii (Meyer and Dierking

2011) and the accidentally introduced Pacific lionfishes

(Pterois volitans and Pterois miles) in the Atlantic and
Caribbean (Côté et al. 2013) have each become numeri-

cally dominant mesopredators in their respective invaded

communities. Because predation is known to be a key
driver of ecosystem and evolutionary dynamics (Hixon
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1991, 2015), these fishing- and invasion-associated shifts in

the abundance and biomass of predators are considered
cause for concern among coral-reef managers and conser-

vation practitioners. Settling fishes experience extraordi-

narily high predation rates on coral reefs (Almany and
Webster 2006), with an average of 50% mortality in their

first 48 h on the reef (i.e., a ‘predation gauntlet’). This

effect of predators declines rapidly with increases in prey
body size (Sogard 1997; Goatley and Bellwood 2016).

Thus, increases in mesopredator abundance have the
capacity to drive major shifts in the abundance and biodi-

versity of coral-reef fish communities by amplifying the

intensity of the predation gauntlet.
Mesopredator effects have historically been difficult to

quantify on coral reefs, because these predators often posi-

tively covary in abundance and diversity with their prey due
to shared reef habitat (Stier et al. 2014). Therefore, only a

handful of field experiments have been able to isolate the role

of mesopredators in altering prey community size and
composition (Hixon 2015). Here, we conducted a meta-

analysis of all (to our knowledge) published predation

experiments to quantify the extent to which mesopredators
affect prey abundance and biodiversity in coral-reef fishes.

We focused on three distinct aspects of biodiversity includ-

ing gamma diversity (species richness at the study scale),
alpha diversity (species richness at the sample scale), and

beta diversity (a measure of the spatial variability of com-

munity composition among samples across the study). We
also used rarefaction methods to calculate corrected alpha

and beta diversity measures by accounting for the effects of

abundance on biodiversity. We then compared the effects of
native mesopredators to those of invasives (peacock grouper

and lionfish) and briefly identified two opportunities for

future research on reef–fish predator–prey dynamics.

Methods

Focal experiments

We quantified the effects of reef-fish mesopredators on prey

abundance and biodiversity in ten published studies

2002–2014 (Electronic supplementary material, ESM,
Table S1). We identified these ten focal studies using

extensive Google Scholar and ISI Web of Science literature

searches from 1990 to 2016 in major ecological and marine
journals using all combinations of the following keywords:

predation, coral reef fish, predation gauntlet, reef fish,

community assembly, and depredation. Each of these ten
studies was conducted with similar methods, where isolated

experimental reefs were constructed in sandy environments.

Prey communities were manipulated prior to each study
either through the removal of all prey or through the selective

removal of all recently recruited individuals. Predators were

then manipulated on a subset of the patch reefs through
selective additions and removals or cages; then, new prey

communities were allowed to recruit to reefs with different

predator treatments (control = predators absent, treat-
ment = predators present). Predator manipulations were

pressed in all studies (i.e., unwanted predators on control

treatments were removed and predator-present treatments
were maintained). Prey communities were visually surveyed

by divers on a regular basis over a period of time that ranged
from 42 to 120 d. Additional study details including predator

species, duration, and additional manipulations of other

variables such as adult damselfish abundance and habitat
complexity (additional known drivers of reef-fish commu-

nity assembly) can be found in ESM Table S1.

Measuring prey community response

We compared recruiting prey communities in experimental
treatments with and without predators using five different

response variables: (1) total abundance of all prey species;

(2) gamma diversity measured as the species list on reefs
with and without predators (i.e., the total number of prey

species found in control or predator-present treatments);

(3) alpha diversity measured as the number of species
within a patch; (4) rarefied alpha diversity (the number of

species within a patch, corrected for abundance); (5) beta

diversity based on species incidence (the Jaccard index: a
metric focused on the gain or loss of a species); and (6)

rarefied beta diversity (Jaccard index corrected for differ-

ences in abundance). We quantified beta diversity in
predator and no-predator treatments by estimating the

median multivariate dispersion around the multivariate

centroid of the community (Anderson et al. 2006).

Rarefaction

Communities with higher abundance tend to have higher

alpha diversity and lower beta diversity (Gotelli and Col-

well 2001; Cardoso et al. 2009; Stier et al. 2016). Because
alpha diversity is often strongly correlated with abundance,

predation can reduce observed alpha diversity and increase

observed beta diversity simply because it causes a decline
in the number of prey individuals (Fig. 1a, b). We used

individual-based rarefaction to estimate rarefied alpha

(Gotelli and Colwell 2001) and beta diversity (Stier et al.
2014) because control treatments tended to have a higher

abundance than those with predators. Predator-induced

reductions in rarefied diversity implicate biological pro-
cess(es) rather than a statistical sampling artifact (Fig. 1c).

We define generalist predators as those that affect prey

species in proportion to prey abundance. If predators eat
prey in proportion to their abundance, rarefied alpha and
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beta diversity should remain the same across predator and
control treatments. If predators disproportionately consume

common or rare species or alter competitive dynamics,

differences in alpha and beta diversity will emerge for

rarefied indices. The mesopredators involved in our meta-

analysis are considered generalists though this has not been
previously assessed quantitatively. For additional details on

rarefaction, see ESM 2 and Stier et al. (2013b, 2014).

Effect sizes

We estimated the effect of predators (P?) relative to
predator-free controls (P-) for each study using the log-

response ratio (Osenberg et al. 1999):

li ¼ log
Piþ
Pi$

! "
; ð1Þ

where li is the predation effect size, and Piþ and Pi$
represent the abundance, alpha diversity, or beta diversity

of prey in the presence and absence of predators, respec-

tively, for the ith study.
Variance of the effect size was estimated using the delta

method:

varðliÞ ¼
varðPi$Þ
ðPi$Þ2

þ varðPiþÞ
ðPiþÞ2

: ð2Þ

For abundance, alpha diversity, and beta diversity, we

tested the hypothesis that the effect size differed from zero
and estimated nonparametric bootstrapped confidence

intervals using a random-effects model implemented in the

metafor package in R (Viechtbauer 2010). We weighted
studies by the inverse of the sampling variance of their

effect sizes, as recommended by Hedges et al. (1999), to

account for greater certainty in studies with less variation.
However, there was no variance estimate for gamma

diversity; therefore, we used a t test to compare the effect

size to zero. We assumed that the response of each com-
munity was statistically independent. Experiments exhib-

ited minor overlap in predator species; however, individual

experiments had limited temporal overlap, suggesting prey
recruitment events were largely independent. All analyses

were made using the R statistical programming environ-

ment (R Development Core Team 2013).

Results and discussion

Mesopredators had substantial effects on prey abundance

and biodiversity. Across the ten focal studies, prey com-
munities on reefs with mesopredators had 60% lower

abundance (Q = 82.616, df = 10, P\ 0.001; Figs. 2, 3a)

and an average of 35% lower gamma diversity (t = 2.711,
df = 10, P = 0.022; ESM Fig. S1). This reduction in

gamma diversity was primarily driven by the 36% average

reduction in alpha diversity (Q = 82.615, df = 10,
P = 0.001; Fig. 3b). However, there was no detectable ef-

fect of mesopredators on rarefied alpha diversity (0.1%
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Fig. 1 When predators reduce abundance, alpha diversity should
decrease and beta diversity should increase. This effect can provide
insight into expected effects of predators on alpha and beta diversity
through reductions in abundance (see arrow). Panels illustrate
individual-based rarefaction curves (a alpha diversity, b beta diver-
sity). Rarefaction of alpha diversity can be used to gain insights into
whether predators disproportionately affect common or rare species.
c Three different individual-based rarefaction curves that might
emerge from different predator effects. A patch that has no predators
will have a rarefaction curve labeled P-. The manner in which
reduced abundance by predators affects species richness depends on
whether predators are generalists or whether they disproportionately
affect common or rare species. If predators affect species in
proportion to their abundance (i.e., generalists), they will have
rarefaction curve G. If predators disproportionately affect common
species, they will have a greater number of species per individual
compared to generalist predators (curve C), and if predators
disproportionately affect rare species, they will produce rarefaction
curve R, decreasing diversity relative to generalist predators
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increase; Q = 30.989, df = 10, P = 0.450; Fig. 4a), sug-

gesting that mesopredator-induced reductions in prey
abundance caused the apparent decline in unrarefied alpha

diversity. We found reefs with mesopredators had on

average 15% higher beta diversity (Q = 19.192, df = 10,
P = 0.007; Figs. 2, 3b), but that these effects similarly

disappeared following rarefaction, with no detectible shift

in rarefied beta diversity (5% decrease; Q = 28.902,
df = 10, P = 0.439; Figs. 2, 4b). Thus, the reef meso-

predators measured here were, on average, generalist

predators that had strong negative effects on prey abun-
dance and consequently altered patterns of alpha and beta

diversity via a statistical sampling effect.

Our results suggest that mesopredators primarily affec-
ted prey diversity by reducing prey abundance (Fig. 3a).

There were, however, two notable predator species that

disproportionately affected rare prey species and signifi-
cantly lowered rarefied diversity: the dottyback Pseu-

dochromis fuscus (Almany et al. 2007) and peacock

grouper Cephalopholis argus (Stier et al. 2014). From a
conservation perspective, this disproportionate effect on

rare species is particularly concerning in the case of the

peacock grouper, because this non-native mesopredator,
introduced to Hawaii in the mid-1950s, now constitutes

more than 80% of the large piscivore biomass in some

locations (Meyer and Dierking 2011). The unique effects of
these two species suggest we need to further study the

foraging behavior of mesopredators and in particular their

functional responses (sensu Stier et al. 2013a; Stier and
White 2014), because predators with a preference for rare

species and a Type I or II functional response can

destabilize prey population dynamics and catalyze reduc-

tions in reef biodiversity (White et al. 2010).

Our study also provides insight into the effects of lion-
fishes in the western Atlantic. The recent invasion and

exponential growth of lionfishes in the Atlantic from the

0.50

0.75

1.00

1.25

Abundance
Alpha diversity Beta diversity

Rarefied Rarefied

P
re

da
to

r 
/ C

on
tr

ol

Obs. Obs.
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Fig. 3 Distribution of median predator effects (±95% bootstrapped
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diversity (c). Dashed horizontal line represents no-predator effect,
and point color depicts Caribbean (black) and Pacific (white) studies.
Lionfish silhouette (triangle) corresponds to effect measured from
Albins (2013), and peacock grouper silhouette (square) corresponds
to effect measured from Stier et al. (2014). Studies ranked by
magnitude of effect, with strongest negative effects on left and
strongest positive effects on right. Numbers correspond to reference
numbers listed in ESM Table S1
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central US to South America have generated widespread

concern for their effects on the prey fish community. The
effects of lionfish on abundance and diversity fell within

the distribution of predator effects observed across all

studies, but was the strongest effect measured in the region
(Fig. 3). Rarefaction suggested that lionfish are generalists

rather than disproportionately affecting common or rare

species (Fig. 4). Therefore, in contrast to the peacock
grouper, lionfish may be less likely to threaten prey bio-

diversity unless they drive prey to such low abundances

that they are sensitive to extinction due to demographic
stochasticity (sensu Rocha et al. 2015; Ingeman 2016).

Such an outcome is likely in some locations based on the

strong negative effects of lionfish on a wide variety of
native prey species (Albins 2013). Of course, there are also

additional biological and socio-economic concerns

associated with the lionfish invasion that extend beyond

biodiversity effects.
Biodiversity can be associated with ecosystem func-

tioning, productivity, and evolutionary dynamics in marine

systems (Gamfeldt et al. 2015). The studies synthesized
here offer key insights into how mesopredators affect prey

fish abundance and biodiversity and, more broadly, the role

mesopredators play in driving spatio-temporal variation in
reef-fish biodiversity. However, a number of questions

remain unanswered about the role of predation in driving
reef-fish assembly, such as: (1) How do these small spatial

scale and short temporal scale studies scale up to popula-

tion and community dynamics on contiguous reefs over
longer periods of time? (2) How do the effects of predators

on prey community structure cascade to affect the benthic

community (Casey et al. 2016)? (3) How do cooperative
and antagonistic interactions within and among predator

species modify the effect of predators on community

structure? As humans continue to alter marine ecosystems
through a variety of stressors, a deeper understanding of

how invasive predators drive ecosystem structure and

function will provide much needed detail to improve con-
servation and management.
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ESM 1  
 
Table S1 Focal studies, species, and study durations. Note that Albins (2013) examined 
Pterois volitans and Cephalopholis fulva independently and each species is plotted 
separately in the main text. All other studies listed below examined either a single 
predator effect or the combined effect of multiple predator species 
 
Predator Species Duration 

(days) 
Reference Reference 

No. 

Cephalopholis boenak; Pseudochromis fuscus  50 (Webster and 
Almany 2002) 

1 

Cephalopholis boenak; Pseudochromis fuscus  42 (Webster 2002) 2 

Cephalopholis cruentata; Cephalopholis 
fulva; Epinephelus striatus; Gymnothorax 
moringa; Gymnothorax vicinus  

44 (Almany 2003) 3 

Cephalopholis boenak; Pseudochromis fuscus 50 (Almany 
2004a) 

4 

Cephalopholis cruentata; Epinephelus 
striatus; Serranus tigrinus; Rypticus 
bistrispinus; Gymnothorax moringa; 
Gymnothorax vicinus  

60 (Almany 
2004b; Almany 
2004c) 

5,6 

Pterois volitans; Cephalopholis fulva 70 (Albins 2013) 7 
Cephalopholis fulva; Cephalopholis cruentata  52 (Stallings 

2009) 
8 

Balistapus undulatus; Rhinecanthus aculeatus; 
Bothus spp.;�Caranx melampygus; 
Halichoeres hortulanus; Halichoeres 
trimaculatus; Lethrinus olivaceus; Parapercis 
spp; Pterois radiata; Epinephelus merra; 
Synodus spp.  

54 (Heinlein et al. 
2010) 

9 

Paracirrhites arcatus  120 (Stier et al. 
2013) 

10 

Cephalopholis argus 60 (Stier et al. 
2014) 

11 

 
  



 
 
ESM 2: Rarefaction methods 
 
Estimates of species richness and beta diversity can be sensitive to differences in overall 
abundance within and among patches (Gotelli and Colwell 2001; Cardoso et al. 2009). 
Because predators reduce prey abundance, we expected that they would also reduce 
species richness, either through frequency dependent foraging (in particular, the 
preferential consumption of rare species) or simply by reducing overall density (i.e., a 
sampling effect).  If predators were primarily generalists, reducing overall density, then 
among-treatment differences in species richness would subside after rarefaction (Almany 
and Webster 2004). Individual-based rarefaction has classically been used to adjust 
species richness estimates for differences in abundance of organisms across sites by 
estimating the mean species richness in repeated subsamples from each site (Gotelli and 
Colwell 2001). Although the importance of bias in species richness estimates due to 
differential sample sizes across treatments has been previously recognized, its effect on 
estimates of beta diversity is less clear. Developing estimates of differences in beta 
diversity that account for differences in sample size is particularly important in empirical 
ecology, where manipulating a given ecological factor with a focus on changes in species 
diversity often leads to concurrent shifts in the number of individuals. For example, in 
this study, experimental reefs with predators tended to have approximately half as many 
fish as reefs without predators. Here, we conducted individual-based rarefaction to 
estimate rarefied alpha diversity and beta diversity that ensured that the number of 
individuals sampled was comparable across reefs and treatments. For additional details 
on the methodology see:	(Stier et al. 2013; Stier et al. 2014; Stier et al. 2016).  
 

 
ESM Fig. S1 Distribution of predator effects on gamma (pink) and alpha (blue) diversity 
across studies ranked by strength of predator effect on gamma diversity. Predator present 
treatments are marked as + and predator absent treatments are marked as –. Numbers 
correspond to reference number and species in Table S1  
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